JP4581601B2 - Latent crimped conjugate fiber, fiber structure using the same, and absorbent article - Google Patents

Latent crimped conjugate fiber, fiber structure using the same, and absorbent article Download PDF

Info

Publication number
JP4581601B2
JP4581601B2 JP2004282319A JP2004282319A JP4581601B2 JP 4581601 B2 JP4581601 B2 JP 4581601B2 JP 2004282319 A JP2004282319 A JP 2004282319A JP 2004282319 A JP2004282319 A JP 2004282319A JP 4581601 B2 JP4581601 B2 JP 4581601B2
Authority
JP
Japan
Prior art keywords
component
moisture
fiber
contact
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004282319A
Other languages
Japanese (ja)
Other versions
JP2006097157A (en
Inventor
明範 前川
忍 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Fibers Corp
Original Assignee
Chisso Polypro Fiber Co Ltd
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Polypro Fiber Co Ltd, Chisso Corp filed Critical Chisso Polypro Fiber Co Ltd
Priority to JP2004282319A priority Critical patent/JP4581601B2/en
Publication of JP2006097157A publication Critical patent/JP2006097157A/en
Application granted granted Critical
Publication of JP4581601B2 publication Critical patent/JP4581601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、潜在捲縮性を有する複合繊維及びこれを用いた繊維構造物、吸収性物品に関する。更に詳しくは、水との接触によりスパイラル捲縮を発現する新規な潜在捲縮性複合繊維及びこれを用いた繊維構造物、吸収性物品に関する。   The present invention relates to a conjugate fiber having latent crimpability, a fiber structure using the same, and an absorbent article. More specifically, the present invention relates to a novel latent crimpable conjugate fiber that exhibits spiral crimp upon contact with water, a fiber structure using the same, and an absorbent article.

熱収縮性の異なる2成分が、繊維の横断面において偏心的に複合されてなる複合繊維は潜在捲縮性を有し、熱処理によりスパイラル捲縮を発現することは従来より公知である(例えば特許文献1、特許文献2)。更に、これら潜在捲縮性を有する繊維はスパイラル捲縮を発現することにより伸縮性、嵩高性、風合い等の優れた繊維となること、また、潜在捲縮性を有する繊維で作られた織布、或いは不織布がスパイラル捲縮の発現により伸縮性、嵩高性、風合い等の優れた織布、不織布となることもよく知られている(例えば、特許文献3)。   It has been conventionally known that a composite fiber in which two components having different heat shrinkage properties are eccentrically combined in the cross section of the fiber has latent crimpability, and exhibits spiral crimp by heat treatment (for example, patents). Literature 1, Patent Literature 2). Furthermore, these fibers having latent crimping properties are excellent in stretchability, bulkiness, texture, etc. by developing spiral crimps, and woven fabrics made of fibers having latent crimping properties. Alternatively, it is well known that a nonwoven fabric becomes a woven fabric or a nonwoven fabric excellent in stretchability, bulkiness, texture and the like due to the manifestation of spiral crimp (for example, Patent Document 3).

しかし、スパイラル捲縮を発現させた繊維或いは不織布は、それ自身嵩高な為、梱包、貯蔵、輸送の各段階で場所を取り不経済であるばかりでなく、圧縮梱包して貯蔵するとせっかくの嵩高性が失われるという問題があった。   However, fibers or nonwoven fabrics that exhibit spiral crimps are bulky themselves, which is not only uneconomical in packing, storage and transportation, but also bulky when stored in a compressed package. There was a problem of being lost.

このような問題点を解決する試みとして、湿度により可逆的捲縮率が変化することを特徴とした、特定の条件を満たす5−ナトリウムスルホイソフタル酸成分を共重合させた変性ポリエチレンテレフタレートとナイロン6とのサイドバイサイド型複合繊維が提案されている(例えば、特許文献4)。   As an attempt to solve such problems, modified polyethylene terephthalate and nylon 6 copolymerized with 5-sodium sulfoisophthalic acid component satisfying specific conditions, characterized in that the reversible crimp rate changes with humidity. A side-by-side type composite fiber is proposed (for example, Patent Document 4).

しかしながら、この複合繊維は実質的に顕在捲縮繊維であり、この繊維が吸湿で発生する捲縮率の変化は小さく、スパイラル捲縮の発現は起こらない。   However, this composite fiber is substantially an actual crimped fiber, and the change in the crimp rate generated by moisture absorption by this fiber is small, so that spiral crimp does not occur.

特公昭52−35776号公報Japanese Patent Publication No.52-35776 特公昭53−6263号公報Japanese Patent Publication No.53-6263 特開平1−118617号公報JP-A-1-118617 特公昭63−44843号公報Japanese Patent Publication No. 63-44843

本発明の課題は、梱包、貯蔵、輸送の各物流段階ではスパイラル捲縮が発現していないので場所を取らず、使用する段階で水分と接触することにより本来求められるスパイラル捲縮を発現し、伸縮性、嵩高性、風合い等の優れた繊維となる潜在捲縮性繊維及びこれを用いた繊維構造物、吸収性物品を提供することである。   The problem of the present invention is that the spiral crimp is not expressed in each of the distribution stages of packing, storage, and transportation, so it does not take a place and expresses the spiral crimp originally required by contacting with moisture in the stage of use, It is an object to provide a latent crimpable fiber that is an excellent fiber such as stretchability, bulkiness, and texture, a fiber structure using the fiber, and an absorbent article.

本発明者らは、上記課題を解決するため鋭意検討を重ねた。その結果、下記構成を有することで、前記課題を解決することを見出し、この知見に基づいて本発明を完成させるに至った。
本発明は、以下の構成を有する。
The inventors of the present invention have made extensive studies in order to solve the above problems. As a result, it has been found that the above-described problems can be solved by having the following configuration, and the present invention has been completed based on this finding.
The present invention has the following configuration.

[1] 異なる2種類の水不溶性熱可塑性樹脂成分(それぞれA成分およびB成分という)から構成される複合繊維であって、
合の形態は並列型もしくはA成分を鞘とする偏心比0.1以上の偏心鞘芯型であり、A成分がポリエーテル・ポリアミドブロック共重合体またはポリアミドとポリエチレングリコールとのブロック共重合体であり、B成分がポリオレフィン、ポリアミド及びポリアミドアロイから選ばれた少なくとも1種であり、A成分とB成分の20℃における吸水率(重量%)の差が6重量%以上であり、該複合繊維の20℃における水分接触10秒後の横断面積変化率(V)が下記関係にあり、20℃の水分接触10秒後のスパイラル捲縮数が8個/25.4mm以上発現することを特徴とする潜在捲縮性複合繊維を少なくとも一部に用いた繊維構造物を使用した、水分と接触させて用いられる製品
A2/A1 > B2/B1
ここで
A1:A成分の水分接触前の横断面積
A2:A成分の水分接触10秒後の横断面積
B1:B成分の水分接触前の横断面積
B2:B成分の水分接触10秒後の横断面積
]潜在捲縮性複合繊維が、20℃における吸水率が1%以上である前記[1]項記載の製品。
] 繊維構造物が、潜在捲縮性複合繊維の繊維接点が熱接着もしくは繊維間が交絡によって、固定された不織布、ネット状物、編物及び織物から選ばれる少なくとも一種の布帛で構成された構造である前記[1]〜[2]いずれか1項に記載の製品
] 前記[1]項〜[]項のいずれか1項記載の製品を少なくとも一部に用いた吸収性物品。
] 異なる2種類の水不溶性熱可塑性樹脂成分(それぞれA成分およびB成分という)から構成される複合繊維であって、
合の形態は並列型もしくはA成分を鞘とする偏心比0.1以上の偏心鞘芯型であり、A成分がポリエーテル・ポリアミドブロック共重合体またはポリアミドとポリエチレングリコールとのブロック共重合体であり、B成分がポリオレフィン、ポリアミド及びポリアミドアロイから選ばれた少なくとも1種であり、A成分とB成分の20℃における吸水率(重量%)の差が6重量%以上であり、該複合繊維の20℃における水分接触10秒後の横断面積変化率(V)が下記関係にあり、20℃の水分接触10秒後のスパイラル捲縮数が8個/25.4mm以上発現することを特徴とする潜在捲縮性複合繊維を少なくとも一部に用いる繊維構造物を用いた製品とし、この製品を水分に接触させることを特徴とする潜在捲縮性繊維の使用方法。
A2/A1 > B2/B1
ここで
A1:A成分の水分接触前の横断面積
A2:A成分の水分接触10秒後の横断面積
B1:B成分の水分接触前の横断面積
B2:B成分の水分接触10秒後の横断面積
[1] A composite fiber composed of two different types of water-insoluble thermoplastic resin components (referred to as component A and component B, respectively),
Form of double engagement is eccentric ratio of 0.1 or more eccentric sheath-core type for a parallel-type or A component as a sheath, a block copolymer of component A is a polyether-polyamide block copolymer or polyamide and polyethylene glycol The component B is at least one selected from polyolefins, polyamides and polyamide alloys, and the difference in water absorption (% by weight) at 20 ° C. between the component A and the component B is 6% by weight or more, characterized in that the cross sectional area change ratio after moisture contact 10 sec at 20 ° C. of (V) is Ri following relationship near, 20 spiral crimps number of water contact 10 seconds after ° C. express eight /25.4mm more A product used in contact with moisture , using a fiber structure using at least part of the latent crimpable conjugate fiber.
A2 / A1> B2 / B1
Here, A1: Cross-sectional area before contact with moisture of A component A2: Cross-sectional area after 10 seconds of contact with moisture of A component B1: Cross-sectional area before contact with moisture of B component B2: Cross-sectional area after 10 seconds of contact with moisture of B component [ 2 ] The product according to [1] above, wherein the latent crimpable conjugate fiber has a water absorption rate of 1% or more at 20 ° C.
[ 3 ] The fiber structure is composed of at least one kind of fabric selected from non-woven fabrics, nets, knitted fabrics, and woven fabrics in which the fiber contacts of the latent crimpable composite fibers are fixed by thermal bonding or entanglement between the fibers. The product according to any one of [1] to [2], which is a structure.
[ 4 ] An absorbent article using at least a part of the product according to any one of [1] to [ 3 ].
[ 5 ] A composite fiber composed of two different water-insoluble thermoplastic resin components (referred to as component A and component B, respectively),
Form of double engagement is eccentric ratio of 0.1 or more eccentric sheath-core type for a parallel-type or A component as a sheath, a block copolymer of component A is a polyether-polyamide block copolymer or polyamide and polyethylene glycol The component B is at least one selected from polyolefins, polyamides and polyamide alloys, and the difference in water absorption (% by weight) at 20 ° C. between the component A and the component B is 6% by weight or more, characterized in that the cross-sectional area change ratio after moisture contact 10 sec at 20 ° C. of (V) is Ri following relationship near, 20 spiral crimps number of water contact 10 seconds after ° C. express eight /25.4mm more A method for using latent crimpable fibers , characterized in that a product using a fiber structure using at least a part of the latent crimpable conjugate fiber is brought into contact with moisture .
A2 / A1> B2 / B1
Here, A1: Cross-sectional area before contact with moisture of A component A2: Cross-sectional area after 10 seconds of contact with moisture of A component B1: Cross-sectional area before contact with moisture of B component B2: Cross-sectional area after 10 seconds of contact with moisture of B component

本発明の潜在捲縮性複合繊維は、使用時に水分との接触によるスパイラル捲縮を発現するので、優れた伸縮性、嵩高性、風合い等を有している。
また、本発明の潜在捲縮性複合繊維を用いた繊維構造物及び吸収性物品は、梱包、貯蔵、輸送の各物流段階では、嵩による貯蔵場所を取らず、使用時に水分と接触することにより捲縮が発現し、伸縮性、嵩高性を有する良好な風合いの繊維構造物、吸収性物品となり、これらの繊維構造物、吸収性物品は良好な水分保持性を有する。
The latent crimpable conjugate fiber of the present invention exhibits spiral crimp due to contact with moisture during use, and thus has excellent stretchability, bulkiness, texture, and the like.
In addition, the fiber structure and absorbent article using the latent crimpable conjugate fiber of the present invention do not take a storage place due to bulk at each distribution stage of packing, storage and transportation, and contact with moisture during use. A crimped structure is obtained, and a fiber structure and absorbent article with good texture having stretchability and bulkiness are obtained, and these fiber structure and absorbent article have good moisture retention.

以下、本発明を詳細に説明する。
本発明の潜在捲縮性複合繊維は、水分との接触によりスパイラル捲縮を発現する潜在捲縮性を有する複合繊維であり、詳しくは水不溶性の熱可塑性樹脂であるA成分と、前記A成分とは成分が異なる水不溶性の熱可塑性樹脂であるB成分とが、並列型もしくはA成分を鞘とする偏心比0.1以上の偏心鞘芯型に配置されている。ここで、偏心比(E)とは、図1に示すごとく複合繊維の中心点(O)と芯成分の中心点(O)との距離(d)と複合繊維の半径(R)との比(式1)で表される。
E=d/R (式1)
本発明の潜在捲縮性複合繊維は、A成分とB成分とが並列型でなかったり、偏心比が0.1未満であると、スパイラル捲縮を発現する潜在捲縮性能(発現捲縮数)が低下し、嵩高性、伸縮性、風合い等の性能を充分満足させることが困難になる。
Hereinafter, the present invention will be described in detail.
The latent crimpable conjugate fiber of the present invention is a conjugate fiber having latent crimping property that exhibits spiral crimp upon contact with moisture. Specifically, the component A is a water-insoluble thermoplastic resin, and the component A. The B component, which is a water-insoluble thermoplastic resin having different components, is arranged in a parallel type or an eccentric sheath core type having an eccentric ratio of 0.1 or more with the A component as a sheath. Here, the eccentric ratio (E) is the center point of the composite fiber as shown in FIG. 1 (O 1) and the center point of the core component and (O 2) distance (d) and the radius of the composite fiber (R) It is represented by the ratio (Formula 1).
E = d / R (Formula 1)
In the latent crimpable conjugate fiber of the present invention, if the A component and the B component are not in parallel or the eccentricity ratio is less than 0.1, the latent crimp performance (the number of crimps expressed) ), And it becomes difficult to sufficiently satisfy the performance such as bulkiness, stretchability, and texture.

次に、本発明の潜在捲縮性複合繊維は、A成分とB成分の横断面積変化率が下記関係式(式2)を満たしていることが重要である。
A2/A1 > B2/B1 式2
ここで
A1:A成分の水分接触前の横断面積
A2:A成分の水分接触10秒後の横断面積
B1:B成分の水分接触前の横断面積
B2:B成分の水分接触10秒後の横断面積
Next, in the latent crimpable conjugate fiber of the present invention, it is important that the cross-sectional area change rate of the A component and the B component satisfies the following relational expression (Formula 2).
A2 / A1> B2 / B1 Formula 2
here
A1: Cross-sectional area before moisture contact of A component
A2: Cross-sectional area 10 seconds after contact of component A with water
B1: Cross-sectional area of B component before moisture contact
B2: Cross-sectional area after 10 seconds of moisture contact with B component

A成分とB成分の横断面積変化率がこの関係を満たしていれば目的とする潜在捲縮性が得られる。このA成分とB成分の横断面積変化率の関係は、後述する吸水率とも関係するが、この前記両者関係の差異が大きくなるほど捲縮発現は顕著になる。この差違により、水分接触で発現する捲縮の数を調節することができる。また、この捲縮数の調節を行うためにA・B成分の複合比を変えることを併せて行ってもよい。   If the cross-sectional area change rates of the A component and the B component satisfy this relationship, the target latent crimpability can be obtained. The relationship between the cross-sectional area change rates of the A component and the B component is also related to the water absorption rate, which will be described later. The greater the difference between the two relationships, the more pronounced the crimp expression. This difference allows the number of crimps that develop upon moisture contact to be adjusted. Further, in order to adjust the number of crimps, the composite ratio of the A and B components may be changed.

なお、本発明でいう「水分接触」および「吸水率」とは、常温における液体状の水分との接触およびそれによって短時間(数秒〜数十秒程度)に吸水する場合を意味し、空気中の湿気との接触(吸湿)によって膨潤してしまう樹脂を用いる場合は本発明の対象としない。また、本発明の潜在捲縮性複合繊維は、水分接触により捲縮が発現した場合、捲縮は乾燥後にも保持され、乾燥により可逆的に捲縮が消失するものではなく、上記式2の条件を満たしていれば乾燥後にも捲縮は保持される。このことは、本発明の「実施例」によって支持される。なお、乾燥後の捲縮の保持に関しては、乾燥後にも伸縮性、嵩高性、風合い等の効果が損なわれない程度に捲縮が保持されていれば良い。しかしながら、もしも乾燥後に捲縮が消失し、十分な効果が得られない樹脂の組み合わせがあるならば、本発明の対象から除外されるべきものである。   In the present invention, “moisture contact” and “water absorption” mean contact with liquid moisture at room temperature and thereby absorb water in a short time (several seconds to several tens of seconds). When a resin that swells due to contact with moisture (moisture absorption) is used, it is not an object of the present invention. Further, in the latent crimpable conjugate fiber of the present invention, when crimp is expressed by contact with moisture, the crimp is retained even after drying, and the crimp is not reversibly lost by drying. If the condition is satisfied, the crimp is retained after drying. This is supported by the “example” of the present invention. In addition, regarding the holding | maintenance of the crimp after drying, the crimp should just be hold | maintained to such an extent that effects, such as a stretching property, bulkiness, and a texture, are not impaired after drying. However, if there is a resin combination in which crimps disappear after drying and a sufficient effect cannot be obtained, it should be excluded from the object of the present invention.

次に本発明の潜在捲縮性複合繊維は、上記式2の横断面積変化率の差を変化させることにより、20℃の水分接触10秒後に発現するスパイラル捲縮(単に発現する潜在捲縮という)の数を調節することができる。発現する潜在捲縮の数は、8個/25.4mm以上である場合、本発明の効果が顕著に現れ好ましい。本発明の潜在捲縮性複合繊維は、水分接触による捲縮を発現させる前にカード処理などを行う場合、あらかじめ機械捲縮を付与しておき、後の工程でさらに水分接触によるスパイラル捲縮を発現させることもできる。このような場合、あらかじめ付与された機械捲縮(単に機械捲縮という)は、通常10個〜15個/25.4mmとすることが多く、後の工程で潜在捲縮を発現させた場合、総捲縮数は機械捲縮と発現する潜在捲縮の数の合計になる。機械捲縮と発現する潜在捲縮の合計としては、18個〜25個/25.4mm程度になる場合が本発明の最も好ましい態様の範囲であり、機械捲縮の数に応じて発現する潜在捲縮の数を調整すればよい。本発明では、必要に応じてそれ以上の潜在捲縮を発現するように構成することもでき、不織布化時のカード通過性が低下したり、得られる不織布の風合いが低下しない限り、発現する潜在捲縮数を増やしてもよい。   Next, the latent crimpable conjugate fiber of the present invention changes the difference in the cross-sectional area change rate of the above-mentioned formula 2 so that a spiral crimp that appears after 10 seconds of moisture contact at 20 ° C. ) Can be adjusted. When the number of latent crimps to be expressed is 8 / 25.4 mm or more, the effects of the present invention are remarkably exhibited, which is preferable. The latent crimpable conjugate fiber of the present invention is preliminarily provided with a mechanical crimp when performing card processing or the like before the crimp due to moisture contact is expressed, and further subjected to spiral crimp due to moisture contact in a later step. It can also be expressed. In such a case, the mechanical crimp given in advance (simply called mechanical crimp) is usually 10 to 15 / 25.4 mm in many cases, and when latent crimp is expressed in a later step, The total number of crimps is the sum of the number of machine crimps and the number of potential crimps. The total of the mechanical crimps and the latent crimps to be expressed is a range of the most preferable aspect of the present invention, and the potential to be expressed according to the number of the mechanical crimps is about 18 to 25 / 25.4 mm. The number of crimps may be adjusted. In the present invention, if necessary, it can also be configured to express further latent crimps, and the potential to develop unless the card-passability at the time of making into a nonwoven fabric is reduced or the texture of the resulting nonwoven fabric is not reduced. The number of crimps may be increased.

また、上記式2の関係を満たすように構成された本発明の潜在捲縮性複合繊維は、下記式3で表される20℃における吸水率(重量%)も通常1重量%以上を示すようになる。言い換えれば、この吸水率が1重量%以上を示すことが、式2の関係も満たすことの目安となると考えてよい。
吸水率(重量%)=[(水切り後の繊維重量)/(初期繊維重量)]×100 式3
吸水率が1%以上であると、水分接触から短時間で膨潤過程による伸張差が生じてスパイラル発生に至り、通常10秒以内にスパイラル捲縮が発現する。
Further, the latent crimpable conjugate fiber of the present invention configured to satisfy the relationship of the above formula 2 usually has a water absorption rate (20% by weight) at 20 ° C. represented by the following formula 3 of usually 1% by weight or more. become. In other words, it may be considered that the fact that the water absorption rate is 1% by weight or more serves as a standard for satisfying the relationship of Formula 2.
Water absorption rate (% by weight) = [(fiber weight after draining) / (initial fiber weight)] × 100 Equation 3
When the water absorption rate is 1% or more, a difference in elongation due to the swelling process occurs in a short time after contact with moisture, leading to the generation of a spiral, and spiral crimps usually appear within 10 seconds.

吸水率は、A、B各成分それぞれについても原料樹脂の段階で測定することができ、B成分より高い吸水率を持ったA成分を選択することができる。そのような樹脂の組み合わせを選択すれば、式2の関係を満たす構成となる。
このようにしてA、B各成分を選択するとき、吸水率(重量%)の差が6重量%以上となるようにすれば、さらに好ましい態様になる。
The water absorption can be measured for each of the A and B components at the raw material resin stage, and an A component having a higher water absorption than the B component can be selected. If such a combination of resins is selected, a configuration satisfying the relationship of Formula 2 is obtained.
Thus, when each component of A and B is selected, it is more preferable if the difference in water absorption (wt%) is 6 wt% or more.

A成分とB成分の吸水率の差が6重量%以上であると、吸水率の高いA成分と一方の吸水率の低いB成分との両者間の水分接触から膨潤過程による伸張差が十分に生じるので、顕著なスパイラルが発生し、捲縮発現性も向上する。   If the difference in water absorption between the A component and the B component is 6% by weight or more, there is a sufficient expansion difference due to the swelling process due to moisture contact between the A component having a high water absorption rate and the B component having a low water absorption rate. As a result, a noticeable spiral is generated and crimp development is improved.

本発明の潜在捲縮性複合繊維を構成するA、B各成分は、前記したように水不溶性の熱可塑性樹脂で構成される。潜在捲縮性複合繊維の片成分もしくは両成分が水溶性であると水分との接触時に、求めるスパイラル捲縮が発現しない。ここで使用される水不溶性の熱可塑性樹脂とは、前述の条件を満たすようなものであれば特に限定する必要はなく、後述する熱可塑性樹脂の単独重合体、共重合体のいずれであってもよい。また、単独で用いても2種以上混合したものであっても良い。   As described above, each of the components A and B constituting the latent crimpable conjugate fiber of the present invention is composed of a water-insoluble thermoplastic resin. If one or both components of the latent crimpable conjugate fiber are water-soluble, the desired spiral crimp does not appear when contacting with moisture. The water-insoluble thermoplastic resin used here is not particularly limited as long as it satisfies the above-mentioned conditions, and may be either a homopolymer or a copolymer of a thermoplastic resin described later. Also good. Moreover, it may be used independently or may be a mixture of two or more.

更に、本発明で用いられる熱可塑性樹脂には、本発明の効果を妨げない範囲内で、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、顔料、可塑剤、親水剤の他、A、B成分の接着性改良の為に相溶化剤等の添加剤を必要に応じて適宜添加してもよい。   Furthermore, the thermoplastic resin used in the present invention includes an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizer, a nucleating agent, an epoxy stabilizer, a lubricant, within a range that does not interfere with the effects of the present invention. In addition to antibacterial agents, flame retardants, antistatic agents, pigments, plasticizers, hydrophilic agents, additives such as compatibilizers may be added as necessary for improving the adhesiveness of the A and B components.

本発明で用いる水不溶性熱可塑性樹脂のメルトマスフローレイト(以下、「MFR」という)は、溶融紡糸可能な範囲、すなわち溶融状態の樹脂を紡糸したとき樹脂が固化するまでの間に切れたり伸びすぎたりしないよう適当な粘性を保つ範囲であればよい。MFRが紡糸に適した範囲になるよう樹脂の物性に合わせて紡糸温度や押出器の圧力等の紡糸条件を変更してもよい。具体的には、樹脂の性質に見合った温度・荷重の下で繊維成形後のMFRが10〜100g/10分の範囲内になることが好ましく、より好ましくは、10〜70g/10分である。繊維成形後のMFRが10〜100g/10分の範囲であれば、並列型断面構造または偏心鞘芯型断面構造を維持しやすく、曳糸性も良好になる。   The melt-mass flow rate (hereinafter referred to as “MFR”) of the water-insoluble thermoplastic resin used in the present invention is within the melt-spinnable range, that is, when the molten resin is spun until the resin solidifies. It may be in a range that maintains an appropriate viscosity so that it does not occur. The spinning conditions such as the spinning temperature and the pressure of the extruder may be changed in accordance with the physical properties of the resin so that the MFR is in a range suitable for spinning. Specifically, the MFR after fiber molding is preferably within a range of 10 to 100 g / 10 minutes, more preferably 10 to 70 g / 10 minutes, under a temperature and load corresponding to the properties of the resin. . When the MFR after fiber molding is in the range of 10 to 100 g / 10 min, it is easy to maintain the parallel-type cross-sectional structure or the eccentric sheath-core cross-sectional structure, and the spinnability is also good.

本発明の潜在捲縮性複合繊維のA、B成分の組み合わせ例としては、例えばA成分としてポリエーテル・ポリアミドブロック共重合体、ポリアミドとポリエチレングリコールとのブロック共重合体等の熱可塑性樹脂を挙げることができ、また、B成分としてはポリオレフィン系樹脂、ナイロン6、ナイロン66等のポリアミド系樹脂およびポリアミドアロイ等の熱可塑性樹脂を挙げることができる。   Examples of the combination of the A and B components of the latent crimpable conjugate fiber of the present invention include, for example, thermoplastic resins such as polyether / polyamide block copolymers and polyamide / polyethylene glycol block copolymers as the A component. Examples of the component B include polyolefin resins, polyamide resins such as nylon 6 and nylon 66, and thermoplastic resins such as polyamide alloy.

A成分に使用されるポリアミドとポリエチレングリコールとのブロック共重合体、ポリエーテル・アミドブロック共重合体としては種々のものが使用できるが、ポリエチレングリコールとのブロック共重合体として例えばATOFINA社製のPEBAX(商品名)、ポリエーテル・アミドブロック共重合体として例えばAllied Signal社製のHydrofil(商品名)が販売されており、本発明に利用して好ましい結果を得ることができる。   As the block copolymer of polyamide and polyethylene glycol and polyether / amide block copolymer used for the component A, various types can be used. As the block copolymer with polyethylene glycol, for example, PEBAX manufactured by ATOFINA (Trade name), Hydrofil (trade name) manufactured by Allied Signal, for example, is sold as a polyether / amide block copolymer, and preferable results can be obtained by using the present invention.

B成分に使用されるポリオレフィン系樹脂としては、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリメチルペンテン、1、2−ポリブタジエン及び1、4−ポリブタジエンの他、エチレン、ブテン−1、ヘキセン−1、オクテン−1、4−メチルペンテン−1等のホモポリオレフィンまたは脂肪族α−オレフィンとの結晶性共重合体である。例えばエチレン−プロピレン共重合体、エチレン−プロピレン−1−ブテン三元共重合体等の共重合ポリオレフィンも使用できる。また前記α−オレフィンに他のオレフィンまたは少量の他のエチレン系不飽和モノマー、例えばブタジエン、イソプレン、1、3−ペンタジエン、スチレン及びα−メチルスチレン等のスチレン系不飽和モノマーと共重合されていてもよく、また上記ポリオレフィン樹脂の混合物であってもよい。更に通常のチーグラーナッタ触媒から重合されたこれらポリオレフィンだけでなく、メタロセン触媒から重合されたポリオレフィン及びそれらの共重合体も例示することができる。更に、その他のポリオレフィンとしては、立体規則性ポリスチレンを挙げることができる。   Polyolefin resins used for component B include high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), polypropylene, polymethylpentene, 1,2-polybutadiene, and 1,4-polybutadiene, as well as ethylene. , Butene-1, hexene-1, octene-1, 4-methylpentene-1, and other homopolyolefins or crystalline copolymers with aliphatic α-olefins. For example, copolymer polyolefin such as ethylene-propylene copolymer and ethylene-propylene-1-butene terpolymer can be used. The α-olefin is copolymerized with other olefins or a small amount of other ethylenically unsaturated monomers such as styrene unsaturated monomers such as butadiene, isoprene, 1,3-pentadiene, styrene and α-methylstyrene. It may also be a mixture of the above polyolefin resins. Further, not only these polyolefins polymerized from ordinary Ziegler-Natta catalysts, but also polyolefins polymerized from metallocene catalysts and copolymers thereof can be exemplified. Furthermore, stereoregular polystyrene can be mentioned as other polyolefin.

立体規則性ポリスチレンは、13C−NMR法により測定されるタクティシティーとして、連続する複数個の構造単位の存在割合、例えば2個の場合はダイアット、3個の場合はトリアッド、5個の場合はペンダッドによって示すことができるが、本発明で用いてよい該立体規則性ポリスチレンは、通常ペンダッド分率が85%以上、好ましくは95%以上のシンジオタクティシティーを有するポリスチレン、ポリメチルスチレン、ポリエチルスチレン、ポリイソプロピルスチレン等のポリアルキルスチレン、ポリクロロスチレン、ポリブロモスチレン、ポリフルオロスチレン等のポリハロゲン化スチレン、ポリクロロメチルスチレン等のポリハロゲン化アルキルスチレン、ポリメトキシスチレン、ポリエトキシスチレン等のポリアルコキシスチレン、ポリ安息香酸エステルスチレン等であり、これらは単独または混合して使用することができる。更に、これら重合体を構成するモノマー相互の共重合体またはこれらモノマーを主成分とする共重合体も使用できる。   Stereoregular polystyrene is a tacticity measured by the 13C-NMR method. The presence ratio of a plurality of continuous structural units, for example, 2 for diat, 3 for triad, and 5 for pendant. The stereoregular polystyrene that may be used in the present invention is usually polystyrene having a syndiotacticity of a pendant fraction of 85% or more, preferably 95% or more, polymethylstyrene, polyethylstyrene. Polyalkyl styrene such as polyisopropyl styrene, polyhalogenated styrene such as polychlorostyrene, polybromostyrene and polyfluorostyrene, polyhalogenated alkyl styrene such as polychloromethyl styrene, polymethoxy styrene and polyethoxy styrene Alkoxy Styrene, a poly benzoate styrene, These can be used singly or in combination. Furthermore, a copolymer of monomers constituting these polymers or a copolymer containing these monomers as main components can also be used.

すなわち、前記共重合体は、上述の立体規則性ポリスチレンを構成するモノマーから選択される少なくとも1種のモノマーと、エチレン、プロピレン、ブテン、ヘキセン、ヘプテン、オクテン、デセン等のオレフィン系モノマー、ブタジエン、イソプレン等のジエン系モノマー、環状オレフィンモノマー、環状ジエンモノマーまたはメタクリル酸メチル、無水マレイン酸、アクリロニトリル等の極性ビニル系モノマーとのシンジオタクティックスチレン構造を有する共重合体である。これらは、市販の単独重合体及び共重合体を使用することができる。   That is, the copolymer includes at least one monomer selected from the monomers constituting the above-mentioned stereoregular polystyrene, olefinic monomers such as ethylene, propylene, butene, hexene, heptene, octene, and decene, butadiene, It is a copolymer having a syndiotactic styrene structure with a diene monomer such as isoprene, a cyclic olefin monomer, a cyclic diene monomer, or a polar vinyl monomer such as methyl methacrylate, maleic anhydride, or acrylonitrile. For these, commercially available homopolymers and copolymers can be used.

B成分に使用されるポリオレフィン系樹脂としては、これらのものが挙げられるが、特にポリプロピレン、ポリエチレンが好ましい。   Examples of the polyolefin-based resin used for the component B include these, but polypropylene and polyethylene are particularly preferable.

また、B成分に使用されるポリアミド系樹脂としては、ナイロン−4、ナイロン−6、ナイロン−46、ナイロン−66、ナイロン−610、ナイロン−11、ナイロン−12、ポリメタキシレンアジパミド(MXD−6)、ポリパラキシレンデカンアミド(PXD−12)、ポリビスシクロヘキシルメタンデカンアミド(PCM−12)が利用できる。更にこれらのポリアミド樹脂に用いられている単量体を構成単位とするアミドの共重合体およびそのアロイも利用できる。   The polyamide resin used for the component B includes nylon-4, nylon-6, nylon-46, nylon-66, nylon-610, nylon-11, nylon-12, polymetaxylene adipamide (MXD -6), polyparaxylenedecanamide (PXD-12), and polybiscyclohexylmethanedecanamide (PCM-12) can be used. Furthermore, an amide copolymer and an alloy thereof having the monomer used in these polyamide resins as a structural unit can also be used.

B成分に使用されるポリアミド系樹脂としては、これらのものが挙げられるが、特にナイロン−6、ナイロン−66が好ましい。また、ポリアミドアロイとしては、例えばATOFINA社製ORGALLOY(商品名)が販売されており、本発明に利用して好ましい結果を得ることができる。   Examples of the polyamide-based resin used for the component B include these, and nylon-6 and nylon-66 are particularly preferable. Moreover, as a polyamide alloy, for example, ORGALLOY (trade name) manufactured by ATOFINA is sold, and a preferable result can be obtained by using the present invention.

A成分とB成分の複合比は、20:80〜80:20の範囲内であることが好ましく、30:70〜70:30の範囲内であることがより好ましい。両成分の複合比がこの範囲にある場合、曳糸性が良好で、求めるスパイラル捲縮を容易に発現させることができる。   The composite ratio of the A component and the B component is preferably in the range of 20:80 to 80:20, and more preferably in the range of 30:70 to 70:30. When the composite ratio of both components is within this range, the spinnability is good and the desired spiral crimp can be easily expressed.

本発明の潜在捲縮性複合繊維の製造に使用する並列型または偏心鞘芯型複合紡糸装置は、特殊なものでなく、通常のものでよい。得られた未延伸糸は、延伸を行ってもまた行わなくてもよく、通常の繊維と同様に機械的に捲縮加工してもよい。このようにして得られる本発明の潜在捲縮性複合繊維は、ステープルファイバー、フィラメント等種々の形態で用いることができ、水分との接触によりスパイラル捲縮を発現する潜在捲縮性を有している。   The parallel-type or eccentric sheath-core type composite spinning device used for the production of the latent crimpable conjugate fiber of the present invention is not special and may be a normal one. The obtained undrawn yarn may or may not be drawn, and may be mechanically crimped in the same manner as ordinary fibers. The thus obtained latent crimpable conjugate fiber of the present invention can be used in various forms such as staple fibers and filaments, and has a latent crimp property that develops spiral crimps upon contact with moisture. Yes.

本発明の潜在捲縮性複合繊維は、発明の効果を妨げない範囲において、他種繊維と混合し繊維構造物にすることが出来る。他種繊維は、特に限定されない。例えば、木綿、羊毛のような天然繊維、ビスコースレーヨン、酢酸繊維素繊維のような半合成繊維、ポリオレフィン系繊維、ポリアミド繊維、ポリエステル繊維、アクリルニトリル繊維、アクリル系繊維、ポリビニールアルコール繊維のような合成繊維、更にはガラス繊維等の無機物繊維等の一種または二種以上の繊維が適宣に選択して用いられる。   The latent crimpable conjugate fiber of the present invention can be mixed with other types of fibers to form a fiber structure as long as the effects of the invention are not hindered. Other type fibers are not particularly limited. For example, natural fibers such as cotton and wool, semi-synthetic fibers such as viscose rayon and acetate fiber, polyolefin fibers, polyamide fibers, polyester fibers, acrylonitrile fibers, acrylic fibers, and polyvinyl alcohol fibers One kind or two or more kinds of fibers such as synthetic fibers and inorganic fibers such as glass fibers can be appropriately selected and used.

他種繊維の使用量は、潜在捲縮性複合繊維との総量に対して、70重量%以下の割合で混合するのが好ましい。本発明の潜在捲縮複合繊維の量が30重量%以上であれば、水分接触時に捲縮が発現して不織布が嵩高になるという本発明の効果が顕著に発揮される。   It is preferable to mix the use amount of the other kinds of fibers at a ratio of 70% by weight or less with respect to the total amount of the latent crimpable conjugate fibers. When the amount of the latent crimped conjugate fiber of the present invention is 30% by weight or more, the effect of the present invention that the crimp develops when the moisture comes into contact and the nonwoven fabric becomes bulky is remarkably exhibited.

本発明の潜在捲縮複合繊維100%或いは他種繊維と混合した繊維は目的に応じパラレルウェブ、クロスウェブ、ランダムウェブ、トウーウェブ等の適当な形態に集束して不織布化できる。   Fibers mixed with 100% latent crimped composite fibers or other types of fibers of the present invention can be made into a non-woven fabric by focusing into a suitable form such as a parallel web, a cross web, a random web, or a tow web according to the purpose.

本発明の潜在捲縮複合繊維ウェブを不織布化する方法は、ニードルパンチング法、高圧液体流処理等の繊維の交絡を利用する方法、或いは接着剤を使用する方法または繊維自身の熱接着による方法、更には接着成分または溶着成分を併用して、その成分により更に強固に一体化することができる。これらの成分としては、熱可塑性樹脂からなる繊維を混綿するとよい。このとき、潜在捲縮性複合繊維を接着して不織布とするために、熱可塑性樹脂からなる繊維が潜在捲縮性複合繊維を構成している熱可塑性樹脂と同種類の熱可塑性樹脂を含む繊維であることが好ましい。また混綿した繊維を熱処理により溶融し、接着加工する場合には、潜在捲縮性複合繊維の低融点樹脂よりも低い温度で溶融する熱可塑性樹脂を接着成分とすることで、潜在捲縮性複合繊維を溶融することなく不織布を成形でき、更に分割細繊化も進み易くなるために好ましい。また接着繊維として複合型の繊維を用いることで不織布の強度を更に高くすることができる。   The method of making the latent crimped composite fiber web of the present invention into a non-woven fabric is a method using a fiber entanglement such as a needle punching method, a high-pressure liquid flow treatment, a method using an adhesive, or a method using thermal bonding of the fiber itself, Further, an adhesive component or a welding component can be used in combination, and the components can be more firmly integrated. As these components, it is good to mix the fiber which consists of a thermoplastic resin. At this time, in order to bond the latent crimpable conjugate fiber to form a nonwoven fabric, a fiber comprising a thermoplastic resin of the same type as the thermoplastic resin constituting the latent crimpable conjugate fiber is composed of a thermoplastic resin. It is preferable that In addition, when the mixed cotton fiber is melted by heat treatment and bonded, a latent crimpable composite is obtained by using a thermoplastic resin that melts at a temperature lower than the low melting point resin of the latent crimpable composite fiber as an adhesive component. This is preferable because the nonwoven fabric can be formed without melting the fibers, and the splitting and finening can be facilitated. Moreover, the strength of the nonwoven fabric can be further increased by using composite fibers as the adhesive fibers.

接着剤使用または繊維自身の熱接着による場合は、接着点が水玉模様を形成し、その面積が不織布面積の15%以下となるように、プリント法で接着剤を塗布するとか、熱ロールでエンボス加工する。接着点の面積が15%以下であれば繊維の捲縮発生が妨げられずに嵩高性の発現が十分となる。接着点の面積の下限は特に限定されないが、不織布の実用上の強度を満たすためには3%以上が好ましい。   In the case of using adhesive or thermal bonding of the fiber itself, apply adhesive by printing method or emboss with hot roll so that the adhesion point forms a polka dot pattern and the area is 15% or less of the nonwoven fabric area Process. If the area of the adhesion point is 15% or less, the occurrence of crimping of the fiber is not hindered and the expression of bulkiness is sufficient. The lower limit of the area of the adhesion point is not particularly limited, but 3% or more is preferable in order to satisfy the practical strength of the nonwoven fabric.

本発明の潜在捲縮性複合繊維及びこれを用いた繊維構造物の製造方法を例示する。通常の溶融複合紡糸機を用いて、A成分とB成分とからなる潜在捲縮性を有する複合繊維を紡出する。紡糸に際し、紡糸温度は120〜330℃の範囲で紡糸することが好ましく、引き取り速度は40m/分〜1500m/分程度とするのがよい。延伸は必要に応じて行うか、または行わなくてもよく、多段延伸を行ってもよい。延伸倍率は通常1.2〜9.0倍程度とするのがよく、延伸温度は、通常、複合繊維が融着しない程度の温度で加熱するのがよい。更に前記加工を経た複合繊維に対し、必要に応じてスタッフィングボックス等のクリンパーで捲縮を付与した後、所定長に切断して短繊維とし、公知のカード法、エアレイド法、乾式パルプ法、湿式抄紙法等によりウェブとすることができる。   The latent crimpable conjugate fiber of this invention and the manufacturing method of a fiber structure using the same are illustrated. Using an ordinary melt composite spinning machine, a composite fiber having a latent crimping property composed of an A component and a B component is spun. In spinning, it is preferable to spin at a spinning temperature of 120 to 330 ° C., and a take-up speed is preferably about 40 m / min to 1500 m / min. Stretching may be performed as necessary or not, and multistage stretching may be performed. The draw ratio is usually about 1.2 to 9.0 times, and the draw temperature is usually heated at a temperature at which the composite fiber is not fused. Furthermore, the composite fiber that has undergone the above processing is crimped with a crimper such as a stuffing box, if necessary, and then cut into a predetermined length to form a short fiber, a known card method, airlaid method, dry pulp method, wet type The web can be made by a papermaking method or the like.

また、複合繊維を所定長に切断せずにトウの状態で分繊ガイド等によりウェブとすることもできる。更に公知のスパンボンド法やメルトブロー法により紡糸工程から直接ウェブにしてもよい。得られたウェブは必要に応じてニードルパンチ法、高圧液体流処理等の公知の高次加工工程、熱風または熱ロール等の公知の熱処理工程を経て、使い捨てオムツなどの吸収性物品をはじめとする衛生材料、あるいは吸音材、ワイピング材、フィルター、クッション材、油吸着材等の産業資材など、種々の用途に応じた繊維構造物に成形される。   Further, the composite fiber can be formed into a web by a splitting guide or the like in a tow state without being cut into a predetermined length. Further, the web may be formed directly from the spinning process by a known spunbond method or melt blow method. The obtained web is subjected to known high-order processing steps such as a needle punch method and high-pressure liquid flow treatment, as well as known heat treatment steps such as hot air or hot rolls, as necessary, and includes absorbent articles such as disposable diapers. It is formed into a fiber structure according to various uses such as sanitary materials, or industrial materials such as sound absorbing materials, wiping materials, filters, cushion materials, and oil adsorbing materials.

また、紡糸延伸後、フィラメント糸条として巻き取り、これを編成または織成して編織物とし、熱処理工程を通して繊維構造物としてもよい。また、前記短繊維を紡績糸とした後、これを編成または織成して編織物とし、熱処理工程を通して繊維構造物に成形してもよい。更にカード法、エアレイド法、スパンボンド法、抄紙法等の方法で均一にしたウェブ、織物、編物、不織布、フィルム等からなる他の構造物を、本発明の潜在捲縮性複合繊維からなる前記ウエブまたは繊維構造体に対して種々積層し、熱処理工程を通して繊維構造物としてもよい。   Further, after spinning and drawing, it may be wound as a filament yarn, knitted or woven to form a knitted fabric, and a fiber structure may be formed through a heat treatment step. Moreover, after making the said short fiber into a spun yarn, this may be knitted or woven to make a knitted fabric, and may be formed into a fiber structure through a heat treatment step. Furthermore, other structures made of web, woven fabric, knitted fabric, non-woven fabric, film, etc., made uniform by methods such as the card method, airlaid method, spunbond method, papermaking method, etc., are made of the latent crimpable conjugate fiber of the present invention. Various layers may be laminated on the web or the fiber structure, and the fiber structure may be formed through a heat treatment process.

上記熱処理工程では、熱風ドライヤー、サクションバンドドライヤー、ヤンキードライヤー等のドライヤーを用いる方法や、フラットカレンダーロール、エンボスロール等の加圧ロールを用いる方法が使用できる。熱処理温度は、潜在捲縮複合繊維のA・B両成分の融点の間の温度(低い融点を持つ成分の方だけが溶融する温度)が好ましく、用いる熱可塑性樹脂の種類にもよるが、60〜165℃の範囲が適当である。また、処理時間は前記ドライヤー等を用いる場合は約5秒以上が、前記加圧ロールを用いる場合は5秒以下が一般的である。   In the heat treatment step, a method using a dryer such as a hot air dryer, a suction band dryer or a Yankee dryer, or a method using a pressure roll such as a flat calender roll or an emboss roll can be used. The heat treatment temperature is preferably a temperature between the melting points of the components A and B of the latent crimped composite fiber (a temperature at which only the component having a lower melting point melts), and depending on the type of thermoplastic resin used, 60 A range of ˜165 ° C. is suitable. Further, the treatment time is generally about 5 seconds or more when using the dryer or the like, and 5 seconds or less when using the pressure roll.

このように本発明の潜在捲縮性複合繊維は、使用時に水分との接触によるスパイラル捲縮発現により、良好な伸縮性、嵩高性、風合い等を発現する。また、本発明の潜在捲縮性複合繊維を用いた繊維構造物及び吸収性物品は、梱包、貯蔵、輸送の各段階では捲縮がないので場所を取らず、使用時水分と接触することにより、捲縮が発現し、優れた伸縮性、嵩高性を有する良好な風合いの繊維構造物、吸収性物品となる。   As described above, the latent crimpable conjugate fiber of the present invention exhibits good stretchability, bulkiness, texture and the like due to spiral crimp expression by contact with moisture during use. In addition, the fiber structure and absorbent article using the latent crimpable conjugate fiber of the present invention do not take up space in each stage of packing, storage, and transportation, so it takes up space and comes into contact with moisture during use. A crimped structure is obtained, and a fiber structure and absorbent article having a good texture having excellent stretchability and bulkiness are obtained.

これらの繊維構造物、吸収性物品は良好な水分保持性を有しており、吸音材、ワイピング材、フィルター、クッション材、油吸着材等の産業資材分野をはじめ、衛生材料分野、医療分野などにも好適に使用することができる。特に、使い捨てオムツ等の吸収性物品に使用した場合は、水分接触前の販売用パックに多くの製品を詰め込むことができ、使用時には尿等との水分接触により嵩が出、多くの水分を保持できるという効果を示す。   These fiber structures and absorbent articles have good moisture retention, including industrial materials such as sound-absorbing materials, wiping materials, filters, cushioning materials, oil adsorbing materials, hygiene materials, medical fields, etc. Also, it can be suitably used. In particular, when used for absorbent articles such as disposable diapers, many products can be packed in the sales pack before contact with moisture, and when used, the product comes in bulk due to contact with moisture and retains much moisture. Shows the effect of being able to.

以下、本発明を実施例及び比較例によって説明するが、本発明はこれらに限定されるものではない。なお、実施例、比較例における用語と物性の測定方法は以下の通りである。   Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to these. In addition, the term and the measuring method of a physical property in an Example and a comparative example are as follows.

(MFR)
JIS K 7210、ASTM D638等に準拠して測定した。各種樹脂のMFR測定条件を示す。
ポリエーテル・ポリアミドブロック共重合体:測定温度235℃/公称荷重1kgf
ポリプロピレン:測定温度230℃/公称荷重2.16kgf(JIS K 7210附属書A表1の条件M)
ポリエチレン:測定温度230℃/公称荷重2.16kgf(JIS K 7210附属書A表1の条件D)
ポリアミドアロイ:測定温度235℃/公称荷重5kgf
(MFR)
The measurement was performed according to JIS K 7210, ASTM D638, and the like. The MFR measurement conditions of various resins are shown.
Polyether / polyamide block copolymer: Measuring temperature 235 ° C./nominal load 1 kgf
Polypropylene: Measurement temperature 230 ° C./nominal load 2.16 kgf (condition M in JIS K 7210 Annex A Table 1)
Polyethylene: Measurement temperature 230 ° C./Nominal load 2.16 kgf (JIS K 7210 Annex A, Table 1, Condition D)
Polyamide alloy: Measurement temperature 235 ° C./nominal load 5 kgf

(融点)
デュポン社製熱分析装置DSC10(商品名)を用い、JIS K 7122に準拠して測定を行った。
(Melting point)
The measurement was performed according to JIS K 7122 using a DuPont thermal analyzer DSC10 (trade name).

(偏心比)
偏心比(E)は図1に示すごとく複合繊維の中心点(O)と芯成分の中心点(O)との距離(d)と複合繊維の半径(R)の値を使用し、式1にて求めた。
E=d/R (式1)
(Eccentric ratio)
Eccentric ratio (E) uses the value of the center point of the composite fiber (O 1) and the center point of the core component distance between (O 2) (d) and the radius of the composite fiber (R) as shown in FIG. 1, It calculated | required by Formula 1.
E = d / R (Formula 1)

(吸水率)
測定試料10gを20℃の水に60秒間浸漬後、濾紙(東洋濾紙(株) NO.2濾紙)3枚重の間にはさみ0.5kg/cm2の圧力をかけ水切りを行う。濾紙を新しいものに取替えて、この水切り操作を更に2回繰返した後重量を測定し、式2により吸水率を求めた。
吸水率(重量%)=((水切り後重量−初期重量)/初期重量)×100 (式2)
(Water absorption rate)
After 10 g of the measurement sample is immersed in water at 20 ° C. for 60 seconds, water is drained by applying a pressure of 0.5 kg / cm 2 between three sheets of filter paper (Toyo Filter Paper Co., Ltd. NO.2 filter paper). The filter paper was replaced with a new one, this draining operation was repeated twice more, the weight was measured, and the water absorption was determined according to Equation 2.
Water absorption rate (% by weight) = ((weight after draining−initial weight) / initial weight) × 100 (Formula 2)

(横断面積変化率)
複合繊維の20℃における水分接触10秒後の横断面積変化率(V)を下記式3で求め、百分率(%)として表した。
A1:A成分の水分接触前の横断面積
A2:A成分の水分接触10秒後の横断面積
B1:B成分の水分接触前の横断面積
B2:B成分の水分接触10秒後の横断面積

V(%)= A2/A1×100 又はV(%)= B2/B1×100 式3

水浸漬前の各成分の断面積及び20℃の水に10秒間浸漬後の各成分の横断面積を測定し、式3にて求めた。
(Cross-sectional area change rate)
The cross-sectional area change rate (V) of the composite fiber 10 seconds after contact with water at 20 ° C. was obtained by the following formula 3 and expressed as a percentage (%).
A1: Cross-sectional area before water contact of A component A2: Cross-sectional area after 10 seconds of water contact with A component B1: Cross-sectional area before water contact of B component B2: Cross-sectional area after 10 seconds of water contact of B component

V (%) = A2 / A1 × 100 or V (%) = B2 / B1 × 100 Equation 3

The cross-sectional area of each component before immersion in water and the cross-sectional area of each component after immersion in water at 20 ° C. for 10 seconds were determined by Equation 3.

(捲縮数)
水分接触前(初期)及び20℃における水分接触10秒後について、繊維束(10本)あたりの25.4mmにおける山数を数え、その平均値を捲縮数とした。
(Crimp number)
Before the moisture contact (initial stage) and after 10 seconds of moisture contact at 20 ° C., the number of peaks at 25.4 mm per fiber bundle (10 fibers) was counted, and the average value was defined as the number of crimps.

実施例に記号で示した樹脂は次の通り。(商品名およびグレード番号を記す。)
PX:ポリエーテル・ポリアミドブロック共重合体
ATOFINA社製 PEBAX MV1074
MFR:14g/10min MP:158℃
NP:ポリエチレングリコール・ポリアミドブロック共重合体
Allied Signal社製 Hydrofil CFX−6809
PP:ポリプロピレン
日本ポリプロ(株)製 ノバテックPP SA2E
MFR:14g/10min MP:160℃
PE:ポリエチレン
京葉ポリエチレン(株)製 S6900
MFR:16g/10min MP:132℃
Ny6:ナイロン6
宇部興産(株)製 UBEナイロン6 1011FB
Ny66:ナイロン66
旭化成ケミカルズ(株)製 レオナ FR200
PAA:ポリアミドアロイ
ATOFINA社製 ORGALLOY RS60E10
MFR:13g/10min MP:220℃
Resins indicated by symbols in the examples are as follows. (Write the product name and grade number.)
PX: Polyether / polyamide block copolymer PEBAX MV1074 manufactured by ATOFINA
MFR: 14g / 10min MP: 158 ° C
NP: Polyethylene glycol / polyamide block copolymer Hydrofil CFX-6809 manufactured by Allied Signal
PP: Polypropylene Novatec PP SA2E manufactured by Nippon Polypro Co., Ltd.
MFR: 14 g / 10 min MP: 160 ° C.
PE: polyethylene Keiyo Polyethylene Co., Ltd. S6900
MFR: 16g / 10min MP: 132 ° C
Ny6: Nylon 6
UBE nylon 6 1011FB made by Ube Industries, Ltd.
Ny66: Nylon 66
Leona FR200 manufactured by Asahi Kasei Chemicals Corporation
PAA: Polyamide alloy ORGALLOY RS60E10 manufactured by ATOFINA
MFR: 13g / 10min MP: 220 ° C

実施例1
並列型複合紡糸用口金を取り付けた、2機の押出機を有する複合紡糸装置を使用し、並列型複合繊維を製造した。ホッパーのA成分側にPXを投入し、B成分側にPEを投入して、230℃の紡糸温度で、第1成分と第2成分との容積比率が50/50の並列型の繊維断面形状となるように複合繊維を吐出し、ワインダーによってこれを引き取った。なお、前記引き取り工程において、吐出された複合繊維の表面に、界面活性剤としてアルキルフォスフェートカリウム塩を付着させた。次に、ワインダーで巻き取った複合繊維(未延伸糸)を延伸機によって、2.0倍(延伸温度90℃)に延伸した後、スタッフィングボックスに通して機械捲縮を付与させ、次いで長さ51mmに切断し、捲縮が施された1.0デシテックスのスフを得た。次に各繊維を20℃の水に浸しスパイラル捲縮を発現させた。得られた繊維の水分接触によるスパイラル捲縮の発現は表1に示した。
Example 1
A parallel type composite fiber was produced using a composite spinning apparatus having two extruders equipped with a parallel type composite spinning base. PX is introduced into the A component side of the hopper, PE is introduced into the B component side, and a parallel fiber cross-sectional shape in which the volume ratio of the first component to the second component is 50/50 at a spinning temperature of 230 ° C. Then, the composite fiber was discharged so as to become, and this was taken up by a winder. In the take-up step, an alkyl phosphate potassium salt was adhered as a surfactant to the surface of the discharged composite fiber. Next, the composite fiber (unstretched yarn) wound up by a winder is stretched 2.0 times (stretching temperature 90 ° C.) by a stretching machine, then passed through a stuffing box to give mechanical crimp, and then length A 1.0 dtex sufu cut to 51 mm and crimped was obtained. Next, each fiber was immersed in water at 20 ° C. to develop spiral crimps. The expression of spiral crimps due to moisture contact of the obtained fibers is shown in Table 1.

実施例2〜9
実施例1に準拠した製造方法により、表1に示した原料樹脂の組合せ、繊維の断面形状、製造条件で、潜在捲縮性複合繊維を製造した。但し、実施例5では、第2成分の紡糸温度を実施例1よりも50℃高く設定して紡糸を行った。得られた繊維の水分接触によるスパイラル捲縮の発現は表1に示した。
Examples 2-9
A latent crimpable conjugate fiber was produced by the production method according to Example 1 with the combinations of raw resin shown in Table 1, the cross-sectional shape of the fiber, and production conditions. However, in Example 5, spinning was performed by setting the spinning temperature of the second component to 50 ° C. higher than in Example 1. The expression of spiral crimps due to moisture contact of the obtained fibers is shown in Table 1.

実施例10
実施例1で用いた第1成分及び第2成分を使用し、並列型の断面形状を有する潜在捲縮性複合長繊維を紡糸した。紡糸温度条件は第1成分側、第2成分側共に240℃である。紡糸された長繊維群をスロット型エアーサッカーで牽引し、捕集装置にウェブを捕集した。吹き付けたエアーは捕集装置に備えた吸引装置から吸引しウェブをコンベアに密着させた。得られたウェブを熱圧着装置に移送し、エンボスロール温度130℃、フラットロール130℃、線圧50N/mmの条件で熱圧着処理し、目付31g/m2、比容積10cm/gの長繊維不織布(繊維構造物)を得た。次にこの不織布を20℃の水に浸しスパイラル捲縮を発現させたところ、比容積が25cm/gまで増加した。
Example 10
Using the first component and the second component used in Example 1, a latent crimpable composite long fiber having a parallel-type cross-sectional shape was spun. The spinning temperature condition is 240 ° C. on both the first component side and the second component side. The spun long fiber group was pulled by a slot-type air soccer, and the web was collected by a collecting device. The blown air was sucked from a suction device provided in the collection device, and the web was brought into close contact with the conveyor. The obtained web was transferred to a thermocompression bonding apparatus and subjected to thermocompression bonding under conditions of an embossing roll temperature of 130 ° C., a flat roll of 130 ° C., and a linear pressure of 50 N / mm, and a basis weight of 31 g / m 2 and a specific volume of 10 cm 3 / g. A fiber nonwoven fabric (fiber structure) was obtained. Next, when this nonwoven fabric was immersed in water at 20 ° C. to develop spiral crimps, the specific volume increased to 25 cm 3 / g.

比較例1〜3
実施例1に準拠した製造方法により、表2に示した原料樹脂の組合せ、繊維の断面形状、製造条件で、複合繊維を製造した。次に得られた各繊維を20℃の水に浸し、その挙動を観察した。得られた繊維の捲縮数は表2に示した。比較例1〜3で得られた繊維は、20℃の水に浸しても大きな変化は確認できなかった。
Comparative Examples 1-3
The composite fiber was manufactured by the manufacturing method based on Example 1 with the combination of raw material resin shown in Table 2, the cross-sectional shape of the fiber, and the manufacturing conditions. Next, each obtained fiber was immersed in 20 degreeC water, and the behavior was observed. The number of crimps of the obtained fiber is shown in Table 2. Even if the fibers obtained in Comparative Examples 1 to 3 were immersed in water at 20 ° C., no significant change could be confirmed.

比較例4
比較例3で用いた第1成分及び第2成分を使用し、芯成分に第1成分が、並列型の断面形状を有する複合長繊維を紡糸した。紡糸温度条件は第1成分側、第2成分側共に240℃であった。紡糸された長繊維群をスロット型エアーサッカーで牽引し、捕集装置にウェブを捕集した。吹き付けたエアーは捕集装置に備えた吸引装置から吸引しウェブをコンベアに密着した。ウェブを熱圧着装置に移送し、エンボスロール温度130℃、フラットロール130℃、線圧50N/mmの条件で熱圧着処理し、目付30g/m2、比容積11cm/gの長繊維不織布(繊維構造物)を得た。次にこの不織布を20℃の水に浸しその挙動を観察したが、大きな変化は確認できなかった。
Comparative Example 4
The first component and the second component used in Comparative Example 3 were used, and a composite long fiber in which the first component had a parallel cross-sectional shape was spun into the core component. The spinning temperature condition was 240 ° C. on both the first component side and the second component side. The spun long fiber group was pulled by a slot-type air soccer, and the web was collected by a collecting device. The blown air was sucked from a suction device provided in the collection device, and the web was brought into close contact with the conveyor. The web is transferred to a thermocompression bonding apparatus and subjected to thermocompression bonding under the conditions of an embossing roll temperature of 130 ° C., a flat roll of 130 ° C., and a linear pressure of 50 N / mm, and a long fiber nonwoven fabric having a basis weight of 30 g / m 2 and a specific volume of 11 cm 3 / g. Fiber structure) was obtained. Next, the nonwoven fabric was immersed in water at 20 ° C. and the behavior thereof was observed, but no significant change was confirmed.

実施例1〜9で得られたデータを表1に、比較例1〜3で得られたデータを表2に示した。   The data obtained in Examples 1 to 9 are shown in Table 1, and the data obtained in Comparative Examples 1 to 3 are shown in Table 2.

Figure 0004581601
Figure 0004581601

Figure 0004581601
Figure 0004581601

表1から明らかなように、実施例1〜9の本発明の潜在捲縮性複合繊維は、水分接触後に良好な捲縮発現を示した。また、実施例10で得られた長繊維不織布は、水分との接触により、比容積が増加するという新規な特徴を持った不織布であった。   As is apparent from Table 1, the latent crimpable conjugate fibers of Examples 1 to 9 of the present invention exhibited good crimp expression after moisture contact. Moreover, the long-fiber nonwoven fabric obtained in Example 10 was a nonwoven fabric having a novel feature that the specific volume was increased by contact with moisture.

これに対し、表2から明らかなように、比較例1〜3の複合繊維は、水分接触後もその捲縮数の変化に大きな差はなく、比較例4の長繊維不織布は、水分との接触後もその比容積には変化のないものであった。   On the other hand, as is clear from Table 2, the composite fibers of Comparative Examples 1 to 3 had no significant difference in the number of crimps after contact with moisture, and the long-fiber nonwoven fabric of Comparative Example 4 The specific volume remained unchanged after contact.

実施例11
実施例1で得られたスフをカード機でカーディングしてウェブとし、該ウェブを熱風貫通型ドライヤーで、温度110℃、処理時間1分40秒の条件で熱処理して、複合繊維の交点が熱融着された不織布(繊維構造物)を得た。この不織布をセカンドシート層に使用し、吸収材と共にトップシート層及びバックシート層で挟み込んで吸収性物品を作製した。得られた吸収性物品は液体吸収性に優れ、吸収性物品として非常に有用なものであり、実用性が高いと判断できた。
Example 11
The soot obtained in Example 1 was carded with a card machine to form a web, and the web was heat-treated with a hot air penetration type dryer at a temperature of 110 ° C. and a treatment time of 1 minute 40 seconds, and the intersection of the composite fibers was A heat-sealed nonwoven fabric (fiber structure) was obtained. This nonwoven fabric was used for the second sheet layer, and was sandwiched between the top sheet layer and the back sheet layer together with the absorbent material to produce an absorbent article. The obtained absorbent article was excellent in liquid absorbency, was very useful as an absorbent article, and was judged to be highly practical.

比較例5
比較例1で得られたスフをカード機でカーディングしてウェブとし、該ウェブを熱風貫通型ドライヤーで、温度110℃、処理時間1分40秒の条件で熱処理して、複合繊維の交点が熱融着された不織布(繊維構造物)を得た。この不織布をセカンドシート層に使用し、吸収材と共にトップシート層及びバックシート層で挟み込んで吸収性物品を作製した。得られた吸収性物品は液体吸収するものの、その吸収性は一般的な吸収性物品と同等なものであった。
Comparative Example 5
The soot obtained in Comparative Example 1 was carded with a card machine to form a web, and the web was heat-treated with a hot-air penetrating dryer under conditions of a temperature of 110 ° C. and a treatment time of 1 minute 40 seconds. A heat-sealed nonwoven fabric (fiber structure) was obtained. This nonwoven fabric was used for the second sheet layer, and was sandwiched between the top sheet layer and the back sheet layer together with the absorbent material to produce an absorbent article. Although the obtained absorbent article absorbs liquid, the absorptivity was equivalent to a general absorbent article.

実施例11で得られた吸収性物品は、液体吸収性に優れ吸収性物品として良好な性能を持ち合わせており、実用性に優れているのに対して、比較例5で得られた吸収性物品は、その吸収性は一般的な吸収性物品と同等で、特徴のあるものではなかった。   The absorbent article obtained in Example 11 has excellent liquid absorbency and good performance as an absorbent article, and is excellent in practicality, whereas the absorbent article obtained in Comparative Example 5 The absorptivity was the same as that of general absorbent articles and was not characteristic.

本発明の潜在捲縮性複合繊維は、使用時に水分との接触によるスパイラル捲縮を発現するので、優れた伸縮性、嵩高性、風合い等を有している。
また、本発明の潜在捲縮性複合繊維を用いた繊維構造物及び吸収性物品は、梱包、貯蔵、輸送の各物流段階では、嵩による貯蔵場所を取らず、使用時に水分と接触することにより捲縮が発現し、伸縮性、嵩高性を有する良好な風合いの繊維構造物、吸収性物品を形成する。なお、これらの繊維構造物、吸収性物品は良好な水分保持性を有する。
本発明の潜在捲縮性複合繊維の特性を利用して、紙おむつ、生理用品などの衛生材料分野、吸音材、ワイピング材、フィルター、クッション材、油吸着材等の産業資材分野をはじめ、医療分野などにも好適に使用することができる。
The latent crimpable conjugate fiber of the present invention exhibits spiral crimp due to contact with moisture during use, and thus has excellent stretchability, bulkiness, texture, and the like.
In addition, the fiber structure and absorbent article using the latent crimpable conjugate fiber of the present invention do not take a storage place due to bulk at each distribution stage of packing, storage and transportation, and contact with moisture during use. A crimped structure is formed, and a fiber structure and absorbent article with a good texture having stretchability and bulkiness are formed. In addition, these fiber structures and absorbent articles have good moisture retention.
Utilizing the characteristics of the latent crimpable conjugate fiber of the present invention, sanitary materials such as disposable diapers and sanitary products, industrial materials such as sound absorbing materials, wiping materials, filters, cushion materials, oil adsorbing materials, and medical fields For example, it can be suitably used.

本発明の実施例で使用した偏心鞘芯型複合繊維の断面図である。It is sectional drawing of the eccentric sheath core type composite fiber used in the Example of this invention.

符号の説明Explanation of symbols

:複合繊維の中心点
:芯成分の中心点
d:OとOの距離
R:複合繊維の半径
O 1 : Center point of composite fiber O 2 : Center point of core component d: Distance between O 1 and O 2 R: Radius of composite fiber

Claims (5)

異なる2種類の水不溶性熱可塑性樹脂成分(それぞれA成分およびB成分という)から構成される複合繊維であって、
合の形態は並列型もしくはA成分を鞘とする偏心比0.1以上の偏心鞘芯型であり、A成分がポリエーテル・ポリアミドブロック共重合体またはポリアミドとポリエチレングリコールとのブロック共重合体であり、B成分がポリオレフィン、ポリアミド及びポリアミドアロイから選ばれた少なくとも1種であり、A成分とB成分の20℃における吸水率(重量%)の差が6重量%以上であり、該複合繊維の20℃における水分接触10秒後の横断面積変化率(V)が下記関係にあり、20℃の水分接触10秒後のスパイラル捲縮数が8個/25.4mm以上発現することを特徴とする潜在捲縮性複合繊維を少なくとも一部に用いた繊維構造物を使用した、水分と接触させて用いられる製品
A2/A1 > B2/B1
ここで
A1:A成分の水分接触前の横断面積
A2:A成分の水分接触10秒後の横断面積
B1:B成分の水分接触前の横断面積
B2:B成分の水分接触10秒後の横断面積
A composite fiber composed of two different types of water-insoluble thermoplastic resin components (referred to as component A and component B, respectively),
Form of double engagement is eccentric ratio of 0.1 or more eccentric sheath-core type for a parallel-type or A component as a sheath, a block copolymer of component A is a polyether-polyamide block copolymer or polyamide and polyethylene glycol The component B is at least one selected from polyolefins, polyamides and polyamide alloys, and the difference in water absorption (% by weight) at 20 ° C. between the component A and the component B is 6% by weight or more, characterized in that the cross-sectional area change ratio after moisture contact 10 sec at 20 ° C. of (V) is Ri following relationship near, 20 spiral crimps number of water contact 10 seconds after ° C. express eight /25.4mm more A product used in contact with moisture , using a fiber structure using at least part of the latent crimpable conjugate fiber.
A2 / A1> B2 / B1
Here, A1: Cross-sectional area before contact with moisture of A component A2: Cross-sectional area after 10 seconds of contact with moisture of A component B1: Cross-sectional area before contact with moisture of B component B2: Cross-sectional area after 10 seconds of contact with moisture of B component
潜在捲縮性複合繊維が、20℃における吸水率が1%以上である請求項1に記載製品The product according to claim 1, wherein the latent crimpable conjugate fiber has a water absorption rate of 1% or more at 20 ° C. 繊維構造物が、潜在捲縮性複合繊維の繊維接点が熱接着もしくは繊維間が交絡によって、固定された不織布、ネット状物、編物及び織物から選ばれる少なくとも一種の布帛で構成された構造である請求項1〜のいずれか1項に記載の製品The fiber structure is a structure composed of at least one kind of fabric selected from a nonwoven fabric, a net-like material, a knitted fabric and a woven fabric in which the fiber contacts of the latent crimpable composite fiber are fixed by thermal bonding or entanglement between the fibers. product according to any one of claims 1-2. 請求項1〜のいずれか1項記載の製品を少なくとも一部に用いた吸収性物品。 An absorbent article using at least a part of the product according to any one of claims 1 to 3 . 異なる2種類の水不溶性熱可塑性樹脂成分(それぞれA成分およびB成分という)から構成される複合繊維であって、
合の形態は並列型もしくはA成分を鞘とする偏心比0.1以上の偏心鞘芯型であり、A成分がポリエーテル・ポリアミドブロック共重合体またはポリアミドとポリエチレングリコールとのブロック共重合体であり、B成分がポリオレフィン、ポリアミド及びポリアミドアロイから選ばれた少なくとも1種であり、A成分とB成分の20℃における吸水率(重量%)の差が6重量%以上であり、該複合繊維の20℃における水分接触10秒後の横断面積変化率(V)が下記関係にあり、20℃の水分接触10秒後のスパイラル捲縮数が8個/25.4mm以上発現することを特徴とする潜在捲縮性複合繊維を少なくとも一部に用いる繊維構造物を用いた製品とし、この製品を水分に接触させることを特徴とする潜在捲縮性繊維の使用方法。
A2/A1 > B2/B1
ここで
A1:A成分の水分接触前の横断面積
A2:A成分の水分接触10秒後の横断面積
B1:B成分の水分接触前の横断面積
B2:B成分の水分接触10秒後の横断面積
A composite fiber composed of two different types of water-insoluble thermoplastic resin components (referred to as component A and component B, respectively),
Form of double engagement is eccentric ratio of 0.1 or more eccentric sheath-core type for a parallel-type or A component as a sheath, a block copolymer of component A is a polyether-polyamide block copolymer or polyamide and polyethylene glycol The component B is at least one selected from polyolefins, polyamides and polyamide alloys, and the difference in water absorption (% by weight) at 20 ° C. between the component A and the component B is 6% by weight or more, characterized in that the cross-sectional area change ratio after moisture contact 10 sec at 20 ° C. of (V) is Ri following relationship near, 20 spiral crimps number of water contact 10 seconds after ° C. express eight /25.4mm more A method for using latent crimpable fibers , characterized in that a product using a fiber structure using at least a part of the latent crimpable conjugate fiber is brought into contact with moisture .
A2 / A1> B2 / B1
Here, A1: Cross-sectional area before contact with moisture of A component A2: Cross-sectional area after 10 seconds of contact with moisture of A component B1: Cross-sectional area before contact with moisture of B component B2: Cross-sectional area after 10 seconds of contact with moisture of B component
JP2004282319A 2004-09-28 2004-09-28 Latent crimped conjugate fiber, fiber structure using the same, and absorbent article Expired - Fee Related JP4581601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004282319A JP4581601B2 (en) 2004-09-28 2004-09-28 Latent crimped conjugate fiber, fiber structure using the same, and absorbent article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282319A JP4581601B2 (en) 2004-09-28 2004-09-28 Latent crimped conjugate fiber, fiber structure using the same, and absorbent article

Publications (2)

Publication Number Publication Date
JP2006097157A JP2006097157A (en) 2006-04-13
JP4581601B2 true JP4581601B2 (en) 2010-11-17

Family

ID=36237238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282319A Expired - Fee Related JP4581601B2 (en) 2004-09-28 2004-09-28 Latent crimped conjugate fiber, fiber structure using the same, and absorbent article

Country Status (1)

Country Link
JP (1) JP4581601B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2094322B1 (en) * 2006-12-22 2014-10-29 Sca Hygiene Products AB Bicomponent superabsorbent fibre
JP5535555B2 (en) 2009-08-27 2014-07-02 Esファイバービジョンズ株式会社 Thermal adhesive composite fiber and non-woven fabric using the same
JP6222997B2 (en) 2013-05-31 2017-11-01 Esファイバービジョンズ株式会社 Thermal adhesive composite fiber with excellent flexibility and non-woven fabric using the same
CN111733470B (en) * 2020-06-12 2022-11-08 温州大学 Self-crimping composite moisture absorption fiber, preparation method and fabric
JP6916360B1 (en) 2020-09-24 2021-08-11 Esファイバービジョンズ株式会社 Heat-adhesive composite fiber, its manufacturing method, and non-woven fabric using the heat-adhesive composite fiber
CN113913956A (en) * 2021-09-27 2022-01-11 南京工业大学 Micro-fluidic spinning construction method for high-strength spiral fibers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185166A (en) * 1989-12-12 1991-08-13 Kao Corp Fibrous absorber
JPH0913257A (en) * 1995-06-29 1997-01-14 Teijin Ltd Fiber structure having dry touch feeling
JP2001055632A (en) * 1999-08-09 2001-02-27 Unitika Ltd Polyamide elastic yarn and antimicrobial polyamide elastic yarn

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185166A (en) * 1989-12-12 1991-08-13 Kao Corp Fibrous absorber
JPH0913257A (en) * 1995-06-29 1997-01-14 Teijin Ltd Fiber structure having dry touch feeling
JP2001055632A (en) * 1999-08-09 2001-02-27 Unitika Ltd Polyamide elastic yarn and antimicrobial polyamide elastic yarn

Also Published As

Publication number Publication date
JP2006097157A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
US5672415A (en) Low density microfiber nonwoven fabric
US6632504B1 (en) Multicomponent apertured nonwoven
US4310594A (en) Composite sheet structure
JP5037964B2 (en) Wet non-woven fabric
WO2000053831A1 (en) Split type conjugate fiber, method for producing the same and fiber formed article using the same
JP4581601B2 (en) Latent crimped conjugate fiber, fiber structure using the same, and absorbent article
JP3550810B2 (en) Composite nonwoven fabric and method for producing the same
JP4599760B2 (en) Heat-fusible composite fiber and fiber molded body using the same
JP4784907B2 (en) Latent crimped composite fiber tow, method for producing the same and fiber structure
JP3852644B2 (en) Split type composite fiber, nonwoven fabric and absorbent article using the same
JPH10219555A (en) Laminated nonwoven fabric and its production
JP4281474B2 (en) Nonwoven fabric and method for producing the same
JPH10331063A (en) Composite nonwoven fabric and its production
KR102500062B1 (en) Spunbond nonwoven fabric, sanitary material, and method for producing spunbond nonwoven fabric
JP4399968B2 (en) Long-fiber non-woven fabric
JP4665364B2 (en) Heat-fusible composite fiber, and fiber molded body and fiber product using the same
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP2003171825A (en) Heat-adhesive conjugated fiber, and nonwoven fabric and synthetic fiber paper using the same
EP0043390A1 (en) Composite sheet structure, process for its preparation and laminates comprising said structure
JPH10158968A (en) Nonwoven fabric and its production
WO2020095947A1 (en) Nonwoven fabric and method for manufacturing same
JPH10195750A (en) Composite nonwoven fabric and its production
JP2000170036A (en) Heat adhesive conjugate fiber, its production and fiber molded material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees