JPH0533668A - Turbo-compound engine - Google Patents

Turbo-compound engine

Info

Publication number
JPH0533668A
JPH0533668A JP3208475A JP20847591A JPH0533668A JP H0533668 A JPH0533668 A JP H0533668A JP 3208475 A JP3208475 A JP 3208475A JP 20847591 A JP20847591 A JP 20847591A JP H0533668 A JPH0533668 A JP H0533668A
Authority
JP
Japan
Prior art keywords
engine
turbocharger
exhaust
electric machine
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3208475A
Other languages
Japanese (ja)
Inventor
Hideo Kawamura
河村英男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP3208475A priority Critical patent/JPH0533668A/en
Publication of JPH0533668A publication Critical patent/JPH0533668A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To dispense with any work for exhaust in a turbo-compound engine as well as to convert fuel combustion energy into power so effectively. CONSTITUTION:A turbocharger 2 equipped with a dynamo-electric machine is attached to a two cycle 3-cylindered engine 1 formed into a heat insulated structure, and further a turbine generator 3 is set up at the downstream. In succession, a highly efficient intercooler 23 is set up in a flow passage of supercharging air out of the turbocharger 2 and intake air is cooled to the full, while each output out of the dynamo-electric machine 24 and the generator 32 being driven by exhaust energy is fed to an electric motor 6 in mesh with a flywheel 14 via a rectification-voltage controller 4 and an inverter 5, thereby energizing the extent of engine torque. In addition, according to engine load, opening of an exhaust valve 13 is controlled by a valve controller 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジンの排気管にター
ボチャージャを連結してエンジンの吸気圧を増大させ、
さらに排気エネルギーを利用してエンジントルクを向上
させるターボコンパウンドエンジンに関する。
BACKGROUND OF THE INVENTION The present invention increases the intake pressure of an engine by connecting a turbocharger to the exhaust pipe of the engine.
Further, the present invention relates to a turbo compound engine that utilizes exhaust energy to improve engine torque.

【0002】[0002]

【従来の技術】エンジンの排出する排気ガスをタービン
に導いて駆動させ、該タービントルクによって過給気を
エンジンに圧送するターボチャージャが広く使用され、
この種のターボチャージャの回転軸に発電機を取付け
て、クランク軸に設けた電動機を駆動し、排気エネルギ
ーを回収してエンジン出力に変換しようとするターボコ
ンパウンドエンジンが種々提案されている。
2. Description of the Related Art A turbocharger is widely used in which exhaust gas discharged from an engine is guided to a turbine for driving, and supercharged air is pumped to the engine by the turbine torque.
Various types of turbo compound engines have been proposed in which a generator is attached to the rotary shaft of a turbocharger of this type, and an electric motor provided on a crankshaft is driven to recover exhaust energy and convert it into engine output.

【0003】[0003]

【発明が解決しようとする課題】このようなターボコン
パウンドシステムを4サイクルエンジンに利用した場
合、タービンの効率を向上させるために膨張比を上昇さ
せたときには、エンジンの排気行程における仕事量が増
加することになって、結果的に余り効率が向上しないこ
とになり、またエンジンの部分負荷時における仕事量が
改善されないという問題がある。
When such a turbo compound system is used in a 4-cycle engine, when the expansion ratio is increased to improve the efficiency of the turbine, the work amount in the exhaust stroke of the engine increases. As a result, there is a problem that the efficiency is not improved so much and the work amount at the time of partial load of the engine is not improved.

【0004】このような仕事につき図3に示すP−V線
図にて説明すると、aは大気圧でコンプレッサ入口、b
はコンプレッサ出口、cは圧縮端、dは燃焼終了時点、
eは排気弁開、fはブローダウン、gは排気終了、hは
吸気開始、kはタービン出口、iはタービン入口の各状
態のP(圧力)およびV(容積)を示すものである。
This work will be explained with reference to the P-V diagram shown in FIG. 3, where a is atmospheric pressure, the compressor inlet, and b.
Is the compressor outlet, c is the compression end, d is the end of combustion,
e is an exhaust valve open, f is a blowdown, g is an exhaust end, h is an intake start, k is a turbine outlet, and i is P (pressure) and V (volume) in each state of the turbine inlet.

【0005】この状態の場合、b−c−d−eは正の仕
事、f−g−h−bは負の吸排気行程ポンピング仕事、
f−i−k−a−bは正のタービン仕事となり、このよ
うなシステムではf−g−h−bのポンプ仕事のマイナ
ス面が大となり、iのタービン入口状態のレベルを上昇
させると排気の仕事が増加するという問題がある。
In this state, b-c-d-e is positive work, f-g-h-b is negative intake-exhaust stroke pumping work,
The f-i-k-a-b becomes positive turbine work, and in such a system, the negative side of the f-g-h-b pump work becomes large, and when the level of the turbine inlet state of i is raised, the exhaust gas is exhausted. There is a problem that the number of jobs increases.

【0006】本発明はこのような問題に鑑みてなされた
ものであり、その目的はエンジンの排気行程におけるマ
イナス面の仕事量を減少させるとともに、排気エネルギ
ーを効率よく回収してエンジンの駆動力に変換しようと
するターボコンパウンドエンジンを提供することにあ
る。
The present invention has been made in view of the above problems, and its purpose is to reduce the negative work in the exhaust stroke of the engine and to efficiently recover the exhaust energy to improve the driving force of the engine. It is to provide a turbo compound engine that tries to convert.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めに本発明によれば、エンジンの排気管にターボチャー
ジャを連結してエンジンへの過給圧を増大させるととも
に、排気エネルギーを動力として回収させるターボコン
パウンドエンジンにおいて、前記エンジンに断熱型の2
サイクルディーゼルエンジンを用いるとともに、前記タ
ーボチャージャの回転軸に配置され発電作動する回転電
機と、該ターボチャージャの下流に接続したタービン発
電機と、エンジンのクランク軸に連結した電動機と、前
記の回転電機とタービン発電機からの出力を前記の電動
機に供給して力行せしめる電力変換手段とを有するター
ボコンパウンドエンジンが提供される。
To achieve the above object, according to the present invention, a turbocharger is connected to an exhaust pipe of an engine to increase supercharging pressure to the engine, and exhaust energy is used as a power source. In a turbo compound engine to be recovered, an adiabatic 2
A rotary electric machine that uses a cycle diesel engine and is arranged on the rotary shaft of the turbocharger to generate electric power, a turbine generator connected downstream of the turbocharger, an electric motor connected to the crankshaft of the engine, and the rotary electric machine. There is provided a turbo compound engine having: and an electric power conversion means for supplying an output from the turbine generator to the electric motor for power running.

【0008】[0008]

【実施例】つぎに本発明の実施例について図面を用いて
詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0009】図1は本発明にかかるターボコンパウンド
エンジンの一実施例を示す構成ブロック図である。
FIG. 1 is a configuration block diagram showing an embodiment of a turbo compound engine according to the present invention.

【0010】同図において、1はエンジンで、2サイク
ル作動する3気筒の断熱型のディーゼルエンジンが用い
られ、その燃焼室の関連部分に例えば耐熱性のセラミッ
クスなどの断熱素材が使用されて高温度に保持され、し
たがってエンジン冷却水が不要となり、冷却損失が減じ
て熱効率のよいものである。
In the figure, reference numeral 1 denotes an engine, which is a three-cylinder adiabatic diesel engine that operates in two cycles, and a heat insulating material such as heat-resistant ceramics is used in a relevant portion of the combustion chamber to increase the temperature. Therefore, engine cooling water is not required, cooling loss is reduced, and thermal efficiency is improved.

【0011】2はターボチャージャで、エンジン1の排
気マニホールド11からの排気ガスによりタービン21
が駆動され、該タービントルクによりコンプレッサ22
を作動させて過給気をエンジン1に圧送するものであ
り、コンプレッサ22から吸気マニホールド12への吸
気流路には効率の高いインタークーラー23が挿入さ
れ、密度の大きい空気がエンジン1に圧送される。
Reference numeral 2 is a turbocharger, which uses the exhaust gas from the exhaust manifold 11 of the engine 1 for the turbine 21.
Is driven, and the compressor 22 is driven by the turbine torque.
Is operated to pump supercharged air to the engine 1. An intercooler 23 having high efficiency is inserted in an intake passage from the compressor 22 to the intake manifold 12, and air having high density is pumped to the engine 1. .

【0012】24はタービン軸に設けられた電動−発電
機となる回転電機であり、エンジン1からの排気流量が
多い場合には発電機として作動して、後述する電動機6
を駆動することによりエンジントルクを付勢したり、エ
ンジン1の低回転高負荷時にはバッテリ7を電源とする
電力により電動作動して、コンプレッサ22の圧気作動
を助勢し、エンジン1への過給気圧を上昇させるように
構成されている。なお、エンジン1における13はそれ
ぞれのシリンダに設けられた排気弁で、バルブ制御装置
8の作動によりエンジン負荷に応じてバルブ開度が増減
制御されるものである。
Reference numeral 24 denotes a rotating electric machine provided on the turbine shaft, which serves as an electric-generator. When the exhaust gas flow rate from the engine 1 is large, the rotating electric machine 24 operates as a generator, and an electric motor 6 to be described later.
To drive the engine torque, and when the engine 1 has a low rotation and a high load, the engine is electrically operated by the electric power from the battery 7 to assist the pneumatic operation of the compressor 22 to boost the supercharged air pressure to the engine 1. Is configured to raise. In addition, 13 in the engine 1 is an exhaust valve provided in each cylinder, and the valve opening degree is controlled to increase or decrease according to the engine load by the operation of the valve control device 8.

【0013】3はタービン発電機でターボチャージャ2
の排出ガスにより駆動されるタービン31と、該タービ
ントルクにより駆動され発電する発電機32とを有し、
該発電機32からの出力は前述の発電作動時の回転電機
24の発電電力とともに整流・電圧制御器4に送電され
る。
A turbine generator 3 is a turbocharger 2.
A turbine 31 driven by the exhaust gas of, and a generator 32 driven by the turbine torque to generate electricity,
The output from the generator 32 is transmitted to the rectification / voltage controller 4 together with the power generated by the rotary electric machine 24 during the above-described power generation operation.

【0014】そして、整流・電圧制御器4では送電され
た交流電力を整流するとともに、これを所定電圧の直流
電力に変換してインバータ5に送電するものである。
The rectification / voltage controller 4 rectifies the transmitted AC power, converts it into DC power of a predetermined voltage, and transmits the DC power to the inverter 5.

【0015】インバータ5は直流電力を所定周波数の交
流電力に変換するもので、前述の回転電機24に通電す
るDC−ACの変換部と、エンジン1のフライホイール
14に噛合するピニオン61を備えた電動機6に通電す
る変換部との両方を備えており、これらの変換部はとも
に、給電する回転電機24および発電機32からの回転
信号のフィードバックラインを備えて、通電時には力行
させる周波数の交流電力をそれぞれに供給するように構
成されている。なお、51は切換スイッチであり、ター
ボチャージャ2の回転電機24の電動または発電作動に
応じて、該回転電機24とインバータ5との間の配線を
切換えるものである。
The inverter 5 is for converting DC power into AC power having a predetermined frequency, and is provided with a DC-AC converter for energizing the rotary electric machine 24 and a pinion 61 meshing with the flywheel 14 of the engine 1. Both of the converters for energizing the electric motor 6 are provided, and both of these converters are provided with the feedback line of the rotation signal from the rotating electric machine 24 and the generator 32 for supplying power, and the AC power of the frequency that causes powering when energized. Are configured to be supplied to each. Reference numeral 51 denotes a changeover switch, which switches the wiring between the rotary electric machine 24 and the inverter 5 in accordance with the electric or electric power generation operation of the rotary electric machine 24 of the turbocharger 2.

【0016】バッテリ7は回転電機24の電動作動時の
電源にされたり、エンジン1の排気弁13を制御するバ
ルブ制御装置8の電源となるものであり、図示していな
いが、発電作動時の回転電機24の出力により充電され
るように構成されている。
The battery 7 is used as a power source when the rotary electric machine 24 is electrically operated, and is also used as a power source of the valve control device 8 that controls the exhaust valve 13 of the engine 1. It is configured to be charged by the output of the rotary electric machine 24.

【0017】つぎに、このように構成された本実施例の
作動について説明すると、エンジン1の運転により排気
ガスが排気マニホールド11を介してターボチャージャ
2に圧送されてタービン21が駆動されると、同軸上の
コンプレッサ22が圧気作動を行うとともに回転電機2
4も駆動されて交流電力を出力する。
Next, the operation of the present embodiment thus constructed will be described. When the engine 1 is operated, exhaust gas is pressure-fed to the turbocharger 2 through the exhaust manifold 11, and the turbine 21 is driven. The coaxial compressor 22 performs pneumatic operation and the rotating electric machine 2
4 is also driven and outputs AC power.

【0018】そして、コンプレッサ22からの圧気は圧
縮熱を高効率のインタークーラー23にて奪われ冷却さ
れて密度の大きい新気として吸気マニホールド12を介
して圧送され、エンジン1の送気を行うことになる。こ
の場合、吸気孔から導入された新気は排気より圧力が高
いので、排気を押出して排気管に一部が流出するととも
に、燃焼室の内壁温度を低下させ新気は熱を奪って排気
系に至る。なお、冷却された新気は燃焼室も冷却されて
いるので燃焼の悪化が少なく燃焼を完結するが、断熱型
の燃焼室のために燃焼ガスは等容的に燃焼して仕事を行
うことになる。そして、排気ガスはエンタルピーが増加
しているので、タービンにおける仕事が十分に行えるよ
うな圧力比を得ることができ、ターボチャージャ2の圧
気作動および回転電機24による発電作動が効率よく行
われることになる。
The compressed air from the compressor 22 is deprived of the heat of compression by the highly efficient intercooler 23, cooled, and compressed as fresh air having a high density through the intake manifold 12 to feed the engine 1. Become. In this case, since the fresh air introduced from the intake hole has a higher pressure than the exhaust gas, the exhaust gas is pushed out and a part of it flows out into the exhaust pipe, and the inner wall temperature of the combustion chamber is lowered to remove the heat and the fresh air exhaust system. Leading to. In addition, since the combustion chamber of the cooled fresh air is also cooled, the combustion is less deteriorated and the combustion is completed.However, because of the adiabatic combustion chamber, the combustion gas burns isobarically to perform the work. Become. Since the enthalpy of the exhaust gas is increased, it is possible to obtain a pressure ratio at which the work in the turbine can be sufficiently performed, and the pneumatic operation of the turbocharger 2 and the power generation operation by the rotary electric machine 24 are efficiently performed. Become.

【0019】また、このターボチャージャ2では掃気時
に新気からの空気が熱を奪って容積を増しているので、
エンジンの部分負荷時でも容易に仕事量を得ることがで
き、さらに、この新気のリーク量はエンジン負荷に応じ
て排気弁13の開度を制御するバルブ制御装置8によ
り、適切な流量に制御されることになる。
Further, in this turbocharger 2, the air from the fresh air takes heat away during scavenging to increase the volume,
The work amount can be easily obtained even when the engine is partially loaded, and the leak amount of this fresh air is controlled to an appropriate flow rate by the valve control device 8 that controls the opening degree of the exhaust valve 13 according to the engine load. Will be done.

【0020】一方、回転電機24からの電力は整流・電
圧制御器4に入力されるが、ここではターボチャージャ
2の排出ガスにより駆動されるタービン発電機3からの
電力も一緒に入力され、整流回路にて直流に変換されて
加え合わされ、所定電圧の直流電力となってインバータ
5に出力される。
On the other hand, the electric power from the rotary electric machine 24 is input to the rectification / voltage controller 4, but here the electric power from the turbine generator 3 driven by the exhaust gas of the turbocharger 2 is also input and rectified. It is converted into direct current by the circuit and added together, and the direct current power of a predetermined voltage is output to the inverter 5.

【0021】ついで、インバータ5ではフライホイール
14とギヤ機構を介して噛合している電動機6からの回
転信号に対応して電動機6を力行させるような交流周波
数を有する電力に変換して電動機6に通電し、このため
フライホイール14は付勢されエンジン1のトルクを増
強させることになる。
Then, the inverter 5 converts the electric power into an electric power having an AC frequency that causes the electric motor 6 to power in response to a rotation signal from the electric motor 6 meshing with the flywheel 14 via a gear mechanism, and the electric motor 6 is converted. As a result, the flywheel 14 is energized and the torque of the engine 1 is increased.

【0022】図2はこのような本実施例のシステムにお
けるP/V線図であり、2サイクルエンジンではピスト
ンの下死点位置にて掃気のため吸気孔と排気弁とが開口
しており、図示のA点にては吸気孔が閉じて圧縮開始、
B点は圧縮の終了端、C点は燃料の終了、D点は排気弁
が開いて排気開始、E点は排気弁が閉じて排気の終了で
ある。また、F点はピストンの下死点、G点はタービン
入口、H点はタービン出口、I点はコンプレッサ入口
で、それぞれの状態の圧力や容積を表すものであり、こ
の場合4サイクルエンジンにおけるような排気のための
マイナス仕事がなく、燃料の熱効率のよいエンジンシス
テムが得られることになる。
FIG. 2 is a P / V diagram in such a system of this embodiment. In the two-cycle engine, the intake hole and the exhaust valve are opened at the bottom dead center of the piston for scavenging, At point A in the figure, the intake hole closes and compression starts,
The point B is the end point of compression, the point C is the end of fuel, the point D is the exhaust valve opening and exhaust start, and the point E is the exhaust valve close and exhaust end. The point F is the bottom dead center of the piston, the point G is the turbine inlet, the point H is the turbine outlet, and the point I is the compressor inlet, which represent the pressure and volume in each state. There is no negative work for exhaust, and an engine system with high fuel thermal efficiency can be obtained.

【0023】以上、本発明を上述の実施例によって説明
したが、本発明の主旨の範囲内で種々の変形が可能であ
り、これらの変形を本発明の範囲から排除するものでは
ない。
Although the present invention has been described with reference to the above embodiments, various modifications can be made within the scope of the gist of the present invention, and these modifications are not excluded from the scope of the present invention.

【0024】[0024]

【発明の効果】上述の実施例のように本発明によれば、
断熱構造とした2サイクル3気筒エンジンに取付けたタ
ーボチャージャからの過給気流路に高効率のインターク
ーラーを配して密度を高めた吸気をエンジンに供給し、
ターボチャージャには回転電機を配して発電作動させる
とともに、該ターボチャージャからの排ガスにより駆動
されるタービン発電機からの電力と前記回転電機の電力
とを、クランク軸と連結させた電動機に供給してエンジ
ン出力を増大させるので、このシステムではエンジンの
冷却水による熱損失が減じ、エンジン掃気時に新気が吹
抜けても断熱エンジンのため不完全燃焼が防がれて、こ
の燃焼エネルギーによりターボチャージャや下流のター
ビン発電機にて十分な仕事が行われ、さらに排気のため
のマイナス仕事が減じて効率のよいターボコンパウンド
エンジンが得られるという効果が生ずる。
According to the present invention as in the above embodiments,
A high-efficiency intercooler is installed in the supercharging air passage from the turbocharger attached to the two-stroke three-cylinder engine with the heat insulating structure to supply the intake air with a high density to the engine,
A rotary electric machine is arranged in the turbocharger for power generation operation, and electric power from a turbine generator driven by exhaust gas from the turbocharger and electric power of the rotary electric machine are supplied to an electric motor connected to a crankshaft. Since this increases engine output, heat loss due to engine cooling water is reduced in this system, and even if fresh air blows through during engine scavenging, incomplete combustion is prevented due to the adiabatic engine, and this combustion energy allows turbochargers and Sufficient work is performed in the downstream turbine generator, and the negative work for exhaust is reduced, so that an efficient turbo compound engine can be obtained.

【0025】また本発明によれば、エンジンの負荷状態
に応じて排気弁の開度の制御自在なバルブ制御装置を設
けたので、部分負荷時の排気ガスでも仕事の効率を向上
させ得るという利点が生ずる。
Further, according to the present invention, since the valve control device which can freely control the opening degree of the exhaust valve according to the load condition of the engine is provided, it is possible to improve the work efficiency even with the exhaust gas at the partial load. Occurs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるターボコンパウンドエンジンの
一実施例を示す構成ブロック図である。
FIG. 1 is a configuration block diagram showing an embodiment of a turbo compound engine according to the present invention.

【図2】本実施例における燃焼ガスの状態を示すP/V
線図である。
FIG. 2 shows P / V showing a state of combustion gas in the present embodiment.
It is a diagram.

【図3】4サイクルエンジンにおけるP/V線図であ
る。
FIG. 3 is a P / V diagram in a 4-cycle engine.

【符号の説明】 1…エンジン 2…ターボチャージャ 3…タービン発電機 4…整流・電圧制御器 5…インバータ 6…電動機 8…バルブ制御装置 13…排気弁 14…フライホイール 23…インタークーラー 24…回転電機[Explanation of symbols] 1 ... engine 2 ... Turbocharger 3 ... Turbine generator 4 ... Rectifier / voltage controller 5 ... Inverter 6 ... electric motor 8 ... Valve control device 13 ... Exhaust valve 14 ... Flywheel 23 ... Intercooler 24 ... Rotating electric machine

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】エンジンの排気管にターボチャージャを連
結してエンジンへの過給圧を増大させるとともに、排気
エネルギーを動力として回収させるターボコンパウンド
エンジンにおいて、前記エンジンに断熱型の2サイクル
ディーゼルエンジンを用いるとともに、前記ターボチャ
ージャの回転軸に配置され発電作動する回転電機と、該
ターボチャージャの下流に接続したタービン発電機と、
エンジンのクランク軸に連結した電動機と、前記の回転
電機とタービン発電機からの出力を前記の電動機に供給
して力行せしめる電力変換手段とを有することを特徴と
するターボコンパウンドエンジン。
1. A turbo compound engine for connecting a turbocharger to an exhaust pipe of an engine to increase supercharging pressure to the engine and recovering exhaust energy as power, wherein an adiabatic two-cycle diesel engine is used as the engine. Along with the use, a rotary electric machine that is arranged on the rotary shaft of the turbocharger and operates to generate electricity, and a turbine generator connected downstream of the turbocharger,
A turbo compound engine, comprising: an electric motor connected to a crankshaft of an engine; and electric power conversion means for supplying the output from the rotating electric machine and the turbine generator to the electric motor to cause the electric power to run.
【請求項2】前記のターボチャージャからエンジンへの
過給気流路に高効率のインタークーラーを介在させたこ
とを特徴とする請求項1記載のターボコンパウンドエン
ジン。
2. A turbo compound engine according to claim 1, wherein a highly efficient intercooler is interposed in the supercharging air passage from the turbocharger to the engine.
【請求項3】前記のエンジンのシリンダの排気弁の開度
をエンジン負荷に応じて制御せしめるバルブ制御装置を
取付けたことを特徴とする請求項1記載のターボコンパ
ウンドエンジン。
3. A turbo compound engine according to claim 1, further comprising a valve control device for controlling an opening of an exhaust valve of a cylinder of the engine according to an engine load.
JP3208475A 1991-07-25 1991-07-25 Turbo-compound engine Pending JPH0533668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3208475A JPH0533668A (en) 1991-07-25 1991-07-25 Turbo-compound engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3208475A JPH0533668A (en) 1991-07-25 1991-07-25 Turbo-compound engine

Publications (1)

Publication Number Publication Date
JPH0533668A true JPH0533668A (en) 1993-02-09

Family

ID=16556790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3208475A Pending JPH0533668A (en) 1991-07-25 1991-07-25 Turbo-compound engine

Country Status (1)

Country Link
JP (1) JPH0533668A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085226A (en) * 2005-09-21 2007-04-05 Hino Motors Ltd Turbo compound-engine
EP2362078A1 (en) * 2006-11-15 2011-08-31 Mitsubishi Electric Corporation Automotive Hybrid Engine Assist System
US20140026561A1 (en) * 2011-04-21 2014-01-30 Thomas Alan Horne Power system with turbine bypass and method of operating a power system
JP2015108330A (en) * 2013-12-04 2015-06-11 三菱重工業株式会社 Turbo compound system control device
US9903296B2 (en) 2013-12-04 2018-02-27 Mitsubishi Heavy Industries, Ltd. Control device for turbocharger
US10006348B2 (en) 2013-12-04 2018-06-26 Mitsubishi Heavy Industries, Ltd. Turbocharger device
US10197003B2 (en) 2013-12-04 2019-02-05 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system
US11105258B2 (en) 2015-02-03 2021-08-31 Williams International Co., L.L.C. Turbo-electric turbo-compounding system
US11105259B2 (en) 2015-02-03 2021-08-31 Williams International Co., L.L.C. Turbo-electric turbo-compounding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293430A (en) * 1985-10-19 1987-04-28 Isuzu Motors Ltd Turbo compound engine
JPH0378540A (en) * 1989-08-18 1991-04-03 Hitachi Ltd Purifying device of exhaust gas from two-cycle engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293430A (en) * 1985-10-19 1987-04-28 Isuzu Motors Ltd Turbo compound engine
JPH0378540A (en) * 1989-08-18 1991-04-03 Hitachi Ltd Purifying device of exhaust gas from two-cycle engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085226A (en) * 2005-09-21 2007-04-05 Hino Motors Ltd Turbo compound-engine
JP4587923B2 (en) * 2005-09-21 2010-11-24 日野自動車株式会社 Turbo compound engine
EP2362078A1 (en) * 2006-11-15 2011-08-31 Mitsubishi Electric Corporation Automotive Hybrid Engine Assist System
US8245802B2 (en) 2006-11-15 2012-08-21 Mitsubishi Electric Corporation Automotive hybrid engine assist system
EP2677134A1 (en) * 2006-11-15 2013-12-25 Mitsubishi Electric Corporation Automotive hybrid engine assist system
EP2677135A1 (en) * 2006-11-15 2013-12-25 Mitsubishi Electric Corporation Automotive hybrid engine assist system
US20140026561A1 (en) * 2011-04-21 2014-01-30 Thomas Alan Horne Power system with turbine bypass and method of operating a power system
US9932884B2 (en) * 2011-04-21 2018-04-03 Volvo Lastvagnar Ab Power system with turbine bypass and method of operating a power system
WO2015083493A1 (en) * 2013-12-04 2015-06-11 三菱重工業株式会社 Turbo compound system control device
US9903296B2 (en) 2013-12-04 2018-02-27 Mitsubishi Heavy Industries, Ltd. Control device for turbocharger
JP2015108330A (en) * 2013-12-04 2015-06-11 三菱重工業株式会社 Turbo compound system control device
US10006348B2 (en) 2013-12-04 2018-06-26 Mitsubishi Heavy Industries, Ltd. Turbocharger device
US10047666B2 (en) 2013-12-04 2018-08-14 Mitsubishi Heavy Industries, Ltd. Control system for turbo-compound system
US10197003B2 (en) 2013-12-04 2019-02-05 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system
US11105258B2 (en) 2015-02-03 2021-08-31 Williams International Co., L.L.C. Turbo-electric turbo-compounding system
US11105259B2 (en) 2015-02-03 2021-08-31 Williams International Co., L.L.C. Turbo-electric turbo-compounding method

Similar Documents

Publication Publication Date Title
US4955199A (en) Drive system for turbochargers with rotary electric machines
US6182449B1 (en) Charge air systems for two-cycle internal combustion engines
JP2010151140A (en) Operation method for two-stroke reciprocation internal combustion engine
JP2001132442A (en) Engine provided with energy recovering device
JP2011064201A (en) Method for operating reciprocating internal combustion engine
JPH0533668A (en) Turbo-compound engine
JPH045804B2 (en)
JP2929329B2 (en) Turbo compound engine
JPH04342828A (en) Control device for turbocharger provided with rotary electric equipment
JPH10299574A (en) Ceramic engine driving compressor by exhaust heat recovery energy
JPH05296055A (en) Two-cycle turbo compound engine
JP2855388B2 (en) A multi-cylinder gas engine equipped with a turbocharger with a generator and motor
JPS6346249B2 (en)
KR19990000545A (en) Internal combustion engine supercharger
JP3077398B2 (en) 2-4 stroke switching engine
JP3074861B2 (en) 2 cycle engine
JPH05256152A (en) Two-cycle turbo-compound engine
JPH0347414B2 (en)
JP2993235B2 (en) 2 cycle engine
JP2992709B2 (en) Control device for insulated two-stroke engine
JPH0359245B2 (en)
JPH0526050A (en) Control device for two-four cycle switching engine
JP3123190B2 (en) Two-stroke engine with turbocharger
JPH0610694A (en) 2-4 stroke switching engine
JPS6293423A (en) Energy recovery equipment for turbo-compound engine