JP4592283B2 - In-reactor inspection equipment - Google Patents

In-reactor inspection equipment Download PDF

Info

Publication number
JP4592283B2
JP4592283B2 JP2003427211A JP2003427211A JP4592283B2 JP 4592283 B2 JP4592283 B2 JP 4592283B2 JP 2003427211 A JP2003427211 A JP 2003427211A JP 2003427211 A JP2003427211 A JP 2003427211A JP 4592283 B2 JP4592283 B2 JP 4592283B2
Authority
JP
Japan
Prior art keywords
inspection
inspection sensor
reactor
underwater vehicle
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003427211A
Other languages
Japanese (ja)
Other versions
JP2005188954A (en
Inventor
光明 島村
智之 伊藤
哲郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003427211A priority Critical patent/JP4592283B2/en
Publication of JP2005188954A publication Critical patent/JP2005188954A/en
Application granted granted Critical
Publication of JP4592283B2 publication Critical patent/JP4592283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、原子炉圧力容器内部の構造やシュラウド等の炉内構造物の検査を行う原子炉内検査装置に関する。 The present invention relates to nuclear reactor inspection equipment for inspecting reactor pressure vessel internal structures and the reactor internal component such as a shroud.

一般に、原子炉圧力容器内や炉内構造物の検査には原子炉内検査装置が用いられている。検査は特に原子炉内の主要な溶接構造物であるシュラウドの各部溶接線が対象とされている。このような検査作業は、短時間でなるべく広範囲の検査を行うために水中ビークルに各種検査機器を搭載して行われる。   In general, an in-reactor inspection apparatus is used for inspecting a reactor pressure vessel and structures inside the reactor. The inspection is particularly targeted at the weld lines of the shrouds, which are the main welded structures in the reactor. Such an inspection operation is performed by mounting various inspection devices on an underwater vehicle in order to perform an inspection as widely as possible in a short time.

このような原子炉内検査装置としては、水中遠隔操作ビークルに前後進・旋回用スラスタおよび昇降・横行用スラスタを備えた装置であって、回動可能なアーム機構が取り付けられており、このアーム機構の先端に超音波検査手段や耐放射性テレビカメラ、赤外線カメラなどの各種検査手段を交換着脱可能に取り付けた例がある(下記特許文献1参照)。   As such an in-reactor inspection apparatus, an underwater remote control vehicle is provided with a forward / reverse / swivel thruster and an elevating / traverse thruster, and a pivotable arm mechanism is attached. There is an example in which various inspection means such as an ultrasonic inspection means, a radiation-resistant television camera, and an infrared camera are detachably attached to the tip of the mechanism (see Patent Document 1 below).

この例ではアーム機構の先端にX−Yスキャナ機構を設け、このX−Yスキャナ機構に各種検査手段を取り付けている。検査の動作としては、水中遠隔操作ビークルのスラスタによりアーム機構および各種検査手段を検査部位まで移動させ、前記X−Yスキャナ機構を検査部位の近傍に押付けて、その動作自由度により検査手段を走査して検査を行う。   In this example, an XY scanner mechanism is provided at the tip of the arm mechanism, and various inspection means are attached to the XY scanner mechanism. As the inspection operation, the arm mechanism and various inspection means are moved to the inspection site by the thruster of the underwater remote control vehicle, the XY scanner mechanism is pressed near the inspection site, and the inspection means is scanned by the degree of freedom of operation. And inspect it.

また他の原子炉内検査装置の例として、原子炉圧力容器等の内壁面に発生した欠陥の発見・除去作業を遠隔で行うために、水中の壁面に吸着しながら無軌道で移動する水中移動台車にその幅方向に沿って一軸方向に往復移動するデバイスアームを設け、このデバイスアームに欠陥部の監視手段および研削手段を備えた装置がある(下記特許文献2参照)。   As another example of in-reactor inspection equipment, an underwater mobile trolley that moves without a track while adsorbing to an underwater wall to remotely detect and remove defects generated on the inner wall of a reactor pressure vessel, etc. There is a device provided with a device arm that reciprocally moves in a uniaxial direction along its width direction, and this device arm is provided with a monitoring means for a defective portion and a grinding means (see Patent Document 2 below).

この装置では、前記デバイスアームにスライド自在に取り付けられたスライドレールと、このスライドレールを壁面に対して近接離間させるシリンダとを備えて、欠陥部の監視手段や研削手段を動作させて水中移動台車が停止しているとき、および移動しているときにも壁面に対して作業することが可能である。
特開平11−14784号公報 特開平11−211878号公報
The apparatus includes a slide rail that is slidably attached to the device arm, and a cylinder that moves the slide rail close to and away from the wall surface. It is possible to work on the wall surface even when is stopped and moving.
Japanese Patent Laid-Open No. 11-14784 JP-A-11-21878

上述したような従来の原子炉内検査装置において、原子炉内水中で原子炉圧力容器内や炉内構造物の検査を行う場合、特に各構造物の溶接線の検査を行う場合には、遊泳移動や吸着走行移動ビークルに検査用の点検センサを搭載し、溶接線に沿って搬送、位置決めを行うことで検査作業が可能である。非接触型センサを用いる場合は、吸着走行移動ビークルによりシュラウド等の炉内構造物上を吸着しながら移動し、搭載した点検センサのホルダー等にローラや自在車輪を取り付けて、これをシュラウド壁や炉内構造物に押付けることにより点検センサと点検対象である溶接線の距離および姿勢を一定にすることができる。   In the conventional in-reactor inspection apparatus as described above, when inspecting the reactor pressure vessel or in-reactor structure in the in-reactor water, especially when inspecting the weld line of each structure, swimming Inspection work can be carried out by mounting an inspection sensor for inspection on a moving or suction traveling vehicle, and carrying and positioning along a welding line. When using a non-contact type sensor, it moves while adsorbing on the internal structure of the furnace such as the shroud by the adsorption traveling vehicle, and attaches a roller or a free wheel to the holder of the installed inspection sensor, and attaches it to the shroud wall or By pressing against the furnace internal structure, the distance and posture between the inspection sensor and the weld line to be inspected can be made constant.

しかしながら、上記のローラや自在車輪等の押付け状態が変化し点検センサと溶接線の相対距離や姿勢がずれてしまうことがある。また実際の検査においては、点検センサの出力状態を確認しながら点検センサの取付け状態を微調整するという要求が高い。このようなずれを修正するためには、その都度ビークルを水中から引き上げて取付け位置を調整しなければならない。しかし検査装置が狭隘な部位に進入している場合には引き上げ作業そのものが困難で時間を要する作業であり、また装置は炉内で汚染しているため調整作業にはフードマスク等の装備が必要となり作業性が悪いので調整が困難である。その結果、センサ取り付け位置の調整や作業段取りのための時間がかかり検査作業全体の時間が増大するという問題がある。   However, the pressing state of the roller and the free wheel may change, and the relative distance and posture between the inspection sensor and the weld line may shift. In actual inspection, there is a high demand for fine adjustment of the inspection sensor mounting state while checking the output state of the inspection sensor. In order to correct such a deviation, it is necessary to adjust the mounting position by lifting the vehicle from the water each time. However, when the inspection device has entered a narrow area, the lifting work itself is difficult and time consuming, and the equipment is contaminated in the furnace, so equipment such as a hood mask is required for adjustment work. Since workability is poor, adjustment is difficult. As a result, there is a problem that it takes time for adjustment of the sensor mounting position and work setup, and the time for the entire inspection work increases.

本発明は上述した課題を解決するためになされたものであり、原子炉内を検査する点検センサの位置と姿勢を遠隔で制御することができ、検査のための調整と段取りを簡単に行うことのできる原子炉内検査装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and can remotely control the position and posture of an inspection sensor for inspecting the inside of a nuclear reactor, and easily perform adjustment and setup for inspection. and to provide a nuclear reactor inspection equipment capable of.

請求項1の発明は、原子炉内を三次元方向に移動する水中ビークルと、原子炉内を検査し情報を得る点検センサと、前記点検センサを前記水中ビークルに対して保持しその位置および姿勢を調整動作させる点検センサ駆動装置と、前記原子炉外に設けられ前記水中ビークルの動作を制御するビークル制御操作部と、前記原子炉外に設けられ前記点検センサ駆動装置の動作を制御する点検センサ駆動装置制御操作部と、前記原子炉外に設けられ前記検査情報に対応する前記点検センサの出力信号を入力して処理する点検センサ出力信号処理部とを具備し、前記点検センサ駆動装置は、前記水中ビークルに対して、直交3軸方向の前記点検センサの取付け位置を調整する、3つの直動機構を連接して構成した位置調整機構と、前記位置調整機構の下部に取り付けられ、直交3軸まわりの前記点検センサの姿勢を調整する姿勢調整機構とを備え、前記姿勢調整機構は、対向設置された2つの駆動用かさ歯車に対し、2つの従動用かさ歯車が上記駆動用かさ歯車の夫々にかみ合うとともに回転軸が直交して対向設置されており、前記駆動用かさ歯車の回転方向を組み合わせることにより従動側を直交2軸まわりに回転させる構造である構成とする。 The invention of claim 1 includes an underwater vehicle that moves in a three-dimensional direction within a nuclear reactor, an inspection sensor that obtains information by inspecting the inside of the nuclear reactor, and a position and posture of the inspection sensor that are held with respect to the underwater vehicle. Inspection sensor driving device for adjusting the operation of the vehicle, a vehicle control operation unit for controlling the operation of the underwater vehicle provided outside the reactor, and an inspection sensor for controlling the operation of the inspection sensor driving device provided outside the reactor A driving device control operation unit; and an inspection sensor output signal processing unit that inputs and processes an output signal of the inspection sensor that is provided outside the reactor and corresponds to the inspection information. A position adjusting mechanism configured by connecting three linear motion mechanisms that adjust the mounting position of the inspection sensor in the three orthogonal axes with respect to the underwater vehicle; and Attached to parts, and a said inspection position adjustment mechanism posture adjusting the sensor around the three orthogonal axes, the posture adjustment mechanism to counter the installed two driving bevel gears, two follower bevel gear Is engaged with each of the driving bevel gears, and the rotation shafts are orthogonally disposed opposite to each other, and the driven side is rotated around the two orthogonal axes by combining the rotation directions of the driving bevel gears. To do.

本発明によれば、原子炉内を検査する点検センサの位置と姿勢を遠隔で制御することができ、検査のための調整と段取りを簡単に行うことのできる原子炉内検査装置を提供することができる。 According to the present invention, the position and orientation of the inspection sensors to inspect the reactor can be controlled remotely, provides coordination and reactor inspection equipment capable of easily performed that the setup for inspection be able to.

以下、本発明に係る原子炉内検査装置の実施の形態について図面を参照して説明する。 It will be described below with reference to the accompanying drawings, embodiments of the nuclear reactor inspection equipment according to the present invention.

(第1の実施の形態)
本発明の第1の実施の形態を図1から図5を用いて説明する。
図1は本実施の形態の原子炉内検査装置によって沸騰水型原子炉内の炉内構造物であるシュラウド62の中間部胴や下部胴内面を検査する場合を示す概念図である。図1に示すように、点検センサ2および点検センサ駆動装置3を搭載した水中ビークル1にはケーブル4が接続されており、ケーブル4はオペレーションフロア70上や燃料交換機71上などに設置されたビークル制御操作部5aと点検センサ駆動装置制御操作部5bと点検センサ出力処理部6に接続されている。さらにビークル制御操作部5aと点検センサ駆動装置制御操作部5bと点検センサ出力処理部6は検査位置データなどの情報を授受するために相互に接続されている。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a conceptual diagram showing a case where an inner shell and a lower shell inner surface of a shroud 62 which is a reactor internal structure in a boiling water reactor are inspected by an in-reactor inspection apparatus according to the present embodiment. As shown in FIG. 1, a cable 4 is connected to an underwater vehicle 1 on which an inspection sensor 2 and an inspection sensor driving device 3 are mounted. The cable 4 is installed on an operation floor 70 or a fuel changer 71. The control operation unit 5a, the inspection sensor drive device control operation unit 5b, and the inspection sensor output processing unit 6 are connected. Further, the vehicle control operation unit 5a, the inspection sensor drive device control operation unit 5b, and the inspection sensor output processing unit 6 are connected to each other in order to exchange information such as inspection position data.

例えば炉下部の検査を行う場合、水中ビークル1に点検センサ2および点検センサ駆動装置3が搭載されて原子炉圧力容器61の上方から炉内へ投入され、炉水60中を遊泳しながら潜行し上部格子板63および炉心支持板64を通過して炉下部へ到達する。そして水中ビークル1により点検センサ2を検査箇所へ搬送して検査を実施する。   For example, when the inspection of the lower part of the reactor is performed, the inspection sensor 2 and the inspection sensor driving device 3 are mounted on the underwater vehicle 1, and the reactor pressure vessel 61 is introduced into the reactor from above and submerged while swimming in the reactor water 60. It passes through the upper lattice plate 63 and the core support plate 64 and reaches the lower part of the furnace. Then, the inspection sensor 2 is transported to the inspection location by the underwater vehicle 1 to perform the inspection.

図2に水中ビークル1の構成を示す。すなわち、水中ビークル1の上部の左右には一対の上下スラスタ7が同じ角度だけ傾けて配置され、中央部には一対の水平スラスタ8が配置されている。またシュラウド62の表面に沿って走行移動するために、片側にボールキャスタ12が設けられ、ボールキャスタ12の反対側に2つの走行車輪9と2つの距離計測ローラ10が配置されている。点検センサ2として、例えば、目視検査用カメラ、体積検査用超音波センサ、渦流探傷用点検センサ等を用いることができるが、本実施の形態ではレーザUT(Ultrasonic Testing) プローブを用いた場合を示している。レーザUTプローブは検査対象部位に探傷用レーザ光と受信用レーザ光の2種類のレーザ光を投射し、き裂検査を行うものである。 FIG. 2 shows the configuration of the underwater vehicle 1. That is, a pair of upper and lower thrusters 7 are disposed at the same angle at the upper left and right of the underwater vehicle 1, and a pair of horizontal thrusters 8 are disposed at the center. In order to travel along the surface of the shroud 62, the ball caster 12 is provided on one side, and two traveling wheels 9 and two distance measuring rollers 10 are disposed on the opposite side of the ball caster 12. As the inspection sensor 2, for example, a visual inspection camera, a volume inspection ultrasonic sensor, an eddy current inspection sensor, or the like can be used. In this embodiment, a laser UT (Ultrasonic Testing ) probe is used. ing. The laser UT probe projects two types of laser light, flaw detection laser light and reception laser light, onto a region to be inspected for crack inspection.

点検センサ2は点検センサ駆動装置3により水中ビークル1の下部に取り付けられる。そして点検センサ駆動装置3により検査対象部位に対する点検センサ2のスキャン動作や位置および姿勢の調整を行う。点検センサ2のシュラウド62に対する位置および姿勢は、点検センサ2の取付けブラケット17に取り付けた超音波センサ15,16によりシュラウド62までの距離を計測して調整する。   The inspection sensor 2 is attached to the lower part of the underwater vehicle 1 by an inspection sensor driving device 3. Then, the inspection sensor driving device 3 adjusts the scanning operation and the position and posture of the inspection sensor 2 with respect to the inspection target part. The position and orientation of the inspection sensor 2 with respect to the shroud 62 are adjusted by measuring the distance to the shroud 62 with the ultrasonic sensors 15 and 16 attached to the mounting bracket 17 of the inspection sensor 2.

一対の上下スラスタ7は、各々の回転方向を操作して水流の方向を組み合わせることによって水中ビークル1を潜行、浮上および左右といった任意の方向に遊泳させる。また一対の水平スラスタ8により水中ビークル1の前進、後進および垂直軸周りの旋回を行う。水中ビークル1の上部にはフロート14が配置されており、水中での自重と浮力がバランスするように調整することにより、上部格子板63や炉心支持板64を通過した後に真横に遊泳してシュラウド62内面へ向かうことができる。また水中において重心より浮力の中心が上になるように構成されているので、停止時には常に点検センサ2が下になるように保持されると共に、上下スラスタ7および水平スラスタ8による遊泳時の姿勢を安定させることができる。   The pair of upper and lower thrusters 7 swims the underwater vehicle 1 in an arbitrary direction such as diving, floating, and left and right by operating the respective rotating directions and combining the directions of water flow. Further, the pair of horizontal thrusters 8 cause the underwater vehicle 1 to move forward, backward and turn about the vertical axis. A float 14 is disposed at the upper part of the underwater vehicle 1. By adjusting the underwater vehicle 1 so that its own weight and buoyancy in water are balanced, after passing through the upper lattice plate 63 and the core support plate 64, it swims to the side and shrouds. 62 Can go to the inner surface. Since the center of buoyancy is higher than the center of gravity in the water, the inspection sensor 2 is always held downward when stopped, and the posture during swimming by the upper and lower thrusters 7 and the horizontal thruster 8 is maintained. It can be stabilized.

水中ビークル1は炉水60中を遊泳移動し原子炉圧力容器61内の検査箇所近傍へ達した後に、水平スラスタ8によりビークル前面側から後面側へ水流を生成させることで検査対象であるシュラウド62に接近し、ボールキャスタ12と走行車輪9および距離計測ローラ10をシュラウド62に接触させる。この状態で傾斜センサ13によりビークルの傾斜を計測し、傾いている場合には図示されていない車輪駆動モータにより上下の走行車輪9を反対方向に駆動して水中ビークル1の姿勢を鉛直に修正する。   The underwater vehicle 1 swims in the reactor water 60, reaches the vicinity of the inspection location in the reactor pressure vessel 61, and then generates a water flow from the front side of the vehicle to the rear side by the horizontal thruster 8, thereby the shroud 62 to be inspected. The ball caster 12, the traveling wheel 9 and the distance measuring roller 10 are brought into contact with the shroud 62. In this state, the inclination of the vehicle is measured by the inclination sensor 13, and when it is inclined, the upper and lower traveling wheels 9 are driven in opposite directions by a wheel drive motor (not shown) to vertically correct the attitude of the underwater vehicle 1. .

そしてさらに車輪駆動モータにより走行車輪9を回転して走行移動する。このとき、水中ビークル1はシュラウド62に3点で接触しており、シュラウド62との距離を一定に保ちながら水平に移動することができる。この時に傾斜センサ13によりビークルの傾斜を計測し、傾斜している場合には上下の走行車輪9の回転速度を調整し制御することで姿勢を垂直に保ちながら水平に走行移動することができる。また、水中ビークル1を傾斜させて切返しながら移動することによって上下方向にも移動することができる。走行車輪9による走行時には距離計測ローラ10も一緒に回転するのでエンコーダ等の回転センサ11により、吸着したシュラウド62に対する水中ビークル1の走行距離すなわち点検センサ2の相対移動量を計測することができる。   Further, the traveling wheel 9 is rotated and moved by the wheel drive motor. At this time, the underwater vehicle 1 is in contact with the shroud 62 at three points, and can move horizontally while keeping the distance from the shroud 62 constant. At this time, the inclination of the vehicle is measured by the inclination sensor 13, and when the vehicle is inclined, the vehicle can be moved horizontally while maintaining the vertical posture by adjusting and controlling the rotational speed of the upper and lower traveling wheels 9. Further, the underwater vehicle 1 can be moved in the vertical direction by tilting and moving while turning. Since the distance measuring roller 10 rotates together with the traveling wheel 9 during traveling, the traveling distance of the underwater vehicle 1 relative to the attracted shroud 62, that is, the relative movement amount of the inspection sensor 2 can be measured by the rotation sensor 11 such as an encoder.

次に図3を用いて点検センサ駆動装置3の構成および動作を説明する。水中ビークル1の下部にZ軸ベース20が取り付けられている。Y軸ベース22はリニアガイド21を介してZ軸ベース20と連結されており、Z軸駆動モータ23を駆動源としてタイミングベルト24とボールネジ25によって上下に駆動される。X軸ベース27は2段に組み合わされたリニアガイド26を介してY軸ベース22と連結されており、Y軸駆動モータ28を駆動源としてタイミングベルト29とラック・ピニオン30によって前後に駆動される。   Next, the configuration and operation of the inspection sensor driving device 3 will be described with reference to FIG. A Z-axis base 20 is attached to the lower part of the underwater vehicle 1. The Y-axis base 22 is connected to the Z-axis base 20 via a linear guide 21 and is driven up and down by a timing belt 24 and a ball screw 25 using a Z-axis drive motor 23 as a drive source. The X-axis base 27 is connected to the Y-axis base 22 via a linear guide 26 combined in two stages, and is driven back and forth by a timing belt 29 and a rack and pinion 30 using a Y-axis drive motor 28 as a drive source. .

さらに姿勢調整機構のベースであるθ,φ軸ベース31はリニアガイド32を介してX軸ベース27と連結されており、X軸駆動モータ33を駆動源としてかさ歯車34とタイミングベルト35によって左右に駆動される。すなわち左右方向をX軸、上下方向をZ軸、前後方向をY軸として直交3軸方向に点検センサ2を動作させることができる。以上が並進方向の動作自由度である。回転方向の動作自由度については、ψ軸ベース38は2軸直交回転機構45を介してθ,φ軸ベース31と連結されており、θ,φ軸駆動モータ36,37により駆動される。点検センサ2はψ軸ベース38に対してψ軸駆動モータ39を駆動源としてかさ歯車40によりψ軸周りに回転駆動される。   Further, the θ and φ axis bases 31 which are the bases of the attitude adjusting mechanism are connected to the X axis base 27 via a linear guide 32, and left and right by a bevel gear 34 and a timing belt 35 using an X axis drive motor 33 as a drive source. Driven. That is, the inspection sensor 2 can be operated in three orthogonal directions, with the left-right direction as the X-axis, the up-down direction as the Z-axis, and the front-back direction as the Y-axis. The above is the degree of freedom of movement in the translation direction. With respect to the degree of freedom of operation in the rotational direction, the ψ-axis base 38 is connected to the θ and φ-axis base 31 via a two-axis orthogonal rotation mechanism 45 and is driven by θ and φ-axis drive motors 36 and 37. The inspection sensor 2 is rotationally driven around the ψ axis by the bevel gear 40 with the ψ axis drive motor 39 as a drive source with respect to the ψ axis base 38.

次に図4を用いて点検センサ2の姿勢調整自由度に関わる2軸直交回転機構45の構成および動作について説明する。θ,φ軸駆動モータ36,37の出力軸に取り付けられて対向設置された2つの駆動用かさ歯車46,47に対し、2つの従動用かさ歯車48,49がかさ歯車46,47の夫々にかみ合うと同時に回転軸が直交して対向設置されている。また軸51はψ軸ベース38と従動用かさ歯車48を固定連結しているが、従動用かさ車49に固定された軸52はψ軸ベース38とは回動可能に支持されている。   Next, the configuration and operation of the biaxial orthogonal rotation mechanism 45 related to the attitude adjustment freedom of the inspection sensor 2 will be described with reference to FIG. The two driven bevel gears 48 and 49 are respectively connected to the bevel gears 46 and 47 with respect to the two drive bevel gears 46 and 47 that are attached to and opposed to the output shafts of the θ and φ axis drive motors 36 and 37. At the same time as the gears are engaged, the rotation axes are orthogonally placed opposite each other. The shaft 51 is fixedly connected to the ψ-axis base 38 and the driven bevel gear 48, but the shaft 52 fixed to the driven bevel wheel 49 is rotatably supported by the ψ-axis base 38.

いま、図4(a)のように駆動用かさ歯車46,47を同じ方向に回転させると従動用かさ歯車48,49は相対的に回転せずに一緒にθ軸周りに回転する。また、図4(b)のように駆動用かさ歯車46,47を反対方向に回転させると従動用かさ歯車48,49は相対的に回転するので、従動用かさ歯車48に固定されたψ軸ベース38がφ軸周りに回転する。すなわち図4(c)のように左右に回転する。   Now, as shown in FIG. 4A, when the driving bevel gears 46 and 47 are rotated in the same direction, the driven bevel gears 48 and 49 rotate together around the θ axis without rotating relatively. Further, as shown in FIG. 4B, when the driving bevel gears 46 and 47 are rotated in the opposite direction, the driven bevel gears 48 and 49 are relatively rotated. Therefore, the ψ axis fixed to the driven bevel gear 48 is used. The base 38 rotates around the φ axis. That is, it rotates right and left as shown in FIG.

点検センサ駆動装置3は、以上に述べた並進方向の動作自由度および回転方向の動作自由度を組み合わせて、点検センサ2のスキャン動作と位置および姿勢の調整を行うことができる。すなわち水中ビークル1を例えばシュラウド62に吸着固定させておき、点検センサ2の先端を吸着壁面と平行な面内(図3のX軸方向およびZ軸方向)で方形波状に動作させることができる。点検センサ2のシュラウド62に対する位置および姿勢は、超音波センサ15,16によりシュラウド62までの距離を検出して調整する。   The inspection sensor driving device 3 can adjust the scanning operation and the position and orientation of the inspection sensor 2 by combining the above-described translational freedom and rotational freedom. That is, the underwater vehicle 1 can be sucked and fixed to the shroud 62, for example, and the tip of the inspection sensor 2 can be operated in a square wave shape in a plane parallel to the suction wall surface (X-axis direction and Z-axis direction in FIG. 3). The position and orientation of the inspection sensor 2 with respect to the shroud 62 are adjusted by detecting the distance to the shroud 62 by the ultrasonic sensors 15 and 16.

図3に示すように点検センサ2の左側の超音波センサ15と右側の超音波センサ16は上下方向に異なる位置に取り付けられている。それぞれの超音波センサ15,16によりシュラウド62までの距離を計測し、この2つの値が等しくなるようにθ軸とψ軸を調整することによってシュラウド62に対して点検センサ2が平行となるように調整することができる。また、この2つの値が予め設定された値となるようにY軸方向(前後方向)の位置を調整することによってシュラウド62に対する点検センサ2の距離を調整することができる。このようにして超音波センサ15,16を用いることで、シュラウド62に対して上下および左右に(図3のX軸方向およびZ軸方向に)方形波状に走査する時のシュラウド62に対する平行性と距離を確保することができる。   As shown in FIG. 3, the ultrasonic sensor 15 on the left side of the inspection sensor 2 and the ultrasonic sensor 16 on the right side are attached at different positions in the vertical direction. Each ultrasonic sensor 15, 16 measures the distance to the shroud 62 and adjusts the θ axis and the ψ axis so that these two values are equal, so that the inspection sensor 2 is parallel to the shroud 62. Can be adjusted. Further, the distance of the inspection sensor 2 with respect to the shroud 62 can be adjusted by adjusting the position in the Y-axis direction (front-rear direction) so that these two values are set in advance. By using the ultrasonic sensors 15 and 16 in this manner, the parallelism with respect to the shroud 62 when scanning in the form of a square wave up and down and left and right (in the X-axis direction and the Z-axis direction in FIG. 3) with respect to the shroud 62 is achieved. A distance can be secured.

また、点検センサ2の先端を吸着壁面と直交する面内(図3のX軸方向およびY軸方向)で方形波状に動作させることも可能である。例えば図5のように、原子炉圧力容器61とシュラウド62に挟まれたアニュラス部において、水平面であるシュラウドサポートプレート77に対して点検センサ2を走査する場合である。この場合には超音波センサ15,16を取り付ける向きを変え、上下方向に計測することにより上述と同じ走査を行うことができる。   It is also possible to operate the tip of the inspection sensor 2 in a square wave shape within a plane orthogonal to the suction wall surface (X-axis direction and Y-axis direction in FIG. 3). For example, as shown in FIG. 5, the inspection sensor 2 is scanned with respect to the shroud support plate 77 which is a horizontal plane in an annulus portion sandwiched between the reactor pressure vessel 61 and the shroud 62. In this case, the same scanning as described above can be performed by changing the direction in which the ultrasonic sensors 15 and 16 are attached and measuring in the vertical direction.

以上に述べた点検センサ2の走査方法は水中ビークル1を固定した場合であるが、点検センサ2の吸着壁面に対する相対姿勢を調整し、水中ビークル1の走行機能により水平移動して点検センサ2を搬送することにより、連続的に溶接線の検査を行うことも可能である。   The scanning method of the inspection sensor 2 described above is when the underwater vehicle 1 is fixed. However, the inspection sensor 2 is moved horizontally by the traveling function of the underwater vehicle 1 by adjusting the relative posture of the inspection sensor 2 with respect to the suction wall surface. By carrying it, it is also possible to inspect the weld line continuously.

図5に原子炉圧力容器61とシュラウド62に挟まれたアニュラス部における本実施の形態の原子炉内検査装置による作業状況を示す。すなわち、たとえば原子炉圧力容器61とシュラウドサポートプレート77の溶接線検査を行う場合は、水中ビークル1を原子炉圧力容器61の内面に吸着させ、下部に取り付けられた点検センサ駆動装置3および点検センサ2の搬送、位置決めを溶接線に沿って行う。この場合、水中ビークル1が停止した状態で点検センサ2のみをスキャンさせて溶接線の検査を行うことも可能であり、また点検センサ2と水中ビークル1によって水平移動しながら連続的に検査を行うことも可能である。また、同様の構成と方法によりシュラウドサポートシリンダ76とシュラウドサポートプレート77の溶接線検査も可能である。図3に示したように点検センサ駆動装置は薄型に構成可能であるため、図5に示すような狭隘で許容寸法が限られたアニュラス部底部における溶接線の検査作業に適合させやすい。   FIG. 5 shows a working situation by the in-reactor inspection apparatus of the present embodiment in the annulus portion sandwiched between the reactor pressure vessel 61 and the shroud 62. That is, for example, when the weld line inspection of the reactor pressure vessel 61 and the shroud support plate 77 is performed, the underwater vehicle 1 is adsorbed on the inner surface of the reactor pressure vessel 61 and the inspection sensor driving device 3 and the inspection sensor attached to the lower part are attached. 2 is carried and positioned along the weld line. In this case, it is possible to inspect the weld line by scanning only the inspection sensor 2 while the underwater vehicle 1 is stopped. In addition, the inspection sensor 2 and the underwater vehicle 1 continuously inspect while moving horizontally. It is also possible. Further, the weld line inspection of the shroud support cylinder 76 and the shroud support plate 77 can be performed by the same configuration and method. As shown in FIG. 3, since the inspection sensor driving device can be configured to be thin, it is easy to adapt to the inspection work of the weld line at the bottom of the annulus portion with a narrow and limited allowable dimension as shown in FIG.

以上に説明した水中ビークル1および点検センサ駆動装置3の動作は、オペレーションフロア70に設置された点検センサ出力処理部6の表示を見ながらビークル制御操作部5aと点検センサ駆動装置制御操作部5bを操作して制御する。   The operations of the underwater vehicle 1 and the inspection sensor driving device 3 described above are performed by operating the vehicle control operation unit 5a and the inspection sensor driving device control operation unit 5b while viewing the display of the inspection sensor output processing unit 6 installed on the operation floor 70. Operate and control.

以上のように本実施の形態によれば、原子炉圧力容器61内や炉内構造物の検査において、水中ビークル1をシュラウド62等の炉内構造物に吸着させて走行移動しながら点検センサ2により検査を行う場合、点検センサ駆動装置3により点検センサ2の位置と姿勢を遠隔で調整し適正に保つことができる。その結果、点検のための段取りと調整に要する時間を低減して作業時間を短縮することができ作業を効率的に行うことができる。また点検センサ2の出力に応じて点検センサ2の位置と姿勢を調整することが可能であるので検査品質を向上させることができる。   As described above, according to the present embodiment, in the inspection of the reactor pressure vessel 61 and the internal structure of the reactor, the inspection sensor 2 is moved while the underwater vehicle 1 is adsorbed to the internal structure of the reactor such as the shroud 62 and moved. When the inspection is performed by the inspection sensor driving device 3, the position and orientation of the inspection sensor 2 can be remotely adjusted and kept appropriate. As a result, the time required for the setup and adjustment for inspection can be reduced, the work time can be shortened, and the work can be performed efficiently. Further, since the position and orientation of the inspection sensor 2 can be adjusted according to the output of the inspection sensor 2, the inspection quality can be improved.

(第2の実施の形態)
次に本発明の第2の実施の形態を説明する。本実施の形態の原子炉内検査装置は、前述の第1の実施の形態における点検センサ駆動装置3に備えられる直動機構を構成する駆動モータやタイミングベルトおよびボールネジの代わりに、シャフトモータを用いる。シャフトモータとは、コイルが内蔵された可動子をシャフトが貫通しており、このシャフトを磁力によって軸方向に直接動作させるリニアアクチュエータの一つである。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. The in-reactor inspection apparatus of the present embodiment uses a shaft motor in place of the drive motor, the timing belt, and the ball screw that constitute the linear motion mechanism provided in the inspection sensor drive apparatus 3 in the first embodiment described above. . A shaft motor is one of linear actuators in which a shaft passes through a mover having a built-in coil, and this shaft is directly operated in the axial direction by a magnetic force.

すなわち図3において、Y軸ベース22を上下に動かすZ軸はZ軸駆動モータ23、タイミングベルト24およびボールネジ25の3つの機構要素によって構成されているが、この3つの構成要素をシャフトモータに置き換える。これによって、第1の実施の形態では駆動モータの回転運動をボールネジによって並進運動に変換して動作させていた駆動構造が、シャフトモータによって直接並進方向に動作させる駆動構造になる。
本実施の形態によれば、直動機構の構成を簡略化することができるので、点検センサ駆動装置3を小型、軽量にすることができる。
That is, in FIG. 3, the Z-axis that moves the Y-axis base 22 up and down is constituted by three mechanical elements, that is, a Z-axis drive motor 23, a timing belt 24, and a ball screw 25. These three structural elements are replaced with a shaft motor. . Thus, in the first embodiment, the drive structure that is operated by converting the rotational motion of the drive motor into the translational motion by the ball screw becomes the drive structure that is directly operated in the translational direction by the shaft motor.
According to the present embodiment, since the configuration of the linear motion mechanism can be simplified, the inspection sensor drive device 3 can be made small and light.

本発明の第1の実施の形態の原子炉内検査装置を原子炉内に設置した状態を示す図。The figure which shows the state which installed the in-reactor inspection apparatus of the 1st Embodiment of this invention in the reactor. 本発明の第1の実施の形態の原子炉内検査装置を構成する水中ビークルを示し、(a)は正面図、(b)は部分側面図。The underwater vehicle which comprises the in-reactor inspection apparatus of the 1st Embodiment of this invention is shown, (a) is a front view, (b) is a partial side view. 本発明の第1の実施の形態の原子炉内検査装置を構成する水中ビークルに搭載する点検センサ駆動装置を示し、(a)は正面図、(b)は(a)中のb−b矢視部分側面図。The inspection sensor drive device mounted in the underwater vehicle which comprises the in-reactor inspection apparatus of the 1st Embodiment of this invention is shown, (a) is a front view, (b) is the bb arrow in (a). FIG. 本発明の第1の実施の形態の原子炉内検査装置に備えられる2軸直交回転機構の動作を説明する図。The figure explaining operation | movement of the biaxial orthogonal rotation mechanism with which the in-reactor inspection apparatus of the 1st Embodiment of this invention is equipped. 本発明の第1の実施の形態の原子炉内検査装置によって原子炉圧力容器とシュラウドサポートプレートの溶接線の検査を行う状況を示す図。The figure which shows the condition which inspects the weld line of a reactor pressure vessel and a shroud support plate by the in-reactor inspection apparatus of the 1st Embodiment of this invention.

符号の説明Explanation of symbols

1…水中ビークル、2…点検センサ、3…点検センサ駆動装置、4…ケーブル、5a…ビークル制御操作部、5b…点検センサ駆動装置制御操作部、6…点検センサ出力処理部、7…上下スラスタ、8…水平スラスタ、9…走行車輪、10…距離計測ローラ、11…回転センサ、12…ボールキャスタ、13…傾斜センサ、14…フロート、15,16…超音波センサ、17…取付けブラケット、20…Z軸ベース、21…リニアガイド、22…Y軸ベース、23…Z軸駆動モータ、24…タイミングベルト、25…ボールネジ、26…リニアガイド、27…X軸ベース、28…Y軸駆動モータ、29…タイミングベルト、30…ラック・ピニオン、31…θ,φ軸ベース、32…リニアガイド、33…X軸駆動モータ、34…かさ歯車、35…タイミングベルト、36,37…θ,φ軸駆動モータ、38…ψ軸ベース、39…ψ軸駆動モータ、40…かさ歯車、45…2軸直交回転機構、46,47…駆動用かさ歯車、48,49…従動用かさ歯車、51,52…軸、60…水、61…原子炉圧力容器、62…シュラウド、63…上部格子板、64…炉心支持版、65…下鏡、66…スタブチューブ、67…CRDハウジング、70…オペレーションフロア、71…燃料交換機、75…ジェットポンプアダプタ、76…シュラウドサポートシリンダ、77…シュラウドサポートプレート。

DESCRIPTION OF SYMBOLS 1 ... Underwater vehicle, 2 ... Inspection sensor, 3 ... Inspection sensor drive device, 4 ... Cable, 5a ... Vehicle control operation part, 5b ... Inspection sensor drive device control operation part, 6 ... Inspection sensor output process part, 7 ... Vertical thruster , 8 ... Horizontal thruster, 9 ... Traveling wheel, 10 ... Distance measuring roller, 11 ... Rotation sensor, 12 ... Ball caster, 13 ... Inclination sensor, 14 ... Float, 15, 16 ... Ultrasonic sensor, 17 ... Mounting bracket, 20 ... Z-axis base, 21 ... Linear guide, 22 ... Y-axis base, 23 ... Z-axis drive motor, 24 ... Timing belt, 25 ... Ball screw, 26 ... Linear guide, 27 ... X-axis base, 28 ... Y-axis drive motor, DESCRIPTION OF SYMBOLS 29 ... Timing belt, 30 ... Rack and pinion, 31 ... (theta), (phi) axis base, 32 ... Linear guide, 33 ... X-axis drive motor, 34 ... Bevel gear, 35 ... timing belt, 36, 37 ... θ, φ axis drive motor, 38 ... ψ axis base, 39 ... ψ axis drive motor, 40 ... bevel gear, 45 ... two-axis orthogonal rotation mechanism, 46, 47 ... drive bevel gear, 48, 49 ... driven bevel gear, 51, 52 ... shaft, 60 ... water, 61 ... reactor pressure vessel, 62 ... shroud, 63 ... upper lattice plate, 64 ... core support plate, 65 ... lower mirror, 66 ... stub Tube, 67 ... CRD housing, 70 ... Operation floor, 71 ... Fuel changer, 75 ... Jet pump adapter, 76 ... Shroud support cylinder, 77 ... Shroud support plate.

Claims (1)

原子炉内を三次元方向に移動する水中ビークルと、原子炉内を検査し情報を得る点検センサと、前記点検センサを前記水中ビークルに対して保持しその位置および姿勢を調整動作させる点検センサ駆動装置と、前記原子炉外に設けられ前記水中ビークルの動作を制御するビークル制御操作部と、前記原子炉外に設けられ前記点検センサ駆動装置の動作を制御する点検センサ駆動装置制御操作部と、前記原子炉外に設けられ前記検査情報に対応する前記点検センサの出力信号を入力して処理する点検センサ出力信号処理部とを具備し、
前記点検センサ駆動装置は、前記水中ビークルに対して、直交3軸方向の前記点検センサの取付け位置を調整する、3つの直動機構を連接して構成した位置調整機構と、前記位置調整機構の下部に取り付けられ、直交3軸まわりの前記点検センサの姿勢を調整する姿勢調整機構とを備え
前記姿勢調整機構は、対向設置された2つの駆動用かさ歯車に対し、2つの従動用かさ歯車が上記駆動用かさ歯車の夫々にかみ合うとともに回転軸が直交して対向設置されており、前記駆動用かさ歯車の回転方向を組み合わせることにより従動側を直交2軸まわりに回転させる構造であることを特徴とする原子炉内検査装置。
An underwater vehicle that moves in a three-dimensional direction within the nuclear reactor, an inspection sensor that inspects the reactor to obtain information, and an inspection sensor drive that holds the inspection sensor with respect to the underwater vehicle and adjusts its position and orientation. An apparatus, a vehicle control operation unit that is provided outside the reactor and controls the operation of the underwater vehicle, an inspection sensor drive device control operation unit that is provided outside the reactor and controls the operation of the inspection sensor drive device, An inspection sensor output signal processing unit that is provided outside the nuclear reactor and inputs and processes an output signal of the inspection sensor corresponding to the inspection information;
The inspection sensor driving device includes: a position adjusting mechanism configured by connecting three linear motion mechanisms that adjust the mounting position of the inspection sensor in three orthogonal axes with respect to the underwater vehicle; and An attitude adjustment mechanism that is attached to the lower part and adjusts the attitude of the inspection sensor around three orthogonal axes ;
The attitude adjusting mechanism is configured so that two driven bevel gears mesh with each of the driving bevel gears and the rotation axis is orthogonally opposed to the two driving bevel gears disposed opposite to each other. An in- reactor inspection apparatus having a structure in which the driven side is rotated about two orthogonal axes by combining the rotation directions of the bevel gears .
JP2003427211A 2003-12-24 2003-12-24 In-reactor inspection equipment Expired - Fee Related JP4592283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427211A JP4592283B2 (en) 2003-12-24 2003-12-24 In-reactor inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427211A JP4592283B2 (en) 2003-12-24 2003-12-24 In-reactor inspection equipment

Publications (2)

Publication Number Publication Date
JP2005188954A JP2005188954A (en) 2005-07-14
JP4592283B2 true JP4592283B2 (en) 2010-12-01

Family

ID=34786553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427211A Expired - Fee Related JP4592283B2 (en) 2003-12-24 2003-12-24 In-reactor inspection equipment

Country Status (1)

Country Link
JP (1) JP4592283B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542973B2 (en) * 2005-09-15 2010-09-15 株式会社東芝 Moving distance measuring device and moving distance measuring method
US20100150296A1 (en) 2007-05-22 2010-06-17 Kabushiki Kaisha Toshiba Preventive maintenance/repair device and preventive maintenance/repair method for cylindrical structure
CN113488216B (en) * 2021-07-22 2024-02-13 中广核检测技术有限公司 Running mechanism of video scanning device for bolt holes of reactor pressure vessel
CN116386918A (en) * 2022-12-23 2023-07-04 中广核研究院有限公司 Shutdown processing method, device, equipment and storage medium of offshore nuclear power plant

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115062U (en) * 1991-03-25 1992-10-12 三菱重工業株式会社 Underwater mobile inspection device
JPH05203784A (en) * 1991-08-15 1993-08-10 General Electric Co <Ge> Method and apparatus for positioning remote converter suitable for inspection of nuclear reactor vessel
JPH08105991A (en) * 1994-03-29 1996-04-23 General Electric Co <Ge> Remote maintenance system for inspecting and repairing structure in environment
JPH08282587A (en) * 1995-04-12 1996-10-29 Hitachi Ltd Underwater working device in container
JPH08304581A (en) * 1995-04-28 1996-11-22 Toshiba Corp Device and method for plant inspection support
JPH09211181A (en) * 1996-01-30 1997-08-15 Mitsubishi Heavy Ind Ltd Underwater inspection device
JPH1114784A (en) * 1997-06-20 1999-01-22 Hitachi Ltd Reactor internal inspecting device
JP2001147287A (en) * 1999-11-19 2001-05-29 Hitachi Ltd Remote check and inspection system and remote repair system
JP2002264061A (en) * 2001-03-08 2002-09-18 Hitachi Ltd Mobile working robot
JP2003255076A (en) * 2002-02-28 2003-09-10 Hitachi Ltd Underwater paint film-repairing method and apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115062U (en) * 1991-03-25 1992-10-12 三菱重工業株式会社 Underwater mobile inspection device
JPH05203784A (en) * 1991-08-15 1993-08-10 General Electric Co <Ge> Method and apparatus for positioning remote converter suitable for inspection of nuclear reactor vessel
JPH08105991A (en) * 1994-03-29 1996-04-23 General Electric Co <Ge> Remote maintenance system for inspecting and repairing structure in environment
JPH08282587A (en) * 1995-04-12 1996-10-29 Hitachi Ltd Underwater working device in container
JPH08304581A (en) * 1995-04-28 1996-11-22 Toshiba Corp Device and method for plant inspection support
JPH09211181A (en) * 1996-01-30 1997-08-15 Mitsubishi Heavy Ind Ltd Underwater inspection device
JPH1114784A (en) * 1997-06-20 1999-01-22 Hitachi Ltd Reactor internal inspecting device
JP2001147287A (en) * 1999-11-19 2001-05-29 Hitachi Ltd Remote check and inspection system and remote repair system
JP2002264061A (en) * 2001-03-08 2002-09-18 Hitachi Ltd Mobile working robot
JP2003255076A (en) * 2002-02-28 2003-09-10 Hitachi Ltd Underwater paint film-repairing method and apparatus

Also Published As

Publication number Publication date
JP2005188954A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
EP0461506B1 (en) Underwater mobile type inspection system
US7270021B2 (en) Apparatus and method for mounting and moving a working apparatus on a structure for the performance of works on the structure
JP4528711B2 (en) Working device and working method
US20030128794A1 (en) Device and method for repairing inside of reactor pressure vessel
JPH1114784A (en) Reactor internal inspecting device
JP4592283B2 (en) In-reactor inspection equipment
JP2007003400A (en) Inspection device for control rod through-hole member
JP2007003442A (en) Ut inspection method and device for nozzle weld zone of reactor vessel
JP3703888B2 (en) Arc plate assembly inspection equipment
JP2018062262A (en) Underwater moving device, buoyancy adjusting system, and buoyancy adjusting method
JP3485984B2 (en) Furnace inspection system and furnace inspection method
JP2008116421A (en) Underwater inspection apparatus and method
KR101209182B1 (en) Surface inspection equipment of reactor head penetration tube using eddycurrent sensor
JP3819380B2 (en) In-reactor inspection equipment
JP5634411B2 (en) In-reactor work system and in-reactor work method
EP0588376B1 (en) Monocrystal ingot attitude-adjusting device
JP4090712B2 (en) Underwater narrow part movement system
JP4585080B2 (en) Nuclear pressure vessel seat surface inspection system
WO1999029463A1 (en) Laser emission head, laser beam transmission device, laser beam transmission device adjustment method and preventive maintenance/repair device of structure in nuclear reactor
JP2000075080A (en) Jet pump inspection device and treatment device
JP6814591B2 (en) Detector plate replacement system and probe plate replacement method
JP4099846B2 (en) Underwater welding equipment
KR0143503B1 (en) Device for inspecting reactor vessel surfaces
JP4528500B2 (en) Automatic equipment for nuclear power
KR102547334B1 (en) Small tank circumferential welding automation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees