JP4591093B2 - Scanning exposure method - Google Patents

Scanning exposure method Download PDF

Info

Publication number
JP4591093B2
JP4591093B2 JP2005010457A JP2005010457A JP4591093B2 JP 4591093 B2 JP4591093 B2 JP 4591093B2 JP 2005010457 A JP2005010457 A JP 2005010457A JP 2005010457 A JP2005010457 A JP 2005010457A JP 4591093 B2 JP4591093 B2 JP 4591093B2
Authority
JP
Japan
Prior art keywords
substrate
exposure
optical system
projection optical
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005010457A
Other languages
Japanese (ja)
Other versions
JP2006202836A (en
Inventor
克彦 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2005010457A priority Critical patent/JP4591093B2/en
Publication of JP2006202836A publication Critical patent/JP2006202836A/en
Application granted granted Critical
Publication of JP4591093B2 publication Critical patent/JP4591093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、走査型露光方法に関する。さらに詳しくは、基板上に高精度に露光を行うことが可能な液浸型の走査型露光方法に関する。   The present invention relates to a scanning exposure method. More specifically, the present invention relates to an immersion type scanning exposure method capable of performing high-precision exposure on a substrate.

半導体素子等の製造においては、例えば、シリコンウェーハ等の基板上にフォトレジストを塗布してフォトレジスト膜を形成し、これに所定のパターンを有するマスクを通じて露光光を照射した後に現像することにより、基板上に所定のレジストパターンを形成する露光技術が応用されている。具体的には、例えば、フォトレジスト膜が配設された基板上の各ショット領域に転写するステッパー方式、又は走査型方式(ステップ・アンド・スキャン方式)の露光方法によって露光が行われている(例えば、特許文献1参照)。   In the manufacture of semiconductor elements and the like, for example, by applying a photoresist on a substrate such as a silicon wafer to form a photoresist film, and developing it after irradiating it with exposure light through a mask having a predetermined pattern, An exposure technique for forming a predetermined resist pattern on a substrate is applied. Specifically, for example, exposure is performed by an exposure method of a stepper method or a scanning method (step-and-scan method) that transfers to each shot region on a substrate on which a photoresist film is disposed ( For example, see Patent Document 1).

例えば、走査型方式を用いた走査型露光方法は、図4に示すように、所定の形状のパターンが形成されたマスク111は露光光112により照明され、マスク111の像は例えば4:1の投影光学系113を介してステージ116上に設置されている基板114上に結像されるようになっている。マスク111と投影光学系113との間にはスリット115が配置されており、このスリット115の存在によりマスク111の投影領域が制限され、基板114上には、この制限された投影領域が露光される。マスク111を走査することにより投影領域も移動することになるので、マスク111の走査に同期して基板114を走査することにより、マスク111上のパターンが形成された領域(パターン領域)全体を基板114上に転写することが可能となる。   For example, in a scanning exposure method using a scanning method, as shown in FIG. 4, a mask 111 on which a pattern of a predetermined shape is formed is illuminated with exposure light 112, and an image of the mask 111 is, for example, 4: 1. An image is formed on the substrate 114 installed on the stage 116 via the projection optical system 113. A slit 115 is disposed between the mask 111 and the projection optical system 113, and the projection area of the mask 111 is limited by the presence of the slit 115, and the limited projection area is exposed on the substrate 114. The Since the projection area is also moved by scanning the mask 111, the entire area (pattern area) where the pattern on the mask 111 is formed is scanned by scanning the substrate 114 in synchronization with the scanning of the mask 111. The image can be transferred onto the image 114.

図5は、従来の走査型露光方法において基板(例えば、シリコンウェーハの場合)に露光を行う際の、基板上の各領域における露光の順番及びスリットを走査する方向を示す説明図である。図5に示す基板114においては、マスク111(図4参照)のパターンを転写して、それぞれが一つの又は複数の半導体チップとなる領域(露光領域)に対して、走査型露光を行う順番にa〜pの番号(以下、露光領域a〜露光領域pという)が付されている。また、図5においては、露光領域a〜露光領域pに示す矢印が、基板114を走査する方向、実質的には基板114が設置されているステージ116(図4参照)を駆動する方向を示す。例えば、基板114を露光する際には、最初に露光する露光領域aは、露光領域aに矢印で示すように図面における右方向に基板114を走査し、二番目に露光する露光領域bは左方向、三番目に露光する露光領域cは右方向というように、基板114を走査する方向を順番に変えながら、全ての露光領域上において露光を行う。このような方法を用いることにより、図4に示すように、基板114上の各露光領域を走査して露光する際にその走査経路に無駄がなく、基板114を走査するためのステージ116とマスク111との移動を最短距離で行うことが可能であり、短時間で相対的に正確に走査することができるため、高精度な露光が実現される。   FIG. 5 is an explanatory diagram showing the order of exposure in each region on the substrate and the direction in which the slit is scanned when the substrate (for example, a silicon wafer) is exposed in the conventional scanning exposure method. In the substrate 114 shown in FIG. 5, the pattern of the mask 111 (see FIG. 4) is transferred, and the scanning exposure is performed in the order of performing the region (exposure region) where each becomes one or a plurality of semiconductor chips. Numbers a to p (hereinafter referred to as exposure areas a to p) are given. In FIG. 5, the arrows shown in the exposure area a to the exposure area p indicate the direction in which the substrate 114 is scanned, that is, the direction in which the stage 116 (see FIG. 4) on which the substrate 114 is installed is substantially driven. . For example, when exposing the substrate 114, the exposure area a to be exposed first scans the substrate 114 in the right direction in the drawing as indicated by the arrow in the exposure area a, and the exposure area b to be exposed second is the left The exposure area c to be exposed third is the right direction, and the exposure is performed on all the exposure areas while changing the scanning direction of the substrate 114 in order. By using such a method, as shown in FIG. 4, when scanning and exposing each exposure region on the substrate 114, there is no waste in the scanning path, and a stage 116 and a mask for scanning the substrate 114. It is possible to move the lens 111 with the shortest distance, and it is possible to scan relatively accurately in a short time, so that high-precision exposure is realized.

一方、露光装置に用いられる投影光学系の解像度の理論限界値は、使用する露光波長が短く、投影光学系の開口数(NA:Numerical Aperture)が大きいほど高くなる。そのため、集積回路パターンサイズの微細化に伴い露光装置で使用される放射線の波長である露光波長は年々短波長化しており、投影光学系の開口数も増大してきている。これまでは、露光光源の短波長化、開口数の増大により集積回路の微細化要求に応えてきており、現在では露光光源としてArFエキシマレーザ(波長193nm)を用いた90nm(ハーフピッチ)の量産化が最先端の集積回路では検討されている。   On the other hand, the theoretical limit value of the resolution of the projection optical system used in the exposure apparatus becomes higher as the exposure wavelength used is shorter and the numerical aperture (NA) of the projection optical system is larger. For this reason, with the miniaturization of the integrated circuit pattern size, the exposure wavelength, which is the wavelength of radiation used in the exposure apparatus, has become shorter year by year, and the numerical aperture of the projection optical system has also increased. Up to now, we have responded to the demand for miniaturization of integrated circuits by shortening the wavelength of the exposure light source and increasing the numerical aperture, and now mass production of 90 nm (half pitch) using an ArF excimer laser (wavelength 193 nm) as the exposure light source. For advanced integrated circuits, this is being investigated.

しかしながら、さらに微細化が進んだ次世代の65nm(ハーフピッチ)あるいは45nm(ハーフピッチ)についてはArFエキシマレーザの使用のみによる達成は困難であるといわれている。そこで、これらの次世代技術についてはF2エキシマレーザ(波長157nm)、EUV(波長13nm)等の短波長光源の使用が検討されているが、これらの光源の使用については技術的難易度が高く、現状では使用が困難な状況にある。 However, it is said that the next generation 65 nm (half pitch) or 45 nm (half pitch), which has been further miniaturized, is difficult to achieve only by using an ArF excimer laser. Therefore, for these next-generation technologies, the use of short-wavelength light sources such as F 2 excimer laser (wavelength 157 nm), EUV (wavelength 13 nm), etc. has been studied. However, the technical difficulty of using these light sources is high. Currently, it is difficult to use.

従来の露光装置では、基板と投影光学系との間の空間には、屈折率が1の空気で満たされている。このとき、この基板と投影光学系との間の空間を屈折率nの媒体で満たした場合、焦点深度は屈折率倍以上に拡大されることが報告されている。また、液体を使うことにより空気の場合では実現できなかったNAの大きな光学系を実現できるために、解像力が向上することが知られている。   In a conventional exposure apparatus, the space between the substrate and the projection optical system is filled with air having a refractive index of 1. At this time, it has been reported that when the space between the substrate and the projection optical system is filled with a medium having a refractive index n, the depth of focus is expanded more than the refractive index. In addition, it is known that an optical system having a large NA that cannot be realized in the case of air can be realized by using a liquid, so that the resolving power is improved.

このように露光するための光学系のNAを1以上に大きくし、より微細なパターンを転写したり、焦点深度を大きくしたりできる投影露光する方式を液浸型方式といい、このような液浸型方式を用いた露光装置が開示されている(例えば、特許文献2〜4参照)。   The projection exposure method that can increase the NA of the optical system for exposure to 1 or more, transfer a finer pattern, or increase the depth of focus is called an immersion type method. An exposure apparatus using an immersion method is disclosed (for example, see Patent Documents 2 to 4).

このような液浸型方式の露光装置としては、例えば、特許文献3に記載されているような、露光ビーム(露光光)でマスクを照明し、投影光学系を介してその露光ビームで基板上に露光する投影露光装置において、その投影光学系とその基板との間を満たすように液体を流すとともに、その基板の移動方向に応じてその液体を流す方向を変化させる液体供給装置を備えた液浸型の露光装置を挙げることができる。なお、このような液浸型の露光装置を使用して、上述した走査型露光方法を行う場合には、基板を走査する方向(ステージを駆動する方向)と同一の方向に液体を供給することにより、液体の供給時における気泡の発生や気泡の巻き込みを抑制することができる。このことから、基板の走査方向と液体の供給方向とを同一方向にすることが一般的であり、また、露光装置の高スループットを実現するために、ステージを駆動することによる基板の走査がより少なくなるように、基板上の各露光領域を露光する順番が選択されている。
特開平11−265849号公報 特開平10−303114号公報 国際公開第99/49504号パンフレット 特開2004−207711号公報
As such an immersion type exposure apparatus, for example, as described in Patent Document 3, a mask is illuminated with an exposure beam (exposure light), and the exposure beam is irradiated onto the substrate via a projection optical system. In a projection exposure apparatus that exposes to a liquid, a liquid is supplied so as to fill a space between the projection optical system and the substrate, and a liquid supply device that changes a direction in which the liquid flows according to a moving direction of the substrate. An immersion type exposure apparatus can be mentioned. When the above-described scanning exposure method is performed using such an immersion type exposure apparatus, the liquid is supplied in the same direction as the direction in which the substrate is scanned (the direction in which the stage is driven). Thereby, generation | occurrence | production of the bubble at the time of supply of a liquid and entrainment of a bubble can be suppressed. For this reason, it is common for the substrate scanning direction and the liquid supply direction to be the same direction, and in order to achieve a high throughput of the exposure apparatus, the substrate scanning by driving the stage is more effective. The order in which each exposure area on the substrate is exposed is selected so as to reduce the number.
Japanese Patent Laid-Open No. 11-265849 JP-A-10-303114 International Publication No. 99/49504 Pamphlet JP 2004-207711 A

しかしながら、液浸型方式を用いた走査型露光方法において、基板の外周部分を含む領域を露光する場合には、基板の外周部分における急激な段差(例えば、基板の厚さに相当する段差)により、液体を供給する方向によっては、基板と投影光学系との間に必要な液体を供給できなくて液浸露光が実現できなかったり、また、供給する液体の流れが乱されてしまい、安定した液体の層流が実現できないなどの問題があった。すなわち、基板と投影光学系との間の空間を通過する液体の流れに乱れが生じ、また、この液体に急激な段差による液流の大きな乱れによる気泡等が含まれてしまうため、液体の均質性が崩れ、正常な露光を行うことができないという問題があった。また、液浸型方式によって露光を行う場合、基板上のフォトレジスト膜の成分が液体に溶出しないように、フォトレジスト膜の上にさらに上層膜(トップコートとも呼ぶ)を設けている場合があるが、基板の外周部分においては、このフォトレジスト膜が露出していることがある。このため、基板の外周部分を液体が通過する際にフォトレジスト膜の成分が液体に溶出することによって、液体中の不純物濃度が変化したり、また露光光の透過率が微妙に変化して最適なドーズ量が局所的に変化したりすることから露光領域の均一な寸法解像性が劣化するという問題があった。また、このような不純物を含んだ液体が投影光学系のレンズに付着した場合には、投影光学系のレンズを汚染してしまい、レンズの寿命を著しく低下させるという懸念が指摘されている。   However, in the scanning exposure method using the immersion method, when an area including the outer peripheral portion of the substrate is exposed, an abrupt step in the outer peripheral portion of the substrate (for example, a step corresponding to the thickness of the substrate). Depending on the direction in which the liquid is supplied, the necessary liquid cannot be supplied between the substrate and the projection optical system, so that immersion exposure cannot be realized, or the flow of the supplied liquid is disturbed and stable. There were problems such as the inability to realize laminar liquid flow. That is, the flow of the liquid passing through the space between the substrate and the projection optical system is disturbed, and the liquid contains bubbles due to a large disturbance of the liquid flow due to a sudden step, so that the liquid is homogeneous. There is a problem that normal exposure cannot be performed. In addition, when exposure is performed by an immersion method, an upper layer film (also referred to as a top coat) may be provided on the photoresist film so that components of the photoresist film on the substrate do not elute into the liquid. However, the photoresist film may be exposed at the outer peripheral portion of the substrate. For this reason, when the liquid passes through the outer periphery of the substrate, the photoresist film components are eluted into the liquid, so that the impurity concentration in the liquid changes and the transmittance of the exposure light changes slightly. There is a problem that the uniform dimensional resolution of the exposed region is deteriorated because the dose amount is locally changed. In addition, when such a liquid containing impurities adheres to the lens of the projection optical system, there is a concern that the lens of the projection optical system is contaminated and the life of the lens is remarkably reduced.

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、基板上に高精度に露光を行うことが可能な液浸型における走査型露光方法を提供する。   The present invention has been made in view of the above-described problems of the prior art, and provides an immersion type scanning exposure method capable of performing high-precision exposure on a substrate.

[1]基板に投影するパターンが形成されたマスクを所定の幅のスリットで制限し、前記基板を前記マスクと相対的に走査して、前記スリットを通過した露光光を投影する投影光学系、及び、前記投影光学系と前記基板との間の空間に供給する液体を介して、前記基板上の複数の領域に、順次前記パターンを形成する液浸型の走査型露光方法であって、前記基板の外周部分を含む領域(外周領域)を走査して露光する際に、前記基板を、前記基板の中心を含み且つ前記基板を走査する方向と直交する前記基板の中心軸に近い側から、前記基板の外周側に向けて相対的に走査し、且つ、前記基板上の前記外周領域以外の領域を露光する際には、前記投影光学系と前記基板との前記露光光の光軸と一致する方向の相対的な位置を調節しながら露光を行い、前記基板上の前記外周領域を露光する際には、前記投影光学系と前記基板との前記露光光の光軸と一致する方向の相対的な位置を固定して、又は、一つ前の領域若しくは隣接する領域を露光した情報を元に前記投影光学系と前記基板との前記露光光の光軸と一致する方向の相対的な位置を調節しながら露光を行うとともに、前記液体を、前記基板の前記中心軸に近い側から供給し、前記投影光学系と前記基板との間の前記空間を通過させて、前記基板の外周側において回収する走査型露光方法。 [1] A projection optical system that limits a mask on which a pattern to be projected onto a substrate is formed with a slit having a predetermined width, scans the substrate relative to the mask, and projects exposure light that has passed through the slit; And an immersion-type scanning exposure method for sequentially forming the pattern in a plurality of regions on the substrate via a liquid supplied to a space between the projection optical system and the substrate, When scanning and exposing a region including the outer peripheral portion of the substrate (outer peripheral region), the substrate includes the center of the substrate and from the side close to the central axis of the substrate perpendicular to the direction of scanning the substrate, When relatively scanning toward the outer peripheral side of the substrate and exposing a region other than the outer peripheral region on the substrate, it coincides with the optical axis of the exposure light of the projection optical system and the substrate adjusted while exposing the relative position in the direction Performed, when exposing the peripheral area on the substrate, by fixing the relative position of the direction which is coincident with the optical axis of the exposure light between the substrate and the projection optical system, or, previous And performing exposure while adjusting the relative position of the projection optical system and the substrate in the direction that coincides with the optical axis of the exposure light based on the information obtained by exposing the region or the adjacent region, and the liquid, A scanning exposure method in which the substrate is supplied from a side close to the central axis, passes through the space between the projection optical system and the substrate, and is collected on the outer peripheral side of the substrate.

]前記投影光学系と前記基板との間の前記空間に供給する液体が水である前記[1]に記載の走査型露光方法。 [ 2 ] The scanning exposure method according to [1 ], wherein the liquid supplied to the space between the projection optical system and the substrate is water.

]前記投影光学系と前記基板との間の前記空間に供給する液体が水よりも屈折率の高い有機物液体である前記[1]に記載の走査型露光方法。 [ 3 ] The scanning exposure method according to [1 ], wherein the liquid supplied to the space between the projection optical system and the substrate is an organic liquid having a higher refractive index than water.

本発明の走査型露光方法によれば、基板をマスクと相対的に走査して、投影光学系、及び投影光学系と基板の間に満たした液体を介して、基板上の複数の領域に順次露光を行う液浸型の走査型露光を行うに際し、特に、基板の外周部分を含む領域において高精度に露光を行うことができる。   According to the scanning exposure method of the present invention, the substrate is scanned relative to the mask, and sequentially into a plurality of regions on the substrate via the projection optical system and the liquid filled between the projection optical system and the substrate. When performing immersion type scanning exposure in which exposure is performed, exposure can be performed with high accuracy, particularly in a region including the outer peripheral portion of the substrate.

以下、本発明の実施形態について詳細に説明するが、本発明はこれらの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜、変更、改良等が加えられることが理解されるべきである。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to these embodiments, and may be appropriately selected based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. It should be understood that changes, modifications, etc. may be made.

図1は、本発明の走査型露光方法の一の実施の形態の露光の工程を模式的に示す説明図であり、図2は、本発明の走査型露光方法の一の実施の形態における基板を走査する方向を示す説明図である。図1においては、基板5を保持するための保持手段2(例えば、ステージ)、所定のパターンが形成されたマスク12、マスク12に露光光を照明するための照明光学系11、マスク12を所定の幅に制限するスリット3、保持手段2に保持された基板5に所定のパターンを投影するための露光光を照射する投影光学系13、及び保持手段2に保持された基板5と投影光学系13との間の空間6に液体7を満たすための液体供給手段4、を備えた露光装置1を用いた場合の例を示している。なお、図1においては、露光光の光軸と一致する方向をZ方向とし、マスク12と基板5とが同期移動する走査方向をX方向とし、この走査方向に直交する方向をY方向とする。   FIG. 1 is an explanatory view schematically showing an exposure process of an embodiment of the scanning exposure method of the present invention, and FIG. 2 is a substrate in an embodiment of the scanning exposure method of the present invention. It is explanatory drawing which shows the direction which scans. In FIG. 1, a holding means 2 (for example, a stage) for holding a substrate 5, a mask 12 on which a predetermined pattern is formed, an illumination optical system 11 for illuminating exposure light on the mask 12, and a mask 12 are predetermined. A projection optical system 13 for irradiating exposure light for projecting a predetermined pattern onto the substrate 5 held by the holding means 2, and the substrate 5 and the projection optical system held by the holding means 2 13 shows an example in which the exposure apparatus 1 provided with the liquid supply means 4 for filling the liquid 7 in the space 6 between them is used. In FIG. 1, the direction coinciding with the optical axis of the exposure light is the Z direction, the scanning direction in which the mask 12 and the substrate 5 are synchronously moved is the X direction, and the direction orthogonal to the scanning direction is the Y direction. .

本発明の走査型露光方法は、図1に示すように、基板5に投影するパターンが形成されたマスク12を所定の幅(7mm程度)のスリット3で制限し、この基板5をマスク12と相対的に走査して、基板5上の複数の領域に、順次パターンを形成する走査型露光方法であり、さらに、投影光学系13と基板5との間の空間6には液体7を供給し、投影光学系13、及び、投影光学系13と基板5との間の空間6に供給する液体7を介して露光を行う液浸型方式の走査型露光方法である。本実施の形態の走査型露光方法は、液浸型方式による投影露光を採用しているため、投影光学系13のパターンの像の焦点深度を、空気中における焦点深度の約n倍以上に拡大することができ、高NAを実現できるので微細な回路等のパターンを、高い解像度で形成することができる。   In the scanning exposure method of the present invention, as shown in FIG. 1, a mask 12 on which a pattern to be projected onto a substrate 5 is limited by a slit 3 having a predetermined width (about 7 mm). This is a scanning exposure method in which a pattern is sequentially formed in a plurality of regions on the substrate 5 by scanning relatively, and a liquid 7 is supplied to the space 6 between the projection optical system 13 and the substrate 5. This is an immersion type scanning exposure method in which exposure is performed via the projection optical system 13 and the liquid 7 supplied to the space 6 between the projection optical system 13 and the substrate 5. Since the scanning exposure method of the present embodiment employs immersion type projection exposure, the depth of focus of the pattern image of the projection optical system 13 is expanded to about n times or more of the depth of focus in the air. Since a high NA can be realized, a pattern such as a fine circuit can be formed with high resolution.

本実施の形態の走査型露光方法においては、図1及び図2に示すように、基板5の外周部分を含む領域(外周領域)を走査して露光する際に、基板5を、基板5の中心を含み且つ基板5を走査する方向と直交する基板5の中心軸9に近い側から、この基板5の外周側に向けてマスク12と相対的に走査するとともに、投影光学系13と基板5との間の空間6に供給する液体7を、基板5の中心軸9に近い側から供給し、投影光学系13と基板5との間の空間6を通過させて、基板5の外周側において回収する走査型露光方法である。図2に示す基板5上の矢印が、基板5を走査する方向、及び液体7(図1参照)を供給する方向を示している。なお、基板5上の露光領域の数や分割する形状については特に制限はなく、基板5の大きさや露光領域の大きさ(即ち、形成するチップの大きさ)等により適宜選択することができる。また、本実施の形態の走査型露光方法における基板5とは、例えば、シリコンウェーハ、液晶等のディスプレイ素子用のガラスプレート、薄膜磁気ヘッド用のセラミックウェーハ、あるいは露光装置で用いられる合成石英等からなるマスクやレチクル等を指す。   In the scanning exposure method of the present embodiment, as shown in FIGS. 1 and 2, when scanning and exposing a region (outer peripheral region) including the outer peripheral portion of the substrate 5, the substrate 5 is The projection optical system 13 and the substrate 5 are scanned relative to the mask 12 from the side near the center axis 9 of the substrate 5 that includes the center and is orthogonal to the scanning direction of the substrate 5 toward the outer peripheral side of the substrate 5. The liquid 7 to be supplied to the space 6 is supplied from the side close to the central axis 9 of the substrate 5, passes through the space 6 between the projection optical system 13 and the substrate 5, and on the outer peripheral side of the substrate 5. This is a scanning exposure method to be collected. The arrows on the substrate 5 shown in FIG. 2 indicate the direction of scanning the substrate 5 and the direction of supplying the liquid 7 (see FIG. 1). The number of exposure areas on the substrate 5 and the shape to be divided are not particularly limited, and can be appropriately selected depending on the size of the substrate 5, the size of the exposure area (that is, the size of the chip to be formed), and the like. The substrate 5 in the scanning exposure method of the present embodiment is, for example, a silicon wafer, a glass plate for a display element such as a liquid crystal, a ceramic wafer for a thin film magnetic head, or synthetic quartz used in an exposure apparatus. Refers to masks and reticles.

従来、液浸型方式を用いた走査型露光方法において、基板の外周部分を含む領域を露光する場合には、基板の外周部分における急激な段差により、基板と投影光学系との間に供給する液体の流れが乱されて、露光条件が変化して正常な露光を行うことができなかった。本実施の形態の走査型露光方法においては、図1及び図2に示すように、基板5を、基板5の中心軸9に近い側から、この基板5の外周側に向けて走査するとともに、投影光学系13と基板5との間の空間6に供給する液体7を、基板5の中心軸9に近い側から供給し、投影光学系13と基板5との間の空間6を通過させて、基板5の外周側において回収することにより、少なくとも基板5の上においては空間6における液体7の流れをより正常な状態に保って露光を行うことができる。基板5上の複数の領域に順次露光を行う場合には、露光の連続性が重要であり、例えば、基板5の外周側において正常な露光が行われない場合には、パターンの細りによるパターン飛びなどが発生して欠陥発生の原因となり、さらには、隣接する他の領域にまで悪影響を与えることがある。本実施の形態の走査型露光方法においては、従来の露光方法において、あまり露光の精度が高くない基板5の外周部分を含む領域における精度を向上させることが可能であることから、同一サイズの基板5から製造できるチップの個数を増加させて、歩留まりを向上させることも可能である。なお、図2においては、基板5上の全ての外周領域に対して、基板5を走査する方向を示す矢印が記載されているが、本実施の形態の走査型露光方法においては、これらの全ての外周領域において露光を行う必要は必ずしもない。すなわち、基板5等の状態や露光の条件等に応じて、実際に露光を行う外周領域を適宜選択し、これらの外周領域において基板5を走査する方向を決定すればよい。   Conventionally, in a scanning exposure method using an immersion method, when an area including an outer peripheral portion of a substrate is exposed, the substrate is supplied between the substrate and the projection optical system due to a steep step in the outer peripheral portion of the substrate. The liquid flow was disturbed, and the exposure conditions changed, so that normal exposure could not be performed. In the scanning exposure method of the present embodiment, as shown in FIGS. 1 and 2, the substrate 5 is scanned from the side close to the central axis 9 of the substrate 5 toward the outer peripheral side of the substrate 5, The liquid 7 supplied to the space 6 between the projection optical system 13 and the substrate 5 is supplied from the side close to the central axis 9 of the substrate 5, and passes through the space 6 between the projection optical system 13 and the substrate 5. By collecting on the outer peripheral side of the substrate 5, exposure can be performed while maintaining the flow of the liquid 7 in the space 6 in a more normal state at least on the substrate 5. When performing sequential exposure on a plurality of regions on the substrate 5, the continuity of exposure is important. For example, when normal exposure is not performed on the outer peripheral side of the substrate 5, pattern skipping due to pattern thinning is performed. May occur and cause defects, and may adversely affect other adjacent areas. In the scanning exposure method of the present embodiment, since the accuracy in the region including the outer peripheral portion of the substrate 5 that is not so high in the exposure accuracy in the conventional exposure method can be improved, the substrate of the same size The number of chips that can be manufactured from 5 can be increased to improve the yield. In FIG. 2, arrows indicating the direction of scanning the substrate 5 are shown for all the outer peripheral regions on the substrate 5, but in the scanning exposure method of the present embodiment, all of these are shown. It is not always necessary to perform exposure in the outer peripheral region. That is, it is only necessary to appropriately select the outer peripheral area where the exposure is actually performed in accordance with the state of the substrate 5 and the like, the exposure conditions, and the like, and to determine the direction in which the substrate 5 is scanned in these outer peripheral areas.

また、従来の液浸型方式を用いた走査型露光方法においては、基板の外周部分を液体が通過する際に液体が汚染されたり、液体に不純物が溶出したりすることから液体の屈折率が変化したり、露光光の液体中における局所的な透過率が変化してパターン寸法制御性が劣化するという問題があったが、本実施の形態の走査型露光方法においては、液体7は、基板5の外周側に向けて流れるため、液体7が汚染されたとしても、この液体7が再び基板5上を通過することはなく、基板5や投影光学系13のレンズの汚染を有効に防止することができる。   Also, in the scanning exposure method using the conventional immersion method, the liquid is contaminated when the liquid passes through the outer peripheral portion of the substrate, or impurities are eluted into the liquid. However, in the scanning exposure method according to the present embodiment, the liquid 7 is applied to the substrate. Since the liquid 7 is contaminated because it flows toward the outer peripheral side of the liquid 5, the liquid 7 does not pass over the substrate 5 again, and the contamination of the lens of the substrate 5 and the projection optical system 13 is effectively prevented. be able to.

なお、所定の露光領域において、基板5の走査を開始する側と終了する側が基板5の中心軸9をまたぐ場合はどちらの方向に走査してもよい。   In the predetermined exposure region, if the side where the scanning of the substrate 5 starts and the side where the scanning ends cross the central axis 9 of the substrate 5, the scanning may be performed in either direction.

また、本実施の形態の走査型露光方法においては、基板5上の外周領域以外の領域を露光する際には、焦点(Focus)を最適にするために投影光学系13と基板5との相対的な位置、すなわち、Z方向の位置を調節しながら露光を行い、基板5上の外周領域を露光する際には、投影光学系13と基板5との相対的な位置を固定して、又は、一つ前の領域(具体的には、一つ前に露光した領域)若しくは隣接する領域を露光した情報、具体的には、これら領域におけるZ方向の情報を元に、投影光学系13と基板5との相対的な位置を調節しながら露光を行う。 Further, in the scanning exposure method of the present embodiment, when exposing an area other than the outer peripheral area on the substrate 5, the projection optical system 13 and the substrate 5 are relative to each other in order to optimize the focus. When the exposure is performed while adjusting the general position, that is, the position in the Z direction, and the outer peripheral area on the substrate 5 is exposed, the relative position between the projection optical system 13 and the substrate 5 is fixed, or Based on the information obtained by exposing the previous area (specifically, the previous exposed area) or the adjacent area, specifically, information in the Z direction in these areas, the projection optical system 13 and It intends line exposure while adjusting the relative positions of the substrate 5.

従来、走査型露光を行う際には、基板5表面の微小な凹凸や歪み等により生じる露光への影響を軽減するために、投影光学系13と基板5との相対的な位置を調節しながら露光を行うことがあった。このようにして露光を行うことにより露光の精度を向上させることが可能となる。しかしながら、基板5の外周部分を含む領域を露光する場合においては、この露光領域に基板5が存在しない部位があるために、投影光学系13と基板5との相対的な位置の調節が困難であったり、また、このような領域においては、露光の連続性を得るために実際に露光は行うが実際にはチップとして使用しないことがあるため、基板5上の外周領域を露光する際には、正確な位置の調節が必要ではないことがある。このため、基板5上の外周領域を露光する際には、投影光学系13と基板5とのZ方向の相対的な位置を固定して、又は、一つ前の領域を露光した情報若しくは隣接する領域を露光した情報、具体的には、これら領域におけるZ方向の情報を元に、投影光学系13と基板5とのZ方向の相対的な位置を調節しながら露光を行うことで、実際にチップとして使用する領域における露光精度を低下させることなく、露光の工程を簡略化することができる。なお、実際に基板5上の複数の領域に対して露光を行うに際し、例えば、まず、外周部分を含まない正常な露光領域(チップとして使用可能な領域)を全て露光した後に、外周部分を含む周辺部の欠けた露光領域(外周領域)を順番に露光してもよい。   Conventionally, when performing scanning exposure, the relative position between the projection optical system 13 and the substrate 5 is adjusted in order to reduce the influence on exposure caused by minute unevenness or distortion on the surface of the substrate 5. Exposure was sometimes performed. By performing exposure in this way, it is possible to improve the accuracy of exposure. However, when an area including the outer peripheral portion of the substrate 5 is exposed, it is difficult to adjust the relative position of the projection optical system 13 and the substrate 5 because there is a portion where the substrate 5 does not exist in this exposure area. In such an area, since exposure is actually performed in order to obtain continuity of exposure, it may not actually be used as a chip. Therefore, when the outer peripheral area on the substrate 5 is exposed, Accurate position adjustment may not be necessary. For this reason, when the outer peripheral area on the substrate 5 is exposed, the relative position in the Z direction between the projection optical system 13 and the substrate 5 is fixed, or information on the previous area exposed or adjacent By performing exposure while adjusting the relative position of the projection optical system 13 and the substrate 5 in the Z direction based on information on the exposed areas, specifically, information on the Z direction in these areas, In addition, the exposure process can be simplified without reducing the exposure accuracy in the region used as a chip. When actually performing exposure on a plurality of regions on the substrate 5, for example, first, a normal exposure region that does not include the outer peripheral portion (region that can be used as a chip) is exposed, and then the outer peripheral portion is included. You may expose the exposure area | region (peripheral area | region) which the peripheral part lacked in order.

図1に示すように、本実施の形態の走査型露光方法においては、投影光学系13と基板5との間の空間6に供給する液体7を、基板5の中心軸9(図2参照)に近い側から供給し、投影光学系13と基板5との間の空間6を通過させて、基板5の外周側において回収する、Local Fill法(局所液浸方式)と呼ばれる液浸型方式を用いている。このため、例えば、媒体となる液体に基板を浸漬させるmooving pool法やseimming stage法と呼ばれる液浸型方式と比較して、使用する液体7の量を少なくすることができる。   As shown in FIG. 1, in the scanning exposure method of the present embodiment, the liquid 7 supplied to the space 6 between the projection optical system 13 and the substrate 5 is supplied to the central axis 9 of the substrate 5 (see FIG. 2). A liquid immersion method called a local fill method (local liquid immersion method), which is supplied from the side close to, passes through the space 6 between the projection optical system 13 and the substrate 5 and is collected on the outer peripheral side of the substrate 5. Used. For this reason, for example, the amount of the liquid 7 to be used can be reduced as compared with an immersion type method called a moving pool method or a simmering stage method in which a substrate is immersed in a liquid as a medium.

投影光学系13と基板5との間の空間6に供給する液体7について特に制限はなく、水、例えば、純水を用いてもよいし、水よりも屈折率の高い有機物液体を用いてよい。水は、安価であるとともに入手が容易でもあり、さらに安全性においても優れた液体である。また、水よりも屈折率の高い有機物液体を用いた場合には、焦点深度をさらに大きくし、より微細なパターンを転写することが可能である。例えば、有機物液体であるデカリン等の脂環式炭化水素化合物等は、ArFエキシマレーザの波長193nmにおける屈折率nが1.64程度であり、次世代の液浸型露光方法における液浸露光用液体として好適に用いることができる。なお、この脂環式炭化水素化合物(デカリン等)は、一般的なレジスト材料やフッ化カルシウムに対する反応性が極めて小さいものであるから、純水では問題になり得たレジスト膜からの酸等の溶出に起因する現像後のパターンの欠陥や、レンズの汚染・浸食が発生し難い。従って、電子デバイスの歩留まりを向上させ得るとともに、露光装置の保護・メンテナンスにかかる労役・コストも抑えられる。   There is no restriction | limiting in particular about the liquid 7 supplied to the space 6 between the projection optical system 13 and the board | substrate 5, You may use water, for example, pure water, and may use the organic substance liquid whose refractive index is higher than water. . Water is a liquid that is inexpensive and easy to obtain, and also excellent in safety. In addition, when an organic liquid having a higher refractive index than water is used, it is possible to further increase the depth of focus and transfer a finer pattern. For example, an alicyclic hydrocarbon compound such as decalin, which is an organic liquid, has a refractive index n of about 1.64 at a wavelength of 193 nm of an ArF excimer laser, and is a liquid for immersion exposure in the next generation immersion type exposure method. Can be suitably used. In addition, since this alicyclic hydrocarbon compound (decalin etc.) is a thing with very little reactivity with a general resist material and calcium fluoride, the acid etc. from the resist film which could have become a problem in pure water Defects in the pattern after development due to elution, and contamination / erosion of the lens are unlikely to occur. Therefore, the yield of electronic devices can be improved, and labor and cost for protection and maintenance of the exposure apparatus can be suppressed.

ここで、本実施の形態の走査型露光方法について、各工程毎にさらに詳細に説明する。まず、図1及び図2に示すような、露光を行うための基板5を用意する。本実施の形態の走査型露光方法において使用する基板5は、シリコンウェーハであり、シリコンウェーハの上には被エッチング膜が形成されている場合が多い。基板5の表面にフォトレジストを塗布してフォトレジスト膜が形成された基板5を使用する。なお、本実施の形態の走査型露光方法に使用する基板5においては、特に限定されることはないが、フォトレジスト膜の下側(基板5の表面とフォトレジスト膜との間)に、単一又は複数の膜から構成された下層膜が配設されていてもよく、また、フォトレジスト膜の表面には、例えば、基板と投影光学系との間の空間に供給する液体に溶出することない材料から構成された上層膜が形成されていてもよい。なお、上層膜の材料としては、露光光の波長に対して十分な透過性を有し、且つフォトレジスト膜とインターミキシングを起こすことのないものであることが好ましい。フォトレジスト膜、下層膜、上層膜等を形成する方法については特に制限はないが、例えば、スピンコート法等によって形成することができる。また、シリコンウェーハの場合、基板5(シリコンウェーハ)の外周部分の2mm程度はフォトレジスト膜等の塗布膜を除去してある場合が多い。このようにすることで、基板5の外周部分と接触するロボットアームなどへの汚染を低減している。   Here, the scanning exposure method of the present embodiment will be described in more detail for each step. First, a substrate 5 for performing exposure as shown in FIGS. 1 and 2 is prepared. The substrate 5 used in the scanning exposure method of the present embodiment is a silicon wafer, and an etching target film is often formed on the silicon wafer. A substrate 5 on which a photoresist film is formed by applying a photoresist to the surface of the substrate 5 is used. Note that the substrate 5 used in the scanning exposure method of the present embodiment is not particularly limited. However, the substrate 5 is simply disposed below the photoresist film (between the surface of the substrate 5 and the photoresist film). An underlayer film composed of one or a plurality of films may be disposed, and the surface of the photoresist film may be eluted, for example, into a liquid supplied to a space between the substrate and the projection optical system. An upper film made of a non-material may be formed. The material of the upper layer film is preferably a material that is sufficiently transmissive to the wavelength of exposure light and does not cause intermixing with the photoresist film. The method for forming the photoresist film, the lower layer film, the upper layer film and the like is not particularly limited, but can be formed by, for example, a spin coating method. In the case of a silicon wafer, a coating film such as a photoresist film is often removed about 2 mm in the outer peripheral portion of the substrate 5 (silicon wafer). By doing in this way, the contamination to the robot arm etc. which contact the outer peripheral part of the board | substrate 5 is reduced.

このような基板5を、図1に示すように、露光装置1の保持手段2(例えば、ステージ)に保持し、アライメントマーク等を用いて位置関係や回転などを測定した後、所定の場所に位置決めする。一方、所定のレジストパターンに対応するパターンが形成されたマスク12を、露光装置1のマスクステージ16上に保持する。   As shown in FIG. 1, such a substrate 5 is held on a holding means 2 (for example, a stage) of the exposure apparatus 1, and after measuring the positional relationship and rotation using an alignment mark or the like, it is placed at a predetermined place. Position. On the other hand, the mask 12 on which a pattern corresponding to a predetermined resist pattern is formed is held on the mask stage 16 of the exposure apparatus 1.

保持手段2は、基板5上の所定領域毎に順次露光を行うことができるように、保持した基板5を所定の方向に任意の距離だけ正確に移動させることができるように構成されたものであることが好ましく、従来公知の露光装置に用いられる保持手段を好適に用いることができる。図1に示す保持手段2は、露光光の光軸と一致する方向(Z方向)の位置及び傾斜角を制御するZステージ18と、このZステージ18を支持し、Z方向に垂直な平面内におけて、マスク12と基板5とが同期移動する走査方向(X方向)と、この走査方向に直交する方向(Y方向)とに駆動可能なXYステージ19と、このXYステージ19を支持する基台20とを有するものである。なお、基板5は、その裏面を吸着等により固定する基板ホルダ(図示せず)に保持されて、Zステージ18上に保持される。なお、図示は省略するが、保持手段2は、Zステージ18の位置を計測するための移動鏡及びレーザ干渉計、Zステージ18及びXYステージ19を駆動するためのステージ駆動部、また、このステージ駆動部等を制御するための制御部等をさらに有するものであってもよい。   The holding means 2 is configured to be able to accurately move the held substrate 5 in a predetermined direction by an arbitrary distance so that exposure can be sequentially performed for each predetermined area on the substrate 5. It is preferable that a holding unit used in a conventionally known exposure apparatus can be suitably used. The holding means 2 shown in FIG. 1 supports a Z stage 18 that controls the position and tilt angle in a direction (Z direction) that coincides with the optical axis of the exposure light, and supports the Z stage 18 in a plane perpendicular to the Z direction. In this case, the XY stage 19 that can be driven in a scanning direction (X direction) in which the mask 12 and the substrate 5 move synchronously and a direction (Y direction) orthogonal to the scanning direction, and the XY stage 19 are supported. A base 20 is included. The substrate 5 is held on a Z stage 18 by being held by a substrate holder (not shown) that fixes its back surface by suction or the like. Although not shown, the holding unit 2 includes a movable mirror and a laser interferometer for measuring the position of the Z stage 18, a stage driving unit for driving the Z stage 18 and the XY stage 19, and the stage. You may further have a control part etc. for controlling a drive part etc.

このZステージ18は、Z方向におけるフォーカス位置、及び傾斜角を制御して基板5上の表面をオートフォーカス方式、及びオートレベリングで投影光学系13の像面に合わせ込み、XYステージ19は基板5のX方向及びY方向の位置決めを行う。Zステージ18の二次元的な位置及び回転角は、移動鏡(図示せず)の位置としてレーザ干渉計(図示せず)によって計測され、得られた計測結果に基づいて制御部(図示せず)からステージ駆動部(図示せず)に制御情報が送られ、ステージ駆動部(図示せず)がZステージ18及びXYステージ19を駆動する。   The Z stage 18 controls the focus position and tilt angle in the Z direction to adjust the surface of the substrate 5 to the image plane of the projection optical system 13 by autofocusing and autoleveling. Positioning in the X direction and Y direction is performed. The two-dimensional position and rotation angle of the Z stage 18 are measured by a laser interferometer (not shown) as the position of a movable mirror (not shown), and a control unit (not shown) is based on the obtained measurement result. ) Is sent to a stage drive unit (not shown), and the stage drive unit (not shown) drives the Z stage 18 and the XY stage 19.

次に、液体7を供給するための液体供給手段4により、基板5上の露光を行う一の領域に液体7を供給して、基板5と投影光学系13との間の空間6に液体7を通過させる。図1においては、この液体供給手段4は、基板5と投影光学系13との間の空間6に、基板5の走査方向と平行に液体7を供給する液体供給部14と、空間6に供給した液体7を回収する液体回収部15とを有するものであり、例えば、液体供給部14は、液体7を貯留する供給タンク21と、供給する液体7の流路となる供給流路23とを有し、また、液体回収部15は、回収した液体7を貯留する回収タンク22と、回収する液体7の流路となる回収流路24とを有している。液体7は、液体供給部14から供給流路23を介して空間6に対して単位時間当たり所定量だけ供給され、回収流路24を介して液体回収部15へ、同じく単位時間当たり所定量が回収される。これにより、投影光学系13の先端面と基板5との間の空間6に液体7が満たされる。なお、供給流路と回収流路とを投影光学系13の先端部の中心に対して180°回転した配置には、図3に示すように、供給流路23と回収流路24とは反対の方向(図1における左から右への方向)に液体7を供給するための、末端が三つに分岐した第二の供給流路25と、末端が二つに分岐された第二の回収流路26とが配置されている。供給流路23と回収流路24とはY方向に交互に配列され、第二の供給流路25と第二の回収流路26とはY方向に交互に配列される。そして、第二の供給流路25は供給流路23と同じく液体供給部14に接続され、第二の回収流路26は液体回収部15に接続されている。   Next, the liquid 7 is supplied to a region where exposure is performed on the substrate 5 by the liquid supply means 4 for supplying the liquid 7, and the liquid 7 is supplied to the space 6 between the substrate 5 and the projection optical system 13. Pass through. In FIG. 1, the liquid supply unit 4 supplies the liquid 6 to the space 6 between the substrate 5 and the projection optical system 13, and supplies the liquid 7 in parallel with the scanning direction of the substrate 5. For example, the liquid supply unit 14 includes a supply tank 21 that stores the liquid 7 and a supply channel 23 that serves as a channel for the supplied liquid 7. In addition, the liquid recovery unit 15 includes a recovery tank 22 that stores the recovered liquid 7 and a recovery flow path 24 that is a flow path of the recovered liquid 7. The liquid 7 is supplied from the liquid supply unit 14 via the supply channel 23 to the space 6 by a predetermined amount per unit time, and similarly, the predetermined amount per unit time is supplied to the liquid recovery unit 15 via the recovery channel 24. Collected. Thereby, the liquid 7 is filled in the space 6 between the front end surface of the projection optical system 13 and the substrate 5. Note that the supply flow path and the recovery flow path are opposite to the supply flow path 23 and the recovery flow path 24 as illustrated in FIG. For supplying the liquid 7 in the direction of (from left to right in FIG. 1), a second supply channel 25 having three ends, and a second recovery having two ends. A flow path 26 is disposed. The supply channels 23 and the recovery channels 24 are alternately arranged in the Y direction, and the second supply channels 25 and the second recovery channels 26 are alternately arranged in the Y direction. The second supply channel 25 is connected to the liquid supply unit 14 in the same manner as the supply channel 23, and the second recovery channel 26 is connected to the liquid recovery unit 15.

本実施の形態の走査型露光方法においては、例えば、図1に示すように、上述した基板5上の一の露光領域に、基板5の外周部分を含む場合には、基板5を、基板5の中心を含み且つ基板5を走査する方向と直交する基板5の中心軸9(図2参照)に近い側から、基板5の外周側に向けて相対的に走査するとともに、液体7を、基板5の中心軸9(図2参照)に近い側から供給し、投影光学系13と基板5との間の空間6を通過させて、基板5の外周側において回収する。このように、本実施の形態においては、露光を行う領域毎に基板5の形状を確認し、基板5の外周部分を含む場合(例えば、露光領域の一部に基板5が無い領域がある場合など)には、上述したそれぞれの方向を決定する。なお、液体7を供給する方向については、基本的に基板5を走査する方向と同一の方向とするめ、液体7を供給する方向と基板5の走査方向とは同時に決定される。露光を行う領域に、基板5の外周部分が含まれない場合には、連続して露光を行う際に基板5の走査が極力少なくなるように、周囲の露光領域の状態を勘案し、基板5の走査方向と液体7を供給する方向とを決定することが好ましい。   In the scanning exposure method of the present embodiment, for example, as shown in FIG. 1, when the outer peripheral portion of the substrate 5 is included in one exposure region on the substrate 5 described above, the substrate 5 is replaced with the substrate 5. 2, and relatively scans toward the outer peripheral side of the substrate 5 from the side close to the central axis 9 (see FIG. 2) of the substrate 5 that is orthogonal to the direction in which the substrate 5 is scanned. 5 is supplied from the side near the central axis 9 (see FIG. 2), passes through the space 6 between the projection optical system 13 and the substrate 5, and is collected on the outer peripheral side of the substrate 5. As described above, in the present embodiment, the shape of the substrate 5 is confirmed for each region to be exposed, and the outer peripheral portion of the substrate 5 is included (for example, there is a region in which the substrate 5 is not part of the exposure region). Etc.), the respective directions described above are determined. The direction in which the liquid 7 is supplied is basically the same as the direction in which the substrate 5 is scanned, and the direction in which the liquid 7 is supplied and the scanning direction of the substrate 5 are determined simultaneously. In the case where the outer peripheral portion of the substrate 5 is not included in the region to be exposed, the state of the surrounding exposure region is taken into consideration so that the scanning of the substrate 5 is minimized when performing continuous exposure. It is preferable to determine the scanning direction and the liquid supply direction.

次に、照明光学系11から露光光を照明し、この露光光を、マスク12を通過させ、さらに、スッリト3で制限した後、投影光学系13、及び投影光学系13と基板5との間の空間6に供給する液体7を介して、基板5上の露光を行う領域に投影する。その後、基板5を、マスク12と相対的に走査し、マスク12全体のパターンを予定された露光領域に転写する。   Next, after illuminating exposure light from the illumination optical system 11, this exposure light is passed through the mask 12, and further limited by the slit 3, and then between the projection optical system 13 and the projection optical system 13 and the substrate 5. It projects on the area | region which performs exposure on the board | substrate 5 through the liquid 7 supplied to the space 6 of this. Thereafter, the substrate 5 is scanned relative to the mask 12 to transfer the entire pattern of the mask 12 to a predetermined exposure area.

照明光学系11は、マスク12に露光光を照射するための光学系であり、例えば、露光用光源、露光用光源の光の指向性を制御して集光するコンデンサレンズ、マスク12に照射する露光光の形状を調節する視野絞り等を有する照明光学系を好適例として挙げることができる。また、このような照明光学系11としては、図示は省略するが、リレーレンズ、フライアイレンズ、フィルタ、拡散板等をさらに有するものであってもよい。   The illumination optical system 11 is an optical system for irradiating the mask 12 with exposure light. For example, the exposure light source, a condenser lens that condenses light by controlling the directivity of light from the exposure light source, and the mask 12 are irradiated. An illumination optical system having a field stop for adjusting the shape of the exposure light can be cited as a suitable example. Further, such an illumination optical system 11 may further include a relay lens, a fly-eye lens, a filter, a diffusion plate, etc., although not shown.

照明光学系11に用いられる露光用光源から照射する露光光の種類については特に制限はなく、基板5に塗布したフォトレジスト膜、及びフォトレジスト膜とその上層膜との組合わせに応じて、例えば、可視光線、g線やi線等の紫外線、エキシマレーザ等の遠紫外線などでもよい。特に、本実施の形態の露光装置1においては、ArFエキシマレーザ(波長193nm)やKrFエキシマレーザ(波長248nm)を好適に使用することができる。   There is no particular limitation on the type of exposure light emitted from the exposure light source used in the illumination optical system 11, and depending on the photoresist film applied to the substrate 5 and the combination of the photoresist film and its upper layer film, for example, Further, visible light, ultraviolet rays such as g-line and i-line, and far ultraviolet rays such as excimer laser may be used. In particular, in the exposure apparatus 1 of the present embodiment, an ArF excimer laser (wavelength 193 nm) or a KrF excimer laser (wavelength 248 nm) can be suitably used.

本実施の形態の走査型露光方法に使用するマスク12としては、従来公知の露光方法に用いられる露光用のマスクを好適に用いることができる。また、マスク12としては、レクチルとして照明光学系11等に配設されたものであってもよい。図1に示す露光装置1に用いられるマスク12は、その位置決めを行うため、所定の方向に移動、微動及び回転可能なマスクステージ16上に保持されている。   As the mask 12 used in the scanning exposure method of the present embodiment, an exposure mask used in a conventionally known exposure method can be suitably used. The mask 12 may be a reticle disposed in the illumination optical system 11 or the like. The mask 12 used in the exposure apparatus 1 shown in FIG. 1 is held on a mask stage 16 that can move, finely move, and rotate in a predetermined direction for positioning.

投影光学系13は、マスク12のパターンを所定の投影倍率(例えば4:1など)で基板5に投影露光するものであり、例えば、鏡筒の内部に配設された複数の光学素子(例えば、レンズ)から構成された投影光学系を好適例として挙げることができる。さらに、本実施の形態の露光装置1においては、この投影光学系13を構成する光学素子のうち、少なくとも基板5側の光学素子が、フッ化カルシウム(CaF)や石英(fused silica)等のガラス製の平行平板レンズであり、鏡筒の内部に着脱可能に配設されたものであることが好ましい。このように構成することによって、基板5側の光学素子の耐食性を向上させるとともに、基板5側の光学素子の交換が可能となる。なお、露光装置1に用いられる投影光学系13は、投影倍率が1未満の縮小系であってもよいし、投影倍率が1を超える拡大系や投影倍率が1の等倍系であってもよい。   The projection optical system 13 projects and exposes the pattern of the mask 12 onto the substrate 5 at a predetermined projection magnification (for example, 4: 1). For example, the projection optical system 13 includes a plurality of optical elements (for example, a plurality of optical elements disposed inside the lens barrel). , A lens) can be cited as a preferred example. Further, in the exposure apparatus 1 of the present embodiment, among the optical elements constituting the projection optical system 13, at least the optical element on the substrate 5 side is made of glass such as calcium fluoride (CaF) or quartz (fused silica). It is preferably a parallel flat lens made of a lens and detachably disposed inside the lens barrel. With this configuration, the corrosion resistance of the optical element on the substrate 5 side can be improved, and the optical element on the substrate 5 side can be replaced. Note that the projection optical system 13 used in the exposure apparatus 1 may be a reduction system with a projection magnification of less than 1, a magnification system with a projection magnification of more than 1, or an equal magnification system with a projection magnification of 1. Good.

スリット3は、マスク12を所定の幅に制限するためのものであり、基板5とマスク12とを相対的に走査することができるように構成されている。このように基板5とマスク12とを相対的に走査して露光することにより、例えば、投影光学系13のレンズの歪の少ない優れた部分のみをスッリト3によって制限して使用することが可能なため、より高精度の露光を実現することができる。本実施の形態の走査型露光方法においては、スリット3の幅については特に制限はなく、露光の条件や投影光学系13の種類や大きさに応じて決定することができる。   The slit 3 is for limiting the mask 12 to a predetermined width, and is configured so that the substrate 5 and the mask 12 can be relatively scanned. By thus scanning and exposing the substrate 5 and the mask 12 relative to each other, for example, it is possible to use only an excellent portion with little distortion of the lens of the projection optical system 13 limited by the slit 3. Therefore, higher-precision exposure can be realized. In the scanning exposure method of the present embodiment, the width of the slit 3 is not particularly limited, and can be determined according to the exposure conditions and the type and size of the projection optical system 13.

マスク12全体のパターンを基板5の予定された露光領域に転写した後、液体供給部14を停止し液体7の供給を止め、所定時間経過後に(あるいは、液体7が投影光学系13の先端部と基板5との間に存在しなくなったことを確認して)、液体回収部15を停止する。このようにして基板5上の予定された領域の露光を終了し、基板5を他の露光領域における開始位置まで移動し、再度、上述した工程を繰り返す。   After the pattern of the entire mask 12 is transferred to a predetermined exposure area of the substrate 5, the liquid supply unit 14 is stopped and the supply of the liquid 7 is stopped, and after a predetermined time has elapsed (or the liquid 7 is at the tip of the projection optical system 13. The liquid recovery unit 15 is stopped. In this way, the exposure of the predetermined area on the substrate 5 is finished, the substrate 5 is moved to the start position in another exposure area, and the above-described steps are repeated again.

以上のようにして本実施の形態の走査型露光方法においては、基板5の外周部分を含む領域(外周領域)を走査して露光する際に、基板5を、基板5の中心を含み且つ基板5を走査する方向と直交する基板5の中心軸9(図2参照)に近い側から、基板5の外周側に向けて相対的に走査するとともに、液体7を、基板5の中心軸9(図2参照)に近い側から供給し、投影光学系13と基板5との間の空間6を通過させて、基板5の外周側において回収するため、液体7をより安定した状態で、投影光学系13と基板5との間の空間6を通過させることが可能となり、基板5上、特に、基板5の外周部分を含む領域においても、高精度にレジストパターンを形成することができる。また、液体7が外周部分において汚染されたとしても、より素早く回収することが可能であり、また、液体7が外周部分を通過した後に再び基板5上を通過することがないため、基板5や投影光学系13のレンズの汚染を有効に防止することができる。なお、露光の順番であるが、先に、完全な四角形を保つ露光領域を順番に露光した後に、それらのZ方向の位置情報を用いながら外周部分を含む完全な四角形で無い露光領域(外周領域)を順番に本発明の趣旨を用いながら露光してもよい。   As described above, in the scanning exposure method of the present embodiment, the substrate 5 includes the center of the substrate 5 and the substrate when the region (outer peripheral region) including the outer peripheral portion of the substrate 5 is scanned and exposed. 5 is scanned relatively from the side close to the central axis 9 (see FIG. 2) of the substrate 5 perpendicular to the scanning direction to the outer peripheral side of the substrate 5, and the liquid 7 is scanned with the central axis 9 ( Since the liquid 7 is supplied from the side close to (see FIG. 2), passes through the space 6 between the projection optical system 13 and the substrate 5, and is collected on the outer peripheral side of the substrate 5, the liquid 7 is more stable in the projection optics. The space 6 between the system 13 and the substrate 5 can be passed, and a resist pattern can be formed with high accuracy on the substrate 5, particularly in a region including the outer peripheral portion of the substrate 5. Further, even if the liquid 7 is contaminated in the outer peripheral portion, it can be recovered more quickly, and the liquid 7 does not pass over the substrate 5 again after passing through the outer peripheral portion. Contamination of the lens of the projection optical system 13 can be effectively prevented. Note that the exposure order is an exposure area that is not a complete quadrangle including the outer peripheral part using the position information in the Z direction after sequentially exposing the exposure areas that maintain the complete quadrangle in order. ) In order, using the spirit of the present invention.

本発明の走査型露光方法は、基板上に高精度に露光を行うことができることから、半導体素子等の製造方法において利用することができる。特に、基板上の外周部分を含む領域においての精度を向上させることが可能なため、例えば、同一サイズの基板から正常な状態で製造できるチップの個数を増加させて、歩留まりを向上させることもできる。   Since the scanning exposure method of the present invention can perform exposure on a substrate with high accuracy, it can be used in a method for manufacturing a semiconductor element or the like. In particular, since it is possible to improve the accuracy in the region including the outer peripheral portion on the substrate, for example, the number of chips that can be manufactured in a normal state from the same size substrate can be increased to improve the yield. .

本発明の走査型露光方法の一の実施の形態の露光の工程を模式的に示す説明図である。It is explanatory drawing which shows typically the process of the exposure of one Embodiment of the scanning exposure method of this invention. 本発明の走査型露光方法の一の実施の形態におけるスリットを走査する方向を示す説明図である。It is explanatory drawing which shows the direction which scans the slit in one Embodiment of the scanning exposure method of this invention. 本発明の走査型露光方法の一の実施の形態における、投影光学系と基板との間の空間に液体を供給する方法を示す説明図である。It is explanatory drawing which shows the method of supplying a liquid to the space between a projection optical system and a board | substrate in one embodiment of the scanning exposure method of this invention. 従来の走査型露光方法を説明する説明図である。It is explanatory drawing explaining the conventional scanning exposure method. 従来の走査型露光方法において基板に露光を行う際の、基板上の各領域における露光の順番及びスリットを走査する方向を示す説明図である。It is explanatory drawing which shows the order of the exposure in each area | region on a board | substrate, and the direction which scans a slit at the time of exposing a board | substrate in the conventional scanning exposure method.

符号の説明Explanation of symbols

1…露光装置、2…保持手段、3…スリット、4…液体供給手段、5…基板、6…空間、7…液体、9…中心軸、11…照明光学系、12…マスク、13…投影光学系、14…液体供給部、15…液体回収部、16…マスクステージ、18…Zステージ、19…XYステージ、20…基台、21…供給タンク、22…回収タンク、23…供給流路、24…回収流路、25…第二の供給流路、26…第二の回収流路、111…マスク、112…露光光、113…投影光学系、114…基板、115…スリット、116…ステージ、a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p…露光領域。 DESCRIPTION OF SYMBOLS 1 ... Exposure apparatus, 2 ... Holding means, 3 ... Slit, 4 ... Liquid supply means, 5 ... Substrate, 6 ... Space, 7 ... Liquid, 9 ... Center axis, 11 ... Illumination optical system, 12 ... Mask, 13 ... Projection Optical system, 14 ... Liquid supply unit, 15 ... Liquid recovery unit, 16 ... Mask stage, 18 ... Z stage, 19 ... XY stage, 20 ... Base, 21 ... Supply tank, 22 ... Recovery tank, 23 ... Supply flow path , 24 ... recovery flow path, 25 ... second supply flow path, 26 ... second recovery flow path, 111 ... mask, 112 ... exposure light, 113 ... projection optical system, 114 ... substrate, 115 ... slit, 116 ... Stage, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p... Exposure region.

Claims (3)

基板に投影するパターンが形成されたマスクを所定の幅のスリットで制限し、前記基板を前記マスクと相対的に走査して、前記スリットを通過した露光光を投影する投影光学系、及び、前記投影光学系と前記基板との間の空間に供給する液体を介して、前記基板上の複数の領域に、順次前記パターンを形成する液浸型の走査型露光方法であって、
前記基板の外周部分を含む領域(外周領域)を走査して露光する際に、前記基板を、前記基板の中心を含み且つ前記基板を走査する方向と直交する前記基板の中心軸に近い側から、前記基板の外周側に向けて相対的に走査し、且つ、前記基板上の前記外周領域以外の領域を露光する際には、前記投影光学系と前記基板との前記露光光の光軸と一致する方向の相対的な位置を調節しながら露光を行い、前記基板上の前記外周領域を露光する際には、前記投影光学系と前記基板との前記露光光の光軸と一致する方向の相対的な位置を固定して、又は、一つ前の領域若しくは隣接する領域を露光した情報を元に前記投影光学系と前記基板との前記露光光の光軸と一致する方向の相対的な位置を調節しながら露光を行うとともに、前記液体を、前記基板の前記中心軸に近い側から供給し、前記投影光学系と前記基板との間の前記空間を通過させて、前記基板の外周側において回収する走査型露光方法。
A projection optical system that restricts a mask on which a pattern to be projected onto a substrate is formed with a slit having a predetermined width, scans the substrate relative to the mask, and projects exposure light that has passed through the slit; and An immersion type scanning exposure method for sequentially forming the pattern in a plurality of regions on the substrate via a liquid supplied to a space between the projection optical system and the substrate,
When scanning and exposing a region (outer peripheral region) including the outer peripheral portion of the substrate, the substrate is included from the side near the central axis of the substrate that includes the center of the substrate and is orthogonal to the scanning direction of the substrate. The optical axis of the exposure light of the projection optical system and the substrate, when relatively scanning toward the outer peripheral side of the substrate and exposing a region other than the outer peripheral region on the substrate. When exposure is performed while adjusting the relative position in the matching direction, and the outer peripheral area on the substrate is exposed, the exposure optical axis of the projection optical system and the substrate is aligned with the optical axis of the exposure light. The relative position in the direction matching the optical axis of the exposure light of the projection optical system and the substrate is fixed based on the information obtained by fixing the relative position or exposing the previous area or the adjacent area. The exposure is performed while adjusting the position, and the liquid is added to the base. The supplied from the side near to the central axis, the passed through a space between the substrate and the projection optical system, a scanning exposure method for recovering the outer peripheral side of the substrate.
前記投影光学系と前記基板との間の前記空間に供給する液体が水である請求項1に記載の走査型露光方法。   The scanning exposure method according to claim 1, wherein the liquid supplied to the space between the projection optical system and the substrate is water. 前記投影光学系と前記基板との間の前記空間に供給する液体が水よりも屈折率の高い有機物液体である請求項1に記載の走査型露光方法。   The scanning exposure method according to claim 1, wherein the liquid supplied to the space between the projection optical system and the substrate is an organic liquid having a refractive index higher than that of water.
JP2005010457A 2005-01-18 2005-01-18 Scanning exposure method Expired - Fee Related JP4591093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010457A JP4591093B2 (en) 2005-01-18 2005-01-18 Scanning exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010457A JP4591093B2 (en) 2005-01-18 2005-01-18 Scanning exposure method

Publications (2)

Publication Number Publication Date
JP2006202836A JP2006202836A (en) 2006-08-03
JP4591093B2 true JP4591093B2 (en) 2010-12-01

Family

ID=36960589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010457A Expired - Fee Related JP4591093B2 (en) 2005-01-18 2005-01-18 Scanning exposure method

Country Status (1)

Country Link
JP (1) JP4591093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468779B2 (en) 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2001168024A (en) * 1999-09-29 2001-06-22 Nikon Corp Aligner and device producing method
JP2005277053A (en) * 2004-03-24 2005-10-06 Toshiba Corp Resist pattern forming method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4582089B2 (en) * 2003-04-11 2010-11-17 株式会社ニコン Liquid jet recovery system for immersion lithography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2001168024A (en) * 1999-09-29 2001-06-22 Nikon Corp Aligner and device producing method
JP2005277053A (en) * 2004-03-24 2005-10-06 Toshiba Corp Resist pattern forming method

Also Published As

Publication number Publication date
JP2006202836A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4179283B2 (en) Optical element and projection exposure apparatus using the optical element
TWI443471B (en) Projection optical system, exposure apparatus, and device manufacturing method
WO2005081291A1 (en) Exposure apparatus and method of producing device
US8179517B2 (en) Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
US8023103B2 (en) Exposure apparatus, exposure method, and method for producing device
CN103293869B (en) system and method for lithographic patterning
WO2006030908A1 (en) Substrate holding apparatus, exposure apparatus and device manufacturing method
JPWO2007100081A1 (en) Exposure method and apparatus, and device manufacturing method
WO2006041083A1 (en) Exposure apparatus, exposure method and device manufacturing method
JP4984747B2 (en) Optical element, exposure apparatus using the same, and microdevice manufacturing method
JP2006278820A (en) Exposure method and exposure device
US20120293782A1 (en) Methods and Systems for Lithography Alignment
JP2006202825A (en) Immersion type exposure device
JP2000029202A (en) Production of mask
US6172740B1 (en) Projection exposure apparatus and device manufacturing method
JP4961709B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4168880B2 (en) Immersion solution
JP2005026649A (en) Exposing method, aligner, and device manufacturing method
EP3428723A1 (en) Optical element, exposure apparatus based on the use of the same, exposure method and method for producing microdevice
JP4591093B2 (en) Scanning exposure method
US9529275B2 (en) Lithography scanner throughput
JPH11233424A (en) Projection optical device, aberration measuring method, projection method, and manufacture of device
JP2005072132A (en) Aligner and device manufacturing method
JP2006229019A (en) Aligner
JP2005135949A (en) Aligner and exposure method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4591093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees