JP4579513B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4579513B2
JP4579513B2 JP2003278722A JP2003278722A JP4579513B2 JP 4579513 B2 JP4579513 B2 JP 4579513B2 JP 2003278722 A JP2003278722 A JP 2003278722A JP 2003278722 A JP2003278722 A JP 2003278722A JP 4579513 B2 JP4579513 B2 JP 4579513B2
Authority
JP
Japan
Prior art keywords
positive electrode
lead
active material
graphite powder
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003278722A
Other languages
Japanese (ja)
Other versions
JP2005044680A (en
Inventor
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2003278722A priority Critical patent/JP4579513B2/en
Publication of JP2005044680A publication Critical patent/JP2005044680A/en
Application granted granted Critical
Publication of JP4579513B2 publication Critical patent/JP4579513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、黒鉛粉体を正極活物質中に含む正極を有する鉛蓄電池に関する。   The present invention relates to a lead-acid battery having a positive electrode containing graphite powder in a positive electrode active material.

鉛蓄電池の正極活物質は、他の電池系正極活物質と比較してその利用率が低く、且つエネルギー密度が低いために小型軽量化が困難とされてきた。   The positive electrode active material of a lead-acid battery has been considered to be difficult to reduce in size and weight because of its low utilization rate and low energy density compared to other battery-based positive electrode active materials.

低い利用率の主な原因は、放電中に難溶性の硫酸鉛の結晶が、正極活物質内に生成することにより電解液が流通する細孔が閉塞してしまい、その結果放電反応が持続できなくなることによる。また、電解液中の硫酸も活物質として利用されるが、硫酸イオンの拡散が遅く、特に0.2C以上の高率放電時には、正極活物質中の硫酸が使い果たされ、且つ硫酸の供給が追いつかずにその利用率が急激に低下してしまう。このような現象は電解液の少ない制御弁式鉛蓄電池において顕著に見られる。   The main reason for the low utilization rate is that the poorly soluble lead sulfate crystals formed in the positive electrode active material during the discharge clogged the pores through which the electrolyte flows, and as a result the discharge reaction could be sustained. By disappearing. In addition, sulfuric acid in the electrolyte is also used as an active material, but the diffusion of sulfate ions is slow. In particular, the sulfuric acid in the positive electrode active material is exhausted and the sulfuric acid is supplied at a high rate discharge of 0.2C or more. Will not catch up, but its usage rate will drop sharply. Such a phenomenon is remarkably seen in a control valve type lead storage battery with a small amount of electrolyte.

そこで、利用率を向上させるには、正極活物質の気孔率を増加させて前記硫酸鉛の結晶による細孔の閉塞率を緩和する方法、或いは正極活物質中の硫酸量を増加させる方法などが考えられている。具体的な方法としては、(1)正極活物質のペースト作製時に水量を増やして正極活物質の密度を低下させる、(2)未化成活物質に含まれる硫酸鉛量を増加させて化成処理後に気孔率を高める、(3)薄い正極板を使用し、構成枚数を増やす方法(4)異方性の大きな黒鉛の添加(例えば、特許文献1参照)、(5)硫酸のみでインターカレート処理した黒鉛層間化合物の添加(例えば、特許文献2参照)、(6)膨張黒鉛を添加した正極活物質を化成処理後に膨張黒鉛を酸化、消失させて気孔率を高める(例えば、特許文献3参照)、などが提案されている。   Therefore, in order to improve the utilization rate, there are a method of increasing the porosity of the positive electrode active material to reduce the pore clogging rate due to the lead sulfate crystals, or a method of increasing the amount of sulfuric acid in the positive electrode active material. It is considered. Specifically, (1) the amount of water is increased at the time of preparing the positive electrode active material paste to decrease the density of the positive electrode active material, and (2) the amount of lead sulfate contained in the unformed active material is increased and after the chemical conversion treatment. (3) Method of increasing the number of components by using a thin positive electrode plate (4) Addition of highly anisotropic graphite (see, for example, Patent Document 1), (5) Intercalation treatment only with sulfuric acid Added graphite intercalation compound (for example, refer to Patent Document 2), (6) After the chemical conversion treatment of the positive electrode active material to which expanded graphite is added, the expanded graphite is oxidized and disappeared to increase the porosity (for example, refer to Patent Document 3) , Etc. have been proposed.

特公昭63−57913号公報Japanese Examined Patent Publication No. 63-57913 特開昭56−159062号公報JP-A-56-159062 特開昭56−159063号公報Japanese Patent Laid-Open No. 56-159063

前記(1)の水量を多くして正極活物質の密度を低下させる方法は、ペースト粘度が低下してしまい極板への充填性が悪くなり歩留まりを非常に低下させる。(2)の未化成活物質に含まれる硫酸鉛量を増加させる方法は、ペースト作製時の硫酸量が増えるために酸性化して、通常の熟成方法では金属鉛量を5%未満にすることができず、以後の化成工程で充分な化成処理を施すことが困難になる。更に、単純に気孔率を上げても正極活物質が軟化現象を起こしやすくなり、繰り返し利用の用途では寿命が極端に短くなってしまう。前記(3)の薄い正極板を使用し構成枚数を増やす方法は、高価格になること及び腐食による正極板の破損が早期に起こりやすくなって寿命を縮めてしまう。   The method (1) in which the amount of water is increased to reduce the density of the positive electrode active material lowers the paste viscosity, lowers the filling ability of the electrode plate, and greatly reduces the yield. In the method (2) of increasing the amount of lead sulfate contained in the unformed active material, the amount of sulfuric acid at the time of paste preparation increases, so that acidification occurs, and the normal aging method may reduce the amount of metal lead to less than 5%. Therefore, it becomes difficult to perform sufficient chemical conversion treatment in the subsequent chemical conversion step. Furthermore, even if the porosity is simply increased, the positive electrode active material is likely to be softened, and the life is extremely shortened in the repeated use. The method of increasing the number of components by using the thin positive plate of (3) is expensive and damages the positive plate due to corrosion at an early stage and shortens the life.

(6)の黒鉛の添加では、正極板内で陽極酸化を受けた黒鉛に、硫酸がインターカレートして、黒鉛のC軸方向を膨張させ、前記正極板内部に亀裂を発生させることにより電解液を正極板内部まで引き入れることで、その利用率を高められるが、化成工程における黒鉛の膨張(酸化)効率は高くなく、未膨張の黒鉛が多量に残存してしまい、放置状態での自己放電が大きいという問題、およびフロート充電時に正極板の膨張による電槽破損の問題が生じている。更に、黒鉛膨張効率を高めるには大きな異方性が必要であること及び2000℃を超える温度での熱処理が不可欠であることから(4)の異方性の大きな黒鉛の添加は高価になってしまう。(5)の硫酸のみで作製した黒鉛層間化合物は、インターカレートの駆動力が小さいので、硫酸のインターカレート量を充分に確保できないなどの問題がある。   In the addition of graphite in (6), sulfuric acid is intercalated into graphite that has undergone anodization in the positive electrode plate, expands in the C-axis direction of the graphite, and electrolysis occurs by generating cracks in the positive electrode plate. By pulling the liquid into the positive electrode plate, the utilization rate can be increased, but the expansion (oxidation) efficiency of the graphite in the chemical conversion process is not high, and a large amount of unexpanded graphite remains and self-discharge in the state of standing There is a problem that the battery is large, and a problem of battery case breakage due to expansion of the positive electrode plate during float charging occurs. Furthermore, in order to increase the graphite expansion efficiency, large anisotropy is necessary, and heat treatment at a temperature exceeding 2000 ° C. is essential, so the addition of graphite with large anisotropy (4) becomes expensive. End up. The graphite intercalation compound produced with only sulfuric acid (5) has a problem that the intercalation amount of sulfuric acid cannot be sufficiently secured since the driving force of intercalation is small.

前記従来技術(4)〜(6)の黒鉛を添加する方法は、他の従来技術の(1)〜(3)に比較して有効な鉛蓄電池を提供するが、前記したように各々に問題を抱えて更なる解決が望まれている。そこで、本発明では前記黒鉛の添加による鉛蓄電池の高性能化において抱えている諸問題を解決し、高性能な鉛蓄電池を安価に提供することである。   The methods of adding the graphites of the prior arts (4) to (6) provide an effective lead storage battery as compared with the other prior arts (1) to (3), but each has a problem as described above. Therefore, further solutions are desired. In view of this, the present invention is to solve various problems in improving the performance of a lead storage battery by adding graphite, and to provide a high performance lead storage battery at low cost.

請求項1 記載の発明は、負極板、セパレータ、電解液、および黒鉛粉体を正極活物質中に含む正極板を備え電槽化成が施される鉛蓄電池において、前記黒鉛粉体が高温処理を施していない天然黒鉛粉体を浮遊選鉱法により不純物を除去し、その後、硫酸および酸化剤からなる溶液中に浸漬処理されたものであることを特徴とする鉛蓄電池である。 The invention according to claim 1 is a lead storage battery including a negative electrode plate, a separator, an electrolytic solution, and a positive electrode plate containing graphite powder in a positive electrode active material, wherein the graphite powder is subjected to high-temperature treatment. A lead storage battery characterized in that natural graphite powder that has not been subjected to removal of impurities by a flotation method is then immersed in a solution composed of sulfuric acid and an oxidizing agent.

請求項2記載の発明は、前記酸化剤が、過酸化水素、または重クロム酸カリウム、またはこれらと同等以上の酸化力を有する酸化剤であることを特徴とする請求項1記載の鉛蓄電池である。   The invention according to claim 2 is the lead acid battery according to claim 1, wherein the oxidizing agent is hydrogen peroxide, potassium dichromate, or an oxidizing agent having an oxidizing power equal to or higher than these. is there.

本発明によれば、異方性の大きな天然黒鉛粉体を浮遊選鉱法により不純物を除去した後、濃硫酸と酸化剤の混酸中に浸漬処理することにより硫酸を均一にインターカレートして作製される天然黒鉛粉体を正極活物質中に含む鉛蓄電池を提供することで(a)自己放電が大きい、(b)フロート充電時に正極板が膨張して電槽が破損する、(c)黒鉛の異方性を高めるための2000℃を超える高温熱処理が必要である、(d)インターカレートする硫酸の量を確保できない、などの正極活物質中に黒鉛粉体を添加した鉛蓄電池の諸問題を解決し、高性能な鉛蓄電池を安価に提供するもので、工業上顕著な効果を奏するものである。
According to the present invention, natural graphite powder having large anisotropy is prepared by removing impurities by a flotation method and then uniformly intercalating sulfuric acid by immersing in a mixed acid of concentrated sulfuric acid and oxidizing agent. By providing a lead-acid battery containing the natural graphite powder to be contained in the positive electrode active material, (a) large self-discharge, (b) the positive electrode plate expands during float charging, and the battery case is damaged, (c) graphite Various types of lead-acid batteries in which graphite powder is added to the positive electrode active material, such as high temperature heat treatment exceeding 2000 ° C. is required to increase the anisotropy of (d) the amount of sulfuric acid to be intercalated cannot be secured. It solves the problem and provides a high-performance lead-acid battery at a low cost, and has a remarkable industrial effect.

本発明の実施の形態を説明する。
原料の天然黒鉛塊を粉砕機により粉砕し、平均粒径0.3mmに分級した天然黒鉛粉体を1Nの希硫酸水溶液中での浮遊選鉱法により、シリカ、アルミナなどの不溶性不純物及び溶解性の金属不純物の除去を行う。不純物を除去した天然黒鉛粉体は、濃硫酸と過酸化水素の80℃の混合溶液に30分間浸漬した。その後天然黒鉛粉体を収集、水洗、および乾燥して、硫酸をインターカレート(黒鉛結晶の層間に挿入)した天然黒鉛粉体を得る。得られた前記天然黒鉛粉体を正極活物質の鉛粉体、およびポリエステル繊維と乾式混合した後、水および硫酸と混練して正極用活物質ペーストを作製する。この正極用活物質ペーストをPb系合金の鋳造格子板に所定量充填した後、熟成処理を施して正極板を作製する。このように作製した正極板を負極板、セパレータ、電槽、電解液などの電池構成部品と組み合わせて制御弁式鉛蓄電池を組み立て、組み立て後に化成する電槽化成処理が施こされる本発明に係る鉛蓄電池を作製する。
An embodiment of the present invention will be described.
The natural graphite lump of the raw material is pulverized by a pulverizer, and the natural graphite powder classified to an average particle size of 0.3 mm is subjected to a flotation method in a 1N dilute sulfuric acid aqueous solution, so that insoluble impurities such as silica and alumina and solubility are reduced. Metal impurities are removed. The natural graphite powder from which impurities were removed was immersed in a mixed solution of concentrated sulfuric acid and hydrogen peroxide at 80 ° C. for 30 minutes. Thereafter, the natural graphite powder is collected, washed with water, and dried to obtain natural graphite powder in which sulfuric acid is intercalated (inserted between layers of graphite crystals). The obtained natural graphite powder is dry-mixed with the lead powder of the positive electrode active material and the polyester fiber, and then kneaded with water and sulfuric acid to prepare a positive electrode active material paste. A predetermined amount of this positive electrode active material paste is filled in a cast lattice plate made of a Pb alloy, and then subjected to aging treatment to produce a positive electrode plate. In the present invention, the positive electrode plate thus manufactured is combined with battery components such as a negative electrode plate, a separator, a battery case, and an electrolyte solution to assemble a control valve type lead-acid battery, and a battery case forming process is performed after the assembly. The lead acid battery which concerns is produced.

ところで、本発明が用いる天然黒鉛粉体は、本来異方性が非常に大きいために、過酸化水素などのような硫酸をインターカレート(黒鉛結晶の層間に挿入)する駆動力を有する適切な酸化剤を用いることにより、前記天然黒鉛の結晶の層間に硫酸を挿入して、2000℃を超える温度での高温熱処理を施さなくてもインターカレートすることができる。 更に、酸化剤の濃度、処理条件(温度、時間)、溶液温度などを制御することで、インターカレートする硫酸の量を制御することができる。即ち、本発明に係る天然黒鉛粉体は粉体全体を均一にインターカレートする硫酸の量が制御されているもので、鉛蓄電池の組み立て後に行われる電槽化成時に、均一に効率よく膨張して正極活物質中に空隙を形成する。依って、電槽化成化後に未膨張の黒鉛の割合が少なくなり正極活物質中への添加効果が増大し、自己放電やフロート充電における変化が抑えられる。   By the way, the natural graphite powder used in the present invention has a very large anisotropy in nature, so that it has an appropriate driving force for intercalating sulfuric acid such as hydrogen peroxide (inserted between graphite crystal layers). By using an oxidizing agent, it is possible to intercalate without inserting sulfuric acid between the natural graphite crystals and subjecting it to high temperature heat treatment at a temperature exceeding 2000 ° C. Furthermore, the amount of sulfuric acid to be intercalated can be controlled by controlling the oxidizing agent concentration, processing conditions (temperature, time), solution temperature, and the like. That is, the natural graphite powder according to the present invention is controlled in the amount of sulfuric acid that uniformly intercalates the entire powder, and expands uniformly and efficiently during the formation of the battery case after assembly of the lead acid battery. Voids are formed in the positive electrode active material. Therefore, the proportion of unexpanded graphite after the formation of the battery case is reduced, the effect of addition into the positive electrode active material is increased, and changes in self-discharge and float charging are suppressed.

前記酸化剤は、過酸化水素、若しくは同等以上の酸化力を有している無機酸化剤が望ましく、重クロム酸カリウム、過塩素酸類の酸化剤、オゾンなどが利用できるが、濃硫酸にとけてしまうような有機酸化剤は望ましくない。   The oxidizing agent is preferably hydrogen peroxide or an inorganic oxidizing agent having an oxidizing power equal to or higher than that. Potassium dichromate, oxidizing agents of perchloric acids, ozone, and the like can be used. Such organic oxidizers are undesirable.

以下に実施例を用い、より詳細に本発明を説明する。
中国産の天然黒鉛塊(鱗状塊)を粉砕し、300μmに分級した後選鉱処理により不純物除去を行った。次に、80℃の濃硫酸と過酸化水素との混酸中に0.5〜2.0時間浸漬して天然黒鉛層間化合物粉体を作製し、本発明例の黒鉛粉体No.1〜4とした。
Hereinafter, the present invention will be described in more detail using examples.
Chinese natural graphite block (scale block) was pulverized and classified to 300 μm, and then impurities were removed by a beneficiation treatment. Next, a natural graphite intercalation compound powder was prepared by immersing in a mixed acid of concentrated sulfuric acid and hydrogen peroxide at 80 ° C. for 0.5 to 2.0 hours. 1-4.

比較例の黒鉛粉体No.5〜8は、本発明に係る酸/酸化剤処理を施さずに、選鉱処理後に酸処理(比較例の黒鉛粉体No.5)、選鉱後に2000℃の高温熱処理と酸処理(比較例の黒鉛粉体No.6)、選鉱処理のみ(比較例の黒鉛粉体No.7)、選鉱処理後に2000℃の高温熱処理(比較例の黒鉛粉体No.8)を施した天然黒鉛粉体を作製して用いた。   Comparative graphite powder No. 5-8, without performing the acid / oxidant treatment according to the present invention, acid treatment after the beneficiation treatment (graphite powder No. 5 of the comparative example), high temperature heat treatment at 2000 ° C. and acid treatment after the beneficiation (of the comparative example) Graphite powder No. 6), only beneficiation treatment (graphite powder No. 7 of comparative example), natural graphite powder subjected to heat treatment at 2000 ° C. (graphite powder No. 8 of comparison example) after the beneficiation treatment Made and used.

次に、ボールミルされた鉛粉体100gに、表1の本発明例の黒鉛粉体No.1〜4では添加量0.25質量%、及び比較例の黒鉛粉体No.5〜8では添加量を0.5質量%として、ポリエステル製のカットファイバ0.05gと共に添加し乾式混合後、適量の水と混練し、更に所定量の希硫酸と混練して正極用活物質ペーストを作製した。   Next, 100 g of ball milled lead powder was added to graphite powder No. 1 of the present invention example shown in Table 1. 1-4, the added amount was 0.25% by mass, and the graphite powder No. 5-8, the addition amount is 0.5% by mass, added together with 0.05 g of polyester cut fiber, dry-mixed, kneaded with an appropriate amount of water, and further kneaded with a predetermined amount of dilute sulfuric acid to be a positive electrode active material A paste was prepared.

作製された正極用活物質ペーストを厚さ3.8mmのPb−Sn−Ca系合金製の正極用鋳造格子に所定量充填し、温度40℃、湿度95%の環境で40時間の熟成処理を実施して厚さ4.2mmの正極板を得た。この正極板と負極板をセパレータを介して交互に積層した極板群をABS樹脂製電槽内に収納し、排気孔を有する蓋で電槽を封口して定格容量2Ahの制御弁式鉛蓄電池A〜Hを作製した。   A predetermined amount of the prepared positive electrode active material paste is filled in a 3.8 mm-thick Pb—Sn—Ca alloy casting grid for positive electrode, and aged for 40 hours in an environment of temperature 40 ° C. and humidity 95%. As a result, a positive electrode plate having a thickness of 4.2 mm was obtained. A control valve type lead-acid battery having a rated capacity of 2 Ah is housed in an ABS resin battery case in which a group of electrode plates in which the positive electrode plate and the negative electrode plate are alternately stacked via separators is sealed in the battery case. A to H were prepared.

この鉛蓄電池に、蓋の排気孔より電解液として比重1.20(20℃)の希硫酸を極板群に滲み込む程度の約20ccを注液した後、25℃で電槽化成を行った。なお、化成電気量は正極理論容量に対して200%とした。   After about 20 cc of the lead acid battery was poured into the electrode plate group with dilute sulfuric acid having a specific gravity of 1.20 (20 ° C.) as an electrolyte from the exhaust hole of the lid, a battery case was formed at 25 ° C. . In addition, the amount of chemical conversion electricity was 200% with respect to the positive electrode theoretical capacity.

化成後に蓋の排気孔をゴム弁で閉口して完成した制御弁式鉛蓄電池を用いて、0.1C及び3Cの初期容量試験、65℃のフロート充電試験、および40℃での自己放電試験を行い、その結果を表2に記す。   Using a control valve type lead-acid battery that was completed by forming the exhaust hole of the lid closed with a rubber valve after chemical conversion, an initial capacity test of 0.1C and 3C, a float charge test at 65 ° C, and a self-discharge test at 40 ° C The results are shown in Table 2.

初期容量試験は、電槽化成終了後の満充電の鉛蓄電池を25℃の温度で、最初に0.1Cの放電電流で放電し、その後放電容量に対して110%を0.1C通電して充電した後に、3Cの放電電流で行いそれぞれの容量を確認した。   In the initial capacity test, a fully charged lead-acid battery after completion of the battery case formation was discharged at a temperature of 25 ° C. with a discharge current of 0.1 C first, and then 110% of the discharge capacity was charged with 0.1 C. After charging, each capacitor was confirmed with a discharge current of 3C.

フロート充電試験は、3Cの初期容量試験の後、放電容量に対して110%を0.1C通電して充電し、65℃で2.275V/セル設定で3ヶ月間フロート充電を行い、試験前後における鉛蓄電池状態の観察と試験後の0.1C放電容量を測定した。   Float charge test is conducted after initial capacity test of 3C, 110% of discharge capacity is charged with 0.1C current, float charge is performed at 65 ° C and 2.275V / cell for 3 months, before and after the test. Observation of the lead-acid battery state and 0.1C discharge capacity after the test were measured.

自己放電試験は、0.1Cでの初期容量試験後に、40℃で1ヶ月間放置後、25℃の温度で0.1Cでの放電を行い、その容量変化から容量低下率を求めた。なお、上記各試験において終止電圧はいずれも1.75V/セルとした。   In the self-discharge test, after the initial capacity test at 0.1 C, after standing for 1 month at 40 ° C., discharge was performed at 0.1 C at a temperature of 25 ° C., and the capacity reduction rate was determined from the change in capacity. In each of the above tests, the end voltage was 1.75 V / cell.

Figure 0004579513
Figure 0004579513

Figure 0004579513
Figure 0004579513

表1及び表2から明らかなように、本発明に係る鉛蓄電池A〜Dは,その黒鉛粉体の添加量が比較例E〜Hの半分にもかかわらず、0.1C、3Cの両者の初期容量試験で高い容量が得られている。更に、フロート充電試験においても容量の低下および電槽の割れや液漏れなどの異常は見られず、自己放電試験においても容量の低下率は5%程度と小さい。なお、酸/酸化剤処理時間は1時間で容量の増加が飽和しており、その処理時間としては1時間程度が望ましい。   As is clear from Tables 1 and 2, the lead storage batteries A to D according to the present invention are both 0.1C and 3C, although the amount of graphite powder added is half that of Comparative Examples E to H. High capacity is obtained in the initial capacity test. Further, no abnormalities such as a decrease in capacity and battery case cracking or liquid leakage were observed in the float charge test, and the capacity decrease rate was as small as about 5% in the self-discharge test. The acid / oxidant treatment time is 1 hour, and the increase in capacity is saturated, and the treatment time is preferably about 1 hour.

それに対して、黒鉛粉体の処理が選鉱のみの比較例E或いは選鉱後硫酸による酸処理のみである比較例G、および黒鉛粉体に高温処理を施した比較例FやHでは、黒鉛粉体の添加量が本発明の2倍にもかかわらずその初期容量は低く、黒鉛添加の効果が見られていないことがわかる。   On the other hand, in Comparative Example E in which the processing of the graphite powder is only the beneficiation, in Comparative Example G in which only the acid treatment with sulfuric acid after the beneficiation is performed, and in the Comparative Examples F and H in which the graphite powder is subjected to the high temperature treatment, It can be seen that the initial capacity is low even though the addition amount is twice that of the present invention, and the effect of adding graphite is not observed.

フロート充電試験においては、比較例E〜Hの鉛蓄電池は、試験の途中に電槽に割れて液漏れを生じてしまい測定不能となってしまった。また、自己放電試験でも容量の低下率は12%以上と大きくなっている。   In the float charge test, the lead acid batteries of Comparative Examples E to H were broken in the battery case during the test, causing liquid leakage, and measurement was impossible. In the self-discharge test, the capacity reduction rate is as large as 12% or more.

Claims (2)

負極板、セパレータ、電解液、および黒鉛粉体を正極活物質中に含む正極板を備え電槽化成が施される鉛蓄電池において、前記黒鉛粉体が高温処理を施していない天然黒鉛粉体を浮遊選鉱法により不純物を除去し、その後、硫酸および酸化剤からなる溶液中に浸漬処理されたものであることを特徴とする鉛蓄電池。 A lead storage battery comprising a negative electrode plate, a separator, an electrolytic solution, and a positive electrode plate containing a graphite powder in a positive electrode active material and subjected to battery cell formation, wherein the graphite powder is not subjected to high temperature treatment A lead-acid battery , wherein impurities are removed by a flotation method and then immersed in a solution composed of sulfuric acid and an oxidizing agent. 前記酸化剤が、過酸化水素、または重クロム酸カリウム、又はこれらと同等以上の酸化力を有する酸化剤であることを特徴とする請求項1記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the oxidizing agent is hydrogen peroxide, potassium dichromate, or an oxidizing agent having an oxidizing power equal to or higher than these.
JP2003278722A 2003-07-24 2003-07-24 Lead acid battery Expired - Fee Related JP4579513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278722A JP4579513B2 (en) 2003-07-24 2003-07-24 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278722A JP4579513B2 (en) 2003-07-24 2003-07-24 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2005044680A JP2005044680A (en) 2005-02-17
JP4579513B2 true JP4579513B2 (en) 2010-11-10

Family

ID=34265048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278722A Expired - Fee Related JP4579513B2 (en) 2003-07-24 2003-07-24 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4579513B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700893B (en) * 2013-10-15 2016-01-20 双登集团股份有限公司 High temperature resistant middle density battery
CN104681881B (en) * 2015-02-15 2017-03-22 天能集团江苏科技有限公司 Electrolyte of lead-acid storage battery
CN114927651A (en) * 2022-02-15 2022-08-19 浙江铅锂智行科技有限公司 Preparation method and preparation system of lead-acid storage battery electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158866A (en) * 1982-03-16 1983-09-21 Sanyo Electric Co Ltd Lead storage battery
JPS61176062A (en) * 1985-01-29 1986-08-07 Japan Storage Battery Co Ltd Manufacture of paste-type lead storage battery
JPH0837008A (en) * 1994-07-21 1996-02-06 Japan Storage Battery Co Ltd Paste type lead-acid battery
WO2001006583A1 (en) * 1999-07-21 2001-01-25 Mitsubishi Materials Corporation Carbon powder having enhanced electrical characteristics and use of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158866A (en) * 1982-03-16 1983-09-21 Sanyo Electric Co Ltd Lead storage battery
JPS61176062A (en) * 1985-01-29 1986-08-07 Japan Storage Battery Co Ltd Manufacture of paste-type lead storage battery
JPH0837008A (en) * 1994-07-21 1996-02-06 Japan Storage Battery Co Ltd Paste type lead-acid battery
WO2001006583A1 (en) * 1999-07-21 2001-01-25 Mitsubishi Materials Corporation Carbon powder having enhanced electrical characteristics and use of the same

Also Published As

Publication number Publication date
JP2005044680A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP5484254B2 (en) Method for producing structured particles composed of silicon or silicon-based materials and their use in lithium batteries
US10084209B2 (en) Valve regulated lead-acid battery
Enos et al. Understanding function and performance of carbon additives in lead-acid batteries
Ghavami et al. Effects of surfactants on sulfation of negative active material in lead acid battery under PSOC condition
CN105826521A (en) Polyanion compound KTi2(PO4)3, preparation of carbon coating thereof and application of product of polyanion compound KYi(PO4)3
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP2001229920A (en) Method of manufacturing sealed lead acid battery
Kumar et al. Effect of boron–carbon–nitride as a negative additive for lead acid batteries operating under high-rate partial-state-of-charge conditions
CN112980436B (en) Carbon quantum dot derived carbon nano sheet composite silicon dioxide anode material and preparation method thereof
JP4579513B2 (en) Lead acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP5659484B2 (en) Battery case formation method for lead acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
Karami et al. Recovery of discarded sulfated lead-acid batteries
JP2004327299A (en) Sealed lead-acid storage battery
JP4390481B2 (en) Lead acid battery
CN105720240A (en) Lead-acid battery
JP2003346890A (en) Valve regulated lead-acid battery and its manufacturing method
CN112331815B (en) Iron-tin-iron-tin nitrogen compound integrated lithium ion battery cathode and preparation method thereof
JP2003077468A (en) Manufacturing method of nickel electrode material
JPH11312533A (en) Manufacture of sealed lead-acid battery
CN106684366A (en) Two-component coated Co<2+> and Cu<2+> doped amorphous nickel nitrate negative electrode material and preparation method thereof
JP2005063876A (en) Storage battery regenerant, and regeneration method of deteriorated storage battery using it
JP3951285B2 (en) Control valve type lead acid battery
JP2008034286A (en) Closed lead battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees