JP4590494B2 - Micro air vehicle - Google Patents

Micro air vehicle Download PDF

Info

Publication number
JP4590494B2
JP4590494B2 JP2008277356A JP2008277356A JP4590494B2 JP 4590494 B2 JP4590494 B2 JP 4590494B2 JP 2008277356 A JP2008277356 A JP 2008277356A JP 2008277356 A JP2008277356 A JP 2008277356A JP 4590494 B2 JP4590494 B2 JP 4590494B2
Authority
JP
Japan
Prior art keywords
thin plate
air vehicle
micro air
fixed thin
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008277356A
Other languages
Japanese (ja)
Other versions
JP2010083466A (en
Inventor
章 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDUCATINAL FOUNDATION BUNRI GAKUEN
Original Assignee
EDUCATINAL FOUNDATION BUNRI GAKUEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDUCATINAL FOUNDATION BUNRI GAKUEN filed Critical EDUCATINAL FOUNDATION BUNRI GAKUEN
Priority to JP2008277356A priority Critical patent/JP4590494B2/en
Publication of JP2010083466A publication Critical patent/JP2010083466A/en
Application granted granted Critical
Publication of JP4590494B2 publication Critical patent/JP4590494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Toys (AREA)

Description

本発明は超小型飛行体に関し、より詳細には翼弦長を基準長とするレイノルズ数が10の5乗以下の領域を固定薄板翼により飛行する超小型飛行体に関する。本発明は遠隔無線操縦により無人で飛行する調査、探査活動用の超小型飛行体に好適である。  The present invention relates to a micro air vehicle, and more particularly to a micro air vehicle that flies by a fixed thin plate wing in a region where the Reynolds number is 10 5 or less with a chord length as a reference length. INDUSTRIAL APPLICABILITY The present invention is suitable for a micro air vehicle for research and exploration activities in which unmanned flight is performed by remote radio control.

近年、産業製品の小型化により超小型精密軽量部品を用いた超小型飛行体の研究開発が産業界において盛んに行われるようになっている。しかしながら、電子機械的には超小型飛行体を実現することが出来たとしても、当該飛行体の小型化に伴う流体力学的な諸問題を解決しない限り、期待される超小型飛行体の産業上の利用は困難であるものといえる。流体力学の分野においては、流体現象における慣性と粘性との対比によって定義されるレイノルズ数が支配的となるため、電子機械の分野においては取り立てて問題とされることのない当該飛行体の単純な小型化が流体力学の分野においてはレイノルズ数の低下による流体の粘性の影響の増大に起因する当該飛行体の飛行性能の決定的な低下をもたらすこととなる。例えば図7に示すように、レイノルズ数が3500の流れにおける迎え角が5度に設けられた固定薄板翼20の周りの流れには、粘性の影響により当該固定薄板翼20の翼厚よりも厚い死水域23が形成され、同時に粘性抵抗の著しい増加を招くこととなって当該固定薄板翼20を用いた超小型飛行体の高速飛行の実現を阻害することとなるものといえる。  In recent years, with the miniaturization of industrial products, research and development of ultra-compact aircraft using ultra-compact, precision and lightweight parts has been actively performed in the industry. However, even if it is possible to realize an ultra-small aircraft from an electromechanical point of view, there is no expectation for the expected micro-aircraft industry unless the various hydrodynamic problems associated with the miniaturization of the aircraft are solved. It can be said that the use of is difficult. In the field of fluid mechanics, the Reynolds number defined by the contrast between inertia and viscosity in fluid phenomena dominates. In the field of hydrodynamics, downsizing will bring about a decisive decrease in the flight performance of the aircraft due to an increase in the effect of fluid viscosity due to a decrease in Reynolds number. For example, as shown in FIG. 7, the flow around the fixed thin plate blade 20 provided with an angle of attack of 5 degrees in the flow having a Reynolds number of 3500 is thicker than the thickness of the fixed thin plate blade 20 due to the influence of viscosity. It can be said that the dead water area 23 is formed and at the same time the viscosity resistance is remarkably increased, which impedes the realization of the high-speed flight of the micro air vehicle using the fixed thin wing 20.

一方、自然の風環境下における超小型飛行体の飛行を考える場合、当該超小型飛行体の飛行速度が大型機の場合に比較して桁違いに小さくなるにも関わらず、当該自然の風環境は航空機の大小に関わらないため、当該超小型飛行体においては、当該自然の風環境がもたらす迎え角の変化が相対的に大きいものとなって、図8に示す固定薄板翼20周りの流れのように剥離域24において境界層が当該翼から剥離することにより容易に固定薄板翼20が失速することとなるために、当該超小型飛行体が強風、突風を含む自然の風環境下で安定して飛行を継続することは基本的に困難であるものということができる。さらに当該超小型飛行体においては、地表面形状の影響を受ける超低空の風環境下において、一段と激しく変化する当該風環境下を遠隔操縦等により飛行することが求められることから、超低空飛行を行う当該超小型飛行体の墜落事故を回避するためにも、通常の航空機と比較して超小型飛行体は格段に高い大迎角飛行特性および優れた操縦性能を求められることとなるものといえる。  On the other hand, when considering the flight of a micro air vehicle in a natural wind environment, although the flight speed of the micro air vehicle is orders of magnitude smaller than that of a large aircraft, the natural wind environment Is not related to the size of the aircraft, the change in the angle of attack caused by the natural wind environment is relatively large in the micro air vehicle, and the flow around the fixed thin wing 20 shown in FIG. As described above, since the boundary layer peels off from the wing in the separation region 24, the fixed thin plate blade 20 is easily stalled. Therefore, the micro air vehicle is stable in a natural wind environment including strong winds and gusts. It can be said that it is basically difficult to continue flying. Furthermore, since the micro air vehicle is required to fly under the extremely low wind environment affected by the shape of the ground surface by remote control, etc. In order to avoid the crash of the micro air vehicle that is performed, it can be said that the micro air vehicle is required to have extremely high angle-of-attack flight characteristics and excellent maneuverability as compared with a normal aircraft. .

しかしながらこれらの諸問題を担う流体力学、航空工学の分野においては、従来、産業上の需要が集中する有人の大型航空機の研究開発が優先されてきたために、当該低レイノルズ数領域を飛行する無人の超小型飛行体の研究開発が取り残されてきたものということができる。このため本願発明の発明者は、これら諸問題を解決する低レイノルズ数領域における航空工学を構築するために、流体力学の原点に立ち返り、低レイノルズ数流れの中に置かれる回転円柱周りの流れをその着手点として低レイノルズ数流れに関する航空工学分野を対象とする研究開発活動を推進するものとした。  However, in the fields of fluid mechanics and aeronautical engineering, which are responsible for these problems, the research and development of manned large aircraft, where industrial demand is concentrated, has been prioritized so far. It can be said that research and development of micro air vehicles have been left behind. For this reason, the inventor of the present invention returns to the origin of hydrodynamics and builds a flow around a rotating cylinder placed in a low Reynolds number flow in order to build aeronautical engineering in the low Reynolds number region that solves these problems. The starting point is to promote research and development activities in the field of aeronautical engineering related to low Reynolds number flow.

一方、従来知られる高レイノルズ数流れを対象とする回転円柱を用いた翼面上の流れの改善技術としては、特許文献1において開示される回転円柱を用いた送風機の回転翼の性能向上に関する発明が知られている(特許文献1参照。)。特許文献1において開示される送風機の回転翼は、当該回転翼の前縁部あるいは翼面上に円柱状の回転体を当該回転体の一部を部分的に翼面上に露出させた状態において埋没敷設し、当該部分的に翼面上に露出する当該円柱状回転体の上方流れにおいて生じる加速流により当該翼面上の境界層の剥離を防止して当該送風機における作動騒音の発生と送風効率の低下とを防ぐものとされている。しかしながら勿論、特許文献1において開示される当該送風機の回転翼の改善に関する発明は、高速回転する回転翼を対象とする、即ち高レイノルズ数流れを対象とする技術であって、かつ、当該円柱状回転体を当該回転翼内に埋没敷設し得る大型かつ厚翼の回転翼を対象とする発明であって、流体力学的に本願発明が課題とする固定薄板翼を用いた低レイノルズ数領域における超小型飛行体の翼性能の改善に寄与するものではない。
特許第3503604号公報
On the other hand, as a technique for improving the flow on the blade surface using a rotating cylinder that targets a conventionally known high Reynolds number flow, the invention related to the improvement of the performance of the rotating blade of a blower using the rotating cylinder disclosed in Patent Document 1 Is known (see Patent Document 1). The rotor blade of the blower disclosed in Patent Document 1 is a state in which a cylindrical rotor is exposed on the front edge or blade surface of the rotor blade and a part of the rotor is partially exposed on the blade surface. Generation of operating noise and blowing efficiency in the blower by preventing the separation of the boundary layer on the blade surface by the acceleration flow generated in the upward flow of the cylindrical rotating body that is buried and partially exposed on the blade surface It is supposed to prevent the decline of However, of course, the invention related to the improvement of the rotor blades of the blower disclosed in Patent Document 1 is a technology for rotating rotor blades rotating at high speed, that is, for a high Reynolds number flow, and the cylindrical shape. This invention is intended for large and thick blades that can be embedded in the rotor blades, and is superfluous in the low Reynolds number region using the fixed thin plate blade that is the subject of the present invention hydrodynamically. It does not contribute to the improvement of wing performance of small aircraft.
Japanese Patent No. 3503604

このため本願発明の発明者は、当該流れが微細なために通常の観察手段によっては容易に観察することができない低レイノルズ数領域における流れの様子を肉眼により観察することを可能とするために、当該低レイノルズ数流れを相似則を以って拡大し、かつ可視化して再現することができる回流式可視化水槽を新規に開発し、当該低レイノルズ数領域における回転円柱周りの流れを対象とする数多くの詳細な観察をおこなうことに成功した。その結果、低レイノルズ数領域における回転円柱周りの流れの様子は高レイノルズ数領域における場合とは大きく異なるものであり、また一定の流れの条件下においては、当該回転円柱の後方流れにおいて当該流れの主流速度よりも格段に大きな速度を有する図3に示すようないわばジェット噴流22を生じさせることができることを発見した。微細流れである低レイノルズ数流れにおいて、当該低レイノルズ数流れにおける大きな粘性の影響によりもたらされる当該回転円柱21後方のジェット噴流22は、高レイノルズ数流れにおける加速流に比べて格段に大規模かつ強力なものであるということができ、低レイノルズ数流れにおいて大きな支配力を有するものということができる。  For this reason, in order to enable the inventor of the present invention to observe the state of flow in a low Reynolds number region that cannot be easily observed by ordinary observation means because the flow is fine, We have developed a new flow visualization water tank that can expand and visualize the low Reynolds number flow with a similarity law, and target many flows around a rotating cylinder in the low Reynolds number region. We have succeeded in making detailed observations. As a result, the flow around the rotating cylinder in the low Reynolds number region is very different from that in the high Reynolds number region, and under constant flow conditions, It has been found that it is possible to generate a jet jet 22 having a speed much higher than the mainstream speed as shown in FIG. In a low Reynolds number flow that is a fine flow, the jet jet 22 behind the rotating cylinder 21 caused by the influence of a large viscosity in the low Reynolds number flow is much larger and more powerful than an acceleration flow in a high Reynolds number flow. It can be said that it has a large dominance in a low Reynolds number flow.

この新規な発見に基づき、本願発明は、翼弦長を基準長として定義するレイノルズ数が10の5乗以下の低レイノルズ数流れの領域において、高速回転する回転円柱の後方流れにおいて発生する低レイノルズ数流れ特有の強力なジェット噴流を同じく低レイノルズ数領域において用いられる固定薄板翼における翼周りの流れに適切な位置関係において重ね合わせて利用することにより、超小型飛行体の翼性能および飛行性能を向上することを目的とする。  Based on this novel discovery, the present invention provides a low Reynolds generated in the rear flow of a rotating cylinder rotating at high speed in a low Reynolds number flow region in which the chord length is defined as a reference length and the Reynolds number is 10 5 or less. By utilizing the powerful jet jets that are unique to several flows in an appropriate positional relationship with the flow around the wings in a fixed thin plate wing that is also used in the low Reynolds number region, the wing performance and flight performance of the micro air vehicle can be reduced. It aims to improve.

具体的には、低レイノルズ数流れにおける粘性の影響により当該超小型飛行体が備える当該固定薄板翼周りの流れにおいて当該固定薄板翼よりも厚い領域をもって形成される図7に示す死水域23と当該粘性の影響により増大する粘性抵抗とを低減することにより、特に低迎え角の条件において当該超小型飛行体の低抵抗飛行特性を向上し、当該超小型飛行体の飛行速度を格段に向上させることを目的とする。  Specifically, the dead water region 23 shown in FIG. 7 formed with a region thicker than the fixed thin plate wing in the flow around the fixed thin plate wing included in the micro air vehicle due to the influence of the viscosity in the low Reynolds number flow, and the By reducing the viscous resistance that increases due to the influence of viscosity, the low resistance flight characteristics of the micro air vehicle will be improved, especially under conditions of low angle of attack, and the flight speed of the micro air vehicle will be significantly improved. With the goal.

また、強風、突風を含む自然の風環境下において急激に変化することとなる当該超小型飛行体が備える当該固定薄板翼の大きな迎え角の変動によっても容易に図8に示す剥離域24を生じてしまうことがなく、失速することのない優れた当該超小型飛行体における大迎角飛行特性を実現し、並びに当該自然の風環境下においても十分な操縦性能を発揮し得る強力な操縦特性を備える優れた超小型飛行体を実現することを目的とする。  Also, the separation region 24 shown in FIG. 8 can be easily generated by a large variation in the angle of attack of the fixed thin plate wing included in the micro air vehicle that changes suddenly in a natural wind environment including strong winds and gusts. It realizes a high angle of attack flight characteristic in the ultra-compact aircraft that does not stall, and has a powerful maneuvering characteristic that can exhibit sufficient maneuverability even in the natural wind environment. The purpose is to realize an excellent micro air vehicle equipped with.

本発明は上記の課題を解決するために次の構成を備える。即ち、本発明による飛行体は、翼弦長を基準長とするレイノルズ数が10の5乗以下の領域を固定薄板翼により飛行する超小型飛行体において、前記固定薄板翼の前縁に近接して前記固定薄板翼の前縁の前下方45度から後上方45度までの範囲の位置に滑らかな表面を有する円形断面の回転ロッドを前記固定薄板翼の前縁と前記回転ロッドの回転軸とが平行となる位置関係において備え、前記回転ロッドを前記回転ロッドの周速度が一様流速度の2倍以上の速度となるよう前記固定薄板翼の翼循環方向と同一の回転方向に回転させることにより低抵抗飛行および大迎角飛行を実現することを特徴とする。The present invention has the following configuration in order to solve the above problems. That is, the flying object according to the present invention is a micro-aircraft that flies by a fixed thin plate wing in a region where the Reynolds number is 10 5 or less with the chord length as a reference length, and is close to the leading edge of the fixed thin wing. A rotating rod having a circular cross section having a smooth surface at a position ranging from 45 degrees forward and lower 45 degrees to the rear upper edge of the leading edge of the stationary thin plate blade, and the leading edge of the stationary thin plate blade and the rotational axis of the rotating rod. Are arranged in parallel, and the rotating rod is rotated in the same rotational direction as the blade circulation direction of the fixed thin plate blade so that the peripheral speed of the rotating rod is at least twice the uniform flow velocity. It is characterized by realizing low resistance flight and large attack angle flight.

また本発明による超小型飛行体は、当該回転ロッドを左右一対かつ各独立に当該固定薄板翼の翼端部においてのみ設け、当該回転ロッドの回転数を左舷側および右舷側において各独立に変更制御することにより飛行制御を行うことを特徴とする。  Further, the micro air vehicle according to the present invention is provided with a pair of left and right rotating rods independently only at the wing tip of the fixed thin plate wing, and the rotational speed of the rotating rod is independently changed on the port side and starboard side. It is characterized by performing flight control.

本発明によれば、翼弦長を基準長として定義するレイノルズ数が10の5乗以下の低レイノルズ数流れの領域において、当該低レイノルズ数流れにおける粘性の影響により当該超小型飛行体が備える当該固定薄板翼周りの流れにおいて当該固定薄板翼よりも厚い領域をもって形成される図7に示す死水域23と当該粘性の影響により増大する粘性抵抗とを当該固定薄板翼の前縁に近接して当該固定薄板翼の前縁の前下方45度から後上方45度までの範囲の位置に当該固定薄板翼の前縁と当該回転ロッドの回転軸とが略平行となる位置関係において設けられた一様流速度の2倍以上の周速度において当該固定薄板翼の翼循環方向と同一の回転方向に高速回転する概ね滑らかな表面を有する円形断面の当該回転ロッドの後方流れにおいて発生する低レイノルズ数流れ特有の強力なジェット噴流を用いて低減することにより、当該固定薄板翼周りの流れを図4に示す理想的な流れに改善することができるため、特に低迎え角の条件において当該超小型飛行体の低抵抗飛行特性を向上し、当該超小型飛行体の飛行速度を格段に向上させることができる。  According to the present invention, in the region of the low Reynolds number flow in which the Reynolds number is defined as the chord length as a reference length and the Reynolds number flow is 10 5 or less, the micro air vehicle is provided with the influence of the viscosity in the low Reynolds number flow. The dead water region 23 shown in FIG. 7 formed with a region thicker than the fixed thin plate wing in the flow around the fixed thin plate wing and the viscous resistance increased by the influence of the viscosity are close to the front edge of the fixed thin plate wing. Uniformity provided in a positional relationship in which the front edge of the fixed thin plate blade and the rotation axis of the rotating rod are substantially parallel to each other at a position in the range of 45 degrees from the front lower side to the rear upper 45 ° of the front edge of the fixed thin plate blade. Occurs in the backward flow of the rotating rod having a circular cross section having a generally smooth surface that rotates at high speed in the same rotational direction as the blade circulation direction of the stationary thin plate blade at a peripheral speed of twice or more the flow speed. Since the flow around the fixed thin plate blade can be improved to the ideal flow shown in FIG. 4 by reducing it using a powerful jet jet peculiar to a low Reynolds number flow, the flow is particularly suitable under the condition of a low angle of attack. The low resistance flight characteristics of the micro air vehicle can be improved, and the flight speed of the micro air vehicle can be remarkably improved.

また本発明によれば、強風、突風を含む自然の風環境下において急激に変化することとなる当該超小型飛行体が備える当該固定薄板翼の大きな迎え角の変動によっても当該回転ロッドの後方流れにおいて発生する低レイノルズ数流れ特有の強力なジェット噴流の効果により当該固定薄板翼上面において境界層が剥離して図8に示す剥離域24が生じてしまうことがないよう制御することができるため、大迎角の条件においても当該固定薄板翼が失速することなく、当該固定薄板翼周りの流れを理想的な流れに改善して高揚力を創出し得る優れた大迎角飛行特性を備えた超小型飛行体を実現することができる。ここで図5は本発明の発明者による回流式可視化水槽を用いた実験の結果を示すものである。図5に示す回流式可視化水槽を用いた実験においては、翼弦長を基準長とするレイノルズ数が約3500の条件において、一様流に対して30度の大迎角を有する固定薄板翼20の前縁に当該直径が当該翼弦長の丁度10%となる回転円柱21を近接して設け、当該回転円柱21の回転における周速度を当該一様流の速度の5倍となる周速度、即ち周速比5となる駆動状態において当該回転円柱21を回転駆動させたところ、当該大迎角の条件においても流れの剥離を生じない理想的な流れを実現できることが確認された。なおこの結果については、当該翼型の差異の影響を大きく受けないことが同じく本発明の発明者による回流式可視化水槽を用いた実験により確認されている。  Further, according to the present invention, the backward flow of the rotating rod is also caused by a large variation in the angle of attack of the fixed thin plate wing provided in the micro air vehicle that changes suddenly in a natural wind environment including strong winds and gusts. 8 can be controlled so that the boundary layer is peeled off at the upper surface of the fixed thin plate blade due to the effect of the powerful jet jet peculiar to the low Reynolds number flow generated in FIG. Even under conditions of large angle of attack, the fixed thin plate wing does not stall, and the flow around the fixed thin plate wing is improved to an ideal flow to create high lift. A small aircraft can be realized. Here, FIG. 5 shows the result of the experiment using the circulating type visualization water tank by the inventors of the present invention. In the experiment using the circulating visualization water tank shown in FIG. 5, the fixed thin plate blade 20 having a large angle of attack of 30 degrees with respect to the uniform flow under the condition that the Reynolds number is about 3500 with the chord length as the reference length. A rotating cylinder 21 whose diameter is exactly 10% of the chord length is provided close to the front edge of the rotating cylinder 21, and the peripheral speed in the rotation of the rotating cylinder 21 is five times the uniform flow speed, That is, when the rotating cylinder 21 was driven to rotate in a driving state where the peripheral speed ratio was 5, it was confirmed that an ideal flow that does not cause separation of the flow can be realized even under the condition of the large angle of attack. In addition, about this result, it is confirmed by the experiment using the circulation type visualization water tank by the inventor of this invention that it is not greatly influenced by the difference of the said airfoil.

また本発明によれば、当該回転ロッドを左右一対かつ各独立に当該固定薄板翼の翼端部においてのみ設け、当該回転ロッドの回転数を左舷側および右舷側において各独立に変更制御することにより、当該固定薄板翼上面における境界層の剥離の抑制および発生を左舷側および右舷側において各独立かつ自在に制御することができることから、本発明における超小型飛行体において従来知られる航空機操縦用のスポイラー操縦装置を備えるのと同様の当該自然の風環境下においても十分な操縦性能を発揮し得る強力な操縦特性を備える優れた超小型飛行体を実現することができる。  Further, according to the present invention, the rotating rods are provided in a pair of left and right sides independently of each other only at the blade end portions of the fixed thin plate blades, and the rotational speed of the rotating rods is independently changed and controlled on the port side and starboard side. In addition, since suppression and generation of boundary layer separation on the upper surface of the fixed thin plate wing can be independently and freely controlled on the port side and starboard side, a spoiler for aircraft control that is conventionally known in the micro air vehicle of the present invention It is possible to realize an excellent micro air vehicle having powerful maneuvering characteristics capable of exhibiting sufficient maneuverability even in the natural wind environment similar to that provided with the maneuvering device.

以下、本発明の実施の形態について詳述する。図1は、本実施例において示す超小型飛行体を左翼後上方より見る説明図であり、図2は、同じく本実施例において示す超小型飛行体を左翼前下方より見る説明図である。図1および図2に示す本実施例の超小型飛行体は全幅(全スパン長)250mm、全長280mm、翼弦長35mm、質量約25g、飛行速度毎秒約6mを基本諸元とし、近接タンデム翼配置によるCFRP製の前翼1および後翼2を備え、EPP(Expanded Poly Propylene)製の衝撃吸収材3、およびEPPシートに覆われたリチウム・イオンバッテリーと無線通信制御装置とにより構成される制御部4、および木製の胴体5、同じく木製の重心位置等調整用のマス・バラスト6、並びに推進用モータ7およびプロペラ8より構成されるプロペラ推進装置9を備える。本実施例に示す超小型飛行体において近接タンデム翼配置により備えられる前翼1および後翼2は共にアスペクト比の高い平面形状を有するために誘導抵抗を軽減し、高い揚抗比を実現することができる。なお、後翼2の後縁部には当該近接タンデム翼配置による本実施例に示す超小型飛行体においてピッチング方向のトリムを得るための逆キャンバーが設けられている。また、本実施例において示す超小型飛行体の飛行レイノルズ数は約2×10の4乗である。  Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is an explanatory view of the micro air vehicle shown in the present embodiment as viewed from above the left wing, and FIG. 2 is an explanatory view of the micro air vehicle shown in the same embodiment from the lower front of the left wing. The micro air vehicle of the present embodiment shown in FIGS. 1 and 2 has a basic specification of a total width (total span length) of 250 mm, a total length of 280 mm, a chord length of 35 mm, a mass of about 25 g, and a flight speed of about 6 m per second. A control comprising a CFRP front wing 1 and a rear wing 2 according to the arrangement, and comprising a shock absorber 3 made of EPP (Expanded Poly Propylene), a lithium ion battery covered with an EPP sheet, and a wireless communication control device And a propeller propulsion device 9 including a propulsion motor 7 and a propeller 8. In the micro air vehicle shown in this embodiment, the front wing 1 and the rear wing 2 provided by the close tandem wing arrangement have a planar shape with a high aspect ratio, so that induction resistance is reduced and a high lift-drag ratio is realized. Can do. The rear wing 2 is provided with a reverse camber for obtaining a trim in the pitching direction in the micro air vehicle shown in the present embodiment with the close tandem wing arrangement. Further, the flight Reynolds number of the micro air vehicle shown in the present embodiment is about 2 × 10 4.

以上の構成の他に、図1および図2に示す本実施例の超小型飛行体が備える前翼1の左右各翼端部には、直径3mmの円柱形状によりなる回転ロッド10および当該回転ロッド10を毎分最大約6万回転において当該前翼1周りの流れにおける翼循環方向と同一方向の回転方向に直結回転駆動するための回転ロッド駆動用モータ11が設けられている。本実施例に示す回転ロッド10は本実施例の超小型飛行体が備える前翼1の翼端部においてのみ取り付けられ、また、当該回転ロッド10の長さは当該前翼1の片翼スパン長の丁度半分の長さとして設けられているが、これは本発明の発明者が行った数多くの水槽実験および飛行実験により、当該前翼1における片翼スパン長の全幅に亘って回転ロッド10を設けなくとも、本発明の目的とする効果を十分に得られることが確認されている事実による。勿論、当該前翼1における片翼スパン長の全幅に亘り当該回転ロッド10を設けるものとしてもよいし、また、前翼1にのみならず後翼2においても同様に回転ロッド10および回転ロッド駆動用モータ11を設けるものとしてもよい。  In addition to the above configuration, a rotating rod 10 having a cylindrical shape with a diameter of 3 mm and the rotating rod are provided at the left and right wing ends of the front wing 1 of the micro air vehicle of the present embodiment shown in FIGS. 1 and 2. A rotating rod drive motor 11 is provided for directly driving and rotating 10 in a rotation direction that is the same as the blade circulation direction in the flow around the front blade 1 at a maximum of about 60,000 revolutions per minute. The rotating rod 10 shown in the present embodiment is attached only at the tip of the front wing 1 of the micro air vehicle of the present embodiment, and the length of the rotating rod 10 is the span length of one wing of the front wing 1. The rotating rod 10 is formed over the entire width of the single wing span length of the front wing 1 by a number of water tank experiments and flight experiments conducted by the inventors of the present invention. Even if it is not provided, this is due to the fact that it is confirmed that the intended effect of the present invention can be sufficiently obtained. Of course, the rotating rod 10 may be provided over the entire width of the one-wing span length of the front wing 1, and the rotating rod 10 and the rotating rod are driven not only in the front wing 1 but also in the rear wing 2. The motor 11 may be provided.

しかしながら本実施例に示す超小型飛行体において当該回転ロッド10の長さが当該前翼1の片翼スパン長の丁度半分の長さとして設けられているのは、当該前翼1における左右各翼端部のみにおいて一対に設けられた回転ロッド10および回転ロッド駆動用モータ11並びにこれらに付属する駆動用の配線、制御部品等の合計重量が5g以下に収められているためである。一般に、超小型飛行体の総重量を構造系と推進駆動系とに分けると、小型機となる程、構造系に割り当てることができる重量は少なくなるものということができるが、小鳥サイズまでの総重量20gの超小型飛行体の場合には、構造系に割り当てることができる重量は総重量の約50%強(約10g強)を占めることとなるのが通例である。このような場合において、さらに低抵抗飛行装置あるいは大迎角飛行装置並びに操縦制御装置および付属装置等を追加搭載することができるとしても、当該構造系の総重量の50%増し(約5g増し)程度が限界といえるであろう。このような重量的制約によれば、大型機に装備されるような複雑なメカニズムを有する精緻な低抵抗飛行装置あるいは大迎角飛行装置並びに操縦制御装置を超小型飛行体において搭載することは現在の技術においては不可能であるものといえるところ、本発明によれば、低レイノルズ数領域における流体力学的特性を利用することにより、最小の重量増加によって当該飛行性能改善装置の搭載を実現することができるものといえる。  However, in the micro air vehicle shown in the present embodiment, the length of the rotating rod 10 is provided as a half length of the one wing span length of the front wing 1. This is because the total weight of the rotating rod 10 and the rotating rod driving motor 11 provided in a pair only at the end portions, the driving wiring attached to these, and the control components, etc. is contained in 5 g or less. In general, when the total weight of a micro air vehicle is divided into a structural system and a propulsion drive system, the smaller the aircraft, the less weight that can be allocated to the structural system. In the case of a micro air vehicle having a weight of 20 g, the weight that can be allocated to the structure system usually occupies about 50% (about 10 g) of the total weight. In such a case, even if a low-resistance flight device, a large angle-of-attack flight device, a steering control device, an accessory device, or the like can be additionally installed, the total weight of the structural system is increased by 50% (about 5 g). The extent is the limit. Due to such weight constraints, it is currently not possible to mount sophisticated low-resistance flying devices or large-attack flying devices and steering control devices that have complicated mechanisms that can be installed in large aircraft in micro-aircraft. According to the present invention, the flight performance improvement device can be mounted with a minimum weight increase by utilizing the hydrodynamic characteristics in the low Reynolds number region. Can be said.

なお本実施例に示す超小型飛行体においては、回転ロッド10は前翼1における前縁の後上方45度の位置に当該回転ロッド10の回転中心軸が位置するように配置されて設けられている。これは本発明の発明者による回流式可視化水槽を用いた実験により、当該低レイノルズ数流れにおける当該回転円柱の後方流れにおいて生ずる強力なジェット噴流と当該回転円柱に近接して配置される当該固定薄板翼との配置関係において、本発明における超小型飛行体の飛行性能の改善の効果を得ることができる位置関係の範囲が、図6に示すように翼弦長を基準長とするレイノルズ数が10の5乗以下の領域を固定薄板翼20により飛行する超小型飛行体の場合においては、当該固定薄板翼20の前縁の前下方45度から後上方45度までの範囲の位置に当該回転円柱21(実施例においては回転ロッド10に相当する。)の回転中心軸が位置するように配置する範囲に相当することが明らかにされていることに基づく。  In the micro air vehicle shown in the present embodiment, the rotating rod 10 is disposed and provided so that the rotation center axis of the rotating rod 10 is positioned at a position 45 degrees above the front edge of the front wing 1. Yes. This is a result of an experiment using a circulating visualization water tank by the inventors of the present invention, and a strong jet jet generated in the flow behind the rotating cylinder in the low Reynolds number flow and the fixed thin plate disposed in the vicinity of the rotating cylinder. In the positional relationship with the wing, the range of the positional relationship in which the effect of improving the flight performance of the micro air vehicle according to the present invention can be obtained. The Reynolds number with the chord length as the reference length is 10 as shown in FIG. In the case of a micro air vehicle flying by the fixed thin plate wing 20 in the region of the fifth power or less, the rotating cylinder is located at a position in the range from 45 degrees forward and 45 degrees below the front edge of the fixed thin plate wing 20. 21 (corresponding to the rotating rod 10 in the embodiment) is clarified to correspond to a range in which the rotation center axis is located.

なお参考のために、本実施例に示す超小型飛行体において用いられる当該円形断面の回転ロッド10に代えて、従来、高レイノルズ数の領域において、マグナス効果を利用したマグナス風車等の流体機械において有効であるものと考えられ、研究開発が推進されている歯車形の凹凸断面形状によりなる回転ロッドを同様に本実施例に示す超小型飛行体における回転ロッドとして用いるものとする場合の回流式可視化水槽を用いた流れの可視化実験をおこなったところ、当該歯車形の断面形状を有する回転ロッドの回転によって当該回転ロッドに近接する当該固定薄板翼周りの流れが大きく乱されてしまい、本実施例に示す円柱形状の回転ロッド10を用いた場合の後方流れにおいて生じた図3に示す強力なジェット噴流22の発生が当該歯車形の凹凸断面形状によりなる回転ロッドを用いた場合においては全く生じることが無いことが確認された。このため、本発明において用いる回転ロッド10の断面形状は凹凸の無い概ね円形断面の円滑な断面形状であるべきものといえる。こうした実験結果についての比較からも、高レイノルズ数領域における回転円柱周りの流れと低レイノルズ数領域における回転円柱周りの流れとの非類似性を窺い知ることができる。  For reference, in place of the rotary rod 10 having the circular cross section used in the micro air vehicle shown in the present embodiment, conventionally, in a fluid machine such as a Magnus windmill using the Magnus effect in a high Reynolds number region. Visualization in the case of using a rotating rod with a concave-convex cross-sectional shape of a gear shape that is considered to be effective and is being promoted for research and development as a rotating rod in the micro air vehicle shown in this embodiment as well. When a flow visualization experiment was performed using a water tank, the flow around the fixed thin plate blade adjacent to the rotating rod was greatly disturbed by the rotation of the rotating rod having the gear-shaped cross-sectional shape. The generation of the powerful jet jet 22 shown in FIG. 3 generated in the backward flow when the cylindrical rotating rod 10 shown in FIG. It was confirmed never completely occur in the case of using a rotating rod consisting by the uneven cross-sectional shape. For this reason, it can be said that the cross-sectional shape of the rotating rod 10 used in the present invention should be a smooth cross-sectional shape having a substantially circular cross section without irregularities. From the comparison of the experimental results, it is possible to know the dissimilarity between the flow around the rotating cylinder in the high Reynolds number region and the flow around the rotating cylinder in the low Reynolds number region.

本実施例に示す超小型飛行体は以上の構成を備えることにより優れた低抵抗飛行特性および大迎角飛行特性を実現することができるため、従来の超小型飛行体と比較して、最大水平飛行速度において2倍以上の高速度による水平飛行をおこなうことが可能であり、また、強風、突風等を含む自然の風環境下においても瞬間的な大迎角飛行を許容することにより失速等を生じてしまうことがなく、かつ、穏天の屋外においては迎え角30度を超える大迎角においても安定して水平飛行を行うことが可能であることが本発明の発明者による飛行試験により確認されている。  Since the micro air vehicle shown in the present embodiment has the above-described configuration, it can realize excellent low-resistance flight characteristics and large angle-of-attack flight characteristics. It is possible to perform horizontal flight at a high speed more than twice as fast as the flight speed, and to allow stalling etc. by allowing instantaneous high angle of attack flight even in natural wind environments including strong winds and gusts. It is confirmed by a flight test by the inventor of the present invention that a stable level flight can be performed stably even at a large angle of attack exceeding 30 degrees of attack angle in a calm outdoor environment. Has been.

また、当該回転ロッド10および回転ロッド駆動用モータ11は当該前翼1の左右各翼端部のみにおいて左右一対かつ各独立に設けられていることから、当該回転ロッド10の回転数を左舷側および右舷側において各独立に変更制御することにより当該固定薄板翼上面における境界層の剥離の抑制および発生を左舷側および右舷側において各独立かつ自在に制御することができるため、本実施例における超小型飛行体において、従来知られる航空機操縦用のスポイラー操縦装置を備えるのと同様の当該強風、突風等を含む自然の風環境下においても十分な操縦性能を発揮し得る強力な操縦特性を備える優れた超小型飛行体を実現することができる。  Further, since the rotating rod 10 and the rotating rod driving motor 11 are provided in a pair of left and right sides independently only at the left and right blade ends of the front wing 1, the rotational speed of the rotating rod 10 is set to the port side and By controlling the change on the starboard side independently, the suppression and generation of boundary layer separation on the upper surface of the fixed thin blade can be controlled independently and freely on the port side and starboard side. In the flying body, it has excellent maneuvering characteristics that can exhibit sufficient maneuverability even in natural wind environments including the strong winds, gusts, etc. that are the same as those equipped with a conventionally known spoiler control device for aircraft control A micro air vehicle can be realized.

以上、本発明に係わる具体的な実施の形態について詳述したが、本発明の技術的適用範囲は当該実施例として開示された具体的実施の形態により限定されるものではなく、例えば、本実施例において円形断面として開示された回転ロッドの断面形状を殆ど円形断面とみなすことができる極緩やかな楕円断面形状あるいは極めて微小な凹凸が設けられた歯車形断面形状等とする場合にも当然に本発明の開示の範囲に均等するものであるということができる。  The specific embodiment according to the present invention has been described in detail above. However, the technical scope of the present invention is not limited by the specific embodiment disclosed as the example. Of course, the present invention is also applicable to the case where the cross-sectional shape of the rotating rod disclosed as a circular cross-section in the example is an extremely gentle elliptical cross-sectional shape that can be regarded as almost a circular cross-section or a gear-shaped cross-sectional shape provided with extremely minute irregularities. It can be said that this is equivalent to the scope of disclosure of the invention.

本願発明によれば、無線操縦による無人の超小型飛行体を自然の風環境下における屋外において運用することを可能とすることができるため、従来における航空機の運用条件の範囲内においては存在し得なかった未開の産業上の利用可能性を有する。また本願発明は、複雑な操縦駆動機構等を一切必要としない超小型飛行体を安価に製作、運用することを可能とするため、従来においては航空機を用いることが当該運用コストに照らして困難とされてきた領域における未開の産業上の利用可能性を有する。具体的には、気象および空環境のきめ細かい調査、狭隘な危険地帯の無人機による探索や観測、科学調査および各種活動支援、ホビー用途等々が挙げられる。また、当該大気のレイノルズ数が地球上より一桁低くなる火星環境における外乱に対して耐性のある惑星探査機として、本願発明による超小型飛行体は最適な候補であるものと考えられる。  According to the present invention, it is possible to operate an unmanned micro air vehicle operated by radio control outdoors in a natural wind environment, and therefore can exist within the range of conventional aircraft operating conditions. Has unexplored industrial applicability. In addition, the present invention makes it possible to manufacture and operate an ultra-compact aircraft that does not require any complicated steering drive mechanism at a low cost, and conventionally, it is difficult to use an aircraft in light of the operation cost. It has undeveloped industrial applicability in the areas that have been developed. Specific examples include detailed surveys of weather and air environment, search and observation of narrow danger zones by unmanned aircraft, scientific research and support for various activities, hobby applications, and so on. In addition, as a planetary probe that is resistant to disturbance in the Martian environment where the Reynolds number of the atmosphere is an order of magnitude lower than on the Earth, the micro air vehicle according to the present invention is considered to be an optimal candidate.

本発明による超小型飛行体を左翼後上方より見て示す説明図である。It is explanatory drawing which shows the micro air vehicle by this invention seeing from upper left back. 本発明による超小型飛行体を左翼前下方より見て示す説明図である。It is explanatory drawing which shows the micro air vehicle by this invention seeing from the lower left front. 低レイノルズ数領域における回転円柱周りの流れを示す説明図である。It is explanatory drawing which shows the flow around the rotation cylinder in a low Reynolds number area | region. 本発明による超小型飛行体の翼周りの流れを示す説明図である。It is explanatory drawing which shows the flow around the wing | blade of the micro air vehicle by this invention. 本発明による超小型飛行体の翼周りの流れを示す説明図である。It is explanatory drawing which shows the flow around the wing | blade of the micro air vehicle by this invention. 本発明の効果を得るための回転ロッドの配置位置を示す説明図である。It is explanatory drawing which shows the arrangement position of the rotating rod for obtaining the effect of this invention. 低レイノルズ数領域における平板翼周りの流れを示す説明図である。It is explanatory drawing which shows the flow around a flat blade in a low Reynolds number area | region. 低レイノルズ数領域における平板翼周りの流れを示す説明図である。It is explanatory drawing which shows the flow around a flat blade in a low Reynolds number area | region.

符号の説明Explanation of symbols

1:前翼
2:後翼
3:衝撃吸収材
4:制御部
5:胴体
6:マス・バラスト
7:推進用モータ
8:プロペラ
9:プロペラ推進装置
10:回転ロッド
11:回転ロッド駆動用モータ
20:固定薄板翼
21:回転円柱
22:ジェット噴流
23:死水域
24:剥離域
1: front wing 2: rear wing 3: shock absorber 4: control unit 5: fuselage 6: mass ballast 7: propulsion motor 8: propeller 9: propeller propulsion device 10: rotating rod 11: rotating rod driving motor 20 : Fixed thin plate blade 21: Rotating cylinder 22: Jet jet 23: Dead water area 24: Separation area

Claims (2)

翼弦長を基準長とするレイノルズ数が10の5乗以下の領域を固定薄板翼により飛行する超小型飛行体において、前記固定薄板翼の前縁に近接して前記固定薄板翼の前縁の前下方45度から後上方45度までの範囲の位置に滑らかな表面を有する円形断面の回転ロッドを前記固定薄板翼の前縁と前記回転ロッドの回転軸とが平行となる位置関係において備え、前記回転ロッドを前記回転ロッドの周速度が一様流速度の2倍以上の速度となるよう前記固定薄板翼の翼循環方向と同一の回転方向に回転させることにより低抵抗飛行および大迎角飛行を実現することを特徴とする超小型飛行体。In a micro air vehicle flying with a fixed thin plate wing in a region where the Reynolds number is 10 5 or less with a chord length as a reference length, the leading edge of the fixed thin plate wing is adjacent to the front edge of the fixed thin plate wing. A rotary rod having a circular cross section having a smooth surface in a position ranging from 45 degrees forward and lower 45 degrees to a rear upper 45 degrees in a positional relationship in which the front edge of the fixed thin plate blade and the rotation axis of the rotary rod are parallel to each other, Low resistance flight and large angle of attack flight by rotating the rotating rod in the same direction of rotation as the blade circulation direction of the fixed thin plate blade so that the peripheral speed of the rotating rod is twice or more the uniform flow velocity. An ultra-compact air vehicle characterized by realizing 前記回転ロッドを左右一対かつ各独立に前記固定薄板翼の翼端部においてのみ設け、前記回転ロッドの回転数を左舷側および右舷側において各独立に変更制御することにより飛行制御を行うことを特徴とする請求項1に記載の超小型飛行体。  A pair of left and right rotating rods are provided independently only at the blade tips of the fixed thin plate wings, and flight control is performed by independently changing and controlling the rotation speed of the rotating rods on the port side and starboard side. The micro air vehicle according to claim 1.
JP2008277356A 2008-09-30 2008-09-30 Micro air vehicle Active JP4590494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277356A JP4590494B2 (en) 2008-09-30 2008-09-30 Micro air vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277356A JP4590494B2 (en) 2008-09-30 2008-09-30 Micro air vehicle

Publications (2)

Publication Number Publication Date
JP2010083466A JP2010083466A (en) 2010-04-15
JP4590494B2 true JP4590494B2 (en) 2010-12-01

Family

ID=42247829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277356A Active JP4590494B2 (en) 2008-09-30 2008-09-30 Micro air vehicle

Country Status (1)

Country Link
JP (1) JP4590494B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104842341A (en) * 2015-05-25 2015-08-19 哈尔滨工业大学 Robot with resonant flapping wings
CN111099016A (en) * 2018-10-25 2020-05-05 青岛海洋科学与技术国家实验室发展中心 Bionic flapping wing system and bionic flapping wing robot

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108557074A (en) * 2018-01-25 2018-09-21 西北工业大学 Using the flapping wing aircraft and method of operating of three rotor mixed layouts
CN114030644B (en) * 2021-07-19 2024-02-09 中南大学 Fixed wing aircraft lift-increasing device suitable for Mars atmosphere and aircraft
CN114768220A (en) * 2021-12-24 2022-07-22 杨佳惠 Badminton that can single play and badminton trainer
CN114889821B (en) * 2022-05-24 2023-02-24 深圳市人工智能与机器人研究院 Four-wing flapping wing micro water surface aircraft and flight method
CN116674747B (en) * 2023-08-03 2023-10-20 西南石油大学 Flexible flapping wing and ducted propeller hybrid-driven simulated baton floating aircraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020585A1 (en) * 2001-09-04 2003-03-13 Aerodavinci Co., Ltd. Wing assembly of flying object for flapping motion of wings
JP3503604B2 (en) * 2001-03-16 2004-03-08 ダイキン工業株式会社 Blower
JP2007237946A (en) * 2006-03-09 2007-09-20 Bunri Gakuen Ornithopter
JP2008081094A (en) * 2006-09-26 2008-04-10 Bunri Gakuen Ornithopter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108892A1 (en) * 2006-10-30 2008-09-12 Kyriacos Zachary Inverting wing propulsion system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503604B2 (en) * 2001-03-16 2004-03-08 ダイキン工業株式会社 Blower
WO2003020585A1 (en) * 2001-09-04 2003-03-13 Aerodavinci Co., Ltd. Wing assembly of flying object for flapping motion of wings
JP2007237946A (en) * 2006-03-09 2007-09-20 Bunri Gakuen Ornithopter
JP2008081094A (en) * 2006-09-26 2008-04-10 Bunri Gakuen Ornithopter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104842341A (en) * 2015-05-25 2015-08-19 哈尔滨工业大学 Robot with resonant flapping wings
CN104842341B (en) * 2015-05-25 2016-08-31 哈尔滨工业大学 A kind of resonant wing robot of flapping
CN111099016A (en) * 2018-10-25 2020-05-05 青岛海洋科学与技术国家实验室发展中心 Bionic flapping wing system and bionic flapping wing robot

Also Published As

Publication number Publication date
JP2010083466A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP4590494B2 (en) Micro air vehicle
EP2511177B1 (en) Helicopter with cycloidal rotor system
RU2627261C2 (en) Vertical takeoff aircraft
RU2670356C2 (en) Aircraft capable of vertical take-off
EP3458359B1 (en) Variable pitch propeller apparatus and variable thrust aircraft using smae
CN109562828A (en) VTOL (VTOL) lifting vehicle with complementary angled rotor
US6877692B2 (en) Oscillating foil propulsion system
JP5728688B2 (en) Vertical takeoff and landing airplane
WO2006006311A1 (en) Rapid air quantity generating and wind direction changing device and aircraft having the device mounted on side face of airframe
CN109018342B (en) Cycloidal fan wing device, cycloidal fan wing tilting aircraft and control method
CN103072690A (en) Single-ducted coaxial rotor/propeller saucer-shaped aircraft
CN109515704B (en) Ducted plume rotorcraft based on cycloidal propeller technology
CN104787322B (en) Power system and multi-axis aircraft
WO2017011529A1 (en) Flow diverting lift element
CN103693195B (en) A kind of minute vehicle
US10619510B2 (en) Device for controlling angular position of turbine blades of a propeller device
GB2508023A (en) Aerofoil with leading edge cavity for blowing air
JP2011207299A (en) Cycloidal propeller
CN110371285A (en) Blade can turn the four wheeled dynamic wing unmanned plane of horizontal lift
JP2006021733A (en) Vertical taking-off and landing machine installing rapid wind quantity generation wind direction changing device of double inversion two-axis tilt as device for lift and propulsion of machine body and using it as steering means
WO2008099192A1 (en) Thrust vectoring in aerial vehicles
JP6186549B2 (en) Wings imitating part of the dragonfly wing structure
JP2004224147A (en) Control mechanism for cycloidal propeller
JP3148233U (en) Low Reynolds number airfoil
CN118182828B (en) Fixed wing aircraft capable of taking off and landing vertically

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4590494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250