JP4587923B2 - Turbo compound engine - Google Patents

Turbo compound engine Download PDF

Info

Publication number
JP4587923B2
JP4587923B2 JP2005274007A JP2005274007A JP4587923B2 JP 4587923 B2 JP4587923 B2 JP 4587923B2 JP 2005274007 A JP2005274007 A JP 2005274007A JP 2005274007 A JP2005274007 A JP 2005274007A JP 4587923 B2 JP4587923 B2 JP 4587923B2
Authority
JP
Japan
Prior art keywords
valve
power
exhaust
turbine
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005274007A
Other languages
Japanese (ja)
Other versions
JP2007085226A (en
Inventor
裕久 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2005274007A priority Critical patent/JP4587923B2/en
Publication of JP2007085226A publication Critical patent/JP2007085226A/en
Application granted granted Critical
Publication of JP4587923B2 publication Critical patent/JP4587923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、ターボコンパウンドエンジンに関するものである。   The present invention relates to a turbo compound engine.

従来より、排気ガスから動力回収するターボチャージャと、該ターボチャージャのタービンを経た排気ガスから更に動力回収するパワータービンとを備え、ターボチャージャで回収した動力を吸気を加圧するための過給動力として、パワータービンで回収した動力をエンジン駆動力として有効利用し得るようにしたターボコンパウンドエンジンが知られている。   Conventionally, a turbocharger that recovers power from exhaust gas and a power turbine that recovers power from exhaust gas that has passed through the turbine of the turbocharger are provided, and the power recovered by the turbocharger is used as supercharging power to pressurize the intake air. A turbo compound engine is known in which power recovered by a power turbine can be effectively used as engine driving force.

図3は一般的なターボコンパウンドエンジンの一例を示すもので、ここに図示する例においては、エンジン本体1から排気マニホールド2を介して排出された排気ガス3の持つエネルギーをターボチャージャ4のタービン5で動力として回収し、該タービン5により駆動されるコンプレッサ6でエンジン本体1に入る吸気(図示せず)を加圧する一方、タービン5を経た排気ガス3からパワータービン7で更にエネルギーを動力として回収し、その回収した動力を第一ギアトレーン8、流体継手9、第二ギアトレーン10を介してエンジン本体1のクランクシャフト11に伝達するようにし、前記パワータービン7を経た排気ガス3は排気管12を介して車外へ排出するようにしてある。尚、図3中における13は排気ブレーキ、14はフライホイールを示す。   FIG. 3 shows an example of a general turbo compound engine. In the example shown here, the energy of the exhaust gas 3 discharged from the engine body 1 through the exhaust manifold 2 is converted into the turbine 5 of the turbocharger 4. Is recovered as power, and the intake air (not shown) entering the engine body 1 is pressurized by the compressor 6 driven by the turbine 5, while further energy is recovered from the exhaust gas 3 passing through the turbine 5 by the power turbine 7 as power. The recovered power is transmitted to the crankshaft 11 of the engine body 1 via the first gear train 8, the fluid coupling 9, and the second gear train 10, and the exhaust gas 3 passing through the power turbine 7 is an exhaust pipe. 12 is discharged to the outside of the vehicle. In FIG. 3, 13 indicates an exhaust brake, and 14 indicates a flywheel.

近年、斯かるターボコンパウンドエンジンにおいては、各気筒のバルブの開閉タイミングやリフトを任意に変更し得る可変バルブ機構を備え、アクセルオフによる惰性走行の際にバルブの開弁動作を停止させて閉状態に保持し、これによりエンジンフリクションを下げて車両の速度低下を抑えることが考えられている。   In recent years, such a turbo compound engine has a variable valve mechanism that can arbitrarily change the opening / closing timing and lift of each cylinder valve, and stops the valve opening operation when the vehicle is coasting due to accelerator off. It is considered that the engine friction is lowered to suppress the vehicle speed reduction.

即ち、バルブの開弁動作を停止した気筒では、バルブが閉状態に保持されて気筒内に空気が封止されることになるが、この空気は気筒内で拡縮されるだけで出力を下げる作用が生じることはなく(圧縮時の抵抗が膨張時に相殺されるため)、寧ろバルブの開弁動作を継続させた場合(燃料噴射だけをカットした場合)に空気が出入りすることで生じる抵抗が回避されるので、エンジンフリクションが低下して車両の速度低下が抑えられ、該車両の燃費が従来よりも大幅に向上されることになる。   In other words, in a cylinder in which the valve opening operation is stopped, the valve is kept closed and air is sealed in the cylinder, but this air simply expands and contracts in the cylinder and reduces the output. Will not occur (because the resistance during compression is offset during expansion), rather, the resistance caused by the air going in and out when the valve opening operation is continued (when only fuel injection is cut) is avoided. Therefore, the engine friction is reduced and the speed reduction of the vehicle is suppressed, and the fuel consumption of the vehicle is greatly improved as compared with the prior art.

尚、この種のターボコンパウンドエンジンに関連する先行技術文献情報としては下記の特許文献1等がある。
特開平9−222026号公報
As prior art document information related to this type of turbo compound engine, there is the following Patent Document 1 and the like.
JP-A-9-2222026

しかしながら、前述した如きターボコンパウンドエンジンでアクセルオフ時に各気筒のバルブの開弁動作を停止してしまうと、ターボチャージャ4のタービン5の駆動力となる作動流体(アクセルオフ時にあっては空気)がなくなってしまい、ターボチャージャ4のタービン5の回転が大幅に低下してしまうため、次にアクセルを踏み込んで再加速した場合に、ターボチャージャ4のタービン5を大幅に落ち込んだ回転数から駆動しなければならなくなってターボラグ(加速時などで実際に排気ガスの量が増加してタービンによる過給が始まるまでの時間遅れ)が大きくなり、加速性の悪化や黒煙の増加といった問題を招く虞れがあった。   However, if the valve opening operation of each cylinder is stopped when the accelerator is off in the turbo compound engine as described above, the working fluid (air when the accelerator is off) is used as the driving force of the turbine 5 of the turbocharger 4. Since the rotation of the turbine 5 of the turbocharger 4 is significantly reduced, the turbine 5 of the turbocharger 4 must be driven from the greatly reduced rotational speed when the accelerator is depressed and reaccelerated next time. The turbo lag (time delay until the turbocharger starts to increase due to the actual increase in the amount of exhaust gas at the time of acceleration, etc.) will increase and may cause problems such as deterioration in acceleration and increase in black smoke was there.

本発明は上述の実情に鑑みてなしたもので、アクセルオフ時に各気筒のバルブの開弁動作を停止しても、再加速時におけるターボラグを抑制し得るようにしたターボコンパウンドエンジンを提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a turbo compound engine capable of suppressing turbo lag during re-acceleration even when the valve opening operation of each cylinder is stopped when the accelerator is off. With the goal.

本発明は、排気ガスから動力回収するターボチャージャと、該ターボチャージャのタービンを経た排気ガスから更に動力回収するパワータービンとを備え、該パワータービンで回収した動力をクランクシャフトに伝達するようにしたターボコンパウンドエンジンにおいて、アクセルオフ時に各気筒のバルブの開弁動作をバルブ動作停止手段により停止して惰性走行を行い得るように構成し、パワータービンより下流側の排気管から分岐して排気マニホールドに至るバイパス流路を設け、該バイパス流路の途中に第一の開閉バルブを備え且つ前記排気管におけるバイパス流路の分岐位置より下流側に第二の開閉バルブを備えたことを特徴とするものである。   The present invention includes a turbocharger that recovers power from exhaust gas, and a power turbine that further recovers power from exhaust gas that has passed through the turbine of the turbocharger, and transmits power recovered by the power turbine to a crankshaft. In a turbo compound engine, when the accelerator is off, the valve opening operation of each cylinder is stopped by the valve operation stop means so that inertial running can be performed, branching from the exhaust pipe downstream from the power turbine to the exhaust manifold Characterized in that a bypass passage is provided, a first opening / closing valve is provided in the middle of the bypass passage, and a second opening / closing valve is provided downstream of the bypass passage branching position in the exhaust pipe. It is.

而して、このようにすれば、アクセルオフ時に各気筒のバルブの開弁動作がバルブ動作停止手段により停止され、各気筒のバルブが閉状態となってターボチャージャのタービンに作動流体(アクセルオフ時にあっては空気)が入らなくなるため、パワータービンにも作動流体が導かれなくなって動力回収ができなくなるが、惰性走行により回転するクランクシャフト側から本来の動力伝達とは逆向きにパワータービン側へ動力が伝達されて該パワータービンが駆動されることになる。   In this way, when the accelerator is off, the valve opening operation of each cylinder is stopped by the valve operation stop means, and the valve of each cylinder is closed, so that the working fluid (accelerator off) However, sometimes the working fluid is not guided to the power turbine and the power cannot be recovered. However, the power turbine side is opposite to the original power transmission from the crankshaft rotating by inertial running. Power is transmitted to the power turbine to drive the power turbine.

この際、アクセルオフと同時に第一の開閉バルブを開け且つ第二の開閉バルブを閉じておけば、前記惰性走行で駆動されるパワータービンにより、排気系に残存する空気がバイパス流路を介して排気マニホールドに循環され、該排気マニホールドからの空気の循環流でターボチャージャのタービンの回転が維持されるため、次にアクセルを踏み込んで再加速した場合のターボラグが大幅に抑制されることになる。   At this time, if the first on-off valve is opened and the second on-off valve is closed at the same time as the accelerator is turned off, the air remaining in the exhaust system is passed through the bypass passage by the power turbine driven by the inertia traveling. Since the rotation of the turbine of the turbocharger is maintained by the circulating flow of air from the exhaust manifold and is re-accelerated by depressing the accelerator, the turbo lag is greatly suppressed.

また、本発明をより具体的に実施するに際しては、例えば、アクセルオフ時に各気筒のバルブの開弁動作を停止するバルブ動作停止手段が可変バルブ機構により構成されていたり、第二の開閉バルブが排気ブレーキを兼ねたものであっても良い。   In more specific implementation of the present invention, for example, the valve operation stop means for stopping the valve opening operation of each cylinder when the accelerator is off is constituted by a variable valve mechanism, or the second opening / closing valve is It may also serve as an exhaust brake.

上記した本発明のターボコンパウンドエンジンによれば、アクセルオフ時にエンジンフリクションを低下して燃費の向上を図るべく各気筒のバルブの開弁動作を停止しても、バイパス流路を開通させて排気系の残存空気を排気マニホールドに循環することができ、該排気マニホールドからの空気の循環流でターボチャージャのタービンの回転を維持することができるので、次にアクセルを踏み込んで再加速した場合のターボラグを大幅に抑制することができ、加速性の悪化や黒煙の増加といった問題を未然に回避することができるという優れた効果を奏し得る。   According to the turbo compound engine of the present invention described above, even if the valve opening operation of each cylinder is stopped in order to reduce engine friction and improve fuel efficiency when the accelerator is off, the bypass passage is opened and the exhaust system is opened. The remaining air can be circulated to the exhaust manifold, and the rotation of the turbocharger turbine can be maintained by the circulating air flow from the exhaust manifold. It can be greatly suppressed, and an excellent effect can be obtained that problems such as deterioration in acceleration and increase in black smoke can be avoided in advance.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、本形態例においては、前述した図3と略同様に構成したターボコンパウンドエンジンに関し、アクセルオフ時に各気筒のバルブの開弁動作を後述のバルブ動作停止手段により停止して惰性走行を行い得るように構成すると共に、パワータービン7より下流側の排気管12から分岐して排気マニホールド2に至るバイパス流路15を設け、該バイパス流路15の途中に開閉バルブ16(第一の開閉バルブ)を備え且つ前記排気管12におけるバイパス流路15の分岐位置より下流側に排気ブレーキ13(第二の開閉バルブ)を備えている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In this embodiment, a valve opening operation of each cylinder is described later with respect to a turbo compound engine configured substantially the same as FIG. This is configured so that the inertial running can be performed by being stopped by the valve operation stop means, and a bypass flow path 15 branched from the exhaust pipe 12 downstream from the power turbine 7 to reach the exhaust manifold 2 is provided. 15 is provided with an opening / closing valve 16 (first opening / closing valve), and an exhaust brake 13 (second opening / closing valve) downstream from the branch position of the bypass passage 15 in the exhaust pipe 12.

ここで、前記排気ブレーキ13は、アクセルオフ時に排気管12の流路を絞り込んで排気系の残存空気の流れをバイパス流路15側へ切り替える機能を兼ね備えたものとなっており、要するに、バルブが通常通り開弁動作され且つバイパス流路15が不通状態となっている条件下でアクセルオフ時に閉じれば排気ブレーキとして機能し、バルブの開弁動作が停止され且つバイパス流路15が開通状態となっている条件下でアクセルオフ時に閉じれば流路切り替え用の第二の開閉バルブとして機能するようになっている。   Here, the exhaust brake 13 has a function of narrowing the flow path of the exhaust pipe 12 when the accelerator is off and switching the flow of the remaining air in the exhaust system to the bypass flow path 15 side. If it is closed when the accelerator is off under the condition that the valve opening operation is normally performed and the bypass flow path 15 is disconnected, it functions as an exhaust brake, the valve opening operation of the valve is stopped, and the bypass flow path 15 is opened. If it is closed when the accelerator is off under the condition, it functions as a second opening / closing valve for switching the flow path.

また、図2は本形態例のターボコンパウンドエンジンに採用されたバルブ動作停止手段の一例を示すもので、バルブ17(図中には排気弁を図示)の開閉タイミングやリフトを任意に変更し得る手段として従来から知られている可変バルブ機構18をバルブ動作停止手段として採用している。   FIG. 2 shows an example of the valve operation stop means employed in the turbo compound engine of this embodiment. The opening / closing timing and lift of the valve 17 (exhaust valve is shown in the figure) can be arbitrarily changed. As a means, a conventionally known variable valve mechanism 18 is employed as a valve operation stop means.

即ち、図2に例示する油圧式の可変バルブ機構18においては、気筒19の並び方向に延びるカムシャフト20に、各気筒19に対応して吸気用と排気用のカム21(図中では排気用のカムを図示)が並設されており、前記カムシャフト20の近傍を平行に延びるロッカーシャフト22には、前記カム21により一端をローラ23aを介し押し上げられて傾動するロッカーアーム23が装備されている。   That is, in the hydraulic variable valve mechanism 18 illustrated in FIG. 2, the camshaft 20 extending in the direction in which the cylinders 19 are arranged is connected to the intake and exhaust cams 21 (exhaust in the drawing) corresponding to the cylinders 19. The rocker shaft 22 extending in parallel in the vicinity of the camshaft 20 is provided with a rocker arm 23 that is tilted by being pushed up by the cam 21 through a roller 23a. Yes.

そして、このロッカーアーム23の一端が上方の油圧ユニット24に備えられたマスターピストン25を押し上げ、前記油圧ユニット24内に穿設された開弁用油通路26に油圧を発生させてブリッジ31直上のスレーブピストン27を下降せしめ、このスレーブピストン27によりブリッジ31を介し両バルブ17を押し下げて開弁し得るようになっている。   Then, one end of the rocker arm 23 pushes up the master piston 25 provided in the upper hydraulic unit 24 to generate hydraulic pressure in the valve opening oil passage 26 drilled in the hydraulic unit 24 to directly above the bridge 31. The slave piston 27 is lowered, and both valves 17 can be opened by the slave piston 27 via the bridge 31 to open the valve.

ここで、前記油圧ユニット24内の開弁用油通路26には、該開弁用油通路26の油圧の保持・開放を切り替えるための3ウェイ式のソレノイドバルブ28(油圧供給手段)を介して給油通路29が接続されており、図示しないエンジン駆動のオイルポンプにより送り込まれる作動油30を開弁用油通路26に導き入れて該開弁用油通路26内を満たし、マスターピストン25の作動時には、開弁用油通路26の油圧の保持・開放を適宜に切り替えてスレーブピストン27の追従時期や作動量を制御することでバルブ17の開閉タイミングやリフトを調節し得るようにしてある。   Here, the valve opening oil passage 26 in the hydraulic unit 24 is connected via a three-way solenoid valve 28 (hydraulic supply means) for switching between holding and releasing the oil pressure of the valve opening oil passage 26. An oil supply passage 29 is connected, and hydraulic oil 30 fed by an unillustrated engine-driven oil pump is introduced into the valve opening oil passage 26 to fill the valve opening oil passage 26, and when the master piston 25 is in operation. The opening and closing timing and the lift of the valve 17 can be adjusted by appropriately switching the holding and opening of the hydraulic pressure in the valve opening oil passage 26 and controlling the follow-up timing and operation amount of the slave piston 27.

即ち、マスターピストン25の作動時において、ソレノイドバルブ28により開弁用油通路26の油圧を保持すれば、マスターピストン25の作動に直ちに追従してスレーブピストン27が作動することになるが、マスターピストン25の作動により生じる開弁用油通路26の油圧をソレノイドバルブ28の切り替えでアキュームレータ等へ逃がせば、マスターピストン25が作動していてもスレーブピストン27が追従しなくなるので、その追従時期を遅らせたり作動量を減らしたりすることが可能となり、更には、バルブ17の開弁動作を完全に停止することも可能となる。   That is, when the master piston 25 is operated, if the solenoid valve 28 holds the hydraulic pressure of the valve opening oil passage 26, the slave piston 27 immediately operates following the operation of the master piston 25. If the oil pressure of the valve opening oil passage 26 generated by the operation of the valve 25 is released to the accumulator or the like by switching the solenoid valve 28, the slave piston 27 will not follow even if the master piston 25 is operated. The amount of operation can be reduced, and furthermore, the valve opening operation of the valve 17 can be completely stopped.

而して、長い下り坂などで排気ブレーキ13による制動を効かせたい場合を除く通常の走行状態にあって、燃費向上を目的として惰性走行での車両の速度低下を抑えたい場合に、アクセルオフ(アクセルオフをアクセルセンサなどにより直接検出しなくても燃料噴射制御系での燃料噴射の停止の信号などを流用してエンジン制御コンピュータ[ECU:Electronic Control Unit]で判定させれば良い)と同時に可変バルブ機構18のソレノイドバルブ28をアキュームレータへ油圧を開放した状態に保持すると、マスターピストン25が作動していてもスレーブピストン27が追従しなくなる結果、各気筒19におけるバルブ17の開弁動作が停止され、各気筒19のバルブ17が閉状態となって作動流体(アクセルオフ時にあっては空気)がエンジン本体1から排出されなくなる。   Thus, when the vehicle is in a normal driving state except when it is desired to apply braking by the exhaust brake 13 on a long downhill or the like, and when it is desired to suppress a decrease in vehicle speed during inertial driving for the purpose of improving fuel efficiency, the accelerator is off. (Even if the accelerator off is not directly detected by an accelerator sensor or the like, the engine control computer [ECU: Electronic Control Unit] may be used to determine the fuel injection stop signal in the fuel injection control system) If the solenoid valve 28 of the variable valve mechanism 18 is kept open to the accumulator, the slave piston 27 does not follow even if the master piston 25 is operating, and as a result, the valve opening operation of the valve 17 in each cylinder 19 is stopped. As a result, the valve 17 of each cylinder 19 is closed and the working fluid (air when the accelerator is off) is energized. It will no longer be discharged from the down main body 1.

この結果、図1のターボチャージャ4のタービン5に作動流体が入らなくなるため、パワータービン7にも作動流体が導かれなくなって動力回収ができなくなるが、惰性走行により回転するクランクシャフト11側から本来の動力伝達とは逆向きに第二ギアトレーン10、流体継手9、第一ギアトレーン8を介しパワータービン7側へ動力が伝達されて該パワータービン7が駆動されることになる。   As a result, since the working fluid does not enter the turbine 5 of the turbocharger 4 in FIG. 1, the working fluid is not guided to the power turbine 7 and the power cannot be recovered. Power is transmitted to the power turbine 7 side through the second gear train 10, the fluid coupling 9, and the first gear train 8 in the opposite direction to the power transmission, and the power turbine 7 is driven.

この際、アクセルオフと同時に開閉バルブ16を開け且つ排気ブレーキ13を閉じておけば、前記惰性走行で駆動されるパワータービン7により、排気系に残存する空気がバイパス流路15を介して排気マニホールド2に循環され、該排気マニホールド2からの空気の循環流でターボチャージャ4のタービン5の回転が維持されるため、次にアクセルを踏み込んで再加速した場合のターボラグが大幅に抑制されることになる。   At this time, if the open / close valve 16 is opened and the exhaust brake 13 is closed simultaneously with the accelerator off, the air remaining in the exhaust system is exhausted via the bypass passage 15 by the power turbine 7 driven by the inertia traveling. 2, and the rotation of the turbine 5 of the turbocharger 4 is maintained by the circulating flow of air from the exhaust manifold 2, so that the turbo lag when the accelerator is depressed and re-accelerated next time is greatly suppressed. Become.

従って、上記形態例によれば、アクセルオフ時にエンジンフリクションを低下して燃費の向上を図るべく各気筒19のバルブ17の開弁動作を停止しても、バイパス流路15を開通させて排気系の残存空気を排気マニホールド2に循環することができ、該排気マニホールド2からの空気の循環流でターボチャージャ4のタービン5の回転を維持することができるので、次にアクセルを踏み込んで再加速した場合のターボラグを大幅に抑制することができ、加速性の悪化や黒煙の増加といった問題を未然に回避することができる。   Therefore, according to the above embodiment, even if the opening operation of the valve 17 of each cylinder 19 is stopped in order to improve the fuel consumption by reducing the engine friction when the accelerator is off, the bypass passage 15 is opened and the exhaust system is opened. The remaining air can be circulated to the exhaust manifold 2, and the rotation of the turbine 5 of the turbocharger 4 can be maintained by the circulating flow of air from the exhaust manifold 2. In this case, the turbo lag can be greatly suppressed, and problems such as deterioration in acceleration and increase in black smoke can be avoided in advance.

尚、本発明のターボコンパウンドエンジンは、上述の形態例にのみ限定されるものではなく、バルブ動作停止手段は各気筒のバルブの開弁動作を停止し得るようになっていれば良く、必ずしも可変バルブ機構をバルブ動作停止手段として用いなくても良いこと、また、第二の開閉バルブは必ずしも排気ブレーキと兼用させる必要はなく、排気ブレーキと独立して別途設けるようにしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The turbo compound engine according to the present invention is not limited to the above-described embodiment. The valve operation stopping means may be any variable as long as it can stop the valve opening operation of each cylinder. The valve mechanism may not be used as a valve operation stop means, and the second opening / closing valve does not necessarily have to be used as an exhaust brake, and may be provided separately from the exhaust brake, Of course, various modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 本形態例に採用されたバルブ動作停止手段の一例を示す断面図である。It is sectional drawing which shows an example of the valve operation stop means employ | adopted as this form example. 従来例を示す概略図である。It is the schematic which shows a prior art example.

符号の説明Explanation of symbols

2 排気マニホールド
3 排気ガス
4 ターボチャージャ
5 タービン
7 パワータービン
11 クランクシャフト
12 排気管
13 排気ブレーキ(第二の開閉バルブ)
15 バイパス流路
16 開閉バルブ(第一の開閉バルブ)
17 バルブ
18 可変バルブ機構(バルブ動作停止手段)
19 気筒
2 exhaust manifold 3 exhaust gas 4 turbocharger 5 turbine 7 power turbine 11 crankshaft 12 exhaust pipe 13 exhaust brake (second on-off valve)
15 Bypass flow path 16 Open / close valve (first open / close valve)
17 Valve 18 Variable valve mechanism (valve operation stop means)
19 cylinders

Claims (3)

排気ガスから動力回収するターボチャージャと、該ターボチャージャのタービンを経た排気ガスから更に動力回収するパワータービンとを備え、該パワータービンで回収した動力をクランクシャフトに伝達するようにしたターボコンパウンドエンジンにおいて、アクセルオフ時に各気筒のバルブの開弁動作をバルブ動作停止手段により停止して惰性走行を行い得るように構成し、パワータービンより下流側の排気管から分岐して排気マニホールドに至るバイパス流路を設け、該バイパス流路の途中に第一の開閉バルブを備え且つ前記排気管におけるバイパス流路の分岐位置より下流側に第二の開閉バルブを備えたことを特徴とするターボコンパウンドエンジン。   In a turbo compound engine comprising: a turbocharger that recovers power from exhaust gas; and a power turbine that further recovers power from exhaust gas that has passed through the turbine of the turbocharger, wherein the power recovered by the power turbine is transmitted to a crankshaft. The bypass passage that opens from the exhaust pipe downstream from the power turbine and reaches the exhaust manifold is configured such that when the accelerator is off, the valve opening operation of each cylinder is stopped by the valve operation stop means and coasting can be performed. And a first open / close valve in the middle of the bypass flow path, and a second open / close valve downstream of the bypass flow path branch position in the exhaust pipe. バルブ動作停止手段が可変バルブ機構により構成されていることを特徴とする請求項1に記載のターボコンパウンドエンジン。   2. The turbo compound engine according to claim 1, wherein the valve operation stop means is constituted by a variable valve mechanism. 第二の開閉バルブが排気ブレーキを兼ねていることを特徴とする請求項1又は2に記載のターボコンパウンドエンジン。   The turbo compound engine according to claim 1, wherein the second opening / closing valve also serves as an exhaust brake.
JP2005274007A 2005-09-21 2005-09-21 Turbo compound engine Expired - Fee Related JP4587923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274007A JP4587923B2 (en) 2005-09-21 2005-09-21 Turbo compound engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274007A JP4587923B2 (en) 2005-09-21 2005-09-21 Turbo compound engine

Publications (2)

Publication Number Publication Date
JP2007085226A JP2007085226A (en) 2007-04-05
JP4587923B2 true JP4587923B2 (en) 2010-11-24

Family

ID=37972460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274007A Expired - Fee Related JP4587923B2 (en) 2005-09-21 2005-09-21 Turbo compound engine

Country Status (1)

Country Link
JP (1) JP4587923B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759128B2 (en) 2015-06-16 2017-09-12 Pratt & Whitney Canada Corp. Compound engine assembly with exhaust pipe nozzle
CN111005802A (en) * 2018-10-08 2020-04-14 大众汽车有限公司 Method for regulating the charge pressure of an internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005004058B3 (en) * 2005-01-28 2006-05-24 Voith Turbo Gmbh & Co. Kg Turbo compound system with cylinder shaft and exhaust gas turbine
JP5535695B2 (en) * 2010-03-08 2014-07-02 忠孝 山手 engine
US8813494B2 (en) 2011-09-07 2014-08-26 General Electric Company Method and system for a turbocharged engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155039A (en) * 1987-12-11 1989-06-16 Isuzu Motors Ltd Decelerating brake control system
JPH01162051U (en) * 1988-04-30 1989-11-10
JPH0533668A (en) * 1991-07-25 1993-02-09 Isuzu Ceramics Kenkyusho:Kk Turbo-compound engine
JPH08121183A (en) * 1994-10-27 1996-05-14 Isuzu Motors Ltd Control system for turbo charger with electrically driven power generator
JPH08260995A (en) * 1995-03-27 1996-10-08 Mitsubishi Motors Corp Turbo compound engine
JPH08260996A (en) * 1995-03-27 1996-10-08 Mitsubishi Motors Corp Turbo compound engine
JPH0946817A (en) * 1995-07-28 1997-02-14 Isuzu Ceramics Kenkyusho:Kk Hybrid electric vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155039A (en) * 1987-12-11 1989-06-16 Isuzu Motors Ltd Decelerating brake control system
JPH01162051U (en) * 1988-04-30 1989-11-10
JPH0533668A (en) * 1991-07-25 1993-02-09 Isuzu Ceramics Kenkyusho:Kk Turbo-compound engine
JPH08121183A (en) * 1994-10-27 1996-05-14 Isuzu Motors Ltd Control system for turbo charger with electrically driven power generator
JPH08260995A (en) * 1995-03-27 1996-10-08 Mitsubishi Motors Corp Turbo compound engine
JPH08260996A (en) * 1995-03-27 1996-10-08 Mitsubishi Motors Corp Turbo compound engine
JPH0946817A (en) * 1995-07-28 1997-02-14 Isuzu Ceramics Kenkyusho:Kk Hybrid electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759128B2 (en) 2015-06-16 2017-09-12 Pratt & Whitney Canada Corp. Compound engine assembly with exhaust pipe nozzle
US10393014B2 (en) 2015-06-16 2019-08-27 Pratt & Whitney Canada Corp. Engine assembly with exhaust pipe nozzle
CN111005802A (en) * 2018-10-08 2020-04-14 大众汽车有限公司 Method for regulating the charge pressure of an internal combustion engine
US11111842B2 (en) 2018-10-08 2021-09-07 Volkswagen Aktiengesellschaft Method for charge pressure control of an internal combustion engine

Also Published As

Publication number Publication date
JP2007085226A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
US5884482A (en) Combustion engine of turbocompound type with exhaust gas brake
JP4587923B2 (en) Turbo compound engine
JP5321729B2 (en) Vehicle comprising an internal combustion engine with a valve stop mechanism
JP2010112372A (en) Diesel engine having cam for controlling intake valve which has main lobe and additional lobe connected to each other in the same diameter
WO2013031920A1 (en) Supercharger control device for internal combustion engine
JP2009518570A (en) Hydraulic valve drive system and method
CN111433091A (en) Method for controlling an internal combustion engine of a hybrid drive train
US20140090372A1 (en) Method for operating a compressor
JP2008157195A (en) Variable valve gear for engine
JP4735436B2 (en) Supercharging system for internal combustion engines
JP4780026B2 (en) Control device for internal combustion engine
US7665432B2 (en) Valve actuation system and method of driving two slave pistons with one master piston
JPH11101140A (en) Engine manifold depression control device for variable cylinder type internal combustion engine
JPH10220210A (en) Variable valve mechanism for engine
JP5957920B2 (en) Internal combustion engine and supercharging method for internal combustion engine
JP5488124B2 (en) Control device for internal combustion engine
JPH0338415Y2 (en)
JP2010116869A (en) Internal combustion engine for vehicle
JP2010116870A (en) Internal combustion engine for vehicle
JP5287664B2 (en) Control device for internal combustion engine
JPH0447397Y2 (en)
JPH1068333A (en) Engine auxiliary brake device
JPS61200339A (en) Internal-combustion engine with mechanical supercharger
JPH10220211A (en) Variable valve mechanism for engine
JP2008157201A (en) Variable valve gear for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

R150 Certificate of patent or registration of utility model

Ref document number: 4587923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees