JP2003327426A - Hydrotalcite based hydrated metallic compound, production method thereof, catalyst for additional reaction of alkylene oxide obtained by firing the compound and method of evaluating the catalyst - Google Patents

Hydrotalcite based hydrated metallic compound, production method thereof, catalyst for additional reaction of alkylene oxide obtained by firing the compound and method of evaluating the catalyst

Info

Publication number
JP2003327426A
JP2003327426A JP2002135531A JP2002135531A JP2003327426A JP 2003327426 A JP2003327426 A JP 2003327426A JP 2002135531 A JP2002135531 A JP 2002135531A JP 2002135531 A JP2002135531 A JP 2002135531A JP 2003327426 A JP2003327426 A JP 2003327426A
Authority
JP
Japan
Prior art keywords
hydrotalcite
catalyst
metal compound
hydrated metal
alkylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002135531A
Other languages
Japanese (ja)
Other versions
JP4585163B2 (en
Inventor
Seiji Matsui
誠二 松井
Isao Tasato
伊佐雄 田里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2002135531A priority Critical patent/JP4585163B2/en
Publication of JP2003327426A publication Critical patent/JP2003327426A/en
Application granted granted Critical
Publication of JP4585163B2 publication Critical patent/JP4585163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a catalyst which is excellent in a reaction rate and reaction selectivity in the additional reaction of alkylene oxide. <P>SOLUTION: Magnesium hydroxide or basic or neutral magnesium carbonate as a magnesium source and aluminum hydroxide as an aluminum source are brought into hydrothermal reaction at 120 to 300°C to obtain a hydrotalcite based hydrated metallic compound. The obtained hydrotalcite based hydrated metallic compound is fired at 400 to 800°C into a catalyst for the additional reaction of alkylene oxide to an active hydrogen atom-containing compound. Further, a storing base titration agent of 0.1 to 10 mol/L is dropped to a suspension obtained by adding a hydrotalcite based hydrated metallic compound to an acid aqueous solution prepared to a standard concentration of 0.001 to 0.1 mol/L so that the concentration of 0.05 to 2 wt.% can be obtained, and the pH of the suspension is measured by potentiometric titration with a glass electrode. In this case, the performance of the catalyst is evaluated from the consumption of hydroxide ions required to an inflection point of pH=10.3 from pH=7. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明は、アルキレンオキサイド
の付加反応触媒の前駆体などに用いられるハイドロタル
サイト系水和金属化合物と、その製造方法、及びこの化
合物を焼成したアルキレンオキサイドの付加反応触媒、
並びにこの触媒の性能評価方法に関する。
FIELD OF THE INVENTION The present invention relates to a hydrotalcite-based hydrated metal compound used as a precursor of an alkylene oxide addition reaction catalyst, a method for producing the same, and an alkylene oxide addition reaction catalyst obtained by firing the compound.
And a method for evaluating the performance of this catalyst.

【0002】[0002]

【従来の技術】ハイドロタルサイト系水和金属化合物を
焼成して脱水すると、アルキレンオキサイドの付加反応
触媒が得られる。この触媒は高級アルコールなどへのア
ルキレンオキサイドの付加反応触媒などに用いられる。
2. Description of the Related Art When a hydrotalcite-based hydrated metal compound is calcined and dehydrated, an alkylene oxide addition reaction catalyst is obtained. This catalyst is used as an addition reaction catalyst of alkylene oxide to higher alcohols.

【0003】ハイドロタルサイト系水和金属化合物を出
発材料とするアルキレンオキサイドの付加反応触媒の製
造方法は、特開平20001−212272号や特開平
20001−38212号などで提案されている。しか
し、この触媒の前駆体であるハイドロタルサイト系水和
金属化合物の表面性状と、触媒活性との関係を検討した
ものは知られていない。
A method for producing an alkylene oxide addition reaction catalyst using a hydrotalcite-based hydrated metal compound as a starting material has been proposed in Japanese Patent Laid-Open Nos. 2000-112272 and 20001-38212. However, there is no known study of the relationship between the surface properties of the hydrotalcite-based hydrated metal compound that is the precursor of this catalyst and the catalytic activity.

【0004】[0004]

【発明の課題】発明者は、前駆体のハイドロタルサイト
系水和金属化合物を電位差滴定した際の結果により、こ
の前駆体を焼成したアルキレンオキサイドの付加反応触
媒の性能を評価できることを見出した。また前記の電位
差滴定で優れた結果を示し、従ってアルキレンオキサイ
ドの付加反応触媒の前駆体として優れた、ハイドロタル
サイト系水和金属化合物の製造方法を見出した。そして
発明者は、このハイドロタルサイト系水和金属化合物か
らの触媒の製造方法を開発した。この触媒の性能はハイ
ドロタルサイト系水和金属化合物の電位差滴定で評価で
き、発明者は触媒性能の評価方法も開発した。
DISCLOSURE OF THE INVENTION The inventor has found that the performance of an alkylene oxide addition reaction catalyst obtained by calcining a precursor hydrotalcite-based hydrated metal compound can be evaluated by potentiometric titration. Further, the inventors have found a method for producing a hydrotalcite-based hydrated metal compound which shows excellent results by the above-mentioned potentiometric titration and is therefore excellent as a precursor of an alkylene oxide addition reaction catalyst. Then, the inventor has developed a method for producing a catalyst from this hydrotalcite-based hydrated metal compound. The performance of this catalyst can be evaluated by potentiometric titration of a hydrotalcite-based hydrated metal compound, and the inventor has also developed a method for evaluating the catalyst performance.

【0005】以上のように、この発明の課題は、新規な
ハイドロタルサイト系水和金属化合物とその製造方法、
及び前記水和金属化合物を前駆体とするアルキレンオキ
サイドの付加反応触媒、並びにこの触媒の評価方法を提
供することにある。
As described above, the object of the present invention is to provide a novel hydrotalcite-based hydrated metal compound and a method for producing the same.
And an alkylene oxide addition reaction catalyst using the hydrated metal compound as a precursor, and a method for evaluating the catalyst.

【0006】[0006]

【発明の構成】この発明のハイドロタルサイト系水和金
属化合物は、式(1)で表され、規定濃度で0.001〜0.1mo
l/Lに調製した酸性水溶液中に、前記水和金属化合物を
0.05〜2wt%の濃度になるように添加した懸濁液に、0.1
〜10mol/Lの強塩基滴定剤を滴下して、懸濁液のpHをガ
ラス電極で電位差滴定した際に、pH=7からpH=10.3の変
曲点までに要した水酸化物イオン消費量が、ハイドロタ
ルサイト系水和金属化合物1g当たり、2mmol以下である
ことを特徴とする。 Mg1-xAlx(OH)2(CO3)x/2・mH2O (0<x<0.5,0<m<2) (1) なお強塩基滴定剤は、水酸化ナトリウム、水酸化カリウ
ム及びアンモニアやアンモニアのアルキル誘導体からな
る群の少なくとも1種が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrotalcite-based hydrated metal compound of the present invention is represented by the formula (1) and has a specified concentration of 0.001 to 0.1 mol.
The hydrated metal compound was added to an acidic aqueous solution adjusted to 1 / L.
To the suspension added to a concentration of 0.05-2 wt%, 0.1
Hydroxide ion consumption required from pH = 7 to the inflection point of pH = 10.3 when potentiometric titration of the suspension pH with a glass electrode was performed by dropping ~ 10mol / L strong base titrant. Is 2 mmol or less per 1 g of the hydrotalcite-based hydrated metal compound. Mg 1-x Al x (OH) 2 (CO 3 ) x / 2・ mH 2 O (0 <x <0.5, 0 <m <2) (1) Strong base titrants include sodium hydroxide and hydroxide. At least one member selected from the group consisting of potassium and ammonia and alkyl derivatives of ammonia is preferable.

【0007】またこの発明のアルキレンオキサイドの付
加反応触媒は、式(1)で表されるハイドロタルサイト系
水和金属化合物で、規定濃度で0.001〜0.1mol/Lに調製
した酸性水溶液中に、前記水和金属化合物を0.05〜2wt%
の濃度になるように添加した懸濁液に、0.1〜10mol/Lの
強塩基滴定剤を滴下して、懸濁液のpHをガラス電極で電
位差滴定した際に、pH=7からpH=10.3の変曲点までに要
した水酸化物イオン消費量が、ハイドロタルサイト系水
和金属化合物1g当たり2mmol以下であるものを、400〜80
0℃で焼成して得られるもので、式(2)で表されるもの
である。 Mg1-xAlx(OH)2(CO3)x/2・mH2O (0<x<0.5,0<m<2) (1) Mg1-xAlxx/2O(2+x)/2 (ただし0<x<0.5で、□は陽イオン空孔を示す) (2) なお強塩基滴定剤は、水酸化ナトリウム、水酸化カリウ
ム及びアンモニアやアンモニアのアルキル誘導体からな
る群の少なくとも1種が好ましい。このアルキレンオキ
サイドの付加反応触媒は、例えば高級アルコール等の活
性水素原子含有化合物への、アルキレンオキサイドの付
加反応触媒として有効である。
The alkylene oxide addition reaction catalyst of the present invention is a hydrotalcite-based hydrated metal compound represented by the formula (1) in an acidic aqueous solution prepared at a specified concentration of 0.001 to 0.1 mol / L, 0.05 to 2 wt% of the hydrated metal compound
To the suspension added so as to have a concentration of 0.1 to 10 mol / L of a strong base titrant, when the pH of the suspension was potentiometrically titrated with a glass electrode, pH = 7 to pH = 10.3. The hydroxide ion consumption required up to the inflection point of is less than 2 mmol per 1 g of hydrotalcite-based hydrated metal compound, 400-80
It is obtained by firing at 0 ° C. and is represented by the formula (2). Mg 1-x Al x (OH) 2 (CO 3 ) x / 2・ mH 2 O (0 <x <0.5, 0 <m <2) (1) Mg 1-x Al xx / 2 O (2 + x) / 2 (where 0 <x <0.5, □ indicates a cation vacancy) (2) The strong base titrant is a group consisting of sodium hydroxide, potassium hydroxide and ammonia or an alkyl derivative of ammonia. At least one of is preferable. This alkylene oxide addition reaction catalyst is effective as an alkylene oxide addition reaction catalyst to an active hydrogen atom-containing compound such as a higher alcohol.

【0008】この発明のハイドロタルサイト系水和金属
化合物は、例えば、水酸化マグネシウム、塩基性または
中性の炭酸マグネシウム、及び水酸化アルミニウムの少
なくとも一種以上の固体原料を用い、残部のマグネシウ
ム源またはアルミニウム源を可溶性のマグネシウム塩ま
たはアルミニウム塩とした水性スラリーを、120℃以上3
00℃以下で水熱反応させて製造される。
The hydrotalcite-based hydrated metal compound of the present invention uses, for example, at least one solid raw material of magnesium hydroxide, basic or neutral magnesium carbonate, and aluminum hydroxide, and the balance magnesium source or Aqueous slurry containing soluble magnesium salt or aluminum salt as the aluminum source, 120 ℃ or more 3
It is manufactured by hydrothermal reaction at 00 ° C or lower.

【0009】この発明のアルキレンオキサイドの付加反
応触媒の評価方法では、焼成前のハイドロタルサイト系
水和金属化合物を、規定濃度で0.001〜0.1mol/Lに調製
した酸性水溶液中に0.05〜2wt%の濃度になるように添加
した懸濁液に、0.1〜10mol/Lの強塩基滴定剤を滴下し
て、懸濁液のpHをガラス電極で測定して電位差滴定を行
い、pH=7からpH=10.3の変曲点までに要した水酸化物イ
オン消費量が、ハイドロタルサイト系水和金属化合物1g
当たり、2mmmol以下である際に反応率及び反応選択性が
良好とし、水酸化物イオン消費量が2mmmol超である際に
反応率及び反応選択性が不良であるとする。(ただしハ
イドロタルサイト系水和金属化合物は式(1)で表され、
アルキレンオキサイドの付加反応触媒はこれを400〜800
℃で焼成したもので式(2)で表され、該触媒は活性水素
原子含有化合物へのアルキレンオキサイドの付加反応触
媒である)なお強塩基滴定剤は、水酸化ナトリウム、水
酸化カリウム及びアンモニアやアンモニアのアルキル誘
導体からなる群の少なくとも1種が好ましい。 Mg1-xAlx(OH)2(CO3)x/2・mH2O (0<x<0.5,0<m<2) (1) Mg1-xAlxx/2O(2+x)/2 (ただし0<x<0.5で、□は陽イオン空孔を示す) (2)
In the method for evaluating the addition reaction catalyst of alkylene oxide of the present invention, the hydrotalcite-based hydrated metal compound before calcination is added to an acidic aqueous solution prepared to a prescribed concentration of 0.001 to 0.1 mol / L in an amount of 0.05 to 2 wt%. To the suspension added to the concentration of 0.1 to 10 mol / L of a strong base titrant, the pH of the suspension is measured with a glass electrode and potentiometric titration is performed. Hydroxide ion consumption up to the inflection point of = 10.3 is 1 g of hydrotalcite-based hydrated metal compound
Therefore, when it is 2 mmol or less, the reaction rate and the reaction selectivity are good, and when the hydroxide ion consumption is more than 2 mmol, the reaction rate and the reaction selectivity are poor. (However, the hydrotalcite-based hydrated metal compound is represented by the formula (1),
The alkylene oxide addition reaction catalyst is 400-800
It is calcined at ° C and is represented by the formula (2), and the catalyst is a catalyst for the addition reaction of alkylene oxide to an active hydrogen atom-containing compound. The strong base titrators include sodium hydroxide, potassium hydroxide and ammonia. At least one member selected from the group consisting of alkyl derivatives of ammonia is preferable. Mg 1-x Al x (OH) 2 (CO 3 ) x / 2・ mH 2 O (0 <x <0.5, 0 <m <2) (1) Mg 1-x Al xx / 2 O (2 + x) / 2 (where 0 <x <0.5, □ indicates cation vacancies) (2)

【0010】[0010]

【発明の作用効果】図4,図5に例示するように、アル
キレンオキサイドの付加反応触媒の触媒性能は、前駆体
のハイドロタルサイト系水和金属化合物の電位差滴定に
より評価することができる。言い換えると、ハイドロタ
ルサイト系水和金属化合物の電位差滴定で、所定の条件
で測定した水酸化物イオン消費量が2mmol/[gハイドロ
タルサイト系水和金属化合物]以下であれば良好な触媒
性能が得られ、水酸化物イオン消費量が2mmol/[gハイ
ドロタルサイト系水和金属化合物]を越えると、良好な
触媒性能が得られない。このようにハイドロタルサイト
系水和金属化合物の性質は、その主な用途であるアルキ
レンオキサイドの付加反応触媒の側から見た場合に、請
求項1に記載の条件で測定した水酸化物イオン消費量が
2mmol/[gハイドロタルサイト系水和金属化合物]以下
かどうかで変化する。そしてこの発明のハイドロタルサ
イト系水和金属化合物は、例えばアルキレンオキサイド
の付加反応触媒に用いた場合に、優れた反応率と反応選
択性とが得られる。
As shown in FIGS. 4 and 5, the catalytic performance of the alkylene oxide addition reaction catalyst can be evaluated by potentiometric titration of the precursor hydrotalcite-based hydrated metal compound. In other words, if the hydroxide ion consumption measured under the predetermined conditions by the potentiometric titration of the hydrotalcite-based hydrated metal compound is 2 mmol / [g hydrotalcite-based hydrated metal compound] or less, good catalytic performance is obtained. When the hydroxide ion consumption exceeds 2 mmol / [g hydrotalcite-based hydrated metal compound], good catalytic performance cannot be obtained. As described above, the properties of the hydrotalcite-based hydrated metal compound are hydroxide ion consumption measured under the conditions of claim 1 when viewed from the side of the alkylene oxide addition reaction catalyst, which is the main use thereof. Quantity
2 mmol / [g hydrotalcite-based hydrated metal compound] Varies depending on whether it is less than or equal to The hydrotalcite-based hydrated metal compound of the present invention provides excellent reaction rate and reaction selectivity when used as, for example, an alkylene oxide addition reaction catalyst.

【0011】この発明のハイドロタルサイト系水和金属
化合物をアルキレンオキサイドの付加反応触媒に転化す
るには、例えば400〜800℃で焼成すればよく、焼成雰囲
気は不活性雰囲気中や真空中などが好ましい。400〜800
℃での焼成により、ハイドロタルサイト系水和金属化合
物は層状の構造を保ったまま脱水かつ脱炭酸されて、ア
ルキレンオキサイドの付加反応触媒となり、この触媒を
用いると高い反応率や高い反応選択性が得られる。
In order to convert the hydrotalcite-based hydrated metal compound of the present invention into an addition reaction catalyst of alkylene oxide, it may be calcined, for example, at 400 to 800 ° C. The calcining atmosphere may be an inert atmosphere or a vacuum. preferable. 400-800
By calcining at ℃, the hydrotalcite-based hydrated metal compound is dehydrated and decarboxylated while maintaining the layered structure, and becomes an alkylene oxide addition reaction catalyst. Using this catalyst, high reaction rate and high reaction selectivity can be obtained. Is obtained.

【0012】この発明のアルキレンオキサイドの付加反
応触媒の評価方法では、焼成前のハイドロタルサイト系
水和金属化合物を所定の条件で電位差滴定することによ
り、アルキレンオキサイドの付加反応触媒としての性能
を予測できるので、アルキレンオキサイドの付加反応触
媒の製造時の品質管理や評価などに有効である。
In the method for evaluating an alkylene oxide addition reaction catalyst of the present invention, the hydrotalcite-based hydrated metal compound before firing is subjected to potentiometric titration under predetermined conditions to predict the performance of the alkylene oxide addition reaction catalyst. Therefore, it is effective for quality control and evaluation during the production of the alkylene oxide addition reaction catalyst.

【0013】[0013]

【実施例】【Example】

【0014】[0014]

【ハイドロタルサイト系水和金属化合物と付加反応触媒
の調製】以下に、実施例1〜実施例7として、ハイドロ
タルサイト系水和金属化合物の調製と、得られたハイド
ロタルサイト系水和金属化合物を焼成したアルキレンオ
キサイドの付加反応触媒とを示す。ハイドロタルサイト
系水和金属化合物は水熱反応で調製し、原材料のマグネ
シウム源及びアルミニウム源に反応温度で適度の可溶性
のある固体原料を用いる。好ましくはマグネシウム源と
アルミニウム源の双方を適度の可溶性のある固体原料と
するが、一方のみを固体原料とし、他方を可溶性の塩と
して加えてもよい。比較例1〜4として、水熱反応温度
を同じにして、マグネシウム源とアルミニウム源の双方
を可溶性塩とした例を示す。
[Preparation of hydrotalcite-based hydrated metal compound and addition reaction catalyst] Preparation of hydrotalcite-based hydrated metal compounds and the obtained hydrotalcite-based hydrated metal will be described below as Examples 1 to 7. The alkylene oxide addition reaction catalyst obtained by firing the compound is shown. The hydrotalcite-based hydrated metal compound is prepared by a hydrothermal reaction, and a solid raw material that is moderately soluble at the reaction temperature is used as the raw material magnesium source and aluminum source. Both the magnesium source and the aluminum source are preferably solid raw materials having appropriate solubility, but only one may be added as a solid raw material and the other may be added as a soluble salt. As Comparative Examples 1 to 4, examples in which the hydrothermal reaction temperature is the same and both the magnesium source and the aluminum source are soluble salts are shown.

【0015】[0015]

【実施例1】水酸化マグネシウム[Mg(OH)2]粉末56g、塩
基性炭酸マグネシウム[Mg5(CO3)4(OH)2・4H2O]粉末60
g、及び水酸化アルミニウム[Al(OH)3]粉末54gを純水に
添加して、混合スラリー1.5Lを調製した(Mg/Al仕込モル
比:2.3、CO2/Al仕込モル比:0.75)。これを2Lオートク
レーブに仕込み、180℃まで昇温し、攪拌しながら、5時
間水熱反応を行った。反応終了後、スラリーを室温まで
冷却し、吸引濾過および水洗を行い、120℃で24時間乾
燥後、粉砕してハイドロタルサイト系水和金属化合物(A
-1)を得た。また、ハイドロタルサイト焼成金属酸化物
触媒(B-1)は、得られたハイドロタルサイト系水和金属
化合物を窒素雰囲気下、500℃で3時間焼成することによ
り得た。
EXAMPLE 1 Magnesium hydroxide [Mg (OH) 2] powder 56 g, basic magnesium carbonate [Mg 5 (CO 3) 4 (OH) 2 · 4H 2 O] powder 60
and 54 g of aluminum hydroxide [Al (OH) 3 ] powder were added to pure water to prepare a mixed slurry of 1.5 L (Mg / Al charging molar ratio: 2.3, CO 2 / Al charging molar ratio: 0.75) . This was placed in a 2 L autoclave, heated to 180 ° C., and hydrothermally reacted for 5 hours while stirring. After completion of the reaction, the slurry is cooled to room temperature, suction filtered and washed with water, dried at 120 ° C. for 24 hours, and then pulverized to obtain a hydrotalcite-based hydrated metal compound (A
-1) was obtained. The hydrotalcite-calcined metal oxide catalyst (B-1) was obtained by calcining the obtained hydrotalcite-based hydrated metal compound at 500 ° C. for 3 hours in a nitrogen atmosphere.

【0016】なお水熱反応温度を100℃にすると固体
の未反応残査が残り、後述のように水熱反応温度120
℃では固体残査が生じず、投入原料を全量ハイドロタル
サイト系水和金属化合物に転化できたので、水熱反応温
度は120℃以上が好ましい。また水熱反応温度が30
0℃を越えると、反応時の圧力が高くなりすぎることを
考慮して、水熱反応温度は120℃〜300℃が好まし
く、特に好ましくは120〜250℃とする。
When the hydrothermal reaction temperature is set to 100 ° C., a solid unreacted residue remains, and the hydrothermal reaction temperature of 120
A solid residue does not occur at 0 ° C., and the entire amount of the input raw material can be converted to the hydrotalcite-based hydrated metal compound. Therefore, the hydrothermal reaction temperature is preferably 120 ° C. or higher. The hydrothermal reaction temperature is 30
When the temperature exceeds 0 ° C., the hydrothermal reaction temperature is preferably 120 ° C. to 300 ° C., particularly preferably 120 ° C. to 250 ° C., considering that the pressure during the reaction becomes too high.

【0017】投入した水酸化マグネシウムや塩基性炭酸
マグネシウム、あるいは水酸化アルミニウムでは、結晶
水や炭酸基と水酸基との比のばらつき等のために、微妙
に組成が異なることがあるが、そのこと自体は重要では
ない。また水酸化マグネシウムや塩基性炭酸マグネシウ
ム、あるいは水酸化アルミニウムの組成を、例えば金属
成分や水酸基あるいは炭酸基を、10mol%以下の割合で
置換してもよい。オートクレーブ中での水熱反応は、マ
グネシウム源(水酸化マグネシウムや塩基性炭酸マグネ
シウム、中性炭酸マグネシウム)やアルミニウム源(水
酸化アルミニウム)が水熱反応により徐々に溶出して、
ハイドロタルサイト系水和金属化合物へと転化するもの
と考えられる。
The composition of magnesium hydroxide, basic magnesium carbonate, or aluminum hydroxide added may be subtly different due to crystallization water or variations in the ratio of carbonic acid groups to hydroxyl groups. Is not important. Further, the composition of magnesium hydroxide, basic magnesium carbonate, or aluminum hydroxide may be replaced with, for example, a metal component, a hydroxyl group or a carbonate group at a ratio of 10 mol% or less. Hydrothermal reaction in the autoclave, magnesium source (magnesium hydroxide, basic magnesium carbonate, neutral magnesium carbonate) and aluminum source (aluminum hydroxide) is gradually eluted by hydrothermal reaction,
It is considered to be converted to a hydrotalcite-based hydrated metal compound.

【0018】オートクレーブ中での水熱反応時間は1〜
24時間程度が好ましく、スラリーの濃度は上記の濃度
(ハイドロタルサイト系水和金属化合物換算で1.5mol/
L)の1/5〜5倍程度の範囲で変化させてもよく、特に1/3
〜3倍程度の範囲で変化させてもよい。後述のように、
所望のハイドロタルサイト系水和金属化合物を得るに
は、マグネシウム源及びアルミニウム源に関して少なく
とも一種の固体原料を用いる必要があり、特にアルミニ
ウム源をほぼ(90mol%以上)全量固体とするか、マグネ
シウム源をほぼ(90mol%以上)全量固体とすることが好
ましい。具体的な結果は示さないが、マグネシウム源と
してマグネサイト(MgCO3)を用いると水熱反応時に固
体残査が残り、アルミニウム源としてベーマイト(AlOO
H)を用いても固体残査が残った。これはマグネサイト
やベーマイトが水熱条件下で安定で、溶解度が低いため
と考えられる。
The hydrothermal reaction time in the autoclave is 1 to
About 24 hours is preferable, and the concentration of the slurry is the above-mentioned concentration (1.5 mol / in terms of hydrotalcite-based hydrated metal compound).
L) may be changed in the range of 1/5 to 5 times, especially 1/3
It may be changed in the range of about 3 times. As described below,
In order to obtain the desired hydrotalcite-based hydrated metal compound, it is necessary to use at least one solid raw material for the magnesium source and the aluminum source. Particularly, the aluminum source should be almost all solid (90 mol% or more) or the magnesium source. Is preferably (90 mol% or more) entirely solid. Although no specific result is shown, when magnesite (MgCO 3 ) is used as the magnesium source, a solid residue remains during the hydrothermal reaction, and boehmite (AlOO) is used as the aluminum source.
A solid residue remained with H). This is probably because magnesite and boehmite are stable under hydrothermal conditions and have low solubility.

【0019】焼成温度は例えば400〜800℃とし、焼成雰
囲気は窒素中の他にAr中などの不活性雰囲気中(CO2
を除く)や真空中などでも良く、ハイドロタルサイト系
水和金属化合物の層状構造を破壊せずに脱水かつ脱炭酸
して、アルキレンオキサイドの付加反応触媒に転化し得
る雰囲気であればよい。この触媒は岩塩型の酸化マグネ
シウムと酸化アルミニウムの固溶体である。また焼成温
度が800℃を越えると、スピネルへの転化などが生じる
ので、焼成温度は400〜800℃とする。
The firing temperature is, for example, 400 to 800 ° C., and the firing atmosphere may be an inert atmosphere (except CO 2 ) such as Ar in addition to nitrogen, or in a vacuum. Any atmosphere may be used as long as it can be dehydrated and decarboxylated without destroying the layered structure of the compound and converted into an addition reaction catalyst of alkylene oxide. The catalyst is a solid solution of rock salt type magnesium oxide and aluminum oxide. If the firing temperature exceeds 800 ° C, conversion into spinel occurs, so the firing temperature is set to 400 to 800 ° C.

【0020】[0020]

【実施例2】水酸化マグネシウム粉末66g、中性炭酸マ
グネシウム[MgCO3・3H2O 粉末56g、及び水酸化アルミニ
ウム粉末60gを固体原料に使用し(Mg/Al仕込モル比:2.
0、CO 2/Al仕込モル比:0.53)、オートクレーブ中で実施
例1と同様に180℃で5時間水熱反応させた。他の反応条
件は実施例1と同様にして、ハイドロタルサイト系水和
金属化合物(A-2)及び焼成金属酸化物触媒(B-2)を得た。
Example 2 66 g of magnesium hydroxide powder, neutral carbonate
Gnesium [MgCO3・ 3H256 g of O powder and aluminum hydroxide
Using 60 g of um powder as a solid raw material (Mg / Al charge molar ratio: 2.
0, CO 2/ Al charge molar ratio: 0.53), carried out in an autoclave
Hydrothermal reaction was carried out at 180 ° C. for 5 hours in the same manner as in Example 1. Other reaction conditions
Hydrotalcite-based hydration was carried out in the same manner as in Example 1.
A metal compound (A-2) and a calcined metal oxide catalyst (B-2) were obtained.

【0021】[0021]

【実施例3】水酸化マグネシウム粉末16g、塩基性炭酸
マグネシウム粉末95g、及び水酸化アルミニウム粉末59g
を固体原料に使用した(Mg/Al仕込モル比:1.7、CO2/Al
仕込モル比:1.07)。これ以外は、実施例1と同じ操作
を行って、ハイドロタルサイト系水和金属化合物(A-3)
及び焼成金属酸化物触媒(B-3)を得た。
Example 3 Magnesium hydroxide powder 16 g, basic magnesium carbonate powder 95 g, and aluminum hydroxide powder 59 g
Was used as a solid raw material (Mg / Al charge molar ratio: 1.7, CO 2 / Al
Charged molar ratio: 1.07). Other than this, the same operation as in Example 1 was carried out to obtain the hydrotalcite-based hydrated metal compound (A-3).
And a calcined metal oxide catalyst (B-3) was obtained.

【0022】[0022]

【実施例4】オートクレーブ中での反応温度を120℃に
した以外は、実施例1と同じ操作を行って、ハイドロタ
ルサイト系水和金属化合物(A-4)及び焼成金属酸化物触
媒(B-4)を得た。この条件でも、原材料は全量ハイドロ
タルサイト系水和金属化合物に転化した。
[Example 4] The hydrotalcite-based hydrated metal compound (A-4) and the calcined metal oxide catalyst (B) were prepared in the same manner as in Example 1 except that the reaction temperature in the autoclave was 120 ° C. -4) was obtained. Even under these conditions, the total amount of raw materials was converted to hydrotalcite-based hydrated metal compounds.

【0023】[0023]

【実施例5】オートクレーブ中での反応温度を240℃に
した以外は、実施例1と同じ操作を行って、ハイドロタ
ルサイト系水和金属化合物(A-5)及び焼成金属酸化物触
媒(B-5)を得た。
[Example 5] The hydrotalcite-based hydrated metal compound (A-5) and the calcined metal oxide catalyst (B) were prepared in the same manner as in Example 1 except that the reaction temperature in the autoclave was 240 ° C. -5) was obtained.

【0024】[0024]

【実施例6】MgO換算で5.9wt%濃度の塩化マグネシウム
溶液1Lを攪拌しながら、水酸化アルミニウム[Al(OH)3]
粉末54gを添加後、25wt%の水酸化ナトリウム溶液でpH=1
0に保つようにして、5wt%濃度の炭酸ナトリウム溶液880
mLを徐々に加えた(Mg/Al仕込モル比:2.1、CO2/Al仕込
モル比:0.60)。このスラリー1.5Lを、実施例1と同じ
操作を行って、ハイドロタルサイト系水和金属化合物(A
-6)及び焼成金属酸化物触媒(B-6)を得た。
[Example 6] Aluminum hydroxide [Al (OH) 3 ] was stirred while stirring 1 L of a magnesium chloride solution having a concentration of 5.9 wt% in terms of MgO.
After adding 54 g of powder, pH = 1 with 25 wt% sodium hydroxide solution.
Keep it at 0 and 880 a 5 wt% sodium carbonate solution 880
mL was gradually added (Mg / Al charged molar ratio: 2.1, CO 2 / Al charged molar ratio: 0.60). The same operation as in Example 1 was carried out on 1.5 L of this slurry to prepare a hydrotalcite-based hydrated metal compound (A
-6) and a calcined metal oxide catalyst (B-6) were obtained.

【0025】[0025]

【実施例7】Al2O3換算で3.9wt%の塩化アルミニウム溶
液1Lを攪拌しながら、水酸化マグネシウム粉末83gを添
加後、25wt%の水酸化ナトリウム溶液でpH=10に保つよう
にして、5wt%濃度の炭酸ナトリウム溶液980mLを徐々に
加えた(Mg/Al仕込モル比:1.9、CO2/Al仕込モル比:0.6
0)。このスラリー1.5Lを、実施例1と同じ操作を行っ
て、ハイドロタルサイト系水和金属化合物(A-7)及び焼
成金属酸化物触媒(B-7)を得た。
Example 7 While stirring 1 L of a 3.9 wt% aluminum chloride solution calculated as Al 2 O 3 , 83 g of magnesium hydroxide powder was added, and then pH = 10 was maintained with a 25 wt% sodium hydroxide solution. 980 mL of 5 wt% concentration sodium carbonate solution was gradually added (Mg / Al charging molar ratio: 1.9, CO 2 / Al charging molar ratio: 0.6
0). 1.5 L of this slurry was subjected to the same operations as in Example 1 to obtain a hydrotalcite-based hydrated metal compound (A-7) and a calcined metal oxide catalyst (B-7).

【0026】[0026]

【比較例1】MgO換算で5.9wt%濃度の塩化マグネシウム
溶液1Lを攪拌しながら、Al2O3換算で20.0wt%濃度のアル
ミン酸ソーダを159gを滴下した後、25wt%の水酸化ナト
リウム溶液でpH=10に保つようにして、5wt%濃度の炭酸
ナトリウム溶液700mLを徐々に加えた(Mg/Al仕込モル
比:2.5、CO2/Al仕込モル比:0.53)。得られた白色沈殿
スラリー1.5Lに対して、実施例1と同じ操作を行って、
ハイドロタルサイト系水和金属化合物(C-1)及び焼成金
属酸化物触媒(D-1)を得た。
[Comparative Example 1] 159 g of sodium aluminate having a concentration of 20.0 wt% in terms of Al 2 O 3 was dropped while stirring 1 L of a magnesium chloride solution having a concentration of 5.9 wt% in terms of MgO, and then a 25 wt% sodium hydroxide solution Then, 700 mL of a 5 wt% concentration sodium carbonate solution was gradually added to maintain pH = 10 (Mg / Al charging molar ratio: 2.5, CO 2 / Al charging molar ratio: 0.53). The same operation as in Example 1 was performed on 1.5 L of the obtained white precipitate slurry,
A hydrotalcite-based hydrated metal compound (C-1) and a calcined metal oxide catalyst (D-1) were obtained.

【0027】[0027]

【比較例2】MgO換算で5.4wt%濃度の塩化マグネシウム
溶液1Lを攪拌しながら、Al2O3換算で20.0wt%濃度のアル
ミン酸ソーダを191gを滴下した後、25wt%の水酸化ナト
リウム溶液でpH=10に保つようにして、5wt%濃度の炭酸
ナトリウム溶液1150mLを徐々に加えた(Mg/Al仕込モル
比:1.9、CO2/Al仕込モル比:0.70)。得られた白色沈殿
スラリー1.5Lを、実施例1と同じ操作を行って、ハイド
ロタルサイト系水和金属化合物(C-2)及び焼成金属酸化
物触媒(D-2)を得た。
[Comparative Example 2] While stirring 1 L of a magnesium chloride solution having a concentration of 5.4 wt% as MgO, 191 g of sodium aluminate having a concentration of 20.0 wt% as Al 2 O 3 was dropped, and then a 25 wt% sodium hydroxide solution was added. Then, 1150 mL of a 5 wt% sodium carbonate solution was gradually added while maintaining pH = 10 (Mg / Al charging molar ratio: 1.9, CO 2 / Al charging molar ratio: 0.70). The white precipitation slurry (1.5 L) thus obtained was subjected to the same operations as in Example 1 to obtain a hydrotalcite-based hydrated metal compound (C-2) and a calcined metal oxide catalyst (D-2).

【0028】[0028]

【比較例3】MgO換算で5.7wt%濃度及びAl2O3換算で3.5w
t%の塩化マグネシウム及び塩化アルミニウム混合溶液1L
を攪拌しながら、25wt%の水酸化ナトリウム溶液でpH=10
に保つようにして、5wt%濃度の炭酸ナトリウム溶液1400
mLを徐々に加えた(Mg/Al仕込モル比:2.0、CO2/Al仕込
モル比:0.98)。得られた白色沈殿スラリー1.5Lを、実
施例1と同じ操作を行って、ハイドロタルサイト系水和
金属化合物(C-3)及び焼成金属酸化物触媒(D-3)を得た。
[Comparative Example 3] 5.7 wt% concentration in terms of MgO and 3.5 w in terms of Al 2 O 3.
1% of t% magnesium chloride and aluminum chloride mixed solution
While stirring, pH = 10 with 25 wt% sodium hydroxide solution.
5wt% sodium carbonate solution 1400
mL was gradually added (Mg / Al charged molar ratio: 2.0, CO 2 / Al charged molar ratio: 0.98). 1.5 L of the obtained white precipitate slurry was subjected to the same operations as in Example 1 to obtain a hydrotalcite-based hydrated metal compound (C-3) and a calcined metal oxide catalyst (D-3).

【0029】[0029]

【比較例4】MgO換算で5.7wt%濃度の塩化マグネシウム
とAl2O3換算で3.5wt%の塩化アルミニウムとの混合溶
液1Lを攪拌しながら、25wt%の水酸化ナトリウム溶液でp
H=10に保つようにして、5wt%濃度の炭酸ナトリウム溶液
930mLを徐々に加えた(Mg/Al仕込モル比:2.0、CO2/Al
仕込モル比:0.65)。その後、得られた白色沈殿スラリ
ー1.5Lを40℃で5時間攪拌養生した以外は、実施例1と
同じ操作を行って、ハイドロタルサイト系水和金属化合
物(C-4)及び焼成金属酸化物触媒(D-4)を得た。
[Comparative Example 4] 1 L of a mixed solution of magnesium chloride having a concentration of 5.7 wt% in terms of MgO and aluminum chloride having a concentration of 3.5 wt% in terms of Al 2 O 3 was stirred and stirred with a 25 wt% sodium hydroxide solution to obtain a p
Keep H = 10, 5wt% sodium carbonate solution
930 mL was gradually added (Mg / Al charge molar ratio: 2.0, CO2 / Al
Charged molar ratio: 0.65). Then, the same operation as in Example 1 was performed, except that 1.5 L of the obtained white precipitate slurry was aged at 40 ° C. for 5 hours with stirring, to obtain the hydrotalcite-based hydrated metal compound (C-4) and the calcined metal oxide. A catalyst (D-4) was obtained.

【0030】実施例及び比較例で調製したハイドロタル
サイト系水和金属化合物の粉末(A-1〜A-7及びC-1〜C-4)
をX線回折測定した。全サンプルについてハイドロタル
サイト[Mg1-xAlx(OH)2(CO3)x/2・mH2O]のピークパター
ンが確認でき、ほぼ全量がハイドロタルサイト系水和金
属化合物に転化したことが判明した。
Hydrotalcite-based hydrated metal compound powders prepared in Examples and Comparative Examples (A-1 to A-7 and C-1 to C-4)
Was subjected to X-ray diffraction measurement. A peak pattern of hydrotalcite [Mg 1-x Al x (OH) 2 (CO 3 ) x / 2・ mH 2 O] was confirmed for all samples, and almost all was converted to hydrotalcite-based hydrated metal compounds. It has been found.

【0031】実施例及び比較例で調製したハイドロタル
サイト系水和金属化合物の粉末(A-1〜A-7及びC-1〜C-4)
に含有されるMgO、Al2O3、CO2量を化学分析した。結果
を表1に示す。ハイドロタルサイト系水和金属化合物の
組成式(1)での、炭酸根含有量はAl含有量xのほぼ1/2で
ある。
Hydrotalcite-based hydrated metal compound powders prepared in Examples and Comparative Examples (A-1 to A-7 and C-1 to C-4)
The amounts of MgO, Al 2 O 3 and CO 2 contained in were analyzed chemically. The results are shown in Table 1. In the composition formula (1) of the hydrotalcite-based hydrated metal compound, the carbonate content is about 1/2 of the Al content x.

【0032】[0032]

【表1】 ハイドロタルサイト系水和 分析組成 金属化合物の粉末サンプル A-1(実施例1) Mg0.695Al0.305(OH)2(CO3)0.163・mH2O A-2(実施例2) Mg0.661Al0.339(OH)2(CO3)0.167・mH2O A-3(実施例3) Mg0.620Al0.380(OH)2(CO3)0.158・mH2O A-4(実施例4) Mg0.699Al0.301(OH)2(CO3)0.165・mH2O A-5(実施例5) Mg0.697Al0.303(OH)2(CO3)0.164・mH2O A-6(実施例6) Mg0.674Al0.326(OH)2(CO3)0.166・mH2O A-7(実施例7) Mg0.645Al0.355(OH)2(CO3)0.170・mH2O C-1(比較例1) Mg0.697Al0.303(OH)2(CO3)0.166・mH2O C-2(比較例2) Mg0.638Al0.362(OH)2(CO3)0.162・mH2O C-3(比較例3) Mg0.669Al0.331(OH)2(CO3)0.176・mH2O C-4(比較例4) Mg0.678Al0.322(OH)2(CO3)0.170・mH2O[Table 1] Hydrotalcite-based hydration Analysis composition Metal compound powder sample A-1 (Example 1) Mg 0.695 Al 0.305 (OH) 2 (CO 3 ) 0.163 · mH 2 O A-2 (Example 2) Mg 0.661 Al 0.339 (OH) 2 (CO 3 ) 0.167・ mH 2 O A-3 (Example 3) Mg 0.620 Al 0.380 (OH) 2 (CO 3 ) 0.158・ mH 2 O A-4 (Example 4) Mg 0.699 Al 0.301 (OH) 2 (CO 3 ) 0.165・ mH 2 O A-5 (Example 5) Mg 0.697 Al 0.303 (OH) 2 (CO 3 ) 0.164・ mH 2 O A-6 (Example 6) Mg 0.674 Al 0.326 (OH) 2 (CO 3 ) 0.166・ mH 2 O A-7 (Example 7) Mg 0.645 Al 0.355 (OH) 2 (CO 3 ) 0.170・ mH 2 O C-1 (Comparative Example 1) Mg 0.697 Al 0.303 (OH) 2 (CO 3 ) 0.166・ mH 2 O C-2 (Comparative Example 2) Mg 0.638 Al 0.362 (OH) 2 (CO 3 ) 0.162・ mH 2 O C-3 (Comparative Example 3) mg 0.669 Al 0.331 (OH) 2 (CO 3) 0.176 · mH 2 O C-4 ( Comparative example 4) mg 0.678 Al 0.322 (OH ) 2 (CO 3) 0.170 · mH 2 O

【0033】[0033]

【電位差滴定法によるハイドロタルサイト系水和金属化
合物の評価】実施例及び比較例で調製したハイドロタル
サイト系水和金属化合物の粉末(A-1〜A-7及びC-1〜C-4)
各0.5gを、0.015mol/Lに調製した硝酸水溶液200ml中に
添加し、10分間攪拌した。攪拌後この懸濁液のpHをガラ
ス電極で測定しながら、自動滴定装置(京都電子工業株
式会社製AT-400)を用いて1mol/L水酸化ナトリウム水溶
液を0.1ml/minの速度でpHが約11に到達するまで滴下し
て、滴定曲線を得た。なお、滴定中は懸濁液を恒温槽で
25℃に保持し、窒素ガスでバブリングしながら行った。
得られた滴定曲線を図1〜図3に示す。
[Evaluation of hydrotalcite-based hydrated metal compound by potentiometric titration] Powder of hydrotalcite-based hydrated metal compound prepared in Examples and Comparative Examples (A-1 to A-7 and C-1 to C-4 )
0.5 g of each was added to 200 ml of a nitric acid aqueous solution adjusted to 0.015 mol / L, and stirred for 10 minutes. While measuring the pH of this suspension after stirring with a glass electrode, the pH of the 1 mol / L sodium hydroxide aqueous solution was 0.1 ml / min using an automatic titrator (AT-400 manufactured by Kyoto Electronics Manufacturing Co., Ltd.). Titration curve was obtained by dropping until reaching about 11. During the titration, the suspension should be kept in a constant temperature bath.
The temperature was maintained at 25 ° C, and bubbling with nitrogen gas was performed.
The obtained titration curves are shown in FIGS.

【0034】上記の測定条件は、酸性水溶液の規定濃度
を0.001〜0.1mol/Lの範囲で変化させても、電位差滴定
での結果は同様で、酸性水溶液中でのハイドロタルサイ
ト系水和金属化合物の濃度を0.05〜2wt%の範囲で変化さ
せても、電位差滴定での結果は同様である。また強塩基
滴定剤は水酸化ナトリウムの他に、例えば水酸化カリウ
ム、アンモニアやモノメチル〜トリメチルなどのアンモ
ニアのアルキル誘導体を用いればよい。強塩基滴定剤の
濃度を0.1〜10mol/Lの範囲で変化させても、電位差滴
定の結果への影響は小さい。そしてpH=7からの水酸化物
イオン消費量を問題にするので、滴定開始前のPHの影響
を除くことができ、pH=10.3で滴定曲線に変曲点が表
れ、pH=7からpH=10.3までの水酸化物イオン消費量はハ
イドロタルサイト系水和金属化合物の表面の性状を表し
ている。
Under the above-mentioned measurement conditions, even if the specified concentration of the acidic aqueous solution was changed in the range of 0.001 to 0.1 mol / L, the result of potentiometric titration was the same, and the hydrotalcite hydrated metal in the acidic aqueous solution was the same. Even if the concentration of the compound was changed in the range of 0.05 to 2 wt%, the result of potentiometric titration was the same. In addition to sodium hydroxide, for example, potassium hydroxide, ammonia, or an alkyl derivative of ammonia such as monomethyl to trimethyl may be used as the strong base titrant. Even if the concentration of the strong base titrant is changed in the range of 0.1 to 10 mol / L, the influence on the result of potentiometric titration is small. And since the hydroxide ion consumption from pH = 7 is a problem, the influence of PH before the start of titration can be removed, an inflection point appears in the titration curve at pH = 10.3, pH = 7 to pH = The hydroxide ion consumption up to 10.3 represents the surface properties of hydrotalcite-based hydrated metal compounds.

【0035】得られた滴定曲線より、pH=7及びpH=10.3
の変曲点における1mol/L水酸化ナトリウム溶液の滴下量
をそれぞれ読み取り、pH=7からpH=10.3までに要した水
酸化物イオン消費量(mmol/0.5gハイト゛ロタルサイト)をそれぞれ
算出した。結果を表2に示す。
From the titration curve obtained, pH = 7 and pH = 10.3
The amount of 1 mol / L sodium hydroxide solution added dropwise at the inflection point was read, and the hydroxide ion consumption (mmol / 0.5 g hydrotalcite) required from pH = 7 to pH = 10.3 was calculated. The results are shown in Table 2.

【0036】[0036]

【表2】 ハイドロタルサイト 1mol/L水酸化ナトリウ pH=7からpH=10.3にな 系水和金属化合物の ム溶液の滴下量(ml) るまでに要した水酸 粉末サンプル イオン消費量 PH=7 pH=10.3 (mmol/0.5gハイト゛ロタルサイト) A-1(実施例1) 1.25 2.06 0.81 A-2(実施例2) 1.51 2.39 0.88 A-3(実施例3) 1.56 2.51 0.95 A-4(実施例4) 0.96 1.95 0.99 A-5(実施例5) 1.16 2.08 0.92 A-6(実施例6) 1.36 2.26 0.90 A-7(実施例7) 1.46 2.42 0.96 C-1(比較例1) 1.36 2.48 1.12 C-2(比較例2) 1.32 2.58 1.26 C-3(比較例3) 1.36 2.54 1.18 C-4(比較例4) 0.84 2.06 1.22[Table 2] Hydrotalcite 1 mol / L sodium hydroxide Hydroxide powder sample Ion consumption PH = from pH = 7 to pH = 10.3 7 pH = 10.3 (mmol / 0.5g hydrotalcite) A-1 (Example 1) 1.25 2.06 0.81 A-2 (Example 2) 1.51 2.39 0.88 A-3 (Example 3) 1.56 2.51 0.95 A-4 ( Example 4) 0.96 1.95 0.99 A-5 (Example 5) 1.16 2.08 0.92 A-6 (Example 6) 1.36 2.26 0.90 A-7 (Example 7) 1.46 2.42 0.96 C-1 (Comparative Example 1) 1.36 2.48 1.12 C-2 (Comparative Example 2) 1.32 2.58 1.26 C-3 (Comparative Example 3) 1.36 2.54 1.18 C-4 (Comparative Example 4) 0.84 2.06 1.22

【0037】[0037]

【アルキレンオキサイド付加物の合成】3Lオートクレー
ブに活性水素含有化合物として、ラウリルアルコール18
8g(1モル)と実施例及び比較例で調製したハイドロタル
サイト焼成金属酸化物触媒(B-1〜B-7及びD-1〜D-4)1.88
gを仕込み、窒素置換後、攪拌しながら150℃まで昇温し
た。昇温後、エチレンオキサイド264g(3モル)を徐々に
導入し、2時間後に圧力の低下が終了した時点で、同温
度において1時間熟成して、トータル3時間反応させた。
その後室温まで冷却し、粗製物中に残留する焼成金属酸
化物触媒を濾過分離して精製物を得た。ガスクロマトグ
ラフィーより、エチレンオキサイドの付加重合度分布を
測定し、反応率および反応選択性を下の(式3)及び(式4)
より算出した。結果を表3に示す。 反応率(%)=(全化学量-エチレンオキサイド付加モル数が0である未反応物化 学量)/(全化学量)×100 (式3) 反応選択性(%)=(エチレンオキサイド付加モル数がn-1〜n+1である反応生成 物化学量)/(全化学量)×100 (式4) なおnは、ラウリルアルコール1モルに対し、付加エチレ
ンオキサイドの仕込モル数を示し、ここでは3である。
[Synthesis of alkylene oxide adduct] Lauryl alcohol 18 as a compound containing active hydrogen in a 3 L autoclave
8 g (1 mol) and hydrotalcite calcined metal oxide catalysts prepared in Examples and Comparative Examples (B-1 to B-7 and D-1 to D-4) 1.88
After charging g and replacing with nitrogen, the temperature was raised to 150 ° C. with stirring. After the temperature was raised, 264 g (3 mol) of ethylene oxide was gradually introduced, and when the pressure reduction was completed after 2 hours, the mixture was aged at the same temperature for 1 hour and reacted for a total of 3 hours.
Then, the mixture was cooled to room temperature, and the calcined metal oxide catalyst remaining in the crude product was separated by filtration to obtain a purified product. By gas chromatography, the distribution of the degree of addition polymerization of ethylene oxide was measured, and the reaction rate and reaction selectivity were determined by the following (Formula 3) and (Formula 4).
Calculated from The results are shown in Table 3. Reaction rate (%) = (total stoichiometry-unreacted chemical stoichiometry where the number of moles of ethylene oxide added is 0) / (total stoichiometry) × 100 (Equation 3) Reaction selectivity (%) = (moles of ethylene oxide added) Reaction product stoichiometry in which the number is n-1 to n + 1) / (total stoichiometry) × 100 (Formula 4) Note that n represents the number of moles of added ethylene oxide charged with respect to 1 mole of lauryl alcohol, Here it is 3.

【0038】[0038]

【表3】 エチレンオキサイド付加モル数の割合(%) 反応率 反応 (%) 選択性 0 1 2 3 4 5 6 7 8 9 (%) n-1 n n+1 B-1(実施例1) 5 7 17 22 19 13 8 5 3 1 95 58 B-2(実施例2) B-3(実施例3) B-4(実施例4) 7 9 16 20 18 12 8 5 3 2 93 54 B-5(実施例5) B-6(実施例6) 6 9 16 21 19 14 9 3 2 1 94 56 B-7(実施例7) D-1(比較例1) 11 12 15 17 16 13 10 4 2 ― 89 48 D-2(比較例2) 13 12 12 13 12 11 9 7 6 5 87 37 D-3(比較例3) 12 13 15 16 15 13 9 5 2 ― 88 46 D-4(比較例4) 13 11 12 13 13 12 10 7 5 4 87 38[Table 3] Ratio of number of moles of ethylene oxide added (%) Reaction rate Reaction (%) Selectivity 0 1 2 3 4 5 6 7 8 9 (%) n-1 n n + 1 B-1 (Example 1) 5 7 17 22 19 13 8 5 3 1 95 58 B-2 (Example 2) B-3 (Example 3) B-4 (Example 4) 7 9 16 20 18 12 8 5 3 2 93 54 B- 5 (Example 5) B-6 (Example 6) 6 9 16 21 19 14 9 3 2 1 94 56 B-7 (Example 7) D-1 (Comparative Example 1) 11 12 15 17 16 13 10 4 2 ― 89 48 D-2 (Comparative example 2) 13 12 12 13 12 11 9 7 6 5 87 37 D-3 (Comparative example 3) 12 13 15 16 15 13 9 5 2 ― 88 46 D-4 (Comparative example 4) 13 11 12 13 13 12 10 7 5 4 87 38

【0039】[0039]

【電位差滴定データと反応率及び反応選択性の相関】電
位差滴定曲線から求めたpH=7からpH=10.3までの水酸化
物イオン消費量(mmol)と、エチレンオキサイド付加反応
における反応率及び反応選択性との相関を、図4及び図
5に示す。図4及び図5から良い相関性があることが見
られ、電位差滴定法により触媒性能を簡単に評価できる
ことが分かった。また実施例のように、水酸化マグネシ
ウム、塩基性炭酸マグネシウム、中性炭酸マグネシウ
ム、水酸化アルミニウムからなる固体粉末を出発原料に
用いて、120〜300℃で水熱合成すれば、反応率及び反応
選択性の高い触媒の前駆体が得られることが明らかにな
った。そしてこれを400〜800℃で焼成すると、反応率及
び反応選択性の高い触媒が得られる。
[Correlation between potentiometric titration data and reaction rate and reaction selectivity] Hydroxide ion consumption (mmol) from pH = 7 to pH = 10.3 calculated from potentiometric curve and reaction rate and reaction selection in ethylene oxide addition reaction The correlation with sex is shown in FIGS. 4 and 5. It was found from FIGS. 4 and 5 that there is a good correlation, and it was found that the catalyst performance can be easily evaluated by the potentiometric titration method. Further, as in the example, using solid powder consisting of magnesium hydroxide, basic magnesium carbonate, neutral magnesium carbonate, aluminum hydroxide as a starting material, if hydrothermally synthesized at 120 to 300 ° C., the reaction rate and reaction It was revealed that a highly selective catalyst precursor was obtained. Then, by calcining this at 400 to 800 ° C., a catalyst having a high reaction rate and a high reaction selectivity can be obtained.

【0040】実施例では、ハイドロタルサイト系水和金
属化合物をアルキレンオキサイドの付加反応触媒の前駆
体として用いたが、ハイドロタルサイト系水和金属化合
物の用途はこれに限るものではない。例えば、塩素イオ
ンなどのアニオンの吸着剤として、ポリ塩化ビニルの加
工などに用いることができる。実施例では水熱反応を用
いたハイドロタルサイト系水和金属化合物の製造法を示
したが、触媒の前駆体に適したハイドロタルサイト系水
和金属化合物は、水熱合成で製造されたものに限定され
るものではない。
In the examples, the hydrotalcite-based hydrated metal compound was used as the precursor of the alkylene oxide addition reaction catalyst, but the application of the hydrotalcite-based hydrated metal compound is not limited to this. For example, it can be used as an adsorbent for anions such as chlorine ions in processing polyvinyl chloride. Although a method for producing a hydrotalcite-based hydrated metal compound using a hydrothermal reaction was shown in the examples, a hydrotalcite-based hydrated metal compound suitable as a catalyst precursor is a hydrotalcite-based hydrated metal compound produced by hydrothermal synthesis. It is not limited to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のハイドロタルサイト系水和金属化合
物での電位差滴定曲線を示す特性図
FIG. 1 is a characteristic diagram showing a potentiometric titration curve for hydrotalcite-based hydrated metal compounds of Examples.

【図2】 実施例のハイドロタルサイト系水和金属化合
物での電位差滴定曲線を示す特性図
FIG. 2 is a characteristic diagram showing a potentiometric titration curve for hydrotalcite-based hydrated metal compounds of Examples.

【図3】 実施例のハイドロタルサイト系水和金属化合
物での電位差滴定曲線を示す特性図
FIG. 3 is a characteristic diagram showing a potentiometric titration curve for hydrotalcite-based hydrated metal compounds of Examples.

【図4】 ハイドロタルサイト系水和金属化合物での電
位差滴定時の水酸化物イオン消費量と、ラウリルアルコ
ールに対するエチレンオキサイドの付加反応の反応率と
の関係を示す特性図
FIG. 4 is a characteristic diagram showing the relationship between hydroxide ion consumption during potentiometric titration of hydrotalcite-based hydrated metal compounds and the reaction rate of the addition reaction of ethylene oxide with lauryl alcohol.

【図5】 ハイドロタルサイト系水和金属化合物での電
位差滴定時の水酸化物イオン消費量と、ラウリルアルコ
ールに対するエチレンオキサイドの付加反応の反応選択
性との関係を示す特性図
FIG. 5 is a characteristic diagram showing the relationship between hydroxide ion consumption during potentiometric titration of hydrotalcite-based hydrated metal compounds and reaction selectivity of addition reaction of ethylene oxide to lauryl alcohol.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA02 AA08 BB06A BB06B BC10A BC10B BC16A BC16B CB25 EA01Y FB04 FB06 FB34 FB77 4G076 AA10 AA16 AA18 AA19 AA21 AB06 AB09 AB10 BA12 BD02 DA01 4H006 AA02 AC41 AC43 GP01 GP10   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G069 AA02 AA08 BB06A BB06B                       BC10A BC10B BC16A BC16B                       CB25 EA01Y FB04 FB06                       FB34 FB77                 4G076 AA10 AA16 AA18 AA19 AA21                       AB06 AB09 AB10 BA12 BD02                       DA01                 4H006 AA02 AC41 AC43 GP01 GP10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 式(1)で表されるハイドロタルサイト系
水和金属化合物であって、 規定濃度で0.001〜0.1mol/Lに調製した酸性水溶液中
に、前記水和金属化合物を0.05〜2wt%の濃度になるよう
に添加した懸濁液に、0.1〜10mol/Lの強塩基滴定剤を滴
下して、懸濁液のpHをガラス電極で電位差滴定した際
に、pH=7からpH=10.3の変曲点までに要した水酸化物イ
オン消費量が、ハイドロタルサイト系水和金属化合物1g
当たり、2mmol以下であることを特徴とするハイドロタ
ルサイト系水和金属化合物。 Mg1-xAlx(OH)2(CO3)x/2・mH2O (0<x<0.5,0<m<2) (1)
1. A hydrotalcite-based hydrated metal compound represented by the formula (1), wherein the hydrated metal compound is added to an acidic aqueous solution prepared at a specified concentration of 0.001 to 0.1 mol / L in an amount of 0.05 to To the suspension added to have a concentration of 2 wt%, 0.1 to 10 mol / L of a strong base titrant was added dropwise, and the pH of the suspension was measured potentiometrically with a glass electrode. Hydroxide ion consumption up to the inflection point of = 10.3 is 1 g of hydrotalcite-based hydrated metal compound
A hydrotalcite-based hydrated metal compound having a content of 2 mmol or less. Mg 1-x Al x (OH) 2 (CO3) x / 2・ mH 2 O (0 <x <0.5, 0 <m <2) (1)
【請求項2】 請求項1のハイドロタルサイト系水和金
属化合物を、400〜800℃で焼成して得られた、式(2)で
表されるアルキレンオキサイドの付加反応触媒。 Mg1-xAlxx/2O(2+x)/2 (ただし0<x<0.5で、□は陽イオン空孔を示す) (2)
2. An addition reaction catalyst of an alkylene oxide represented by the formula (2) obtained by calcining the hydrotalcite-based hydrated metal compound according to claim 1 at 400 to 800 ° C. Mg 1-x Al xx / 2 O (2 + x) / 2 (where 0 <x <0.5, □ indicates cation vacancies) (2)
【請求項3】 水酸化マグネシウム、塩基性または中性
の炭酸マグネシウム、及び水酸化アルミニウムの少なく
とも一種以上の固体原料を用い、残部のマグネシウム源
またはアルミニウム源を可溶性のマグネシウム塩または
アルミニウム塩とした水性スラリーを、 120℃以上300℃以下で水熱反応させて、請求項1の化合
物とすることを特徴とする、ハイドロタルサイト系水和
金属化合物の製造方法。
3. An aqueous solution in which at least one solid raw material of magnesium hydroxide, basic or neutral magnesium carbonate, and aluminum hydroxide is used, and the balance magnesium source or aluminum source is a soluble magnesium salt or aluminum salt. A method for producing a hydrotalcite-based hydrated metal compound, comprising subjecting the slurry to hydrothermal reaction at 120 ° C. or higher and 300 ° C. or lower to obtain the compound of claim 1.
【請求項4】 前記アルキレンオキサイドの付加反応触
媒は、活性水素原子含有化合物へのアルキレンオキサイ
ドの付加反応触媒であることを特徴とする、請求項2の
アルキレンオキサイドの付加反応触媒。
4. The alkylene oxide addition reaction catalyst according to claim 2, wherein the alkylene oxide addition reaction catalyst is an alkylene oxide addition reaction catalyst to an active hydrogen atom-containing compound.
【請求項5】 焼成前のハイドロタルサイト系水和金属
化合物を、規定濃度で0.001〜0.1mol/Lに調製した酸性
水溶液中に0.05〜2wt%の濃度になるように添加した懸濁
液に、0.1〜10mol/Lの強塩基滴定剤を滴下して、懸濁液
のpHをガラス電極で測定して電位差滴定を行い、 pH=7からpH=10.3の変曲点までに要した水酸化物イオン
消費量が、ハイドロタルサイト系水和金属化合物1g当た
り、2mmmol以下である際に反応率及び反応選択性が良好
とし、水酸化物イオン消費量が2mmmol超である際に反応
率及び反応選択性が不良であるとする、アルキレンオキ
サイドの付加反応触媒の評価方法。(ただしハイドロタ
ルサイト系水和金属化合物は式(1)で表され、アルキレ
ンオキサイドの付加反応触媒はこれを400〜800℃で焼成
したもので式(2)で表され、該触媒は活性水素原子含有
化合物へのアルキレンオキサイドの付加反応触媒であ
る) Mg1-xAlx(OH)2(CO3)x/2・mH2O (0<x<0.5,0<m<2) (1) Mg1-xAlxx/2O(2+x)/2 (ただし0<x<0.5で、□は陽イオン空孔を示す) (2)
5. A suspension prepared by adding a hydrotalcite-based hydrated metal compound before calcination to an acidic aqueous solution prepared to a prescribed concentration of 0.001 to 0.1 mol / L so as to have a concentration of 0.05 to 2 wt%. , 0.1 to 10 mol / L strong base titrator was added dropwise, the pH of the suspension was measured with a glass electrode and potentiometric titration was performed, and the hydroxylation required from the inflection point of pH = 7 to pH = 10.3 The reaction rate and reaction selectivity are good when the product ion consumption is 1 g of hydrotalcite-based hydrated metal compound and is 2 mmol or less, and the reaction rate and the reaction are when the hydroxide ion consumption is more than 2 mmol. A method for evaluating an alkylene oxide addition reaction catalyst, which has poor selectivity. (However, the hydrotalcite-based hydrated metal compound is represented by the formula (1), the addition reaction catalyst of the alkylene oxide is represented by the formula (2) by firing this at 400 ~ 800 ℃, the catalyst is active hydrogen Mg 1-x Al x (OH) 2 (CO 3 ) x / 2・ mH 2 O (0 <x <0.5, 0 <m <2) (1 which is a catalyst for the addition reaction of alkylene oxide to atom-containing compounds) ) Mg 1-x Al xx / 2 O (2 + x) / 2 (where 0 <x <0.5, □ indicates a cation vacancy) (2)
JP2002135531A 2002-05-10 2002-05-10 Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst Expired - Fee Related JP4585163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135531A JP4585163B2 (en) 2002-05-10 2002-05-10 Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135531A JP4585163B2 (en) 2002-05-10 2002-05-10 Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst

Publications (2)

Publication Number Publication Date
JP2003327426A true JP2003327426A (en) 2003-11-19
JP4585163B2 JP4585163B2 (en) 2010-11-24

Family

ID=29697833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135531A Expired - Fee Related JP4585163B2 (en) 2002-05-10 2002-05-10 Hydrotalcite-based hydrated metal compound and method for producing the same, alkylene oxide addition reaction catalyst obtained by firing the compound, and method for evaluating the catalyst

Country Status (1)

Country Link
JP (1) JP4585163B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237105A (en) * 2006-03-09 2007-09-20 Osaka Univ Catalyst for formation of carbon to carbon bond forming reaction and method forming carbon-carbon bond
WO2008136272A1 (en) * 2007-04-26 2008-11-13 Toagosei Co., Ltd. Hydrotalcite compound, method for producing the same, inorganic ion scavenger, composition, and resin composition for sealing electronic component
JP2010504270A (en) * 2006-09-21 2010-02-12 アクゾ ノーベル ナムローゼ フェンノートシャップ Process for producing layered double hydroxides containing carbonate
JP2010228987A (en) * 2009-03-27 2010-10-14 Kyowa Chem Ind Co Ltd Novel synthetic hydrotalcite particle and method of manufacturing the same
JP2013075897A (en) * 2011-09-29 2013-04-25 Sino-Japan Chemcal Co Ltd Method of producing polyoxyalkylene alkyl ether fatty acid ester
JP2020520876A (en) * 2017-05-19 2020-07-16 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Method for preparing mixed metal oxide diamondoid nanocomposites and catalyst systems containing nanocomposites

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462280B1 (en) * 1966-07-25 1971-01-20
JPS493760B1 (en) * 1970-07-31 1974-01-28
JPS54145223A (en) * 1978-02-17 1979-11-13 Anphar Sa Aluminium magnesium carbonate
JPS59182227A (en) * 1983-02-26 1984-10-17 ギウリ−ニ・ヒエミ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Crystalline basic aluminum magnesium carbonate, manufacture and antacid
JPS605021A (en) * 1983-06-21 1985-01-11 Tomita Seiyaku Kk Preparation of basic magnesium aluminum carbonate hydrate
JPS60231416A (en) * 1983-12-24 1985-11-18 バイエル・アクチエンゲゼルシヤフト Manufacture of hydrotalcite with improved properties
JPH06329410A (en) * 1993-05-21 1994-11-29 Asahi Denka Kogyo Kk Production of hydrotalcite
JP2000086234A (en) * 1998-09-17 2000-03-28 Agency Of Ind Science & Technol Production of spinel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462280B1 (en) * 1966-07-25 1971-01-20
JPS493760B1 (en) * 1970-07-31 1974-01-28
JPS54145223A (en) * 1978-02-17 1979-11-13 Anphar Sa Aluminium magnesium carbonate
JPS59182227A (en) * 1983-02-26 1984-10-17 ギウリ−ニ・ヒエミ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Crystalline basic aluminum magnesium carbonate, manufacture and antacid
JPS605021A (en) * 1983-06-21 1985-01-11 Tomita Seiyaku Kk Preparation of basic magnesium aluminum carbonate hydrate
JPS60231416A (en) * 1983-12-24 1985-11-18 バイエル・アクチエンゲゼルシヤフト Manufacture of hydrotalcite with improved properties
JPH06329410A (en) * 1993-05-21 1994-11-29 Asahi Denka Kogyo Kk Production of hydrotalcite
JP2000086234A (en) * 1998-09-17 2000-03-28 Agency Of Ind Science & Technol Production of spinel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237105A (en) * 2006-03-09 2007-09-20 Osaka Univ Catalyst for formation of carbon to carbon bond forming reaction and method forming carbon-carbon bond
JP2010504270A (en) * 2006-09-21 2010-02-12 アクゾ ノーベル ナムローゼ フェンノートシャップ Process for producing layered double hydroxides containing carbonate
WO2008136272A1 (en) * 2007-04-26 2008-11-13 Toagosei Co., Ltd. Hydrotalcite compound, method for producing the same, inorganic ion scavenger, composition, and resin composition for sealing electronic component
JP5126223B2 (en) * 2007-04-26 2013-01-23 東亞合成株式会社 Hydrotalcite compound and method for producing the same, inorganic ion scavenger, composition, resin composition for electronic component sealing
JP2010228987A (en) * 2009-03-27 2010-10-14 Kyowa Chem Ind Co Ltd Novel synthetic hydrotalcite particle and method of manufacturing the same
JP2013075897A (en) * 2011-09-29 2013-04-25 Sino-Japan Chemcal Co Ltd Method of producing polyoxyalkylene alkyl ether fatty acid ester
JP2020520876A (en) * 2017-05-19 2020-07-16 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Method for preparing mixed metal oxide diamondoid nanocomposites and catalyst systems containing nanocomposites

Also Published As

Publication number Publication date
JP4585163B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
Bernard et al. Stability of hydrotalcite (Mg-Al layered double hydroxide) in presence of different anions
US20100102278A1 (en) Low temperature water gas shift catalyst
US4539195A (en) Basic magnesium aluminum hydroxycarbonate
JPH10503465A (en) Two-powder synthesis of hydrotalcite and hydrotalcite-like compounds
EP1204589B1 (en) PROCESS FOR PRODUCING Mg-CONTAINING NON-Al ANIONIC CLAY
CZ316296A3 (en) Synthetic meixnerite product and process for preparing thereof
JP2003327426A (en) Hydrotalcite based hydrated metallic compound, production method thereof, catalyst for additional reaction of alkylene oxide obtained by firing the compound and method of evaluating the catalyst
Van der Merwe et al. Hydration of medium reactive magnesium oxide using hydration agents
JP3440299B2 (en) Manufacturing method of transparent spinel sintered body
JP5165213B2 (en) Calcium oxide powder and method for producing the same
JP2003026418A (en) Method of manufacturing hydrotalcite
EP0636580B1 (en) Dried aluminum hydroxide gel, a method for preparing the dried gel, and an antacid
JP4330182B2 (en) Synthesis method of carbonated hydrocalumite
EP3354621A1 (en) Hydrotalcite and method for producing same
JP5025996B2 (en) Method for producing lithium aluminate and lithium aluminate
US3941874A (en) Recovery of aluminum fluoride
CN114945551B (en) Magnesium Glycine citrate co-salt
US5750453A (en) High surface area meixnerite from hydrotalcites infiltrated with metal salts
US9725361B2 (en) Method for the wet slaking of calcium and magnesium oxides from calcomagnesian compounds
JP2000256011A (en) Boehmite and its production
JP5875899B2 (en) Method for producing nitrite-type hydrocalumite composition
JPH06329410A (en) Production of hydrotalcite
JP2787974B2 (en) Method for producing hydrocalumite
JP3690876B2 (en) Method for synthesizing lithium aluminum composite hydroxide
JP3773295B2 (en) Calcium aluminate tricarbonate hydrate and synthesis method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees