JP4585163B2 - Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst - Google Patents

Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst Download PDF

Info

Publication number
JP4585163B2
JP4585163B2 JP2002135531A JP2002135531A JP4585163B2 JP 4585163 B2 JP4585163 B2 JP 4585163B2 JP 2002135531 A JP2002135531 A JP 2002135531A JP 2002135531 A JP2002135531 A JP 2002135531A JP 4585163 B2 JP4585163 B2 JP 4585163B2
Authority
JP
Japan
Prior art keywords
hydrotalcite
metal compound
hydrated metal
catalyst
alkylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002135531A
Other languages
Japanese (ja)
Other versions
JP2003327426A (en
Inventor
誠二 松井
伊佐雄 田里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2002135531A priority Critical patent/JP4585163B2/en
Publication of JP2003327426A publication Critical patent/JP2003327426A/en
Application granted granted Critical
Publication of JP4585163B2 publication Critical patent/JP4585163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の利用分野】
この発明は、アルキレンオキサイドの付加反応触媒の前駆体などに用いられるハイドロタルサイト系水和金属化合物と、その製造方法、及びこの化合物を焼成したアルキレンオキサイドの付加反応触媒、並びにこの触媒の性能評価方法に関する。
【0002】
【従来の技術】
ハイドロタルサイト系水和金属化合物を焼成して脱水すると、アルキレンオキサイドの付加反応触媒が得られる。この触媒は高級アルコールなどへのアルキレンオキサイドの付加反応触媒などに用いられる。
【0003】
ハイドロタルサイト系水和金属化合物を出発材料とするアルキレンオキサイドの付加反応触媒の製造方法は、特開2000−212272号特開2001−38212号などで提案されている。しかし、この触媒の前駆体であるハイドロタルサイト系水和金属化合物の表面性状と、触媒活性との関係を検討したものは知られていない。
【0004】
【発明の課題】
発明者は、前駆体のハイドロタルサイト系水和金属化合物を電位差滴定した際の結果により、この前駆体を焼成したアルキレンオキサイドの付加反応触媒の性能を評価できることを見出した。また前記の電位差滴定で優れた結果を示し、従ってアルキレンオキサイドの付加反応触媒の前駆体として優れた、ハイドロタルサイト系水和金属化合物の製造方法を見出した。そして発明者は、このハイドロタルサイト系水和金属化合物からの触媒の製造方法を開発した。この触媒の性能はハイドロタルサイト系水和金属化合物の電位差滴定で評価でき、発明者は触媒性能の評価方法も開発した。
【0005】
以上のように、この発明の課題は、新規なハイドロタルサイト系水和金属化合物とその製造方法、及び前記水和金属化合物を前駆体とするアルキレンオキサイドの付加反応触媒、並びにこの触媒の評価方法を提供することにある。
【0006】
【発明の構成】
この発明のハイドロタルサイト系水和金属化合物は、式(1)で表され、
水酸化マグネシウム、塩基性または中性の炭酸マグネシウム、及び水酸化アルミニウムの少なくとも一種以上の固体原料を用い、マグネシウム源またはアルミニウム源の残部を可溶性のマグネシウム塩またはアルミニウム塩とした水性スラリーを、120℃以上300℃以下で水熱反応させることにより得られ、
規定濃度で0.001〜0.1mol/Lに調製した酸性水溶液中に、前記水和金属化合物を0.05〜2wt%の濃度になるように添加した懸濁液に、0.1〜10mol/Lの強塩基滴定剤を滴下して、懸濁液のpHをガラス電極で電位差滴定した際に、pH=7からpH=10.3の変曲点までに要した水酸化物イオン消費量が、ハイドロタルサイト系水和金属化合物1g当たり、2mmol以下であることを特徴とする。
Mg1-xAlx(OH)2(CO3)x/2+δ ・mH2O (0<x<0.5,δは非化学量論的パラメータ,0<m<2) (1)
なお強塩基滴定剤は、水酸化ナトリウム、水酸化カリウム及びアンモニアやアンモニアのアルキル誘導体からなる群の少なくとも1種が好ましい。
【0007】
またこの発明のアルキレンオキサイドの付加反応触媒は、式(1)で表されるハイドロタルサイト系水和金属化合物で、規定濃度で0.001〜0.1mol/Lに調製した酸性水溶液中に、前記水和金属化合物を0.05〜2wt%の濃度になるように添加した懸濁液に、0.1〜10mol/Lの強塩基滴定剤を滴下して、懸濁液のpHをガラス電極で電位差滴定した際に、pH=7からpH=10.3の変曲点までに要した水酸化物イオン消費量が、ハイドロタルサイト系水和金属化合物1g当たり2mmol以下であるものを、400〜800℃で焼成して得られるもので、式(2)で表されるものである。
Mg1-xAlx(OH)2(CO3)x/2+δ・mH2O (0<x<0.5,δは非化学量論的パラメータ,0<m<2) (1)
Mg1-xAlxx/2O(2+x)/2 (ただし0<x<0.5で、□は陽イオン空孔を示す) (2)
なお強塩基滴定剤は、水酸化ナトリウム、水酸化カリウム及びアンモニアやアンモニアのアルキル誘導体からなる群の少なくとも1種が好ましい。
このアルキレンオキサイドの付加反応触媒は、例えば高級アルコールへの、アルキレンオキサイドの付加反応触媒として有効である。
【0008】
この発明のハイドロタルサイト系水和金属化合物は、例えば、水酸化マグネシウム、塩基性または中性の炭酸マグネシウム、及び水酸化アルミニウムの少なくとも一種以上の固体原料を用い、マグネシウム源またはアルミニウム源の残部を可溶性のマグネシウム塩またはアルミニウム塩とした水性スラリーを、120℃以上300℃以下で水熱反応させて製造される。
【0009】
この発明のアルキレンオキサイドの付加反応触媒の評価方法では、規定濃度で0.001〜0.1mol/Lに調製した酸性水溶液中に、焼成前のハイドロタルサイト系水和金属化合物を0.05〜2wt%の濃度になるように添加した懸濁液に、0.1〜10mol/Lの強塩基滴定剤を滴下して、懸濁液のpHをガラス電極で測定して電位差滴定を行い、
pH=7からpH=10.3の変曲点までに要した水酸化物イオン消費量が、ハイドロタルサイト系水和金属化合物1g当たり、2mmmol以下である際に反応率及び反応選択性が良好とし、水酸化物イオン消費量が2mmmol超である際に反応率及び反応選択性が不良であるとする。
(ただしハイドロタルサイト系水和金属化合物は式(1)で表され、アルキレンオキサイドの付加反応触媒はこれを400〜800℃で焼成したもので式(2)で表され、該触媒は高級アルコールへのアルキレンオキサイドの付加反応触媒である)
なお強塩基滴定剤は、水酸化ナトリウム、水酸化カリウム及びアンモニアやアンモニアのアルキル誘導体からなる群の少なくとも1種が好ましい。
Mg1-xAlx(OH)2(CO3)x/2+δ・mH2O (0<x<0.5,δは非化学量論的パラメータ,0<m<2) (1)
Mg1-xAlxx/2O(2+x)/2 (ただし0<x<0.5で、□は陽イオン空孔を示す) (2)
【0010】
【発明の作用効果】
図4,図5に例示するように、アルキレンオキサイドの付加反応触媒の触媒性能は、前駆体のハイドロタルサイト系水和金属化合物の電位差滴定により評価することができる。言い換えると、ハイドロタルサイト系水和金属化合物の電位差滴定で、所定の条件で測定した水酸化物イオン消費量が2mmol/[gハイドロタルサイト系水和金属化合物]以下であれば良好な触媒性能が得られ、水酸化物イオン消費量が2mmol/[gハイドロタルサイト系水和金属化合物]を越えると、良好な触媒性能が得られない。このようにハイドロタルサイト系水和金属化合物の性質は、その主な用途であるアルキレンオキサイドの付加反応触媒の側から見た場合に、請求項1に記載の条件で測定した水酸化物イオン消費量が2mmol/[gハイドロタルサイト系水和金属化合物]以下かどうかで変化する。そしてこの発明のハイドロタルサイト系水和金属化合物は、例えばアルキレンオキサイドの付加反応触媒に用いた場合に、優れた反応率と反応選択性とが得られる。
【0011】
この発明のハイドロタルサイト系水和金属化合物をアルキレンオキサイドの付加反応触媒に転化するには、例えば400〜800℃で焼成すればよく、焼成雰囲気は不活性雰囲気中や真空中などが好ましい。400〜800℃での焼成により、ハイドロタルサイト系水和金属化合物は層状の構造を保ったまま脱水かつ脱炭酸されて、アルキレンオキサイドの付加反応触媒となり、この触媒を用いると高い反応率や高い反応選択性が得られる。
【0012】
この発明のアルキレンオキサイドの付加反応触媒の評価方法では、焼成前のハイドロタルサイト系水和金属化合物を所定の条件で電位差滴定することにより、アルキレンオキサイドの付加反応触媒としての性能を予測できるので、アルキレンオキサイドの付加反応触媒の製造時の品質管理や評価などに有効である。
【0013】
【実施例】
【0014】
【ハイドロタルサイト系水和金属化合物と付加反応触媒の調製】
以下に、実施例1〜実施例7として、ハイドロタルサイト系水和金属化合物の調製と、得られたハイドロタルサイト系水和金属化合物を焼成したアルキレンオキサイドの付加反応触媒とを示す。ハイドロタルサイト系水和金属化合物は水熱反応で調製し、原材料のマグネシウム源及びアルミニウム源に反応温度で適度の可溶性のある固体原料を用いる。好ましくはマグネシウム源とアルミニウム源の双方を適度の可溶性のある固体原料とするが、一方のみを固体原料とし、他方を可溶性の塩として加えてもよい。比較例1〜4として、水熱反応温度を同じにして、マグネシウム源とアルミニウム源の双方を可溶性塩とした例を示す。
【0015】
【実施例1】
水酸化マグネシウム[Mg(OH)2]粉末56g、塩基性炭酸マグネシウム[Mg5(CO3)4(OH)2・4H2O]粉末60g、及び水酸化アルミニウム[Al(OH)3]粉末54gを純水に添加して、混合スラリー1.5Lを調製した(Mg/Al仕込モル比:2.3、CO2/Al仕込モル比:0.75)。これを2Lオートクレーブに仕込み、180℃まで昇温し、攪拌しながら、5時間水熱反応を行った。反応終了後、スラリーを室温まで冷却し、吸引濾過および水洗を行い、120℃で24時間乾燥後、粉砕してハイドロタルサイト系水和金属化合物(A-1)を得た。また、ハイドロタルサイト焼成金属酸化物触媒(B-1)は、得られたハイドロタルサイト系水和金属化合物を窒素雰囲気下、500℃で3時間焼成することにより得た。
【0016】
なお水熱反応温度を100℃にすると固体の未反応残査が残り、後述のように水熱反応温度120℃では固体残査が生じず、投入原料を全量ハイドロタルサイト系水和金属化合物に転化できたので、水熱反応温度は120℃以上が好ましい。また水熱反応温度が300℃を越えると、反応時の圧力が高くなりすぎることを考慮して、水熱反応温度は120℃〜300℃が好ましく、特に好ましくは120〜250℃とする。
【0017】
投入した水酸化マグネシウムや塩基性炭酸マグネシウム、あるいは水酸化アルミニウムでは、結晶水や炭酸基と水酸基との比のばらつき等のために、微妙に組成が異なることがあるが、そのこと自体は重要ではない。また水酸化マグネシウムや塩基性炭酸マグネシウム、あるいは水酸化アルミニウムの組成を、例えば金属成分や水酸基あるいは炭酸基を、10mol%以下の割合で置換してもよい。オートクレーブ中での水熱反応は、マグネシウム源(水酸化マグネシウムや塩基性炭酸マグネシウム、中性炭酸マグネシウム)やアルミニウム源(水酸化アルミニウム)が水熱反応により徐々に溶出して、ハイドロタルサイト系水和金属化合物へと転化するものと考えられる。
【0018】
オートクレーブ中での水熱反応時間は1〜24時間程度が好ましく、スラリーの濃度は上記の濃度(ハイドロタルサイト系水和金属化合物換算で1.5mol/L)の1/5〜5倍程度の範囲で変化させてもよく、特に1/3〜3倍程度の範囲で変化させてもよい。後述のように、所望のハイドロタルサイト系水和金属化合物を得るには、マグネシウム源及びアルミニウム源に関して少なくとも一種の固体原料を用いる必要があり、特にアルミニウム源をほぼ(90mol%以上)全量固体とするか、マグネシウム源をほぼ(90mol%以上)全量固体とすることが好ましい。具体的な結果は示さないが、マグネシウム源としてマグネサイト(MgCO3)を用いると水熱反応時に固体残査が残り、アルミニウム源としてベーマイト(AlOOH)を用いても固体残査が残った。これはマグネサイトやベーマイトが水熱条件下で安定で、溶解度が低いためと考えられる。
【0019】
焼成温度は例えば400〜800℃とし、焼成雰囲気は窒素中の他にAr中などの不活性雰囲気中(CO2中を除く)や真空中などでも良く、ハイドロタルサイト系水和金属化合物の層状構造を破壊せずに脱水かつ脱炭酸して、アルキレンオキサイドの付加反応触媒に転化し得る雰囲気であればよい。この触媒は岩塩型の酸化マグネシウムと酸化アルミニウムの固溶体である。また焼成温度が800℃を越えると、スピネルへの転化などが生じるので、焼成温度は400〜800℃とする。
【0020】
【実施例2】
水酸化マグネシウム粉末66g、中性炭酸マグネシウム[MgCO3・3H2O 粉末56g、及び水酸化アルミニウム粉末60gを固体原料に使用し(Mg/Al仕込モル比:2.0、CO2/Al仕込モル比:0.53)、オートクレーブ中で実施例1と同様に180℃で5時間水熱反応させた。他の反応条件は実施例1と同様にして、ハイドロタルサイト系水和金属化合物(A-2)及び焼成金属酸化物触媒(B-2)を得た。
【0021】
【実施例3】
水酸化マグネシウム粉末16g、塩基性炭酸マグネシウム粉末95g、及び水酸化アルミニウム粉末59gを固体原料に使用した(Mg/Al仕込モル比:1.7、CO2/Al仕込モル比:1.07)。これ以外は、実施例1と同じ操作を行って、ハイドロタルサイト系水和金属化合物(A-3)及び焼成金属酸化物触媒(B-3)を得た。
【0022】
【実施例4】
オートクレーブ中での反応温度を120℃にした以外は、実施例1と同じ操作を行って、ハイドロタルサイト系水和金属化合物(A-4)及び焼成金属酸化物触媒(B-4)を得た。この条件でも、原材料は全量ハイドロタルサイト系水和金属化合物に転化した。
【0023】
【実施例5】
オートクレーブ中での反応温度を240℃にした以外は、実施例1と同じ操作を行って、ハイドロタルサイト系水和金属化合物(A-5)及び焼成金属酸化物触媒(B-5)を得た。
【0024】
【実施例6】
MgO換算で5.9wt%濃度の塩化マグネシウム溶液1Lを攪拌しながら、水酸化アルミニウム[Al(OH)3]粉末54gを添加後、25wt%の水酸化ナトリウム溶液でpH=10に保つようにして、5wt%濃度の炭酸ナトリウム溶液880mLを徐々に加えた(Mg/Al仕込モル比:2.1、CO2/Al仕込モル比:0.60)。このスラリー1.5Lを、実施例1と同じ操作を行って、ハイドロタルサイト系水和金属化合物(A-6)及び焼成金属酸化物触媒(B-6)を得た。
【0025】
【実施例7】
Al2O3換算で3.9wt%の塩化アルミニウム溶液1Lを攪拌しながら、水酸化マグネシウム粉末83gを添加後、25wt%の水酸化ナトリウム溶液でpH=10に保つようにして、5wt%濃度の炭酸ナトリウム溶液980mLを徐々に加えた(Mg/Al仕込モル比:1.9、CO2/Al仕込モル比:0.60)。このスラリー1.5Lを、実施例1と同じ操作を行って、ハイドロタルサイト系水和金属化合物(A-7)及び焼成金属酸化物触媒(B-7)を得た。
【0026】
【比較例1】
MgO換算で5.9wt%濃度の塩化マグネシウム溶液1Lを攪拌しながら、Al2O3換算で20.0wt%濃度のアルミン酸ソーダを159gを滴下した後、25wt%の水酸化ナトリウム溶液でpH=10に保つようにして、5wt%濃度の炭酸ナトリウム溶液700mLを徐々に加えた(Mg/Al仕込モル比:2.5、CO2/Al仕込モル比:0.53)。得られた白色沈殿スラリー1.5Lに対して、実施例1と同じ操作を行って、ハイドロタルサイト系水和金属化合物(C-1)及び焼成金属酸化物触媒(D-1)を得た。
【0027】
【比較例2】
MgO換算で5.4wt%濃度の塩化マグネシウム溶液1Lを攪拌しながら、Al2O3換算で20.0wt%濃度のアルミン酸ソーダを191gを滴下した後、25wt%の水酸化ナトリウム溶液でpH=10に保つようにして、5wt%濃度の炭酸ナトリウム溶液1150mLを徐々に加えた(Mg/Al仕込モル比:1.9、CO2/Al仕込モル比:0.70)。得られた白色沈殿スラリー1.5Lを、実施例1と同じ操作を行って、ハイドロタルサイト系水和金属化合物(C-2)及び焼成金属酸化物触媒(D-2)を得た。
【0028】
【比較例3】
MgO換算で5.7wt%濃度及びAl2O3換算で3.5wt%の塩化マグネシウム及び塩化アルミニウム混合溶液1Lを攪拌しながら、25wt%の水酸化ナトリウム溶液でpH=10に保つようにして、5wt%濃度の炭酸ナトリウム溶液1400mLを徐々に加えた(Mg/Al仕込モル比:2.0、CO2/Al仕込モル比:0.98)。得られた白色沈殿スラリー1.5Lを、実施例1と同じ操作を行って、ハイドロタルサイト系水和金属化合物(C-3)及び焼成金属酸化物触媒(D-3)を得た。
【0029】
【比較例4】
MgO換算で5.7wt%濃度の塩化マグネシウムとAl2O3換算で3.5wt%の塩化アルミニウムとの混合溶液1Lを攪拌しながら、25wt%の水酸化ナトリウム溶液でpH=10に保つようにして、5wt%濃度の炭酸ナトリウム溶液930mLを徐々に加えた(Mg/Al仕込モル比:2.0、CO2/Al仕込モル比:0.65)。その後、得られた白色沈殿スラリー1.5Lを40℃で5時間攪拌養生した以外は、実施例1と同じ操作を行って、ハイドロタルサイト系水和金属化合物(C-4)及び焼成金属酸化物触媒(D-4)を得た。
【0030】
実施例及び比較例で調製したハイドロタルサイト系水和金属化合物の粉末(A-1〜A-7及びC-1〜C-4)をX線回折測定した。全サンプルについてハイドロタルサイト[Mg1-xAlx(OH)2(CO3)x/2・mH2O]のピークパターンが確認でき、ほぼ全量がハイドロタルサイト系水和金属化合物に転化したことが判明した。
【0031】
実施例及び比較例で調製したハイドロタルサイト系水和金属化合物の粉末(A-1〜A-7及びC-1〜C-4)に含有されるMgO、Al2O3、CO2量を化学分析した。結果を表1に示す。ハイドロタルサイト系水和金属化合物の組成式(1)での、炭酸根含有量はAl含有量xのほぼ1/2である。
【0032】
【表1】

Figure 0004585163
【0033】
【電位差滴定法によるハイドロタルサイト系水和金属化合物の評価】
実施例及び比較例で調製したハイドロタルサイト系水和金属化合物の粉末(A-1〜A-7及びC-1〜C-4)各0.5gを、0.015mol/Lに調製した硝酸水溶液200ml中に添加し、10分間攪拌した。攪拌後この懸濁液のpHをガラス電極で測定しながら、自動滴定装置(京都電子工業株式会社製AT-400)を用いて1mol/L水酸化ナトリウム水溶液を0.1ml/minの速度でpHが約11に到達するまで滴下して、滴定曲線を得た。なお、滴定中は懸濁液を恒温槽で25℃に保持し、窒素ガスでバブリングしながら行った。得られた滴定曲線を図1〜図3に示す。
【0034】
上記の測定条件は、酸性水溶液の規定濃度を0.001〜0.1mol/Lの範囲で変化させても、電位差滴定での結果は同様で、酸性水溶液中でのハイドロタルサイト系水和金属化合物の濃度を0.05〜2wt%の範囲で変化させても、電位差滴定での結果は同様である。また強塩基滴定剤は水酸化ナトリウムの他に、例えば水酸化カリウム、アンモニアやモノメチル〜トリメチルなどのアンモニアのアルキル誘導体を用いればよい。強塩基滴定剤の濃度を0.1〜10mol/Lの範囲で変化させても、電位差滴定の結果への影響は小さい。そしてpH=7からの水酸化物イオン消費量を問題にするので、滴定開始前のPHの影響を除くことができ、pH=10.3で滴定曲線に変曲点が表れ、pH=7からpH=10.3までの水酸化物イオン消費量はハイドロタルサイト系水和金属化合物の表面の性状を表している。
【0035】
得られた滴定曲線より、pH=7及びpH=10.3の変曲点における1mol/L水酸化ナトリウム溶液の滴下量をそれぞれ読み取り、pH=7からpH=10.3までに要した水酸化物イオン消費量(mmol/0.5gハイドロタルサイト)をそれぞれ算出した。結果を表2に示す。
【0036】
【表2】
Figure 0004585163
【0037】
【アルキレンオキサイド付加物の合成】
3Lオートクレーブに活性水素含有化合物として、ラウリルアルコール188g(1モル)と実施例及び比較例で調製したハイドロタルサイト焼成金属酸化物触媒(B-1〜B-7及びD-1〜D-4)1.88gを仕込み、窒素置換後、攪拌しながら150℃まで昇温した。昇温後、エチレンオキサイド264g(3モル)を徐々に導入し、2時間後に圧力の低下が終了した時点で、同温度において1時間熟成して、トータル3時間反応させた。その後室温まで冷却し、粗製物中に残留する焼成金属酸化物触媒を濾過分離して精製物を得た。ガスクロマトグラフィーより、エチレンオキサイドの付加重合度分布を測定し、反応率および反応選択性を下の(式3)及び(式4)より算出した。結果を表3に示す。
反応率(%)=(全化学量-エチレンオキサイド付加モル数が0である未反応物化学量)/(全化学量)×100 (式3)
反応選択性(%)=(エチレンオキサイド付加モル数がn-1〜n+1である反応生成物化学量)/(全化学量)×100 (式4)
なおnは、ラウリルアルコール1モルに対し、付加エチレンオキサイドの仕込モル数を示し、ここでは3である。
【0038】
【表3】
Figure 0004585163
【0039】
【電位差滴定データと反応率及び反応選択性の相関】
電位差滴定曲線から求めたpH=7からpH=10.3までの水酸化物イオン消費量(mmol)と、エチレンオキサイド付加反応における反応率及び反応選択性との相関を、図4及び図5に示す。図4及び図5から良い相関性があることが見られ、電位差滴定法により触媒性能を簡単に評価できることが分かった。また実施例のように、水酸化マグネシウム、塩基性炭酸マグネシウム、中性炭酸マグネシウム、水酸化アルミニウムからなる固体粉末を出発原料に用いて、120〜300℃で水熱合成すれば、反応率及び反応選択性の高い触媒の前駆体が得られることが明らかになった。そしてこれを400〜800℃で焼成すると、反応率及び反応選択性の高い触媒が得られる。
【0040】
実施例では、ハイドロタルサイト系水和金属化合物をアルキレンオキサイドの付加反応触媒の前駆体として用いたが、ハイドロタルサイト系水和金属化合物の用途はこれに限るものではない。例えば、塩素イオンなどのアニオンの吸着剤として、ポリ塩化ビニルの加工などに用いることができる。実施例では水熱反応を用いたハイドロタルサイト系水和金属化合物の製造法を示したが、触媒の前駆体に適したハイドロタルサイト系水和金属化合物は、水熱合成で製造されたものに限定されるものではない。
【図面の簡単な説明】
【図1】実施例のハイドロタルサイト系水和金属化合物での電位差滴定曲線を示す特性図
【図2】実施例のハイドロタルサイト系水和金属化合物での電位差滴定曲線を示す特性図
【図3】実施例のハイドロタルサイト系水和金属化合物での電位差滴定曲線を示す特性図
【図4】ハイドロタルサイト系水和金属化合物での電位差滴定時の水酸化物イオン消費量と、ラウリルアルコールに対するエチレンオキサイドの付加反応の反応率との関係を示す特性図
【図5】ハイドロタルサイト系水和金属化合物での電位差滴定時の水酸化物イオン消費量と、ラウリルアルコールに対するエチレンオキサイドの付加反応の反応選択性との関係を示す特性図[0001]
[Field of the Invention]
The present invention relates to a hydrotalcite-based hydrated metal compound used as a precursor of an alkylene oxide addition reaction catalyst, its production method, an alkylene oxide addition reaction catalyst obtained by calcining this compound, and performance evaluation of this catalyst. Regarding the method.
[0002]
[Prior art]
When the hydrotalcite-based hydrated metal compound is calcined and dehydrated, an alkylene oxide addition reaction catalyst is obtained. This catalyst is used as an addition reaction catalyst of alkylene oxide to higher alcohols.
[0003]
Methods for producing an alkylene oxide addition reaction catalyst using a hydrotalcite-based hydrated metal compound as a starting material have been proposed in JP-A Nos. 2000-212272 and 2001-38212 . However, no investigation has been made on the relationship between the surface properties of the hydrotalcite-based hydrated metal compound, which is the catalyst precursor, and the catalytic activity.
[0004]
[Problems of the Invention]
The inventor has found that the performance of an addition reaction catalyst of an alkylene oxide obtained by calcining the precursor can be evaluated based on the result of potentiometric titration of the precursor hydrotalcite-based hydrated metal compound. Further, the present inventors have found an excellent method for producing a hydrotalcite-based hydrated metal compound, which showed excellent results in the potentiometric titration, and therefore was excellent as a precursor of an alkylene oxide addition reaction catalyst. The inventor has developed a method for producing a catalyst from the hydrotalcite-based hydrated metal compound. The performance of this catalyst can be evaluated by potentiometric titration of hydrotalcite-based hydrated metal compounds, and the inventor has also developed a method for evaluating catalyst performance.
[0005]
As described above, the object of the present invention is to provide a novel hydrotalcite-based hydrated metal compound and a production method thereof, an alkylene oxide addition reaction catalyst using the hydrated metal compound as a precursor, and a method for evaluating the catalyst. Is to provide.
[0006]
[Structure of the invention]
The hydrotalcite-based hydrated metal compound of the present invention is represented by the formula (1),
An aqueous slurry in which at least one solid raw material of magnesium hydroxide, basic or neutral magnesium carbonate, and aluminum hydroxide is used, and the remainder of the magnesium source or aluminum source is a soluble magnesium salt or aluminum salt, is 120 ° C. Obtained by hydrothermal reaction at 300 ° C. or lower,
A strong base titrant of 0.1 to 10 mol / L in a suspension obtained by adding the hydrated metal compound to a concentration of 0.05 to 2 wt% in an acidic aqueous solution prepared at a specified concentration of 0.001 to 0.1 mol / L. When the pH of the suspension was subjected to potentiometric titration with a glass electrode, the hydroxide ion consumption required from the pH = 7 to the inflection point of pH = 10.3 was the hydrotalcite hydrated metal. It is characterized by being 2 mmol or less per 1 g of compound.
Mg 1-x Al x (OH) 2 (CO3) x / 2 + δ · mH 2 O (0 <x <0.5, δ is a non-stoichiometric parameter, 0 <m <2) (1)
The strong base titrant is preferably at least one member of the group consisting of sodium hydroxide, potassium hydroxide and ammonia or an alkyl derivative of ammonia.
[0007]
The alkylene oxide addition reaction catalyst of the present invention is a hydrotalcite-based hydrated metal compound represented by the formula (1), and the hydration is carried out in an acidic aqueous solution prepared at a specified concentration of 0.001 to 0.1 mol / L. When a metal compound was added to a suspension with a concentration of 0.05 to 2 wt%, a strong base titrant of 0.1 to 10 mol / L was dropped, and the pH of the suspension was subjected to potentiometric titration with a glass electrode. It is obtained by calcining at 400 to 800 ° C. that the hydroxide ion consumption required from pH = 7 to the inflection point of pH = 10.3 is 2 mmol or less per 1 g of hydrotalcite-based hydrated metal compound It is what is represented by Formula (2).
Mg 1-x Al x (OH) 2 (CO3) x / 2 + δ · mH 2 O (0 <x <0.5, δ is a non-stoichiometric parameter, 0 <m <2) (1)
Mg 1-x Al xx / 2 O (2 + x) / 2 (However, 0 <x <0.5, □ indicates cation vacancies) (2)
The strong base titrant is preferably at least one member of the group consisting of sodium hydroxide, potassium hydroxide and ammonia or an alkyl derivative of ammonia.
This alkylene oxide addition reaction catalyst is effective, for example, as an addition reaction catalyst for alkylene oxides to higher alcohols .
[0008]
The hydrotalcite-based hydrated metal compound of the present invention uses, for example, at least one solid source of magnesium hydroxide, basic or neutral magnesium carbonate, and aluminum hydroxide, and the remainder of the magnesium source or aluminum source is used. An aqueous slurry of a soluble magnesium salt or aluminum salt is produced by hydrothermal reaction at 120 ° C. or more and 300 ° C. or less.
[0009]
In the method for evaluating an addition reaction catalyst for alkylene oxide according to the present invention, the hydrotalcite-based hydrated metal compound before firing is adjusted to a concentration of 0.05 to 2 wt% in an acidic aqueous solution prepared at a specified concentration of 0.001 to 0.1 mol / L. To the added suspension, 0.1-10 mol / L strong base titrant was dropped, and the pH of the suspension was measured with a glass electrode to perform potentiometric titration.
When the hydroxide ion consumption required from the pH = 7 to the inflection point of pH = 10.3 is 2 mmol or less per 1 g of hydrotalcite-based hydrated metal compound, the reaction rate and reaction selectivity are good, It is assumed that the reaction rate and reaction selectivity are poor when the hydroxide ion consumption exceeds 2 mmol.
(However, the hydrotalcite hydrated metal compound is represented by the formula (1), the alkylene oxide addition reaction catalyst is calcined at 400 to 800 ° C. and represented by the formula (2), and the catalyst is a higher alcohol. It is a catalyst for addition reaction of alkylene oxide to
The strong base titrant is preferably at least one member of the group consisting of sodium hydroxide, potassium hydroxide and ammonia or an alkyl derivative of ammonia.
Mg 1-x Al x (OH) 2 (CO3) x / 2 + δ · mH 2 O (0 <x <0.5, δ is a non-stoichiometric parameter, 0 <m <2) (1)
Mg 1-x Al xx / 2 O (2 + x) / 2 (However, 0 <x <0.5, □ indicates cation vacancies) (2)
[0010]
[Effects of the invention]
As illustrated in FIGS. 4 and 5, the catalytic performance of an alkylene oxide addition reaction catalyst can be evaluated by potentiometric titration of a precursor hydrotalcite-based hydrated metal compound. In other words, good catalytic performance is obtained if the hydroxide ion consumption measured under the specified conditions is less than 2 mmol / [g hydrotalcite hydrated metal compound] by potentiometric titration of the hydrotalcite hydrated metal compound. When the hydroxide ion consumption exceeds 2 mmol / [g hydrotalcite-based hydrated metal compound], good catalytic performance cannot be obtained. Thus, the property of the hydrotalcite-based hydrated metal compound is the consumption of hydroxide ions measured under the conditions according to claim 1 when viewed from the side of the alkylene oxide addition reaction catalyst, which is its main use. It varies depending on whether the amount is 2 mmol / [g hydrotalcite-based hydrated metal compound] or less. When the hydrotalcite-based hydrated metal compound of the present invention is used, for example, as an addition reaction catalyst for alkylene oxide, an excellent reaction rate and reaction selectivity can be obtained.
[0011]
In order to convert the hydrotalcite-based hydrated metal compound of the present invention into an alkylene oxide addition reaction catalyst, for example, it may be fired at 400 to 800 ° C., and the firing atmosphere is preferably in an inert atmosphere or in a vacuum. By calcining at 400 to 800 ° C., the hydrotalcite-based hydrated metal compound is dehydrated and decarboxylated while maintaining a layered structure, and becomes an addition reaction catalyst for alkylene oxide. When this catalyst is used, high reaction rate and high Reaction selectivity is obtained.
[0012]
In the method for evaluating an addition reaction catalyst for alkylene oxide of the present invention, the potential as an addition reaction catalyst for alkylene oxide can be predicted by potentiometric titration of the hydrotalcite-based hydrated metal compound before firing under predetermined conditions. It is effective for quality control and evaluation during the production of an alkylene oxide addition reaction catalyst.
[0013]
【Example】
[0014]
[Preparation of hydrotalcite hydrated metal compound and addition reaction catalyst]
Hereinafter, as Examples 1 to 7, preparation of a hydrotalcite-based hydrated metal compound and an addition reaction catalyst of an alkylene oxide obtained by firing the obtained hydrotalcite-based hydrated metal compound are shown. The hydrotalcite-based hydrated metal compound is prepared by a hydrothermal reaction, and a solid raw material that is moderately soluble at the reaction temperature in the raw material magnesium source and aluminum source is used. Preferably, both the magnesium source and the aluminum source are moderately soluble solid raw materials, but only one may be added as a solid raw material and the other as a soluble salt. As Comparative Examples 1 to 4, examples in which the hydrothermal reaction temperature is the same and both the magnesium source and the aluminum source are soluble salts are shown.
[0015]
[Example 1]
Magnesium hydroxide [Mg (OH) 2 ] powder 56 g, basic magnesium carbonate [Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O] powder 60 g, and aluminum hydroxide [Al (OH) 3 ] powder 54 g Was added to pure water to prepare 1.5 L of a mixed slurry (Mg / Al charged molar ratio: 2.3, CO 2 / Al charged molar ratio: 0.75). This was charged into a 2 L autoclave, heated to 180 ° C., and subjected to a hydrothermal reaction for 5 hours while stirring. After completion of the reaction, the slurry was cooled to room temperature, suction filtered and washed with water, dried at 120 ° C. for 24 hours, and then pulverized to obtain a hydrotalcite-based hydrated metal compound (A-1). The hydrotalcite calcined metal oxide catalyst (B-1) was obtained by calcining the obtained hydrotalcite-based hydrated metal compound at 500 ° C. for 3 hours in a nitrogen atmosphere.
[0016]
When the hydrothermal reaction temperature is set to 100 ° C., a solid unreacted residue remains. As will be described later, no solid residue is generated at a hydrothermal reaction temperature of 120 ° C. Since the conversion was successful, the hydrothermal reaction temperature is preferably 120 ° C. or higher. When the hydrothermal reaction temperature exceeds 300 ° C., the hydrothermal reaction temperature is preferably 120 ° C. to 300 ° C., particularly preferably 120 to 250 ° C., considering that the pressure during the reaction becomes too high.
[0017]
The added magnesium hydroxide, basic magnesium carbonate, or aluminum hydroxide may have slightly different compositions due to variations in the ratio of water of crystallization, carbonate groups and hydroxyl groups, but this is not important. Absent. Further, the composition of magnesium hydroxide, basic magnesium carbonate, or aluminum hydroxide may be substituted with, for example, a metal component, hydroxyl group, or carbonate group in a proportion of 10 mol% or less. Hydrothermal reaction in the autoclave is based on hydrotalcite-based water in which magnesium source (magnesium hydroxide, basic magnesium carbonate, neutral magnesium carbonate) and aluminum source (aluminum hydroxide) are gradually eluted by hydrothermal reaction. It is thought that it converts to a Japanese metal compound.
[0018]
The hydrothermal reaction time in the autoclave is preferably about 1 to 24 hours, and the slurry concentration is in the range of about 1/5 to 5 times the above concentration (1.5 mol / L in terms of hydrotalcite hydrated metal compound). And may be changed in the range of about 1/3 to 3 times. As will be described later, in order to obtain a desired hydrotalcite-based hydrated metal compound, it is necessary to use at least one kind of solid raw material with respect to the magnesium source and the aluminum source. Or, it is preferable that the magnesium source is almost (90 mol% or more) of the whole solid. Although specific results are not shown, when magnesite (MgCO 3 ) was used as the magnesium source, a solid residue remained during the hydrothermal reaction, and even when boehmite (AlOOH) was used as the aluminum source, a solid residue remained. This is probably because magnesite and boehmite are stable under hydrothermal conditions and have low solubility.
[0019]
The firing temperature is 400 to 800 ° C., for example, and the firing atmosphere may be in an inert atmosphere such as Ar (excluding in CO 2 ) or in vacuum in addition to nitrogen, or in a layered form of a hydrotalcite-based hydrated metal compound Any atmosphere may be used as long as it can be dehydrated and decarboxylated without destroying the structure and converted into an addition reaction catalyst for alkylene oxide. This catalyst is a solid solution of rock salt type magnesium oxide and aluminum oxide. Further, if the firing temperature exceeds 800 ° C., conversion to spinel or the like occurs, so the firing temperature is set to 400 to 800 ° C.
[0020]
[Example 2]
Magnesium hydroxide powder 66g, neutral magnesium carbonate [MgCO 3 · 3H 2 O powder 56g, and aluminum hydroxide powder 60g were used as solid raw materials (Mg / Al charged molar ratio: 2.0, CO 2 / Al charged molar ratio: 0.53), and hydrothermal reaction was carried out at 180 ° C. for 5 hours in the same manner as in Example 1. Other reaction conditions were the same as in Example 1 to obtain a hydrotalcite-based hydrated metal compound (A-2) and a calcined metal oxide catalyst (B-2).
[0021]
[Example 3]
16 g of magnesium hydroxide powder, 95 g of basic magnesium carbonate powder and 59 g of aluminum hydroxide powder were used as solid raw materials (Mg / Al feed molar ratio: 1.7, CO 2 / Al feed molar ratio: 1.07). Except this, the same operation as in Example 1 was performed to obtain a hydrotalcite-based hydrated metal compound (A-3) and a calcined metal oxide catalyst (B-3).
[0022]
[Example 4]
The hydrotalcite-based hydrated metal compound (A-4) and the calcined metal oxide catalyst (B-4) were obtained in the same manner as in Example 1 except that the reaction temperature in the autoclave was 120 ° C. It was. Even under these conditions, the entire raw material was converted to a hydrotalcite-based hydrated metal compound.
[0023]
[Example 5]
The hydrotalcite-based hydrated metal compound (A-5) and the calcined metal oxide catalyst (B-5) were obtained in the same manner as in Example 1 except that the reaction temperature in the autoclave was 240 ° C. It was.
[0024]
[Example 6]
While stirring 54 g of aluminum hydroxide [Al (OH) 3 ] powder while stirring 1 L of a magnesium chloride solution having a concentration of 5.9 wt% in terms of MgO, the pH was kept at 10 with a 25 wt% sodium hydroxide solution. 880 mL of 5 wt% sodium carbonate solution was gradually added (Mg / Al feed molar ratio: 2.1, CO 2 / Al feed molar ratio: 0.60). 1.5 L of this slurry was subjected to the same operation as in Example 1 to obtain a hydrotalcite-based hydrated metal compound (A-6) and a calcined metal oxide catalyst (B-6).
[0025]
[Example 7]
While stirring 1 L of a 3.9 wt% aluminum chloride solution in terms of Al 2 O 3 , 83 g of magnesium hydroxide powder was added, and the pH was maintained at 10 with a 25 wt% sodium hydroxide solution. 980 mL of sodium solution was gradually added (Mg / Al charged molar ratio: 1.9, CO 2 / Al charged molar ratio: 0.60). 1.5 L of this slurry was subjected to the same operation as in Example 1 to obtain a hydrotalcite-based hydrated metal compound (A-7) and a calcined metal oxide catalyst (B-7).
[0026]
[Comparative Example 1]
While stirring 1 L of 5.9 wt% magnesium chloride solution in terms of MgO, 159 g of 20.0 wt% sodium aluminate in terms of Al 2 O 3 was added dropwise, and then adjusted to pH = 10 with 25 wt% sodium hydroxide solution. While maintaining, 700 mL of 5 wt% sodium carbonate solution was gradually added (Mg / Al feed molar ratio: 2.5, CO 2 / Al feed molar ratio: 0.53). The same operation as in Example 1 was performed on 1.5 L of the obtained white precipitation slurry to obtain a hydrotalcite-based hydrated metal compound (C-1) and a calcined metal oxide catalyst (D-1).
[0027]
[Comparative Example 2]
While stirring the magnesium chloride solution 1L of 5.4 wt% concentration in terms of MgO, a 20.0 wt% concentration of sodium aluminate in terms of Al 2 O 3 was added dropwise to 191 g, to pH = 10 with 25 wt% sodium hydroxide solution While maintaining, 1150 mL of 5 wt% sodium carbonate solution was gradually added (Mg / Al feed molar ratio: 1.9, CO 2 / Al feed molar ratio: 0.70). The same operation as in Example 1 was performed on the obtained white precipitation slurry (1.5 L) to obtain a hydrotalcite-based hydrated metal compound (C-2) and a calcined metal oxide catalyst (D-2).
[0028]
[Comparative Example 3]
While stirring 5.7 wt% concentration and Al 2 O 3 Magnesium chloride 3.5 wt% in terms of and aluminum chloride mixed solution 1L in terms of MgO, so as to keep the pH = 10 with 25 wt% sodium hydroxide solution, 5 wt% 1400 mL of sodium carbonate solution having a concentration was gradually added (Mg / Al feed molar ratio: 2.0, CO 2 / Al feed molar ratio: 0.98). The same operation as in Example 1 was performed on the obtained white precipitation slurry (1.5 L) to obtain a hydrotalcite-based hydrated metal compound (C-3) and a calcined metal oxide catalyst (D-3).
[0029]
[Comparative Example 4]
While stirring 1L of a mixed solution of magnesium chloride of 5.7wt% in terms of MgO and 3.5wt% of aluminum chloride in terms of Al2O3, keep the pH = 10 with a 25wt% sodium hydroxide solution and maintain a concentration of 5wt% 930 mL of sodium carbonate solution was gradually added (Mg / Al feed molar ratio: 2.0, CO2 / Al charged molar ratio: 0.65). Thereafter, the same operation as in Example 1 was performed except that 1.5 L of the obtained white precipitation slurry was stirred and cured at 40 ° C. for 5 hours to obtain a hydrotalcite-based hydrated metal compound (C-4) and a fired metal oxide. A catalyst (D-4) was obtained.
[0030]
The hydrotalcite-based hydrated metal compound powders (A-1 to A-7 and C-1 to C-4) prepared in Examples and Comparative Examples were measured by X-ray diffraction. The peak pattern of hydrotalcite [Mg 1-x Al x (OH) 2 (CO 3 ) x / 2 · mH 2 O] was confirmed for all samples, and almost all of the sample was converted to hydrotalcite-based hydrated metal compounds. It has been found.
[0031]
MgO, Al 2 O 3 and CO 2 contained in the hydrotalcite-based hydrated metal compound powders (A-1 to A-7 and C-1 to C-4) prepared in Examples and Comparative Examples Chemical analysis. The results are shown in Table 1. In the compositional formula (1) of the hydrotalcite-based hydrated metal compound, the carbonate radical content is approximately ½ of the Al content x.
[0032]
[Table 1]
Figure 0004585163
[0033]
[Evaluation of hydrotalcite-based hydrated metal compounds by potentiometric titration]
Hydrotalcite-based hydrated metal compound powders prepared in Examples and Comparative Examples (A-1 to A-7 and C-1 to C-4) 0.5 g each, nitric acid aqueous solution prepared to 0.015 mol / L 200 ml Was added and stirred for 10 minutes. After stirring, the pH of this suspension was measured with a glass electrode, and a 1 mol / L sodium hydroxide aqueous solution was added at a rate of 0.1 ml / min using an automatic titrator (AT-400 manufactured by Kyoto Electronics Industry Co., Ltd.). The solution was dropped until about 11 was obtained to obtain a titration curve. During the titration, the suspension was kept at 25 ° C. in a thermostatic bath and bubbled with nitrogen gas. The obtained titration curves are shown in FIGS.
[0034]
The above measurement conditions are the same in the potentiometric titration even if the specified concentration of the acidic aqueous solution is changed in the range of 0.001 to 0.1 mol / L. The concentration of the hydrotalcite-based hydrated metal compound in the acidic aqueous solution Even when the value is changed in the range of 0.05 to 2 wt%, the results of potentiometric titration are the same. In addition to sodium hydroxide, the strong base titrant may be an alkyl derivative of ammonia such as potassium hydroxide, ammonia or monomethyl to trimethyl. Even if the concentration of the strong base titrant is changed in the range of 0.1 to 10 mol / L, the influence on the result of potentiometric titration is small. And since the hydroxide ion consumption from pH = 7 is a problem, the effect of PH before the start of titration can be eliminated, and an inflection point appears in the titration curve at pH = 10.3, from pH = 7 to pH = 7 The hydroxide ion consumption up to 10.3 represents the surface properties of hydrotalcite hydrated metal compounds.
[0035]
From the obtained titration curve, read the drop amount of 1 mol / L sodium hydroxide solution at the inflection points of pH = 7 and pH = 10.3, respectively, and the hydroxide ion consumption required from pH = 7 to pH = 10.3 (mmol / 0.5g hydrotalcite) was calculated respectively. The results are shown in Table 2.
[0036]
[Table 2]
Figure 0004585163
[0037]
[Synthesis of alkylene oxide adducts]
As a compound containing active hydrogen in a 3 L autoclave, 188 g (1 mol) of lauryl alcohol and hydrotalcite calcined metal oxide catalysts prepared in Examples and Comparative Examples (B-1 to B-7 and D-1 to D-4) 1.88 g was charged, and after nitrogen substitution, the temperature was raised to 150 ° C. with stirring. After raising the temperature, 264 g (3 mol) of ethylene oxide was gradually introduced. When the pressure reduction was completed after 2 hours, the mixture was aged at the same temperature for 1 hour and reacted for a total of 3 hours. Thereafter, the mixture was cooled to room temperature, and the calcined metal oxide catalyst remaining in the crude product was separated by filtration to obtain a purified product. The distribution of the degree of addition polymerization of ethylene oxide was measured by gas chromatography, and the reaction rate and reaction selectivity were calculated from (Equation 3) and (Equation 4) below. The results are shown in Table 3.
Reaction rate (%) = (total stoichiometric amount--unreacted substance stoichiometric amount of ethylene oxide addition mole number 0) / (total stoichiometric amount) × 100 (Formula 3)
Reaction selectivity (%) = (reaction product stoichiometry where the number of moles of ethylene oxide added is n-1 to n + 1) / (total stoichiometry) x 100 (Formula 4)
Note that n represents the number of moles of added ethylene oxide charged per mole of lauryl alcohol, and is 3 here.
[0038]
[Table 3]
Figure 0004585163
[0039]
[Correlation between potentiometric titration data, reaction rate and reaction selectivity]
The correlation between the hydroxide ion consumption (mmol) from pH = 7 to pH = 10.3 determined from the potentiometric titration curve and the reaction rate and reaction selectivity in the ethylene oxide addition reaction is shown in FIG. 4 and FIG. 4 and 5 show that there is a good correlation, and it has been found that the catalyst performance can be easily evaluated by potentiometric titration. Also, as in the examples, using a solid powder consisting of magnesium hydroxide, basic magnesium carbonate, neutral magnesium carbonate, aluminum hydroxide as a starting material, hydrothermal synthesis at 120-300 ° C, the reaction rate and reaction It has been found that highly selective catalyst precursors can be obtained. And if this is baked at 400-800 degreeC, the catalyst with a high reaction rate and reaction selectivity will be obtained.
[0040]
In the examples, the hydrotalcite-based hydrated metal compound was used as a precursor for the addition reaction catalyst of alkylene oxide, but the use of the hydrotalcite-based hydrated metal compound is not limited thereto. For example, it can be used for processing polyvinyl chloride as an adsorbent for anions such as chloride ions. In the examples, a method for producing a hydrotalcite-based hydrated metal compound using a hydrothermal reaction was shown. However, a hydrotalcite-based hydrated metal compound suitable for a catalyst precursor was produced by hydrothermal synthesis. It is not limited to.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing a potentiometric titration curve with a hydrotalcite-based hydrated metal compound of an example. FIG. 2 is a characteristic diagram showing a potentiometric titration curve with a hydrotalcite-based hydrated metal compound of an example. 3] Characteristic diagram showing potentiometric titration curve with hydrotalcite-based hydrated metal compound of Example. Fig. 4 Consumption of hydroxide ion during potentiometric titration with hydrotalcite-based hydrated metal compound and lauryl alcohol. Fig. 5 shows the relationship between the reaction rate of addition reaction of ethylene oxide to ethylene and Fig. 5 Hydroxide consumption by potentiometric titration with hydrotalcite hydrated metal compound and addition reaction of ethylene oxide to lauryl alcohol Characteristic diagram showing the relationship with reaction selectivity

Claims (5)

式(1)で表されるハイドロタルサイト系水和金属化合物であって、
水酸化マグネシウム、塩基性または中性の炭酸マグネシウム、及び水酸化アルミニウムの少なくとも一種以上の固体原料を用い、マグネシウム源またはアルミニウム源の残部を可溶性のマグネシウム塩またはアルミニウム塩とした水性スラリーを、120℃以上300℃以下で水熱反応させることにより得られ、
規定濃度で0.001〜0.1mol/Lに調製した酸性水溶液中に、前記水和金属化合物を0.05〜2wt%の濃度になるように添加した懸濁液に、0.1〜10mol/Lの強塩基滴定剤を滴下して、懸濁液のpHをガラス電極で電位差滴定した際に、pH=7からpH=10.3の変曲点までに要した水酸化物イオン消費量が、ハイドロタルサイト系水和金属化合物1g当たり、2mmol以下であることを特徴とするハイドロタルサイト系水和金属化合物。
Mg1-xAlx(OH)2(CO3)x/2+δ・mH2O (0<x<0.5,δは非化学量論的パラメータ,0<m<2) (1)
A hydrotalcite-based hydrated metal compound represented by the formula (1),
An aqueous slurry in which at least one solid raw material of magnesium hydroxide, basic or neutral magnesium carbonate, and aluminum hydroxide is used, and the remainder of the magnesium source or aluminum source is a soluble magnesium salt or aluminum salt, is 120 ° C. Obtained by hydrothermal reaction at 300 ° C. or lower,
A strong base titrant of 0.1 to 10 mol / L in a suspension obtained by adding the hydrated metal compound to a concentration of 0.05 to 2 wt% in an acidic aqueous solution prepared at a specified concentration of 0.001 to 0.1 mol / L. When the pH of the suspension was subjected to potentiometric titration with a glass electrode, the hydroxide ion consumption required from the pH = 7 to the inflection point of pH = 10.3 was the hydrotalcite hydrated metal. A hydrotalcite-based hydrated metal compound, characterized in that the amount is 2 mmol or less per 1 g of compound.
Mg 1-x Al x (OH) 2 (CO3) x / 2 + δ · mH 2 O (0 <x <0.5, δ is a non-stoichiometric parameter, 0 <m <2) (1)
請求項1のハイドロタルサイト系水和金属化合物を、400〜800℃で焼成して得られた、式(2)で表されるアルキレンオキサイドの付加反応触媒。
Mg1-xAlxx/2O(2+x)/2 (ただし0<x<0.5で、□は陽イオン空孔を示す) (2)
The addition reaction catalyst of the alkylene oxide represented by Formula (2) obtained by baking the hydrotalcite-type hydrated metal compound of Claim 1 at 400-800 degreeC.
Mg 1-x Al xx / 2 O (2 + x) / 2 (However, 0 <x <0.5, □ indicates cation vacancies) (2)
水酸化マグネシウム、塩基性または中性の炭酸マグネシウム、及び水酸化アルミニウムの少なくとも一種以上の固体原料を用い、マグネシウム源またはアルミニウム源の残部を可溶性のマグネシウム塩またはアルミニウム塩とした水性スラリーを、
120℃以上300℃以下で水熱反応させて、請求項1の化合物とすることを特徴とする、ハイドロタルサイト系水和金属化合物の製造方法。
An aqueous slurry in which at least one solid source of magnesium hydroxide, basic or neutral magnesium carbonate, and aluminum hydroxide is used, and the remainder of the magnesium source or aluminum source is a soluble magnesium salt or aluminum salt,
A method for producing a hydrotalcite-based hydrated metal compound, wherein the hydrothermal reaction is carried out at 120 ° C to 300 ° C to obtain the compound of claim 1.
前記アルキレンオキサイドの付加反応触媒は、高級アルコールへのアルキレンオキサイドの付加反応触媒であることを特徴とする、請求項2のアルキレンオキサイドの付加反応触媒。3. The alkylene oxide addition reaction catalyst according to claim 2, wherein the alkylene oxide addition reaction catalyst is an alkylene oxide addition reaction catalyst to a higher alcohol . 規定濃度で0.001〜0.1mol/Lに調製した酸性水溶液中に、焼成前のハイドロタルサイト系水和金属化合物を0.05〜2wt%の濃度になるように添加した懸濁液に、0.1〜10mol/Lの強塩基滴定剤を滴下して、懸濁液のpHをガラス電極で測定して電位差滴定を行い、
pH=7からpH=10.3の変曲点までに要した水酸化物イオン消費量が、ハイドロタルサイト系水和金属化合物1g当たり、2mmmol以下である際に反応率及び反応選択性が良好とし、水酸化物イオン消費量が2mmmol超である際に反応率及び反応選択性が不良であるとする、アルキレンオキサイドの付加反応触媒の評価方法。
(ただしハイドロタルサイト系水和金属化合物は式(1)で表され、アルキレンオキサイドの付加反応触媒はこれを400〜800℃で焼成したもので式(2)で表され、該触媒は高級アルコールへのアルキレンオキサイドの付加反応触媒である)
Mg1-xAlx(OH)2(CO3)x/2+δ・mH2O (0<x<0.5,δは非化学量論的パラメータ,0<m<2) (1)
Mg1-xAlxx/2O(2+x)/2 (ただし0<x<0.5で、□は陽イオン空孔を示す) (2)
In a suspension obtained by adding a hydrotalcite-based hydrated metal compound before firing to a concentration of 0.05 to 2 wt% in an acidic aqueous solution prepared at a specified concentration of 0.001 to 0.1 mol / L, 0.1 to 10 mol / L L strong base titrant was dropped, and the pH of the suspension was measured with a glass electrode to perform potentiometric titration.
When the hydroxide ion consumption required from the pH = 7 to the inflection point of pH = 10.3 is 2 mmol or less per 1 g of hydrotalcite-based hydrated metal compound, the reaction rate and reaction selectivity are good, An evaluation method for an alkylene oxide addition reaction catalyst, wherein the reaction rate and reaction selectivity are poor when the hydroxide ion consumption is more than 2 mmol.
(However, the hydrotalcite hydrated metal compound is represented by the formula (1), the alkylene oxide addition reaction catalyst is calcined at 400 to 800 ° C. and represented by the formula (2), and the catalyst is a higher alcohol. It is a catalyst for addition reaction of alkylene oxide to
Mg 1-x Al x (OH) 2 (CO3) x / 2 + δ · mH 2 O (0 <x <0.5, δ is a non-stoichiometric parameter, 0 <m <2) (1)
Mg 1-x Al xx / 2 O (2 + x) / 2 (However, 0 <x <0.5, □ indicates cation vacancies) (2)
JP2002135531A 2002-05-10 2002-05-10 Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst Expired - Fee Related JP4585163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135531A JP4585163B2 (en) 2002-05-10 2002-05-10 Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135531A JP4585163B2 (en) 2002-05-10 2002-05-10 Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst

Publications (2)

Publication Number Publication Date
JP2003327426A JP2003327426A (en) 2003-11-19
JP4585163B2 true JP4585163B2 (en) 2010-11-24

Family

ID=29697833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135531A Expired - Fee Related JP4585163B2 (en) 2002-05-10 2002-05-10 Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst

Country Status (1)

Country Link
JP (1) JP4585163B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856452B2 (en) * 2006-03-09 2012-01-18 国立大学法人大阪大学 Catalyst for carbon-carbon bond generation reaction and method for generating carbon-carbon bond using the same
WO2008034835A1 (en) * 2006-09-21 2008-03-27 Akzo Nobel N.V. Process for preparing layered double hydroxide comprising carbonate
US20100123101A1 (en) * 2007-04-26 2010-05-20 Toagosei Co., Ltd., Hydrotalcite compound, process for producing same, inorganic ion scavenger, composition, and electronic component-sealing resin composition
JP5249105B2 (en) * 2009-03-27 2013-07-31 協和化学工業株式会社 New synthetic hydrotalcite particles
TWI555729B (en) * 2011-09-29 2016-11-01 中日合成化學股份有限公司 Method of producing fatty acid ester of polyoxyalkylene alkyl ether
US10875092B2 (en) * 2017-05-19 2020-12-29 Saudi Arabian Oil Company Methods for preparing mixed-metal oxide diamondoid nanocomposites and catalytic systems including the nanocomposites

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145223A (en) * 1978-02-17 1979-11-13 Anphar Sa Aluminium magnesium carbonate
JPS59182227A (en) * 1983-02-26 1984-10-17 ギウリ−ニ・ヒエミ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Crystalline basic aluminum magnesium carbonate, manufacture and antacid
JPS605021A (en) * 1983-06-21 1985-01-11 Tomita Seiyaku Kk Preparation of basic magnesium aluminum carbonate hydrate
JPS60231416A (en) * 1983-12-24 1985-11-18 バイエル・アクチエンゲゼルシヤフト Manufacture of hydrotalcite with improved properties
JPH06329410A (en) * 1993-05-21 1994-11-29 Asahi Denka Kogyo Kk Production of hydrotalcite
JP2000086234A (en) * 1998-09-17 2000-03-28 Agency Of Ind Science & Technol Production of spinel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462280B1 (en) * 1966-07-25 1971-01-20
JPS493760B1 (en) * 1970-07-31 1974-01-28

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145223A (en) * 1978-02-17 1979-11-13 Anphar Sa Aluminium magnesium carbonate
JPS59182227A (en) * 1983-02-26 1984-10-17 ギウリ−ニ・ヒエミ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Crystalline basic aluminum magnesium carbonate, manufacture and antacid
JPS605021A (en) * 1983-06-21 1985-01-11 Tomita Seiyaku Kk Preparation of basic magnesium aluminum carbonate hydrate
JPS60231416A (en) * 1983-12-24 1985-11-18 バイエル・アクチエンゲゼルシヤフト Manufacture of hydrotalcite with improved properties
JPH06329410A (en) * 1993-05-21 1994-11-29 Asahi Denka Kogyo Kk Production of hydrotalcite
JP2000086234A (en) * 1998-09-17 2000-03-28 Agency Of Ind Science & Technol Production of spinel

Also Published As

Publication number Publication date
JP2003327426A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP4057647B2 (en) Method for producing hydrotalcite and its metal oxide
US4816239A (en) Process for producing zirconium sols and gels, and process for producing zirconia using the same
US20090149324A1 (en) Low temperature water gas shift catalyst
JP2004531448A5 (en)
EP2492008A1 (en) Methanol synthesis catalyst
KR102471599B1 (en) How to make magnesium aluminate spinel
KR100683370B1 (en) PROCESS FOR PRODUCING Al-CONTAINING NON-Mg-ANIONIC CLAY
JP5202514B2 (en) Carbonate group-containing magnesium hydroxide particles and method for producing the same
JP4585163B2 (en) Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst
JP3440299B2 (en) Manufacturing method of transparent spinel sintered body
CZ316296A3 (en) Synthetic meixnerite product and process for preparing thereof
CA2152815C (en) Catalysts with fine-particle dispersion of the active component
JP2003026418A (en) Method of manufacturing hydrotalcite
JP4162130B2 (en) Quasicrystalline hydrated magnesium-aluminum hydroxycarboxylates, their preparation and their use
CN114945551B (en) Magnesium Glycine citrate co-salt
JP5025996B2 (en) Method for producing lithium aluminate and lithium aluminate
US9725361B2 (en) Method for the wet slaking of calcium and magnesium oxides from calcomagnesian compounds
WO2020217830A1 (en) Method for producing rare earth element-containing titanium hydroxide and titanium dioxide
CN111566050B (en) Hydrotalcite particles, method for producing same, and resin stabilizer and resin composition containing same
JP2000264626A (en) Production of calcium-aluminum-based layered double hydroxide
JP2981553B1 (en) Spinel manufacturing method
KR101934210B1 (en) Process for Preparing a Hydrotalcite-like Compound by a Sol-gel Method Based on an Epoxide and a Hydrotalcite-like Compound Prepared Thereby
JPS593020A (en) Novel alumina powder and its manufacture
JP3690876B2 (en) Method for synthesizing lithium aluminum composite hydroxide
WO2024029584A1 (en) Composite oxide, catalyst for methanol production, and composite oxide production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees