JP4583253B2 - Heat detector - Google Patents

Heat detector Download PDF

Info

Publication number
JP4583253B2
JP4583253B2 JP2005179933A JP2005179933A JP4583253B2 JP 4583253 B2 JP4583253 B2 JP 4583253B2 JP 2005179933 A JP2005179933 A JP 2005179933A JP 2005179933 A JP2005179933 A JP 2005179933A JP 4583253 B2 JP4583253 B2 JP 4583253B2
Authority
JP
Japan
Prior art keywords
heat source
temperature
reference heat
shielded space
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005179933A
Other languages
Japanese (ja)
Other versions
JP2006349646A (en
Inventor
隆博 鈴木
勝 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005179933A priority Critical patent/JP4583253B2/en
Publication of JP2006349646A publication Critical patent/JP2006349646A/en
Application granted granted Critical
Publication of JP4583253B2 publication Critical patent/JP4583253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

本発明は、熱検出装置に関し、好ましくは特に、複数の基準熱源を基準として、収集した測定対象熱源の熱源画像の感度補正を行う熱検出装置に関する。   The present invention relates to a heat detection device, and more particularly, to a heat detection device that performs sensitivity correction on a collected heat source image of a heat source to be measured with reference to a plurality of reference heat sources.

近年、測定対象熱源から放射された赤外線を検出し、この検出信号を測定対象熱源の熱源画像として表示する熱検出装置は、例えば、監視カメラ、暗視装置、サーモグラフィ、リモートセンシング並びに車両及び航空機に搭載された前方監視装置等として広く普及している。赤外線を検出する熱検知器には、単一検知素子、1次元配列検知素子、及び2次元配列検知素子構成のもの等がある。1次元配列素子及び2次元配列素子のような多素子構成の熱検知器においては、各素子の感度特性は必ずしも均一でない。また、同一素子が検出した画素も、その測定条件により誤差が発生する。したがって、測定対象熱源の正確な温度測定を行うためには各画素の感度補正を行う必要がある。   In recent years, heat detection devices that detect infrared rays emitted from a heat source to be measured and display the detection signal as a heat source image of the heat source to be measured are used in, for example, surveillance cameras, night vision devices, thermography, remote sensing, vehicles, and aircraft. Widely used as an on-board monitoring device. Thermal detectors that detect infrared rays include single detection elements, one-dimensional array detection elements, and two-dimensional array detection element configurations. In a heat detector having a multi-element configuration such as a one-dimensional array element and a two-dimensional array element, the sensitivity characteristics of each element are not necessarily uniform. An error also occurs in pixels detected by the same element depending on the measurement conditions. Therefore, in order to accurately measure the temperature of the heat source to be measured, it is necessary to correct the sensitivity of each pixel.

従来例(1)
従来の熱検出装置(赤外線撮像装置)、例えば、特開平10-111172号公報(特許文献1)記載の赤外線撮像装置は、撮像目標(測定対象熱源)からの赤外線を集光して熱検知器の視野を走査する走査光学系に対して2つの基準熱源を備え、該熱検知器を構成する検知素子の該測定対象熱源に対する無効走査期間において、該検知素子が両基準熱源を見込んだときの出力から該検知素子の感度を補正するようにした赤外線撮像装置において、前記2つの基準熱源に対する前記検知素子の出力の中間値を算出して、該中間値が目標物体(測定対象熱源)を撮像したときの該検知素子の出力の平均値と一致するように、第1の基準熱源の温度と第2の基準熱源の温度とを、所定の温度差を持たせて制御する。そして、この2つの温度を基準とした感度補正を行っている。これにより、第1及び第2の基準熱源の温度を測定対象熱源の温度に近くに設定でき正確な感度補正が可能になる。
Conventional example (1)
A conventional heat detection device (infrared imaging device), for example, an infrared imaging device described in JP-A-10-111172 (Patent Document 1) collects infrared rays from an imaging target (measurement target heat source) and heat detector The scanning optical system for scanning the field of view includes two reference heat sources, and when the sensing element expects both reference heat sources in the invalid scanning period of the sensing element constituting the thermal detector with respect to the heat source to be measured In the infrared imaging device that corrects the sensitivity of the detection element from the output, the intermediate value of the output of the detection element with respect to the two reference heat sources is calculated, and the intermediate value images the target object (measurement target heat source) Then, the temperature of the first reference heat source and the temperature of the second reference heat source are controlled with a predetermined temperature difference so as to coincide with the average value of the output of the sensing element. Then, sensitivity correction based on these two temperatures is performed. Thereby, the temperature of the first and second reference heat sources can be set close to the temperature of the measurement target heat source, and accurate sensitivity correction can be performed.

従来例(2)
また、別の従来の熱検出装置(赤外線撮像装置)、例えば、特開2001-8100号公報(特許文献2)記載の赤外線撮像装置は、複数の素子により構成された赤外線検知器と、高温の基準熱源と常温の基準熱源を備え、基準熱源制御回路が、該高温と常温との基準熱源の温度を制御し、光学系が、有効走査期間に目標物(測定対象熱源)方向の赤外線を走査して前記赤外線検知器に入射し、信号処理回路が、無効走査期間に前記高温と常温との基準熱源からの赤外線を走査して前記赤外線検知器に入射すると、前記無効走査期間に取込んだ前記高温の基準熱源による高温データと前記常温の基準熱源による常温データとを基に、前記素子対応の感度補正を行い、且つ前記赤外線検知器を構成する各素子の欠陥を判定し、欠陥素子による信号を正常素子による信号に置換する処理を行う。
特開平10-111172号公報(3〜4頁、図1) 特開2001-8100号公報(3〜4頁、図1)
Conventional example (2)
Further, another conventional heat detection device (infrared imaging device), for example, an infrared imaging device described in Japanese Patent Application Laid-Open No. 2001-8100 (Patent Document 2), an infrared detector composed of a plurality of elements, and a high-temperature Equipped with a reference heat source and a normal temperature reference heat source, the reference heat source control circuit controls the temperature of the reference heat source between the high temperature and the normal temperature, and the optical system scans infrared rays in the direction of the target (measurement target heat source) during the effective scanning period. The signal processing circuit scans the infrared rays from the reference heat source at the high temperature and the normal temperature and enters the infrared detector during the invalid scanning period, and takes in the invalid scanning period. Based on the high temperature data by the high temperature reference heat source and the room temperature data by the room temperature reference heat source, the sensitivity correction corresponding to the element is performed, and the defect of each element constituting the infrared detector is determined, and the defect element Signal by normal element Perform the replacement process.
Japanese Patent Laid-Open No. 10-111172 (page 3-4, FIG. 1) JP 2001-8100 (page 3-4, FIG. 1)

上述したように従来例(1)及び(2)の熱検出装置では、温度差を持たせた2つ基準熱源の温度を測定対象熱源の温度に近づけるように制御し、そして、この2つの温度を基準として、熱検知器の検出素子の感度のバラツキを正確に補正している。
しかしながら、従来例(1)及び(2)においては、熱検出装置の移動する場合についての配慮がない。即ち、熱検出装置が遮蔽空間外から遮蔽空間内に移動する場合についての配慮がない。
As described above, in the heat detectors of the conventional examples (1) and (2), the temperature of the two reference heat sources having a temperature difference is controlled to be close to the temperature of the heat source to be measured, and these two temperatures are used. As a reference, variations in sensitivity of the detection element of the heat detector are accurately corrected.
However, in the conventional examples (1) and (2), no consideration is given to the case where the heat detection device moves. That is, there is no consideration for the case where the heat detection device moves from outside the shielding space into the shielding space.

そこで、本発明では、遮蔽空間(代表例としてのトンネル)外から遮蔽空間内に熱検出装置が移動し、遮蔽空間内壁の温度を測定する場合における、基準熱源の制御方法を提供することを目的とする。
また、遮蔽空間内を断続的に移動する場合に、効率的な基準熱源の制御方法を提供することを目的とする。
In view of the above, an object of the present invention is to provide a method for controlling a reference heat source when a heat detection device moves from outside a shielded space (tunnel as a typical example) into the shielded space and measures the temperature of the inner wall of the shielded space. And
It is another object of the present invention to provide an efficient method for controlling a reference heat source when moving intermittently in a shielded space.

例えば、測定対象熱源の温度の高いトンネル外から温度の低いトンネル(閉鎖空間)に入ってトンネルの内壁の温度を測定する場合、基準熱源を最適な温度に高速で測定対象熱源付近の温度に追従させることができない。これは、基準熱源の熱容量の大きさに起因する温度制御遅れであり、例えば、この遅れは30秒程度ある場合がある。すなわち、正確な感度補正を行うためには基準熱源の設定温度をトンネルの内壁温度付近に設定する必要があるが、トンネル内に入るとき、この制御に遅れが発生するため感度補正が正確でなくなる。   For example, when the temperature of the inner wall of a tunnel is measured from outside the tunnel where the temperature of the heat source to be measured enters from a low temperature tunnel (closed space), the reference heat source is quickly adjusted to the optimum temperature and the temperature near the heat source to be measured is tracked. I can't let you. This is a temperature control delay caused by the size of the heat capacity of the reference heat source. For example, this delay may be about 30 seconds. That is, in order to perform accurate sensitivity correction, it is necessary to set the set temperature of the reference heat source in the vicinity of the inner wall temperature of the tunnel. However, when entering the tunnel, a delay occurs in this control, and the sensitivity correction becomes inaccurate. .

また、複数のトンネルの内壁を順次測定し、その熱源画像を記録する場合、本来測定対象外のトンネル外(遮蔽空間外)の熱源画像も熱源画像記録部に記録されてしまうため、熱源画像記録部の限りある記憶容量を無駄に消費していた。すなわち、トンネル外の不必要な熱源画像のために必要以上の記録媒体を用意しておかなければならなかった。   In addition, when measuring the inner walls of multiple tunnels sequentially and recording the heat source image, the heat source image outside the tunnel (outside the shielding space) that is not originally measured is also recorded in the heat source image recording unit. A limited amount of storage capacity was wasted. In other words, more than necessary recording media had to be prepared for unnecessary heat source images outside the tunnel.

そこで本発明は、遮蔽空間内の測定対象熱源画像を抽出して記録することを目的とする。   Accordingly, an object of the present invention is to extract and record a measurement target heat source image in a shielded space.

上記の課題を解決するため、本発明においては、基準熱源を用いて赤外検知器の感度補正を行う熱検出装置が、複数の基準熱源と、測定対象熱源の温度を測定する測定対象物温度測定部と、外気温度を測定する外気温度測定部と、自装置が遮蔽空間内にあるか否かを判別する判別部と、該判別部によって、自装置が遮蔽空間外から遮蔽空間内へ移動したことを検出すると、複数の基準熱源の制御を、前記外気温度測定部に自装置が該遮蔽空間内にないときの外気温度の測定結果に基づく制御から前記測定対象物温度測定部に測定対象熱源の温度の測定結果に基づく制御に切り替える制御部を備えたことを特徴としている。 In order to solve the above problems, in the present invention, a heat detection device that performs sensitivity correction of an infrared detector using a reference heat source includes a plurality of reference heat sources and a measurement object temperature that measures the temperature of the measurement target heat source. The measuring unit, the outside temperature measuring unit for measuring the outside air temperature, the determining unit for determining whether or not the own device is in the shielded space, and the determining unit moving the own device from the outside of the shielded space into the shielded space and upon detecting that was the control of the plurality of reference heat source, the outside air temperature the measurement target temperature measuring portion from the measurement result based on the control of the outside air temperature when measuring section by that the own device is not in the shielding space It is characterized by comprising a control unit for switching the measurement result based on the control of the temperature of the measurement target heat source that by the.

すなわち、熱検出装置は、複数(通常2つ)の基準熱源、測定対象物温度測定部、外気温度測定部、判別部、及び制御部を備えている。測定対象物温度測定部は、測定対象熱源の温度を測定し、外気温度測定部は外気温度を測定し、判別部は自装置が遮蔽空間(例えば、トンネル)内にあるか否かを判別し、制御部は、該判別部によって、遮蔽空間外から遮蔽空間内に移動したことを検出すると、前記複数の基準熱源の制御を、自装置が遮蔽空間内にないときの前記外気温度測定部にる測定結果に基づく制御から前記測定対象物温度測定部に測定対象熱源の温度の測定結果(トンネル内の壁の温度)に基づく制御に切り替える。 That is, the heat detection apparatus includes a plurality of (usually two) reference heat sources, a measurement object temperature measurement unit, an outside air temperature measurement unit, a determination unit, and a control unit. The measurement object temperature measurement unit measures the temperature of the measurement target heat source, the outside air temperature measurement unit measures the outside air temperature, and the discrimination unit discriminates whether or not the own device is in a shielded space (for example, a tunnel). When the control unit detects that the determination unit has moved from the outside of the shielded space to the inside of the shielded space, the control unit controls the plurality of reference heat sources to the outside air temperature measuring unit when the device is not in the shielded space. wherein the control based on Ru good measurement result measured object temperature measuring unit by that measured the heat source temperature of the measurement result of the switch to control based on the (temperature of the wall of the tunnel).

これにより、遮蔽空間(代表例としてのトンネル)外から遮蔽空間内に熱検出装置が移動し、遮蔽空間内壁の温度を測定する場合における、基準熱源の制御が可能になる。   Thus, the reference heat source can be controlled when the heat detection device moves from the outside of the shielded space (tunnel as a representative example) to the shielded space and measures the temperature of the inner wall of the shielded space.

また、上記において、本発明では、前記判別部によって、自装置が遮蔽空間内から遮蔽空間外への移動したことを検出すると、前記遮蔽空間内における測定対象熱源の温度の測定結果に基づく前記複数の基準熱源の温度、次に遮蔽空間内に移動するまで前記複数の基準熱源の温度として保持する制御部をさらに備えたことを特徴としている。 In the above, in the present invention, by the determination unit, when it is detected that the own device is moved to the closed space outside the shielded space, the plurality based on the temperature measurement result of the measurement target heat source in the shielded space the temperature of the reference heat source, is characterized by further comprising a control unit for holding a temperature of said plurality of reference heat source until then moves to shield the space.

すなわち、測定対象物温度測定部は、測定対象熱源の温度を測定し、外気温度測定部は、外気温度を測定し、判別部は、自装置が遮蔽空間内にあるか否かを判別し、制御部は、該判別部によって、遮蔽空間内から遮蔽空間外への移動を検出すると、前記遮蔽空間内における測定対象熱源の温度の測定結果に基づく前記複数の基準熱源の温度制御を、次に遮蔽空間内に移動するまで前記複数の基準熱源の温度として保持する。 That is, the measurement object temperature measurement unit measures the temperature of the measurement target heat source, the outside air temperature measurement unit measures the outside air temperature, and the determination unit determines whether or not the own device is in the shielded space, When the control unit detects a movement from the inside of the shielded space to the outside of the shielded space, the control unit performs temperature control of the plurality of reference heat sources based on the measurement result of the temperature of the heat source to be measured in the shielded space, The temperature of the plurality of reference heat sources is maintained until it moves into the shielded space.

一般的に、トンネル外の外気はトンネル内の外気と連続しているため、トンネル出入口付近のトンネル外の外気温度とトンネル出入口付近のトンネル内壁(トンネル内外気と接触している。)の温度とは、ほぼ等しい。したがって、基準熱源温度設定部が上述したような各基準熱源の温度制御を行った場合、各基準熱源が追従できないほどの急峻な温度変化を各基準熱源に与える制御を行うことなく、すなわち、基準熱源が追従可能な温度制御を行うことが可能になる。これにより、遮蔽空間内を断続的に移動する場合に、効率的な基準熱源の制御が可能になる。   Generally, the outside air outside the tunnel is continuous with the outside air inside the tunnel, so the outside air temperature near the tunnel entrance and the temperature of the tunnel inner wall near the tunnel entrance (in contact with the outside air inside the tunnel) Are almost equal. Therefore, when the reference heat source temperature setting unit performs the temperature control of each reference heat source as described above, without performing control to give each reference heat source a steep temperature change that cannot be followed by each reference heat source, that is, the reference heat source It becomes possible to perform temperature control that the heat source can follow. This enables efficient control of the reference heat source when intermittently moving in the shielded space.

また、上記の制御部は、前記判別部によって、自装置が遮蔽空間内であると判断した場合に、前記赤外検知器が取得した測定対象熱源画像を記録するように制御し、遮蔽空間外であると判断した場合に、前記赤外検知器が取得した測定対象熱源画像を記録しないように制御することができる。これにより、遮蔽空間内の測定対象熱源画像を抽出して記録することが可能になる。 The above-mentioned control unit, by the determination unit, when the own device is determined to be within shielded space, the control such infrared detectors for recording measured heat source image acquired, shielded space outside If it is determined that the measurement target heat source image acquired by the infrared detector is not recorded, control can be performed. Thereby, it becomes possible to extract and record the measurement target heat source image in the shielded space.

また、上記の制御部は、遮蔽空間内から遮蔽空間外に移動したとき、該遮蔽空間内の該測定対象熱源を検出した温度を保持する代わりに、該外気温度に基づき各基準熱源の温度を制御することができる。   In addition, when the control unit moves from the inside of the shielded space to the outside of the shielded space, the temperature of each reference heat source is set based on the outside air temperature instead of maintaining the temperature at which the measurement target heat source is detected in the shielded space. Can be controlled.

これによれば、例えば、遮蔽空間と次の遮蔽空間との距離が長い場合、前の遮蔽空間の出口の内壁の温度と次の遮蔽空間の入口の内壁の温度が大きく異なる可能性があり、この場合、最後に検出した温度を保持して温度制御を行うと基準熱源の遅れが問題になる。そこで、外気温度が遮蔽空間の出口の内壁の温度から次の遮蔽空間の入口の内壁の温度までに徐々に変化するものとして、外気温度に基づき、基準熱源の温度制御を行えば、遅れの問題は解消する。   According to this, for example, when the distance between the shielded space and the next shielded space is long, the temperature of the inner wall of the exit of the previous shielded space and the temperature of the inner wall of the entrance of the next shielded space may greatly differ, In this case, if the temperature is controlled while maintaining the last detected temperature, the delay of the reference heat source becomes a problem. Therefore, if the outside air temperature gradually changes from the temperature of the inner wall of the outlet of the shielded space to the temperature of the inner wall of the inlet of the next shielded space, if the temperature control of the reference heat source is performed based on the outside air temperature, there will be a problem of delay. Is resolved.

また、上記の判別部は、GPS受信機を含み、該GPS受信機が、全てのGPS信号を受信できなかったとき、該遮蔽空間内であると判別し、少なくとも1つのGPS信号を受信したとき、該遮蔽空間外であると判別することができる。これにより、熱検出装置が遮蔽空間内にあるか否かを判別することが可能になる。   In addition, the determination unit includes a GPS receiver. When the GPS receiver fails to receive all GPS signals, the determination unit determines that it is within the shielded space and receives at least one GPS signal. , It can be determined that it is outside the shielding space. This makes it possible to determine whether or not the heat detection device is in the shielded space.

また、上記の測定対象物温度測定部を、サーモパイルを用いた放射温度計としてもよい。   The measurement object temperature measuring unit may be a radiation thermometer using a thermopile.

また、上記の外気温度測定部を、白金抵抗を用いた温度センサとしてもよい。   In addition, the outside air temperature measurement unit may be a temperature sensor using a platinum resistance.

また、本発明では、該基準熱源の内の1つを高温側基準熱源とし、別の1つを低温側基準熱源としたとき、該赤外検知器で検知された該高温側基準熱源の熱源画像の全画素データの平均値と該低温側基準熱源の熱源画像の全画素データの平均値との差を、該高温側基準熱源の熱源画像の各画素データと該低温側基準熱源の熱源画像の各画素データとの差で割った値を各画素のゲイン係数とし、該低温側基準熱源の熱源画像の全画素データの平均値と該高温側基準熱源の熱源画像の各画素データとの積と、該高温側基準熱源の熱源画像の全画素データの平均値と該低温側基準熱源の熱源画像の各画素データの積との差を、該高温側基準熱源の熱源画像の各画素データと該低温側基準熱源の熱源画像の各画素データとの差で割った値を各画素のオフセット係数として該感度補正をする信号処理部を備えることができる。なお、この感度補正は、3つ以上の基準熱源の画素データを用いて、より正確な感度補正をすることも可能である。   Further, in the present invention, when one of the reference heat sources is a high temperature side reference heat source and the other is a low temperature side reference heat source, the heat source of the high temperature side reference heat source detected by the infrared detector. The difference between the average value of all the pixel data of the image and the average value of all the pixel data of the heat source image of the low-temperature side reference heat source is obtained by calculating each pixel data of the heat source image of the high-temperature side reference heat source and the heat source image of the low-temperature side reference heat source. The product of the average value of all pixel data of the heat source image of the low temperature side reference heat source and each pixel data of the heat source image of the high temperature side reference heat source is defined as the gain coefficient of each pixel. Difference between the average value of all pixel data of the heat source image of the high temperature side reference heat source and the product of each pixel data of the heat source image of the low temperature side reference heat source, and each pixel data of the heat source image of the high temperature side reference heat source The value divided by the difference from each pixel data of the heat source image of the low-temperature side reference heat source is the value of each pixel. It may comprise a signal processing unit for the photosensitive degree correction as set coefficient. Note that this sensitivity correction can be performed more accurately by using pixel data of three or more reference heat sources.

また、上記の各画素データを各画素近傍の複数の画素データの平均値とすることができる。これにより、熱検知器12の各画素データに含まれるノイズの影響を排除することが可能になる。   Further, each pixel data described above can be an average value of a plurality of pixel data in the vicinity of each pixel. Thereby, it is possible to eliminate the influence of noise included in each pixel data of the heat detector 12.

また、上記の遮蔽空間をトンネルとすることができる。   The shielded space can be a tunnel.

本発明によれば、遮蔽空間外から閉鎖空間内に熱検出装置が移動する場合の基準熱源の効率的な制御方法が提供される。
また、本発明によれば、遮蔽空間内を断続的に移動する場合に、効率的な基準熱源の制御方法が提供される。
また、本発明によれば、遮蔽空間内の測定対象熱源画像を抽出して記録することができる。
ADVANTAGE OF THE INVENTION According to this invention, the efficient control method of the reference | standard heat source in case a heat | fever detection apparatus moves into the enclosed space from the shielding space is provided.
In addition, according to the present invention, an efficient method for controlling a reference heat source is provided when moving in a shielded space intermittently.
Further, according to the present invention, it is possible to extract and record the measurement target heat source image in the shielded space.

構成実施例
図1は、本発明の熱検出装置100の構成実施例を示している。この熱検出装置100は、光学系部10、光路選択部11、熱検知器(赤外線検知器)12、増幅器13、A/D変換器14、信号処理部15、D/A変換器16、モニタ17、熱源画像記録部18、及び基準熱源入射選択部19を備えている。さらに、熱検出装置100は、測定対象物温度測定部21、外気温度測定部22、遮蔽空間内運用判別部23、基準熱源温度設定部24、基準熱源25、基準熱源26、及び基準熱源選択部27を備えている。この内の光路選択部11、基準熱源選択部27、及び基準熱源入射選択部19で選択部31を構成している。
Configuration Example FIG. 1 shows a configuration example of the heat detection apparatus 100 of the present invention. This heat detection apparatus 100 includes an optical system unit 10, an optical path selection unit 11, a heat detector (infrared detector) 12, an amplifier 13, an A / D converter 14, a signal processing unit 15, a D / A converter 16, a monitor 17, a heat source image recording unit 18, and a reference heat source incident selection unit 19 are provided. Furthermore, the heat detection device 100 includes a measurement object temperature measurement unit 21, an outside air temperature measurement unit 22, a shielded space operation determination unit 23, a reference heat source temperature setting unit 24, a reference heat source 25, a reference heat source 26, and a reference heat source selection unit. 27. Among these, the optical path selection unit 11, the reference heat source selection unit 27, and the reference heat source incidence selection unit 19 constitute a selection unit 31.

動作実施例
動作において、光学系部10は、測定対象熱源30から受けた赤外線を光路選択部11に与える。基準熱源選択部27は、基準熱源25及び基準熱源26の内の一方からの赤外線を選択して光路選択部11に与える。光路選択部11は、測定対象熱源30からの赤外線及び基準熱源25又は基準熱源26からの赤外線の内のいずれか1つを選択して熱検知器12に与える。熱検知器(赤外線検知器)12は、与えられた赤外線を電気信号に変換し、この電気信号を増幅器13は増幅してA/D変換器14に与える。A/D変換器14は与えられた電気信号をディジタル信号に変換して、信号処理部15に与える。このディジタル信号は、順次、画像フレーム800_1,800_2,…,800_n,…(以下、符号800で総称することがある。)に構成されて出力される。
Operation Example In the operation, the optical system unit 10 gives the infrared ray received from the measurement target heat source 30 to the optical path selection unit 11. The reference heat source selection unit 27 selects infrared rays from one of the reference heat source 25 and the reference heat source 26 and supplies the selected infrared rays to the optical path selection unit 11. The optical path selection unit 11 selects one of the infrared rays from the measurement target heat source 30 and the infrared rays from the reference heat source 25 or the reference heat source 26 and supplies the selected one to the heat detector 12. The heat detector (infrared detector) 12 converts the applied infrared light into an electric signal, and the electric signal is amplified by the amplifier 13 and supplied to the A / D converter 14. The A / D converter 14 converts the supplied electric signal into a digital signal and supplies it to the signal processing unit 15. The digital signals are sequentially configured and output as image frames 800_1, 800_2,..., 800_n,.

図2は、画像フレーム800の一例を示しており、この画像フレーム800は、測定対象熱源画像800a及び基準熱源画像800bで構成されている。基準熱源画像800bには低温側基準熱源画像又は高温側基準熱源画像を含んでいる。基準熱源画像800bでは、各画素当たり128データ取得する。感度補正係数の算出には基準熱源画像800bを使用する。感度補正係数は通常、1フレーム毎に更新される。   FIG. 2 shows an example of an image frame 800, and the image frame 800 includes a measurement target heat source image 800a and a reference heat source image 800b. The reference heat source image 800b includes a low temperature side reference heat source image or a high temperature side reference heat source image. In the reference heat source image 800b, 128 data is acquired for each pixel. The reference heat source image 800b is used for calculating the sensitivity correction coefficient. The sensitivity correction coefficient is normally updated every frame.

信号処理部15は、例えば、基準熱源25及び基準熱源26に対応する基準熱源画像800bの低温側基準熱源画像及び高温側基準熱源画像に基づき、熱検知器12の検知素子の感度バラツキ等に起因する各画素の感度を補正する。さらに、信号処理部15は、測定対象熱源30の熱源画像を熱源画像記録部18に記録できるデータ形式に変換して熱源画像記録部18に与えるとともに、モニタ17に写すためのデータ形式に変換したディジタルデータをD/A変換器16に与える。このディジタルデータをD/A変換器16はアナログ信号に変換してモニタ17に与える。モニタ17はアナログ信号に基づき測定対象熱源30の熱源画像を表示する。   The signal processing unit 15 is caused by, for example, variations in sensitivity of the detection elements of the heat detector 12 based on the low-temperature side reference heat source image and the high-temperature side reference heat source image of the reference heat source image 800b corresponding to the reference heat source 25 and the reference heat source 26. The sensitivity of each pixel to be corrected is corrected. Furthermore, the signal processing unit 15 converts the heat source image of the measurement target heat source 30 into a data format that can be recorded in the heat source image recording unit 18 and gives the data to the heat source image recording unit 18 and also converts the data format to be displayed on the monitor 17 Digital data is supplied to the D / A converter 16. The D / A converter 16 converts this digital data into an analog signal and supplies it to the monitor 17. The monitor 17 displays a heat source image of the measurement target heat source 30 based on the analog signal.

基準熱源入射選択部19は、基準熱源選択部27と光路選択部11を制御して、それぞれ、高温側及び低温側温度に設定された基準熱源25又は基準熱源26からの赤外線を熱検知器12に入射させる。さらに、基準熱源入射選択部19は、現在、基準熱源25及び基準熱源26の内のいずれの赤外線が熱検知器12に入射しているかを示す基準熱源入射通知704を信号処理部15に通知する。熱源画像記録部18は、与えられたデータ形式の熱源画像を記録する。この記録媒体として、例えば、ハードディスクが用いられる。熱源画像記録部18の記録開始及び記録停止は、遮蔽空間内運用判別部23が出力する遮蔽空間内運用判別情報702に基づき行われる。これにより、遮蔽空間外の熱源画像及び遮蔽空間内の測定対象熱源画像の内の遮蔽空間内の測定対象熱源画像のみを記録することが可能になる。   The reference heat source incidence selection unit 19 controls the reference heat source selection unit 27 and the optical path selection unit 11, and respectively detects infrared rays from the reference heat source 25 or the reference heat source 26 set to the high temperature side and the low temperature side temperature as the heat detector 12. To enter. Further, the reference heat source incident selection unit 19 notifies the signal processing unit 15 of a reference heat source incident notification 704 indicating which infrared ray of the reference heat source 25 and the reference heat source 26 is currently incident on the heat detector 12. . The heat source image recording unit 18 records a heat source image in a given data format. As this recording medium, for example, a hard disk is used. Recording start and recording stop of the heat source image recording unit 18 are performed based on the in-shielded space operation determination information 702 output from the in-shielded space operation determination unit 23. As a result, it is possible to record only the heat source image outside the shielded space and the measurement target heat source image within the shielded space among the target heat source images within the shielded space.

測定対象物温度測定部21は、測定対象熱源30の表面温度を測定するものであり、例えばセンサとしてサーモパイルを用いた放射温度計で構成し、得られる測定対象熱源30の表面温度の誤差は、概ね±1℃以下となるようにする。測定対象物温度測定部21はその精度を向上させるための校正回路を含んでも良い。放射温度計が測定する測定対象熱源30の範囲は、熱検知器12が測定する範囲と重なるようにする。得られた測定対象熱源30の表面温度はアナログ又はディジタル形式で基準熱源温度設定部24に送られる。   The measurement object temperature measurement unit 21 measures the surface temperature of the measurement target heat source 30, for example, a radiation thermometer using a thermopile as a sensor, and the error in the surface temperature of the measurement target heat source 30 obtained is Keep the temperature approximately within ± 1 ° C. The measuring object temperature measuring unit 21 may include a calibration circuit for improving the accuracy. The range of the heat source 30 to be measured which is measured by the radiation thermometer is made to overlap the range which the heat detector 12 measures. The obtained surface temperature of the heat source 30 to be measured is sent to the reference heat source temperature setting unit 24 in an analog or digital format.

外気温度測定部22は、本発明の熱検出装置100周辺の外気温度を測定するものであり、例えばセンサとして白金抵抗を用いて構成する。白金抵抗にはおよそ1mAの電流を流し、そのときの電圧降下を増幅して、誤差が概ね±1℃以下となるような外気温度を得る。得られた外気温度はアナログ又はディジタル形式で基準熱源温度設定部24に送られる。   The outside air temperature measurement unit 22 measures the outside air temperature around the heat detection apparatus 100 of the present invention, and is configured using, for example, a platinum resistor as a sensor. A current of about 1 mA is passed through the platinum resistor, and the voltage drop at that time is amplified to obtain an outside temperature at which the error is about ± 1 ° C. or less. The obtained outside air temperature is sent to the reference heat source temperature setting unit 24 in an analog or digital format.

遮蔽空間内運用判別部23は、本発明の熱検出装置100が遮蔽空間内(トンネル内)にあるか否かを判別するものであり、例えばGPS受信機を含んでいる。一般にGPS受信機はRS232C等を用いたステータス出力機能を有している。このステータス出力の内、現在受信できているGPS衛星数の情報を用いる。本発明の熱検出装置100が遮蔽空間(トンネル)外にあるときはGPS衛星から発せられる電波を受信できるので、GPS受信機が出力するステータスが示す“現在受信できているGPS衛星数”≧“1”となる。   The shielded space operation determining unit 23 determines whether or not the heat detection device 100 of the present invention is in the shielded space (in the tunnel), and includes, for example, a GPS receiver. In general, a GPS receiver has a status output function using RS232C or the like. Among the status outputs, information on the number of GPS satellites currently received is used. Since the radio wave emitted from the GPS satellite can be received when the heat detection apparatus 100 of the present invention is outside the shielded space (tunnel), the “number of GPS satellites currently received” indicated by the status output by the GPS receiver ≧ “ 1 ".

一方、本発明の熱検出装置100が遮蔽空間内にあるときはGPS衛星から発せられる電波を受信できないので、GPS受信機が出力するステータスが示す“現在受信できているGPS衛星数”=“0"となる。すなわち、GPS受信機が出力するステータスが示す“現在受信できているGPS衛星数”≧“1"のときは本発明の熱検出装置100が遮蔽空間外にあり、“現在受信できているGPS衛星数”=“0"のときは本発明の熱検出装置100が遮蔽空間内にあると判別する。遮蔽空間内運用判別情報702は、1ビットのロジック信号であり、基準熱源温度設定部24及び熱源画像記録部18に送られる。   On the other hand, since the radio wave emitted from the GPS satellite cannot be received when the heat detection apparatus 100 of the present invention is in the shielded space, “the number of GPS satellites currently received” indicated by the status output by the GPS receiver = “0 "Become. That is, when “the number of GPS satellites currently received” indicated by the status output by the GPS receiver ≧ “1”, the heat detection device 100 of the present invention is outside the shielded space, and “the GPS satellites that can be received now” When the number is “0”, it is determined that the heat detection device 100 of the present invention is in the shielded space. The operation determination information 702 in the shielded space is a 1-bit logic signal and is sent to the reference heat source temperature setting unit 24 and the heat source image recording unit 18.

基準熱源温度設定部24は、例えば、ロジック回路により構成され、測定対象物温度測定部21が出力する測定対象物温度703、外気温度測定部22が出力する外気温度701、遮蔽空間内運用判別部23が出力する遮蔽空間内運用判別情報702に基づき、基準熱源25及び基準熱源26の温度を設定する。   The reference heat source temperature setting unit 24 is constituted by, for example, a logic circuit, the measurement object temperature 703 output from the measurement object temperature measurement unit 21, the outside air temperature 701 output from the outside air temperature measurement unit 22, and the operation determination unit in the shielded space The temperatures of the reference heat source 25 and the reference heat source 26 are set on the basis of the operation determination information 702 in the shielded space output from 23.

基準熱源の温度設定例
図3は、基準熱源温度設定部24の動作手順例を示しており、この動作手順では、基準熱源温度設定部24は基準熱源25及び基準熱源26の温度を設定する。以下に設定部24の動作手順を説明する。
Reference Heat Source Temperature Setting Example FIG. 3 shows an operation procedure example of the reference heat source temperature setting unit 24. In this operation procedure, the reference heat source temperature setting unit 24 sets the temperatures of the reference heat source 25 and the reference heat source 26. The operation procedure of the setting unit 24 will be described below.

ステップS100:熱検出装置100に電源が投入され、熱検出装置100の運用が開始する。 Step S100 : The heat detection apparatus 100 is turned on, and the operation of the heat detection apparatus 100 is started.

ステップS110:基準熱源温度設定部24は、熱検出装置100が遮蔽空間内にあるか否かの判別を行う、すなわち、基準熱源温度設定部24は、遮蔽空間内運用判別部23からの遮蔽空間内運用判別情報702=“0:NO(遮蔽空間外)”であるときは、ステップS120に進み、“1:YES(遮蔽空間内)”のときは、ステップS130に進む。 Step S110 : The reference heat source temperature setting unit 24 determines whether or not the heat detection device 100 is in the shielded space, that is, the reference heat source temperature setting unit 24 is the shielded space from the operation determination unit 23 in the shielded space. When the internal operation determination information 702 = “0: NO (outside shielded space)”, the process proceeds to step S120, and when “1: YES (inside shielded space)”, the process proceeds to step S130.

ステップS120:基準熱源温度設定部24は、外気温度測定部22で測定された外気温度701を基に基準熱源25及び基準熱源26の温度を設定する。例えば、基準熱源25=“外気温度701+5℃”及び基準熱源26=“外気温度701−5℃”に設定した後、ステップS110に戻る。 Step S120 : The reference heat source temperature setting unit 24 sets the temperatures of the reference heat source 25 and the reference heat source 26 based on the outside air temperature 701 measured by the outside air temperature measuring unit 22. For example, after setting the reference heat source 25 = “outside air temperature 701 + 5 ° C.” and the reference heat source 26 = “outside air temperature 701-5 ° C.”, the process returns to step S110.

尚、遮蔽空間外である場合に、測定対象物温度測定部21の測定結果を用いて基準熱源25、26を制御すると、例えば、測定対象を上方側に設定してあると、空について放射温度を測定してしまい、遮蔽空間の内壁の温度よりも低い温度にあわせて基準熱源を制御してしまう。従って、遮蔽空間内に移動した際に、基準熱源の温度を大きく変動させる必要があり、基準熱源の熱容量の大きさに起因する温度制御遅れ(例えば、30秒程度)により、赤外線検知器の補正が正常に行えない期間が増大することとなる。
しかし、この実施例では、外気温度測定部22で測定した外気温度に基づいて基準熱源25、26を制御する。遮蔽空間への入り口付近の内壁の温度は、外気温度に近い温度であり、遮蔽空間内に移動した際に、基準熱源がなるべく測定対象である内壁温度に近い温度に基づいて制御されるからである。
When the reference heat sources 25 and 26 are controlled using the measurement result of the measurement object temperature measurement unit 21 when the measurement object is outside the shielding space, for example, if the measurement object is set on the upper side, the radiation temperature of the sky And the reference heat source is controlled in accordance with a temperature lower than the temperature of the inner wall of the shielded space. Therefore, when moving into a shielded space, the temperature of the reference heat source must be greatly changed, and the infrared detector correction is performed due to a temperature control delay (for example, about 30 seconds) caused by the heat capacity of the reference heat source. This increases the period during which the normal operation cannot be performed.
However, in this embodiment, the reference heat sources 25 and 26 are controlled based on the outside air temperature measured by the outside air temperature measuring unit 22. The temperature of the inner wall near the entrance to the shielded space is close to the outside air temperature, and when moving into the shielded space, the reference heat source is controlled based on the temperature as close as possible to the inner wall temperature to be measured. is there.

ステップS130:基準熱源温度設定部24は、測定対象物温度測定部21が測定した測定対象熱源(トンネル内壁)30の温度を基に基準熱源25及び基準熱源26の温度を設定する。例えば、基準熱源25=“測定対象熱源30の温度+5℃”及び基準熱源26=“測定対象熱源30の温度−5℃”に設定される。 Step S130 : The reference heat source temperature setting unit 24 sets the temperatures of the reference heat source 25 and the reference heat source 26 based on the temperature of the measurement target heat source (tunnel inner wall) 30 measured by the measurement target temperature measurement unit 21. For example, the reference heat source 25 = “temperature of the measurement target heat source 30 + 5 ° C.” and the reference heat source 26 = “temperature of the measurement target heat source 30−5 ° C.” are set.

ステップS140:再度、熱検出装置100は、遮蔽空間内の運用であるか否かの判定を実施し、“YES(遮蔽空間内)”であるとき、ステップS130に戻り、ステップS130で測定された測定対象熱源30の温度を基に基準熱源25及び基準熱源26の設定温度が更新される。“NO(遮蔽空間外)”であるとき、ステップS150に進む。 Step S140 : The heat detection apparatus 100 again determines whether or not the operation is in the shielded space. If “YES (in the shielded space)”, the process returns to step S130 and is measured in step S130. Based on the temperature of the heat source 30 to be measured, the set temperatures of the reference heat source 25 and the reference heat source 26 are updated. If “NO (out of shielding space)”, the process proceeds to step S150.

ステップS150:基準熱源25及び基準熱源26の設定温度は更新されずに保持される。ステップS140に戻る。そして、遮蔽空間外の運用が続く場合、基準熱源25及び基準熱源26の設定温度は更新されずに保持される。 Step S150 : The set temperatures of the reference heat source 25 and the reference heat source 26 are maintained without being updated. The process returns to step S140. When the operation outside the shielded space continues, the set temperatures of the reference heat source 25 and the reference heat source 26 are maintained without being updated.

図4は、本発明の熱検出装置100における基準熱源25及び基準熱源26の温度設定例を示している。同図(1)は、遮蔽空間内運用判別情報702を示しており、横軸は時間、縦軸は判別情報702=“1:YES(遮蔽空間内)”、運用判別情報702=“0:NO(遮蔽空間外)”を示している。同図(2)〜(5)は、横軸は時間を示し、縦軸は、それぞれ、外気温度701、測定対象物温度703、基準熱源25の設定温度、及び基準熱源26の設定温度を示している。   FIG. 4 shows a temperature setting example of the reference heat source 25 and the reference heat source 26 in the heat detection apparatus 100 of the present invention. FIG. 1 (1) shows the operation determination information 702 in the shielded space. The horizontal axis represents time, the vertical axis represents the determination information 702 = “1: YES (in the shielded space)”, and the operation determination information 702 = “0: “NO (outside shielding space)”. In (2) to (5), the horizontal axis represents time, and the vertical axis represents the outside air temperature 701, the measurement object temperature 703, the set temperature of the reference heat source 25, and the set temperature of the reference heat source 26, respectively. ing.

図3を参照して、図4に示した基準熱源25及び基準熱源26の温度設定動作を以下に説明する。   The temperature setting operation of the reference heat source 25 and the reference heat source 26 shown in FIG. 4 will be described below with reference to FIG.

区間T1:熱検出装置100の電源が遮蔽空間外で投入され、熱検出装置100の運用が開始される(図3のステップS100参照。)。このとき、遮蔽空間内運用でないので(同ステップS110参照。)、基準熱源25の温度=“外気温度701+5℃”に設定され、基準熱源26の温度=“外気温度701−5℃”に設定される(同ステップS120参照。)。 Section T1 : The power source of the heat detection device 100 is turned on outside the shielded space, and the operation of the heat detection device 100 is started (see step S100 in FIG. 3). At this time, since the operation is not performed in the shielded space (see step S110), the temperature of the reference heat source 25 is set to “outside temperature 701 + 5 ° C.”, and the temperature of the reference heat source 26 is set to “outside temperature 701-5 ° C.”. (Refer to step S120).

区間T2:熱検出装置100が遮蔽空間内(トンネル内)に進入すると、遮蔽空間内運用判別情報702=“1:YES(遮蔽空間内)”となり(同ステップS110参照。)、基準熱源25の温度=“測定対象物温度703+5℃”、基準熱源26の温度=“測定対象物温度703−5℃”に設定される(同ステップS130参照。)。すなわち、遮蔽空間内の内壁温度(=測定対象熱源の温度)に基づき設定される。 Section T2 : When the heat detection device 100 enters the shielded space (inside the tunnel), the operation determination information in the shielded space 702 = “1: YES (in the shielded space)” (see step S110), and the reference heat source 25 Temperature = “measurement object temperature 703 + 5 ° C.” and reference heat source 26 temperature = “measurement object temperature 703-5 ° C.” (see step S130). That is, it is set based on the inner wall temperature in the shielded space (= temperature of the heat source to be measured).

区間T3:さらに、熱検出装置100が遮蔽空間外に出ると(同ステップS140の“NO”参照。)、遮蔽空間内運用判別情報702=“0:NO(遮蔽空間外)”となり、基準熱源25の温度=“遮蔽空間内の測定対象物温度703+5℃を保持”、基準熱源26の温度=“遮蔽空間内の測定対象物温度703−5℃を保持”、すなわち、基準熱源25,26の設定された温度を保持する(同ステップS150参照。)。 Section T3 : Further, when the heat detection device 100 goes out of the shielded space (see “NO” in step S140), the operation determination information in the shielded space 702 = “0: NO (outside shielded space)”, and the reference heat source 25 temperature = “maintains the measurement object temperature 703 + 5 ° C. in the shielded space”, the temperature of the reference heat source 26 = “maintains the measurement object temperature 703−5 ° C. in the shielded space”, that is, the reference heat sources 25, 26 The set temperature is maintained (see step S150).

区間T4:さらに、熱検出装置100が遮蔽空間内に進入すると(同ステップS140の“YES”参照。)、遮蔽空間内運用判別情報702=“1:YES(遮蔽空間内)”となり、基準熱源25の温度=“測定対象物温度703+5℃”、基準熱源26の温度=“測定対象物温度703−5℃”に設定される(同ステップS130の参照。)。 Section T4 : Furthermore, when the heat detection apparatus 100 enters the shielded space (see “YES” in step S140), the operation determination information in the shielded space 702 = “1: YES (within the shielded space)”, and the reference heat source The temperature of 25 = “measurement object temperature 703 + 5 ° C.” and the temperature of the reference heat source 26 = “measurement object temperature 703-5 ° C.” (see step S130).

区間T5:さらに、熱検出装置100が遮蔽空間外に出ると、区間T3と同様に、遮蔽空間内運用判別情報702=“0:NO(遮蔽空間外)”となり、基準熱源25の温度=“遮蔽空間内の測定対象物温度703+5℃を保持”、基準熱源26の温度=“遮蔽空間内の測定対象物温度703−5℃を保持”に設定される。 Section T5 : Further, when the heat detection apparatus 100 goes out of the shielded space, similarly to the section T3, the operation determination information 702 in the shielded space becomes “0: NO (outside the shielded space)”, and the temperature of the reference heat source 25 = “ The measurement object temperature 703 + 5 ° C. in the shielded space is set, and the temperature of the reference heat source 26 is set to “hold the measurement object temperature 703-5 ° C. in the shielded space”.

なお、区間T3では、区間T2の測定対象熱源(トンネル内壁)の温度を保持したが、次のトンネルまでの距離が長く、前のトンネルの出口の内壁温度と次のトンネルの入口の内壁温度が大きく異なる可能性のある場合、最後に検出した温度を保持して温度制御を行うと基準熱源の遅れが問題になる。そこで、外気温度が遮蔽空間の出口の内壁の温度から次の遮蔽空間の入口の内壁の温度までに徐々に変化するものとして、外気温度に基づき、基準熱源の温度制御を行うようにしてもよい(図3では、ステップS140の“NO”からステップS120に向かう波線の流れ参照。)。   In section T3, the temperature of the heat source to be measured (tunnel inner wall) in section T2 was maintained, but the distance to the next tunnel was long, and the inner wall temperature at the exit of the previous tunnel and the inner wall temperature of the entrance of the next tunnel were When there is a possibility that the temperature is greatly different, delay of the reference heat source becomes a problem when temperature control is performed while maintaining the temperature detected last. Therefore, the temperature control of the reference heat source may be performed based on the outside air temperature, assuming that the outside air temperature gradually changes from the temperature of the inner wall of the outlet of the shielded space to the temperature of the inner wall of the inlet of the next shielded space. (See the flow of the wavy line from “NO” in step S140 to step S120 in FIG. 3).

このように、設定された基準熱源25からの赤外線、基準熱源26からの赤外線、及び測定対象熱源30からの赤外線は、基準熱源選択部27、光路選択部11で選択され、熱検知器12に交互に到達する。これらの赤外線の選択制御は、基準熱源入射選択部19が行う。すなわち、基準熱源入射選択部19は、それぞれ、切替制御信号705,706を基準熱源選択部27及び光路選択部11に与えることで、赤外線切替を行う。また、基準熱源入射選択部19は、熱検知器12に入射された赤外線が、基準熱源25、基準熱源26、及び測定対象熱源30のいずれから放射した赤外線であるかを示す基準熱源入射通知704を信号処理部15に与える。これにより、信号処理部15は、増幅器13及びA/D変換器14を経由して熱検知器12から送信された熱源画像が基準熱源25、基準熱源26、及び測定対象熱源30の内のいずれからのものであるか判別できる。   As described above, the infrared rays from the set reference heat source 25, the infrared rays from the reference heat source 26, and the infrared rays from the measurement target heat source 30 are selected by the reference heat source selection unit 27 and the optical path selection unit 11, and are supplied to the heat detector 12. Reach alternately. The reference heat source incidence selection unit 19 performs the selection control of these infrared rays. That is, the reference heat source incidence selection unit 19 performs infrared switching by providing the switching control signals 705 and 706 to the reference heat source selection unit 27 and the optical path selection unit 11, respectively. Further, the reference heat source incident selection unit 19 performs reference heat source incident notification 704 indicating whether the infrared light incident on the heat detector 12 is the infrared light emitted from the reference heat source 25, the reference heat source 26, or the measurement target heat source 30. Is given to the signal processing unit 15. As a result, the signal processing unit 15 allows the heat source image transmitted from the heat detector 12 via the amplifier 13 and the A / D converter 14 to be one of the reference heat source 25, the reference heat source 26, and the measurement target heat source 30. Can be determined.

熱検知器12が検出した各画素には、ゲイン及びオフセットのばらつきがあるので、信号処理部15は、正確な測定対象熱源30の熱源画像を得るために補正係数を算出する必要がある。この補正係数には、ゲイン係数aiとオフセット係数biの2種類があり、これらの係数は、基準熱源25,26の赤外線を検出している時の熱検知器12の基準熱源画像800b(図2参照。)を用いて計算で求められる。   Since each pixel detected by the heat detector 12 has variations in gain and offset, the signal processing unit 15 needs to calculate a correction coefficient in order to obtain an accurate heat source image of the heat source 30 to be measured. There are two types of correction coefficients, a gain coefficient ai and an offset coefficient bi. These coefficients are the reference heat source image 800b of the heat detector 12 when the infrared rays of the reference heat sources 25 and 26 are detected (FIG. 2). ).

この計算例では、熱検知器12の出力データに含まれるノイズの影響を排除するため、熱検知器12の出力データは低温側の基準熱源26、高温側の基準熱源25の各々について16画像フレーム分、平均したものを用いる。すなわち、各画素について、1画像フレーム当たり128個データを取得する。それを更に16フレーム分集めて平均化する。以下に、係数算出のための計算式を示す。   In this calculation example, in order to eliminate the influence of noise included in the output data of the heat detector 12, the output data of the heat detector 12 is 16 image frames for each of the low-temperature side reference heat source 26 and the high-temperature side reference heat source 25. Minutes and averages are used. That is, 128 pieces of data are acquired per image frame for each pixel. It is collected and averaged for another 16 frames. The calculation formula for calculating the coefficient is shown below.

ゲイン係数ai及びオフセット係数biは、それぞれ、次式(1)及び式(2)で求めることができる。
The gain coefficient ai and the offset coefficient bi can be obtained by the following expressions (1) and (2), respectively.

Figure 0004583253
Figure 0004583253

Figure 0004583253
Figure 0004583253

ここで、i=画素番号、Hm=高温データの全画素での平均値、Lm=低温データの全画素での平均値、Hi=高温データの各画素での平均値、Li=低温データの各画素での平均値、Di=各画素の補正された出力、di=各画素の熱検知器出力である。   Here, i = pixel number, Hm = average value of all pixels of high-temperature data, Lm = average value of all pixels of low-temperature data, Hi = average value of each pixel of high-temperature data, Li = each value of low-temperature data Average value at pixel, Di = corrected output of each pixel, di = heat detector output of each pixel.

各画素番号iの画素について求めたゲイン係数aiとオフセット係数biを用い、熱検知器出力は次式(3)で補正することができる。
The heat detector output can be corrected by the following equation (3) using the gain coefficient ai and the offset coefficient bi obtained for each pixel number i.

Figure 0004583253
Figure 0004583253

これにより、各画素の正確な感度補正が可能になる。
以上の実施例によれば、(1)基準熱源の温度を、測定対象熱源の温度近くに追従させる温度制御が可能になり、熱検知器を構成する検知素子の補正(感度補正)を正確に行うことが可能になる。これにより、従来行われていた、複数箇所の内壁温度を予め手動で測定しておき、その平均値を基に基準熱源の温度を手動で設定する必要がなくなり、無駄な時間と人手を必要としなくなる。
Thereby, accurate sensitivity correction of each pixel becomes possible.
According to the above embodiment, (1) it is possible to control the temperature of the reference heat source to be close to the temperature of the heat source to be measured, and the correction (sensitivity correction) of the detection element constituting the heat detector can be accurately performed. It becomes possible to do. This eliminates the need to manually measure the temperature of the inner wall at a plurality of locations in advance, and manually set the temperature of the reference heat source based on the average value. Disappear.

(2)遮蔽空間外においては、基準熱源の設定温度が前の遮蔽空間内の測定対象熱源の温度に保持されるので、複数の遮蔽空間内を連続して測定する場合においても、各遮蔽空間内の測定対象熱源の温度が同様な場合、遮蔽空間内に入った時から正しく感度補正された熱源画像が得られる。  (2) Outside the shielded space, the set temperature of the reference heat source is maintained at the temperature of the heat source to be measured in the previous shielded space, so even when measuring continuously in multiple shielded spaces, each shielded space When the temperature of the heat source to be measured is the same, a heat source image whose sensitivity is correctly corrected can be obtained from the time when it enters the shielded space.

(3)例えば、熱検出装置の電源投入後、外気温度を基に基準熱源の温度を予め設定制御することにより、遮蔽空間内に入り、該外気温度に近い温度の測定対象熱源の温度に基づき基準熱源の温度制御を行う場合、基準熱源の温度が測定対象熱源の温度に近づく時間が短くなり、熱検知器の検出素子の感度補正の誤差及びその誤差が生じる時間を小さくできる。  (3) For example, after the power of the heat detection device is turned on, the temperature of the reference heat source is set and controlled in advance based on the outside air temperature, thereby entering the shielded space and based on the temperature of the measurement target heat source at a temperature close to the outside air temperature. When the temperature control of the reference heat source is performed, the time when the temperature of the reference heat source approaches the temperature of the heat source to be measured is shortened, and the error of sensitivity correction of the detection element of the heat detector and the time when the error occurs can be reduced.

(4)遮蔽空間外で熱検出を運用していない時は、不必要な熱源画像記録を自動的に停止することにより、記録媒体の節約及びコストダウンが図れると共に、記録された熱源画像解析の際に不必要な熱源画像除去作業の手間が省け、解析のスピードアップが図れる。すなわち、トンネル外であるか否かを判断し、トンネル外であるとき、熱源画像の記録を手動で一時的に停止するという無駄な時間と人手を必要でなくなる。  (4) When heat detection is not used outside the shielded space, unnecessary heat source image recording is automatically stopped to save recording media and reduce costs, and to analyze recorded heat source images. This eliminates unnecessary heat source image removal work and speeds up the analysis. That is, it is determined whether or not it is outside the tunnel, and when it is outside the tunnel, unnecessary time and manpower for manually and temporarily stopping recording of the heat source image are not required.


(付記1)
基準熱源を用いて赤外検知器の感度補正を行う熱検出装置において、
複数の基準熱源と、
測定対象熱源の温度を測定する測定対象物温度測定部と、
外気温度を測定する外気温度測定部と、
自装置が遮蔽空間内にあるか否かを判別する判別部と、
該判別部によって、遮蔽空間内であることを検出すると、前記複数の基準熱源の制御を、前記外気温度測定部における測定結果に基づく制御から前記測定対象物温度測定部における測定結果に基づく制御に切り替える制御部と、
を備えたことを特徴とする熱検出装置。
(付記2)
基準熱源を用いて赤外検知器の感度補正を行う熱検出装置において、
複数の基準熱源と、
測定対象熱源の温度を測定する測定対象物温度測定部と、
外気温度を測定する外気温度測定部と、
自装置が遮蔽空間内にあるか否かを判別する判別部と、
該判別部によって、遮蔽空間内から遮蔽空間外への変化を検出すると、前記遮蔽空間内における前記複数の基準熱源の温度制御を、次に遮蔽空間内に移動するまで保持する制御部と、
を備えたことを特徴とする熱検出装置。
(付記3)
前記制御部は、前記判別部によって、遮蔽空間内であると判断した場合に、測定対象熱源画像を記録し、遮蔽空間外であると判断した場合に、測定対象熱源画像を記録しないように制御することを特徴とする付記1又は2記載の熱検出装置。
(付記4)
該制御部が、遮蔽空間内から遮蔽空間外に移動したとき、該遮蔽空間内の該測定対象熱源を検出した温度を保持する代わりに、該外気温度に基づき各基準熱源の温度を制御することを特徴とした付記1又は2記載の熱検出装置。
(付記5)
前記判別部は、GPS受信機を含み、
該GPS受信機が、全てのGPS信号を受信できなかったとき、該遮蔽空間内であると判別し、少なくとも1つのGPS信号を受信したとき、該遮蔽空間外であると判別する、ことを特徴とした付記1又は2記載の熱検出装置。
(付記6)
該測定対象物温度測定部が、サーモパイルを用いた放射温度計であることを特徴とした付記1又は2記載の熱検出装置。
(付記7)
該外気温度測定部が白金抵抗を用いた温度センサであることを特徴とした付記1又は2記載の熱検出装置。
(付記8)
該基準熱源の内の1つを高温側基準熱源とし、別の1つを低温側基準熱源としたとき、
該赤外検知器で検知された該高温側基準熱源の熱源画像の全画素データの平均値と該低温側基準熱源の熱源画像の全画素データの平均値との差を、該高温側基準熱源の熱源画像の各画素データと該低温側基準熱源の熱源画像の各画素データとの差で割った値を各画素のゲイン係数とし、該低温側基準熱源の熱源画像の全画素データの平均値と該高温側基準熱源の熱源画像の各画素データとの積と、該高温側基準熱源の熱源画像の全画素データの平均値と該低温側基準熱源の熱源画像の各画素データの積との差を、該高温側基準熱源の熱源画像の各画素データと該低温側基準熱源の熱源画像の各画素データとの差で割った値を各画素のオフセット係数として該感度補正をする信号処理部を備えていることを特徴とした付記1又は2記載の熱検出装置。
(付記9)
各画素データが、各画素近傍の複数の画素データの平均値であることを特徴とした付記8の熱検出装置。
(付記10)
該遮蔽空間がトンネルであることを特徴とした付記1又は2記載の熱検出装置。

(Appendix 1)
In a heat detection device that performs sensitivity correction of an infrared detector using a reference heat source,
Multiple reference heat sources;
A measurement object temperature measurement unit for measuring the temperature of the measurement target heat source;
An outside temperature measuring unit for measuring outside temperature;
A discriminator for discriminating whether or not the own device is in the shielding space;
When the discriminating unit detects that it is in a shielded space, the control of the plurality of reference heat sources is changed from the control based on the measurement result in the outside air temperature measurement unit to the control based on the measurement result in the measurement object temperature measurement unit. A control unit for switching;
A heat detection apparatus comprising:
(Appendix 2)
In a heat detection device that performs sensitivity correction of an infrared detector using a reference heat source,
Multiple reference heat sources;
A measurement object temperature measurement unit for measuring the temperature of the measurement target heat source;
An outside temperature measuring unit for measuring outside temperature;
A discriminator for discriminating whether or not the own device is in the shielding space;
When the change from the inside of the shielded space to the outside of the shielded space is detected by the discriminating unit, the control unit that holds the temperature control of the plurality of reference heat sources in the shielded space until the next movement into the shielded space;
A heat detection apparatus comprising:
(Appendix 3)
The control unit controls to record the measurement target heat source image when the determination unit determines that the measurement target heat source image is within the shielded space, and not to record the measurement target heat source image when the determination unit determines that the measurement target heat source image is outside the shielded space. The heat detection device according to appendix 1 or 2, wherein:
(Appendix 4)
When the control unit moves from the inside of the shielded space to the outside of the shielded space, the temperature of each reference heat source is controlled based on the outside air temperature instead of maintaining the temperature at which the heat source to be measured in the shielded space is detected. The heat detection apparatus according to appendix 1 or 2, characterized by:
(Appendix 5)
The determination unit includes a GPS receiver,
When the GPS receiver is unable to receive all GPS signals, it is determined that the GPS receiver is inside the shielded space, and when at least one GPS signal is received, the GPS receiver is determined to be outside the shielded space. Supplementary note 1 or 2 described above.
(Appendix 6)
The heat detection apparatus according to appendix 1 or 2, wherein the measurement object temperature measurement unit is a radiation thermometer using a thermopile.
(Appendix 7)
The heat detection apparatus according to appendix 1 or 2, wherein the outside air temperature measurement unit is a temperature sensor using a platinum resistance.
(Appendix 8)
When one of the reference heat sources is a high temperature side reference heat source and the other is a low temperature side reference heat source,
The difference between the average value of all pixel data of the heat source image of the high temperature side reference heat source detected by the infrared detector and the average value of all pixel data of the heat source image of the low temperature side reference heat source is determined as the high temperature side reference heat source. The value obtained by dividing the pixel data of each heat source image by the difference between the pixel data of the heat source image of the low-temperature side reference heat source is the gain coefficient of each pixel, and the average value of all pixel data of the heat source image of the low-temperature side reference heat source And the product of each pixel data of the heat source image of the high temperature side reference heat source, and the product of the average value of all the pixel data of the heat source image of the high temperature side reference heat source and each pixel data of the heat source image of the low temperature side reference heat source A signal processing unit that corrects the sensitivity using a value obtained by dividing the difference by the difference between each pixel data of the heat source image of the high temperature side reference heat source and each pixel data of the heat source image of the low temperature side reference heat source as an offset coefficient of each pixel Heat detection according to supplementary note 1 or 2, characterized by comprising Location.
(Appendix 9)
The heat detection apparatus according to appendix 8, wherein each pixel data is an average value of a plurality of pixel data in the vicinity of each pixel.
(Appendix 10)
The heat detection apparatus according to appendix 1 or 2, wherein the shielding space is a tunnel.

本発明に係る熱検出装置の構成実施例を示したブロック図である。It is the block diagram which showed the structure Example of the heat detection apparatus which concerns on this invention. 本発明に係る熱検出装置における信号処理部に入力される画像フレーム例を示した図である。It is the figure which showed the example of the image frame input into the signal processing part in the heat detection apparatus which concerns on this invention. 本発明に係る熱検出装置における基準熱源温度設定部の動作手順例を示したフローチャート図である。It is the flowchart figure which showed the example of the operation | movement procedure of the reference | standard heat source temperature setting part in the heat detection apparatus which concerns on this invention. 本発明に係る熱検出装置における基準熱源の温度設定例を示した図である。It is the figure which showed the temperature setting example of the reference | standard heat source in the heat detection apparatus which concerns on this invention.

符号の説明Explanation of symbols

100 熱検出装置
10 光学系部 11 光路選択部
12 熱検知器 13 増幅器
14 A/D変換器 15 信号処理部
16 D/A変換器 17 モニタ
18 熱源画像記録部 19 基準熱源入射選択部
21 測定対象物温度測定部 22 外気温度測定部
23 遮蔽空間内運用判別部 24 基準熱源温度設定部
25,26 基準熱源 27 基準熱源選択部
30 測定対象熱源 31 選択部
701 外気温度 702 遮蔽空間内運用判別情報
703 測定対象物温度 704 基準熱源入射通知
705,706 切替制御信号 800,800_n〜800_n+2 画像フレーム
800a 測定対象熱源画像 800b 基準熱源画像(低温側又は高温側)
i 画素番号 ai 各画素のゲイン係数
bi 各画素のオフセット係数
Hm 高温データの全画素での平均値 Lm 低温データの全画素での平均値
Hi 高温データの各画素での平均値 Li 低温データの各画素での平均値
Di 各画素の補正された出力 di 各画素の熱検知器出力
図中、同一符号は同一又は相当部分を示す。
100 heat detector
10 Optics 11 Optical path selector
12 Thermal detector 13 Amplifier
14 A / D converter 15 Signal processor
16 D / A converter 17 Monitor
18 Heat source image recording unit 19 Reference heat source incident selection unit
21 Measurement object temperature measurement unit 22 Outside air temperature measurement unit
23 Operation discrimination section in shielded space 24 Reference heat source temperature setting section
25, 26 Reference heat source 27 Reference heat source selector
30 Heat source to be measured 31 Selection section
701 Outside air temperature 702 Operation discrimination information in shielded space
703 Measurement target temperature 704 Reference heat source incident notification
705, 706 Switching control signal 800, 800_n to 800_n + 2 Image frame
800a Heat source image to be measured 800b Reference heat source image (low temperature side or high temperature side)
i Pixel number ai Gain coefficient of each pixel
bi Offset coefficient for each pixel
Hm Average value of all pixels of high temperature data Lm Average value of all pixels of low temperature data
Hi Average value of each pixel of high temperature data Li Average value of each pixel of low temperature data
Di Corrected output of each pixel di Heat detector output of each pixel In the figure, the same reference numerals indicate the same or corresponding parts.

Claims (5)

基準熱源を用いて赤外検知器の感度補正を行う熱検出装置において、
複数の基準熱源と、
測定対象熱源の温度を測定する測定対象物温度測定部と、
外気温度を測定する外気温度測定部と、
自装置が遮蔽空間内にあるか否かを判別する判別部と、
該判別部によって、自装置が遮蔽空間外から遮蔽空間内へ移動したことを検出すると、複数の基準熱源の制御を、前記外気温度測定部に自装置が該遮蔽空間内にないときの外気温度の測定結果に基づく制御から前記測定対象物温度測定部に測定対象熱源の温度の測定結果に基づく制御に切り替える制御部と、
を備えたことを特徴とする熱検出装置。
In a heat detection device that performs sensitivity correction of an infrared detector using a reference heat source,
Multiple reference heat sources;
A measurement object temperature measurement unit for measuring the temperature of the measurement target heat source;
An outside temperature measuring unit for measuring outside temperature;
A discriminator for discriminating whether or not the own device is in the shielding space;
The該判specific unit, when the information processing apparatus 100 detects that it has moved from outside the shielded space to shield the space, the control of the plurality of reference heat source, wherein when the outside air temperature measurement unit by that the own device is not in the shielding space and a control section for switching from the measurement result based on the control of the outside air temperature control based on temperature measurements of by that measured the heat source to the measurement target temperature measuring section,
A heat detection apparatus comprising:
前記判別部によって、自装置が遮蔽空間内から遮蔽空間外への移動したことを検出すると、前記遮蔽空間内における測定対象熱源の温度の測定結果に基づく前記複数の基準熱源の温度、次に遮蔽空間内に移動するまで前記複数の基準熱源の温度として保持する制御部
さらに備えたことを特徴とする請求項1記載の熱検出装置。
By the determination unit, when it is detected that the own device is moved to the closed space outside the shielded space, the temperature of the plurality of reference heat source based on the temperature measurement result of the measurement target heat source in the shielding space, then A control unit that holds the temperature of the plurality of reference heat sources until moving into the shielded space ;
The heat detection apparatus according to claim 1 , further comprising:
前記制御部は、前記判別部によって、自装置が遮蔽空間内であると判断した場合に、前記赤外検知器が取得した測定対象熱源画像を記録するように制御し、遮蔽空間外であると判断した場合に、前記赤外検知器が取得した測定対象熱源画像を記録しないように制御する、
ことを特徴とする請求項1又は2記載の熱検出装置。
Wherein the control unit, by the determination unit, when the own device is determined to be within shielded space, the control such infrared detectors for recording measured heat source image obtained, if it is outside the shielded space If determined, control to not record the measurement target heat source image acquired by the infrared detector ,
The heat detection apparatus according to claim 1 or 2, wherein
前記判別部は、GPS受信機を含み、
該GPS受信機が、全てのGPS信号を受信できなかったとき、該遮蔽空間内であると判別し、少なくとも1つのGPS信号を受信したとき、該遮蔽空間外であると判別する、ことを特徴とした請求項1から3のいずれか1つに記載の熱検出装置。
The determination unit includes a GPS receiver,
When the GPS receiver is unable to receive all GPS signals, it is determined that the GPS receiver is inside the shielded space, and when at least one GPS signal is received, the GPS receiver is determined to be outside the shielded space. The heat detection device according to any one of claims 1 to 3 .
該基準熱源の内の1つを高温側基準熱源とし、別の1つを低温側基準熱源としたとき、
該赤外検知器で検知された該高温側基準熱源の熱源画像の全画素データの平均値と該低温側基準熱源の熱源画像の全画素データの平均値との差を、該高温側基準熱源の熱源画像の各画素データと該低温側基準熱源の熱源画像の各画素データとの差で割った値を各画素のゲイン係数とし、該低温側基準熱源の熱源画像の全画素データの平均値と該高温側基準熱源の熱源画像の各画素データとの積と、該高温側基準熱源の熱源画像の全画素データの平均値と該低温側基準熱源の熱源画像の各画素データの積との差を、該高温側基準熱源の熱源画像の各画素データと該低温側基準熱源の熱源画像の各画素データとの差で割った値を各画素のオフセット係数として該感度補正をする信号処理部を備えていることを特徴とした請求項1から4のいずれか1つに記載の熱検出装置。
When one of the reference heat sources is a high temperature side reference heat source and the other is a low temperature side reference heat source,
The difference between the average value of all pixel data of the heat source image of the high temperature side reference heat source detected by the infrared detector and the average value of all pixel data of the heat source image of the low temperature side reference heat source is determined as the high temperature side reference heat source. The value obtained by dividing the pixel data of each heat source image by the difference between the pixel data of the heat source image of the low-temperature side reference heat source is the gain coefficient of each pixel, and the average value of all pixel data of the heat source image of the low-temperature side reference heat source And the product of each pixel data of the heat source image of the high temperature side reference heat source, and the product of the average value of all the pixel data of the heat source image of the high temperature side reference heat source and each pixel data of the heat source image of the low temperature side reference heat source A signal processing unit that corrects the sensitivity using a value obtained by dividing the difference by the difference between each pixel data of the heat source image of the high temperature side reference heat source and each pixel data of the heat source image of the low temperature side reference heat source as an offset coefficient of each pixel any one of claims 1 to 4 which is characterized in that it comprises a Thermal detector according to One.
JP2005179933A 2005-06-20 2005-06-20 Heat detector Expired - Fee Related JP4583253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179933A JP4583253B2 (en) 2005-06-20 2005-06-20 Heat detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179933A JP4583253B2 (en) 2005-06-20 2005-06-20 Heat detector

Publications (2)

Publication Number Publication Date
JP2006349646A JP2006349646A (en) 2006-12-28
JP4583253B2 true JP4583253B2 (en) 2010-11-17

Family

ID=37645652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179933A Expired - Fee Related JP4583253B2 (en) 2005-06-20 2005-06-20 Heat detector

Country Status (1)

Country Link
JP (1) JP4583253B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672470B2 (en) * 2005-07-15 2011-04-20 富士通株式会社 Infrared imaging device
KR102312521B1 (en) * 2020-06-09 2021-10-15 (주)메쉬 Externally mounted temperature calibration device for thermal imaging cameras and temperature measurement system using it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074678A (en) * 1999-09-03 2001-03-23 Hitachi Engineering & Services Co Ltd Vehicle and method for inspection of cavity in tunnel
JP2004347585A (en) * 2003-02-21 2004-12-09 Fast:Kk Inspection/analysis system for construction and civil engineering structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269384A (en) * 1990-03-20 1991-11-29 Fujitsu Ltd Infrared image pickup device
JPH0481603A (en) * 1990-07-24 1992-03-16 Komatsu Ltd Method for automatic analysis of road surface condition
JPH08228401A (en) * 1995-02-22 1996-09-03 Mitsubishi Heavy Ind Ltd Rail temperature sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074678A (en) * 1999-09-03 2001-03-23 Hitachi Engineering & Services Co Ltd Vehicle and method for inspection of cavity in tunnel
JP2004347585A (en) * 2003-02-21 2004-12-09 Fast:Kk Inspection/analysis system for construction and civil engineering structure

Also Published As

Publication number Publication date
JP2006349646A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US20240003807A1 (en) Gas imaging system
EP1727359B1 (en) Method for fixed pattern noise reduction in infrared imaging cameras
KR101167260B1 (en) Radiometry using an uncooled microbolometer detector
EP2651120B1 (en) Radiation imaging apparatus, method of controlling the same, and radiation imaging system
US7422365B2 (en) Thermal imaging system and method
JP2007502403A5 (en)
EP0837600A2 (en) Infrared sensor device with temperature correction function
US7807968B2 (en) Method and system for measuring and compensating for the case temperature variations in a bolometer based system
US20070258001A1 (en) Method for Producing High Signal to Noise Spectral Measurements in Optical Dectector Arrays
RU2382992C2 (en) Method and system for detection of heterogeneity level for systems based on bolometre
JP4583253B2 (en) Heat detector
JP2005249723A (en) Display output unit for image containing temperature distribution, and control method therefor
JP4908283B2 (en) Radiation image capturing apparatus and pixel defect information acquisition method
JPH10122956A (en) Infrared camera
JP3415527B2 (en) Resistance change type infrared sensor element temperature correction method, resistance change type infrared sensor provided with temperature correction means, and imaging device
JP2004282299A (en) Infrared camera
US10481007B2 (en) System for detecting electromagnetic radiation
JP2009080003A (en) Imaging apparatus and lens failure diagnosis system
JP4007018B2 (en) Infrared imaging device
Wood et al. IR SnapShot camera
JP3067285B2 (en) Fire detection device using image processing
JP6750672B2 (en) Gas observation method
JP4816308B2 (en) Far infrared imaging system and far infrared imaging method
JP4250323B2 (en) Infrared imaging device
JP2005106642A (en) Infrared imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees