JP4579440B2 - Gas insulated switchgear - Google Patents

Gas insulated switchgear Download PDF

Info

Publication number
JP4579440B2
JP4579440B2 JP2001114741A JP2001114741A JP4579440B2 JP 4579440 B2 JP4579440 B2 JP 4579440B2 JP 2001114741 A JP2001114741 A JP 2001114741A JP 2001114741 A JP2001114741 A JP 2001114741A JP 4579440 B2 JP4579440 B2 JP 4579440B2
Authority
JP
Japan
Prior art keywords
container
main body
grounding
insulated switchgear
body container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001114741A
Other languages
Japanese (ja)
Other versions
JP2002315119A (en
Inventor
重人 藤田
泰宏 前田
洋之 羽馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001114741A priority Critical patent/JP4579440B2/en
Publication of JP2002315119A publication Critical patent/JP2002315119A/en
Application granted granted Critical
Publication of JP4579440B2 publication Critical patent/JP4579440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、接地開閉器の容器がガス絶縁開閉装置の本体容器に絶縁スペーサを介して連結されたガス絶縁開閉装置に関するものである。
【0002】
【従来の技術】
図16は、電気工学ハンドブック(電気学会、昭和63年2月28日発行)に記載された従来のガス絶縁開閉装置を示している。
図において、1は断路器容器、2は絶縁スペーサ3を貫通し遮断器(図示せず)などが接続された主導体、4は絶縁スペーサ5を貫通した主導体6に設けられた固定接触子、7は摺動接触子8によって主導体2と電気的に接続された状態で固定接触子4と電気的に接離する可動接触子である。上記断路器容器1、固定接触子4、可動接触子7などによって断路器9が構成されている。
【0003】
10は絶縁スペーサ11を介して断路器容器1に連結された接地器容器、12は主導体2に設けられた固定接触子、13は絶縁スペーサ11を貫通して固定接触子12と接離する可動接触子で、接地器容器10と電気的に接続されている。
上記接地器容器10、固定接触子12及び可動接触子13などによって接地開閉器14が構成されている。
上記のように構成された従来のガス絶縁開閉装置においては、通常、接地器容器10は断路器容器1に電気的に接続されているが、遮断器(図示せず)の接触子に試験電圧を印加する時は、接地器容器10は断路器容器1から切り離される。
このような問題に対して、従来は、接地器容器1と断路器容器10とを、単に接地用の細い板状の接続導体(図示せず)などをボルトなどで着脱可能に接続して対応していた。
【0004】
【発明が解決しようとする課題】
ところで、従来のガス絶縁開閉装置においては、断路器9を投入した時に急峻波サージが発生し電磁波を放射しつつ、主導体2、6、固定及び可動接触子4、7などを伝播する。
従来のガス絶縁開閉装置は、上記のように、接地器容器10と断路器容器1との間が単に細い接続導体で接続されているだけであったので、絶縁スペーサ11を通して容器外へ漏れる電磁波を遮蔽することが出来ず、容器外へ漏れる電磁波によって、ガス絶縁開閉装置を制御する電子機器などに悪影響を及ぼす恐れがあった。
【0005】
この発明は、上記欠点を解消するためになされたもので、絶縁スペーサを通って外部に漏れる電磁波を遮蔽することが出来るとともに、ガス絶縁開閉装置の遮断器の接触子などに試験電圧を印加する時には本体容器と接地容器間を電気的に切り離すことが出来るガス絶縁開閉装置を提供する。
【0006】
【課題を解決するための手段】
この発明のガス絶縁開閉装置は、断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、絶縁スペーサの外周面を覆うように配置され絶縁スペーサの軸方向の両端部が本体容器及び接地器容器に接続され、両端部の少なくとも一方が接離可能なシールド導体を備えたものである。
【0007】
また、この発明のガス絶縁開閉装置は、シールド導体を、円筒状の導電性部材と、導電性部材の両端部と本体容器及び接地器容器のいずれか一方との間に配置された通電スペーサと、通電スペーサを介して導電性部材を本体容器及び接地器容器に締め付け固定するボルトで構成したものである。
【0008】
また、この発明のガス絶縁開閉装置は、断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、絶縁スペーサの外周面を覆うように配置され、絶縁スペーサの軸方向の一端部が本体容器及び接地器容器の一方に接続され他端部が互いに接離可能に配置された一対のシールド導体を備えたものである。
【0009】
また、この発明のガス絶縁開閉装置は、シールド導体を、円筒状の導電性部材と、導電性部材の両端部と本体容器及び接地器容器のいずれか一方との間に配置された通電スペーサと、通電スペーサを介して上記導電性部材を上記本体容器及び接地器容器のいずれか一方に締め付け固定するボルトで構成したものである。
【0010】
また、この発明のガス絶縁開閉装置は、断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、本体容器及び断路器容器の側面に沿って絶縁スペーサの軸方向に延在する軸、上記軸に回動可能に連結され、上記絶縁スペーサの外周面を覆うと共に上記本体容器及び上記接地器容器に接続されるシールド導体を備えたものである。
【0011】
また、この発明のガス絶縁開閉装置は、シールド導体を、一端部が軸に回動可能に他端部が互いに着脱可能にそれぞれ連結され、本体容器、絶縁スペーサ及び接地器容器の外周面に沿った円弧状に形成された一対の導電性部材で構成したものである。
【0012】
また、この発明のガス絶縁開閉装置は、断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、本体容器及び断路器容器の一方に支持され絶縁スペーサの軸方向と直交する方向に延在する軸、軸に回動可能に連結され、絶縁スペーサの外周面を覆うと共に本体容器及び接地器容器に接続されるシールド導体を備えたものである。
【0013】
また、この発明のガス絶縁開閉装置は、シールド導体を、中央部が軸に回動可能に連結され、本体容器、絶縁スペーサ及び接地器容器の外周面に沿った円弧状に形成された一対の導電性部材で構成したものである。
【0014】
また、この発明のガス絶縁開閉装置は、導電性部材の本体容器及び接地器容器と接続する側の面にばね接触子を設けたものである。
【0015】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1のガス絶縁開閉装置を示す正面図、図2は図1のガス絶縁開閉装置に設けられた接地開閉器の開状態を示す断面図、図3は図2の接地開閉器の閉状態を示す断面図、図4は図2及び図3に示すシールド導体を示す斜視図、図5は図2及び図3に示すシールド導体によって本体容器と断路器容器とが電気的に接続された状態を示す断面図、図6は図2及び3に示すシールド導体によって本体容器と断路器容器とが電気的に切り離された状態を示す断面図、図7は図2及び3に示すシールド導体によって本体側容器と断路器容器とが電気的に切り離された図6と異なる状態を示す断面図である。
【0016】
図1において、20は断路器、21は遮断器、22は母線、23は接地開閉器であり、これらの各機器によってガス絶縁開閉装置が構成されている。図2及び図3において、24は図1に示す断路器20の断路器容器、25は断路器容器24内に配置された主導体で、図1に示す断路器20及び遮断器21の接触子(図示せず)に接続されている。26は主導体25に設けられた固定接触子、27、28は電界緩和シールド、29は一端が断路器容器24に連結され他端にフランジ30が設けられた管状の接続管で、断路器容器24と接続管29で本体容器31が構成されている。
【0017】
32は環状の絶縁スペーサ33を介して本体容器31に連結された接地器容器で、絶縁スペーサ33側端にフランジ34が設けられている。35はフランジ34に固定された管状の通電支持部材で、摺動接触子36及び電界緩和シールド37を支持している。38は絶縁スペーサ33及び通電支持部材35を貫通し摺動接触子36によって摺動可能に支持された可動接触子で、摺動接触子36を介して接地器容器32と電気的に接続されている。
【0018】
39は可動接触子38を操作するための操作機構、上記固定接触子26、可動接触子38、操作機構39などによって接地開閉器23が構成されている。図4〜図6において、41は円筒状に形成され導電性部材で、軸方向の両端部41a、41b近傍に周方向に互いにほぼ等しい間隔を隔てて取付穴42、43が4個づつ設けられている。44は取付穴42及び通電スペーサ45を貫通して導電性部材41の一端部41aを接地器容器32に締め付け固定するボルトである。46は取付穴43及び通電スペーサ47を貫通して導電性部材41の他端部41bを本体容器31に締め付け固定するボルトである。上記導電性部材41、ボルト44、46、通電スペーサ45、47によってシールド導体40が構成されている。
【0019】
次に、実施の形態1における動作を説明する。
図1に示す断路器20を投入する時は、図2に示すように、接地開閉器23は開かれている。また、図5に示すように、導電性部材41は、その一端部41aは取付穴42に挿入され通電スペーサ45を貫通したボルト44によって接地器容器32に締め付け固定されるとともに、他端部41bは取付穴43に挿入され通電スペーサ47を貫通したボルト46によって本体容器31に締め付け固定されている。この状態では、シールド導体40が絶縁スペーサ33の外周面を覆うとともに、接地器容器32と本体容器31との間が通電スペーサ45、導電性部材41及び通電スペーサ47を介して電気的に接続されている。
【0020】
この状態では、シールド導体40が絶縁スペーサ33の外周面を覆っているので、断路器20を投入動作させた時に発生し主導体25へ伝播された急峻波サージによって発生し、接続管29内を通って絶縁スペーサ33に向かって放射される電磁波は、絶縁スペーサ33の外周を覆ったシールド導体40によって外部に漏れるのが阻止される。このため、絶縁スペーサ33を通って外部に漏れ出した電磁波によって、ガス絶縁開閉装置を制御する電子機器などに悪影響を及ぼすのが阻止される。
【0021】
遮断器21の接触子を接地する時は、図3に示すように接地開閉器23を投入する。接地開閉器23が投入されることにより、主導体25は、固定接触子26、可動接触子38、摺動接触子36、通電支持部材35、接地器容器32、シールド導体40及び本体容器31を通して接地される。
【0022】
一方、遮断器21の接触子に試験電圧を印加する時は、図6に示すようにボルト46を抜き取り通電スペーサ47を取り外す。この状態では、導電性部材41はボルト44及び通電スペーサ45によって元の位置に支持されているが、導電性部材41の他端部41bは本体容器31から電気的に切り離される。
【0023】
この状態で、試験用電源(図示せず)の荷電側端子を、接地器容器32に接続すると共に、接地側端子を本体容器31に接続することによって、遮断器21の接触子に試験電圧を印加することが出来る。
【0024】
なお、上記説明においては、接地器容器32と本体容器31を電気的に切り離す時に、単に、図6に示すようにボルト46を抜き取り通電スペーサ47を取り外したものについて説明したが、図7に示すように、導電性部材41を接地器容器32側に移動させて、取付穴43にボルト44を挿入し、通電スペーサ45を介して導電性部材41の他端部41bを接地器容器32に締め付け固定することによって、本体容器31の外周面が導電性導体41で覆われない状態にすることが出来るので、試験用電源の端子を接続する場所を確保しやすくなる。
【0025】
また、導電性部材41が一体で円筒状に形成されたものについて説明したが、導電性部材41を周方向に2分割することによって、導電性部材41を本体容器31及び接地器容器32から完全に取り外すことが可能となり、試験電源の端子を接続するスペースを十分確保出来る。
【0026】
実施の形態2.
図8はこの発明の実施の形態2のガス絶縁開閉装置のシールド導体を構成する導電性部材を示す斜視図、図9は図8のガス絶縁開閉装置の構成を示す断面図、図10は図9のガス絶縁開閉装置の本体容器と断路器容器とが電気的に切り離された状態を示す断面図である。
図において、実施の形態1と同一又は相当部分は同一符号を付して説明を省略する。
48、49は図8に示すように円筒状に形成された一対の導電性部材で、それぞれの軸方向の端部の径方向に対向した各位置にボルト穴50、51が設けられた連結部52、53が形成されるとともに、軸方向に長い取付穴54、55が周方向に4個設けられている。
【0027】
56は導電性部材48の取付穴54に挿入されて通電スペーサ57を介して導電性部材48を接地器容器32に締め付け固定するボルト、58は導電性部材49の取付穴55に挿入されて通電スペーサ59を介して導電性部材49を本体容器31に締め付け固定するボルト、60は図8に示すボルト穴50、51に挿入されて連結部52、53を互いに圧接させるボルトである。上記導電性部材48、ボルト56及び通電スペーサ57によってシールド導体61が構成されるとともに、導電性部材49、ボルト58及び通電スペーサ59によってシールド導体62が構成されている。
【0028】
図9に示す状態により、絶縁スペーサ33の外周面が導電性部材48、49によって覆われるので、電磁波が絶縁スペーサ33を通って外部に漏れるのが阻止される。また、接地器容器32と本体容器31間が通電スペーサ57、導電性部材48、導電性部材49、通電スペーサ59によって電気的に接続される。このため、接地開閉器23を投入することによって、遮断器21の接触子を接地することが出来る。
【0029】
遮断器21に試験電圧を印加する時は、まず、図10に示すように、ボルト60を取り外す。そして、ボルト56、58を緩めて、両導電性部材48、49を離れる方向にずらして連結部52と53の間に間隔をあける。そして、連結部52と53の間に間隔があけられた状態で、再び、両導電性部材48を接地器容器32に締め付け固定するとともに、導電性部材49を通電スペーサ59を介して本体容器31に締め付け固定する。
この状態では、導電性部材導体48、49が互いに離れているので、接地器容器32と本体容器31との間が電気的に切り離され、接地器容器32と本体容器31との間に試験電圧を印加することが出来る。
【0030】
実施の形態3.
図11はこの発明の実施の形態3のガス絶縁開閉装置の構成を示す正面図、図12は図11のシールド導体が絶縁スペーサの外周面から離れたる方向に回動した状態を示す断面図、図13は図11及び図12に示すばね接触子の斜視図である。
図において、上記各実施の形態と同一又は相当部分は同一符号を付して説明を省略する。63は接地器容器32に設けられた絶縁物で形成されたL字状の支持部材、64は本体容器31に設けられた絶縁物で形成された板状の支持部材、65は支持部材63、64によって支持され、本体容器31及び接地器容器32の側面に沿って絶縁スペーサ33の軸方向に延在した軸、66、67は本体容器31、絶縁スペーサ33及び接地器容器32の外周面に沿った半円弧状に形成され、一端部66a、67aが軸65に回動可能に連結にされた一対の導電性部材で、他端部にボルト穴68、69が設けられた連結部70、71が形成されている。
【0031】
72はボルト穴68、69に挿入されて連結部70、71を互いに締め付け固定するボルトである。73、74は図13に示ように取付部73a、74aが形成されたばね接触子で、ばね接触子73は各導電性部材66、67の接地器容器32と接続される側の内面に取り付けられ、ばね接触子74は各導電性部材66、67の本体容器31と接続される側の内面に取り付けられている。上記一対の導電性部材66、67及びばね接触子73、74によってシールド導体75が構成されている。
【0032】
図11に示す状態により、導電性部材66、67が絶縁スペーサ33の外周面を覆っているので、絶縁すペーサ33を通って電磁波が外部に漏れるのが阻止される。また、ばね接触子73が接地器容器32に接触するとともに、ばね接触子74が本体容器31に接触しているので、接地器容器32は、ばね接触子73、導電性部材66、67、及びばね接触子74を介して本体容器31に電気的に接続されている。
【0033】
遮断器21に試験電圧を印加する時は、図12に示すように、ボルト72を抜き取って、導電性部材66、67を絶縁スペーサ33の外周面から離れる方向に回動させる。この状態では、ばね接触子73が接地器容器32から離れるとともに、ばね接触子74が本体容器31から離れるので、接地器容器32は本体容器31から電気的に切り離される。
【0034】
上記実施の形態3によれば、シールド導体75を回動させることにより、簡単に接地器容器32を本体容器31から切り離すことが出来る。
また、接地器容器32は本体容器31から切り離された時に、導電性部材66、67が開かれた状態になり、接地器容器32及びは本体容器31は外周面の軸64が設けられた位置の反対側が露出されるので、試験電源の端子を取り付ける場所を容易に確保できる。
上記説明においては、ばね接触子73、74を導電性部材66、67に取り付けたものについて説明したが、これとは逆に、ばね接触子73、74を接地器容器32及び本体容器31側に取り付けても同様の効果がある。
【0035】
実施の形態4.
図14はこの発明の実施の形態4に示すガス絶縁開閉装置の構成を示す断面図、図15は図14のシールド導体が絶縁スペーサの外周面から離れる方向に回動した状態を示す断面図である。
【0036】
図において、上記各実施の形態と同一又は相当部分は同一符号を付して説明を省略する。76は接地器容器32の外周面の径方向に対向する各位置に固定された一対の支持部材で、絶縁スペーサ33の軸方向と直交する方向に延在する軸77が設けられている。78、79は本体容器31、絶縁スペーサ33及び接地器容器32の外周面に沿った半円弧状に形成され、それぞれの外周面の中央部が支持腕80を介して軸77に回動可能に連結された一対の導電性部材で、端部にボルト穴81が設けられている。
【0037】
また、導電性部材78、79の接地器容器32と接続する側の内面にばね接触子73が設けられるとともに、本体容器31と接続する側の内面にばね接触子74が設けられている。上記導電性部材78、79及びばね接触子73,74によってシールド導体82が構成されている。83はボルト穴81に挿入されて、図示はしないが、本体容器31側に形成されたねじ穴と螺合することにより、導電性部材78、79を本体容器31に固定するボルトである。
【0038】
図14に示す状態により、導電性部材77、78が絶縁スペーサ33の外周面を覆っているので、絶縁すペーサ33を通って電磁波が外部に漏れるのが阻止される。
また、ばね接触子73が接地器容器32に接触するとともに、ばね接触子74が本体容器31に接触して、接地器容器32は、ばね接触子73、導電性部材66、67、及びばね接触子74を介して本体容器31に電気的に接続されている。この状態で接地開閉器23を投入して遮断器21の接触子を接地することが出来る。
【0039】
遮断器21に試験電圧を印加する時は、図15に示すように、ボルト83を抜き取って、導電性部材77、78を絶縁スペーサ33の外周面から離れる方向に回動させて開いておく。この状態では、ばね接触子73が接地器容器32から離れ、ばね接触子74が本体容器31から離れるので、接地器容器32は本体容器31から電気的に切り離される。
【0040】
上記実施の形態4によれは、シールド導体82を回動させることにより、簡単に接地器容器32を本体容器31から切り離すことが出来る。
また、接地器容器32が本体容器31から切り離された時に、導電性部材77、78が開かれた状態になり、接地器容器32及び本体容器31の外周面が露出されるので、試験電源の端子を取り付ける場所を容易に確保できる。
【0041】
【発明の効果】
この発明のガス絶縁開閉装置によれば、断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、絶縁スペーサの外周面を覆うように配置され絶縁スペーサの軸方向の両端部が本体容器及び接地器容器に接続され、両端部の少なくとも一方が接離可能なシールド導体を備えたので、断路器を投入した時に発生する急峻波サージによって放射される電磁波が絶縁スペーサを通って外部に漏れるのが阻止出来るとともに、試験電圧を印加する時に、本体容器と接地器容器との間を電気的に切り離すことが出来るという効果がある。
【0042】
また、この発明のガス絶縁開閉装置によれば、シールド導体を、円筒状の導電性部材と、導電性部材の両端部と本体容器及び接地器容器のいずれか一方との間に配置された通電スペーサと、通電スペーサを介して導電性部材を本体容器及び接地器容器に締め付け固定するボルトで構成したので、断路器を投入した時に発生する急峻波サージによって放射される電磁波が絶縁スペーサを通って外部に漏れるのが阻止出来るとともに、試験電圧を印加する時に、本体容器と接地器容器との間を電気的に切り離すことが出来るという効果がある。
【0043】
また、この発明のガス絶縁開閉装置によれば、断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、絶縁スペーサの外周面を覆うように配置され、絶縁スペーサの軸方向の一端部が本体容器及び接地器容器の一方に接続され他端部が互いに接離可能に配置された一対のシールド導体を備えたので、断路器を投入した時に発生する急峻波サージによって放射される電磁波が絶縁スペーサを通って外部に漏れるのが阻止出来るとともに、試験電圧を印加する時に、本体容器と接地器容器との間を電気的に切り離すことが出来るという効果がある。
【0044】
また、この発明のガス絶縁開閉装置によれば、シールド導体を、円筒状の導電性部材と、導電性部材の両端部と本体容器及び接地器容器のいずれか一方との間に配置された通電スペーサと、通電スペーサを介して上記導電性部材を上記本体容器及び接地器容器のいずれか一方に締め付け固定するボルトで構成したので、断路器を投入した時に発生する急峻波サージによって放射される電磁波が絶縁スペーサを通って外部に漏れるのが阻止出来るとともに、試験電圧を印加する時に、本体容器と接地器容器との間を電気的に切り離すことが出来るという効果がある。
【0045】
また、この発明のガス絶縁開閉装置によれば、断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、本体容器及び断路器容器の側面に沿って絶縁スペーサの軸方向に延在する軸、上記軸に回動可能に連結され、上記絶縁スペーサの外周面を覆うと共に上記本体容器及び上記接地器容器に接続されるシールド導体を備えたので、断路器を投入した時に発生する急峻波サージによって放射される電磁波が絶縁スペーサを通って外部に漏れるのが阻止出来るとともに、試験電圧を印加する時に、本体容器と接地器容器との間を電気的に切り離すことが出来るという効果がある。また、本体容器と接地器容器とが切り離された時に、試験電源の端子を取り付ける場所を容易に確保できるという効果がある。
【0046】
また、この発明のガス絶縁開閉装置によれば、シールド導体を、一端部が軸に回動可能に他端部が互いに着脱可能にそれぞれ連結され、本体容器、絶縁スペーサ及び接地器容器の外周面に沿った円弧状に形成された一対の導電性部材で構成したので、断路器を投入した時に発生する急峻波サージによって放射される電磁波が絶縁スペーサを通って外部に漏れるのが阻止出来るとともに、試験電圧を印加する時に、本体容器と接地器容器との間を電気的に切り離すことが出来るという効果がある。また、本体容器と接地器容器とが切り離された時に、試験電源の端子を取り付ける場所を容易に確保できるという効果がある。
【0047】
また、この発明のガス絶縁開閉装置によれば、断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、本体容器及び断路器容器の一方に支持され絶縁スペーサの軸方向と直交する方向に延在する軸、軸に回動可能に連結され、絶縁スペーサの外周面を覆うと共に本体容器及び接地器容器に接続されるシールド導体を備えたので、断路器を投入した時に発生する急峻波サージによって放射される電磁波が絶縁スペーサを通って外部に漏れるのが阻止出来るとともに、試験電圧を印加する時に、本体容器と接地器容器との間を電気的に切り離すことが出来るという効果がある。また、本体容器と接地器容器とが切り離された時に、試験電源の端子を取り付ける場所を容易に確保できるという効果がある。
【0048】
また、この発明のガス絶縁開閉装置は、シールド導体を、中央部が軸に回動可能に連結され、本体容器、絶縁スペーサ及び接地器容器の外周面に沿った円弧状に形成された一対の導電性部材で構成したので、断路器を投入した時に発生する急峻波サージによって放射される電磁波が絶縁スペーサを通って外部に漏れるのが阻止出来るとともに、試験電圧を印加する時に、本体容器と接地器容器との間を電気的に切り離すことが出来るという効果がある。また、本体容器と接地器容器とが切り離された時に、試験電源の端子を取り付ける場所を容易に確保できるという効果がある。
【0049】
また、この発明のガス絶縁開閉装置によれば、本体容器、絶縁スペーサ及び接地器容器の外周面に沿った円弧状に形成された一対の導電性部材の本体容器及び接地器容器と接続する側の面にばね接触子を設けたので、本体容器及び接地器容器と導電性部材との電気的接続が確実に出来るという効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1のガス絶縁開閉装置を示す正面図である。
【図2】図1のガス絶縁開閉装置に設けられた接地開閉器の開状態を示す断面図である。
【図3】図2の接地開閉器の閉状態を示す断面図である。
【図4】図2及び図3に示すシールド導体を示す斜視図である。
【図5】図2及び図3に示すシールド導体によって本体容器と断路器容器とが電気的に接続された状態を示す断面図である。
【図6】図2及び3に示すシールド導体によって本体容器と断路器容器とが電気的に切り離された状態を示す断面図である。
【図7】図2及び3に示すシールド導体によって本体側容器と断路器容器とが電気的に切り離された図6と異なる状態を示す断面図である。
【図8】この発明の実施の形態2のガス絶縁開閉装置のシールド導体を構成する導電性部材を示す斜視図である。
【図9】図8のガス絶縁開閉装置の構成を示す断面図である。
【図10】図9のガス絶縁開閉装置の本体容器と断路器容器とが電気的に切り離された状態を示す断面図である。
【図11】この発明の実施の形態3のガス絶縁開閉装置の構成を示す正面図である。
【図12】図11のシールド導体が絶縁スペーサの外周面から離れる方向に回動した状態を示す断面図である。
【図13】図11及び図12に示すばね接触子の斜視図である。
【図14】この発明の実施の形態4に示すガス絶縁開閉装置の構成を示す断面図である。
【図15】図14のシールド導体が絶縁スペーサの外周面から離れる方向に回動した状態を示す断面図である。
【図16】従来のガス絶縁開閉装置を示す断面図である。
【符号の説明】
20 断路器、21 遮断器、22 母線、23 接地開閉器、
24 断路器容器、25 主導体、26 固定接触子、
27,28 電界緩和シールド、29 接続管、30 フランジ、
31 本体容器、32 接地器容器、33 絶縁スペーサ、34 フランジ、
35 通電支持部材、36 摺動接触子、37 電界緩和シールド、
38 可動接触子、39 操作機構、40 シールド導体、41 導電性部材、
41a,41b 端部、42,43 取付穴、44 ボルト、
45 通電スペーサ、46 ボルト、47 通電スペーサ、
48,49 導電性部材、50,51 ボルト穴、52,53 連結部、
54,55 取付穴、56 ボルト、57 通電スペーサ、58 ボルト、
59 通電スペーサ、60 ボルト、61 シールド導体、
62 シールド導体、63 支持部材、64 支持部材、65 軸、
66,67 導電性部材、68,69 ボルト穴、70,71 連結部、
72 ボルト、73,74 ばね接触子、75 シールド導体、
76 支持部材、77 軸、78,79 導電性部材、80 支持腕、
81 ボルト穴、82 シールド導体、83 ボルト。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas insulated switchgear in which a container of a ground switch is connected to a main container of a gas insulated switchgear via an insulating spacer.
[0002]
[Prior art]
FIG. 16 shows a conventional gas insulated switchgear described in the Electrical Engineering Handbook (The Institute of Electrical Engineers of Japan, issued on February 28, 1988).
In the figure, 1 is a disconnector container, 2 is a main conductor that penetrates an insulating spacer 3 and is connected to a circuit breaker (not shown), and 4 is a fixed contact provided on a main conductor 6 that penetrates an insulating spacer 5. , 7 is a movable contact that is electrically connected to and separated from the fixed contact 4 while being electrically connected to the main conductor 2 by the sliding contact 8. The disconnector container 1, the fixed contact 4, the movable contact 7 and the like constitute a disconnector 9.
[0003]
10 is a grounding device container connected to the disconnector container 1 through an insulating spacer 11, 12 is a fixed contact provided on the main conductor 2, and 13 is in contact with and away from the fixed contact 12 through the insulating spacer 11. The movable contact is electrically connected to the grounding device container 10.
A grounding switch 14 is constituted by the grounding container 10, the stationary contact 12, the movable contact 13, and the like.
In the conventional gas-insulated switchgear configured as described above, the grounding device container 10 is normally electrically connected to the disconnector container 1, but the test voltage is applied to the contact of the circuit breaker (not shown). Is applied, the grounding container 10 is disconnected from the disconnector container 1.
Conventionally, such a problem can be dealt with by connecting the grounding device container 1 and the disconnecting device container 10 detachably by connecting a thin plate-like connection conductor (not shown) for grounding with a bolt or the like. Was.
[0004]
[Problems to be solved by the invention]
By the way, in the conventional gas insulated switchgear, when the disconnector 9 is turned on, a steep wave surge is generated and radiates an electromagnetic wave, and propagates through the main conductors 2, 6, the fixed and movable contacts 4, 7, and the like.
In the conventional gas insulated switchgear, as described above, the grounding container 10 and the disconnector container 1 are simply connected by a thin connecting conductor, and therefore, electromagnetic waves leaking outside the container through the insulating spacer 11. The electromagnetic wave leaking out of the container cannot be shielded, and there is a risk of adversely affecting electronic equipment that controls the gas insulated switchgear.
[0005]
The present invention has been made to eliminate the above-mentioned drawbacks, and can shield electromagnetic waves leaking to the outside through an insulating spacer and apply a test voltage to a contactor of a circuit breaker of a gas insulated switchgear. In some cases, a gas insulated switchgear that can electrically disconnect between a main body container and a grounded container is provided.
[0006]
[Means for Solving the Problems]
A gas-insulated switchgear according to the present invention is a gas-insulated switchgear having a ground switch disposed in a grounder container connected to a main body container on the side of a disconnector via an insulating spacer. The both ends of the insulating spacer in the axial direction are connected to the main body container and the grounding container, and at least one of the both ends is provided with a shield conductor that can be contacted and separated.
[0007]
Further, the gas insulated switchgear according to the present invention includes a shield conductor, a cylindrical conductive member, a current-carrying spacer disposed between both ends of the conductive member and either the main body container or the grounding container. The bolt is configured to tighten and fix the conductive member to the main body container and the grounding container through the energization spacer.
[0008]
The gas-insulated switchgear according to the present invention is a gas-insulated switchgear having a grounding switch disposed in a grounding device container connected to a main body container on the side of a disconnector via an insulating spacer. It is arranged so as to cover the surface, and has a pair of shield conductors in which one end in the axial direction of the insulating spacer is connected to one of the main body container and the grounding container, and the other end is arranged so as to be able to contact and separate from each other. .
[0009]
Further, the gas insulated switchgear according to the present invention includes a shield conductor, a cylindrical conductive member, a current-carrying spacer disposed between both ends of the conductive member and either the main body container or the grounding container. The bolt is configured to fasten and fix the conductive member to one of the main body container and the grounding container through an energizing spacer.
[0010]
The gas insulated switchgear according to the present invention is a gas insulated switchgear having a ground switch disposed in a grounder container connected to a main body container on a disconnector side through an insulating spacer. A shaft extending in the axial direction of the insulating spacer along the side surface of the container, and a shield that is rotatably connected to the shaft and covers the outer peripheral surface of the insulating spacer and is connected to the main body container and the grounding container A conductor is provided.
[0011]
In the gas insulated switchgear of the present invention, the shield conductor is connected to the outer periphery of the main body container, the insulating spacer, and the grounding container by connecting the shield conductors so that one end part is rotatable about the shaft and the other end parts are detachable from each other. It is composed of a pair of conductive members formed in a circular arc shape.
[0012]
The gas insulated switchgear according to the present invention is a gas insulated switchgear having a ground switch disposed in a grounder container connected to a main body container on a disconnector side through an insulating spacer. A shaft supported on one side of the container and extending in a direction perpendicular to the axial direction of the insulating spacer, and is rotatably connected to the shaft and covers the outer peripheral surface of the insulating spacer and is connected to the main body container and the grounding container A conductor is provided.
[0013]
Further, the gas insulated switchgear according to the present invention is a pair of shield conductors, the central part of which is pivotally connected to the shaft and formed in an arc shape along the outer peripheral surfaces of the main body container, the insulating spacer, and the grounding container. It consists of a conductive member.
[0014]
In the gas insulated switchgear of the present invention, a spring contact is provided on the surface of the conductive member that is connected to the main body container and the grounding container.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a front view showing a gas insulated switchgear according to Embodiment 1 of the present invention, FIG. 2 is a sectional view showing an open state of a grounding switch provided in the gas insulated switchgear of FIG. 1, and FIG. FIG. 4 is a perspective view of the shield conductor shown in FIGS. 2 and 3, and FIG. 5 is a perspective view of the shield container shown in FIGS. 6 is a cross-sectional view showing a state in which the main body container and the disconnector container are electrically separated by the shield conductor shown in FIGS. 2 and 3, and FIG. 7 is a cross-sectional view showing a state different from FIG. 6 in which the main body side container and the disconnector container are electrically separated by the shield conductor shown in FIG.
[0016]
In FIG. 1, 20 is a disconnect switch, 21 is a circuit breaker, 22 is a bus bar, and 23 is a ground switch, and these devices constitute a gas insulated switchgear. 2 and 3, reference numeral 24 denotes a disconnector container of the disconnector 20 shown in FIG. 1, and 25 denotes a main conductor disposed in the disconnector container 24. The contacts of the disconnector 20 and the breaker 21 shown in FIG. (Not shown). 26 is a fixed contact provided on the main conductor 25, 27 and 28 are electric field relaxation shields, 29 is a tubular connecting pipe having one end connected to the disconnector container 24 and the other end provided with a flange 30. A main body container 31 is constituted by the connecting pipe 24 and the connecting pipe 29.
[0017]
Reference numeral 32 denotes a grounding device container connected to the main body container 31 via an annular insulating spacer 33, and a flange 34 is provided at the end of the insulating spacer 33. Reference numeral 35 denotes a tubular energization support member fixed to the flange 34 and supports the sliding contact 36 and the electric field relaxation shield 37. Reference numeral 38 denotes a movable contact that passes through the insulating spacer 33 and the current-carrying support member 35 and is slidably supported by the sliding contact 36, and is electrically connected to the grounding device container 32 through the sliding contact 36. Yes.
[0018]
The grounding switch 23 is constituted by an operation mechanism 39 for operating the movable contact 38, the fixed contact 26, the movable contact 38, the operation mechanism 39, and the like. 4 to 6, reference numeral 41 denotes a conductive member formed in a cylindrical shape, and four mounting holes 42, 43 are provided in the vicinity of both end portions 41a, 41b in the axial direction at substantially equal intervals in the circumferential direction. ing. Reference numeral 44 denotes a bolt that passes through the attachment hole 42 and the energization spacer 45 and fastens and fixes one end portion 41 a of the conductive member 41 to the grounding device container 32. Reference numeral 46 denotes a bolt that passes through the attachment hole 43 and the energization spacer 47 and fastens and fixes the other end 41 b of the conductive member 41 to the main body container 31. A shield conductor 40 is constituted by the conductive member 41, the bolts 44 and 46, and the energizing spacers 45 and 47.
[0019]
Next, the operation in the first embodiment will be described.
When the disconnecting switch 20 shown in FIG. 1 is turned on, the ground switch 23 is opened as shown in FIG. Further, as shown in FIG. 5, the conductive member 41 has one end 41a inserted into the mounting hole 42 and fastened and fixed to the grounding container 32 by a bolt 44 penetrating the energizing spacer 45, and the other end 41b. Is fastened and fixed to the main body container 31 by a bolt 46 inserted into the mounting hole 43 and penetrating the energizing spacer 47. In this state, the shield conductor 40 covers the outer peripheral surface of the insulating spacer 33, and the grounding container 32 and the main body container 31 are electrically connected via the energizing spacer 45, the conductive member 41, and the energizing spacer 47. ing.
[0020]
In this state, since the shield conductor 40 covers the outer peripheral surface of the insulating spacer 33, the shield conductor 40 is generated by a steep wave surge generated when the disconnector 20 is turned on and propagated to the main conductor 25, and the inside of the connection pipe 29 is Electromagnetic waves radiated toward the insulating spacer 33 are prevented from leaking outside by the shield conductor 40 covering the outer periphery of the insulating spacer 33. For this reason, it is possible to prevent the electromagnetic waves leaking outside through the insulating spacer 33 from adversely affecting an electronic device that controls the gas insulated switchgear.
[0021]
When the contact of the circuit breaker 21 is grounded, a ground switch 23 is inserted as shown in FIG. When the ground switch 23 is inserted, the main conductor 25 passes through the fixed contact 26, the movable contact 38, the sliding contact 36, the energization support member 35, the grounding device container 32, the shield conductor 40, and the main body container 31. Grounded.
[0022]
On the other hand, when a test voltage is applied to the contact of the circuit breaker 21, the bolt 46 is removed and the energizing spacer 47 is removed as shown in FIG. In this state, the conductive member 41 is supported at the original position by the bolt 44 and the energizing spacer 45, but the other end 41 b of the conductive member 41 is electrically disconnected from the main body container 31.
[0023]
In this state, the charge side terminal of the test power source (not shown) is connected to the grounding container 32 and the ground side terminal is connected to the main body container 31 so that the test voltage is applied to the contact of the circuit breaker 21. Can be applied.
[0024]
In the above description, when the grounding container 32 and the main body container 31 are electrically disconnected, the bolt 46 is simply removed as shown in FIG. 6 and the energization spacer 47 is removed. As described above, the conductive member 41 is moved to the grounding device container 32 side, the bolt 44 is inserted into the mounting hole 43, and the other end portion 41 b of the conductive member 41 is fastened to the grounding device container 32 through the energizing spacer 45. By fixing, the outer peripheral surface of the main body container 31 can be prevented from being covered with the conductive conductor 41, so that it is easy to secure a place to connect the terminals of the test power supply.
[0025]
Further, the conductive member 41 is integrally formed in a cylindrical shape, but the conductive member 41 is completely separated from the main body container 31 and the grounding container 32 by dividing the conductive member 41 into two in the circumferential direction. It is possible to remove the test power supply and secure a sufficient space for connecting the terminals of the test power supply.
[0026]
Embodiment 2. FIG.
8 is a perspective view showing a conductive member constituting the shield conductor of the gas insulated switchgear according to Embodiment 2 of the present invention, FIG. 9 is a sectional view showing the structure of the gas insulated switchgear of FIG. 8, and FIG. It is sectional drawing which shows the state by which the main body container and disconnector container of 9 gas insulated switchgear were electrically disconnected.
In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
Reference numerals 48 and 49 denote a pair of conductive members formed in a cylindrical shape as shown in FIG. 8, and connecting portions provided with bolt holes 50 and 51 at respective positions facing the radial direction of the end portions in the axial direction. 52 and 53 are formed, and four attachment holes 54 and 55 which are long in the axial direction are provided in the circumferential direction.
[0027]
56 is a bolt that is inserted into the mounting hole 54 of the conductive member 48 and clamps and fixes the conductive member 48 to the grounding device container 32 via the energizing spacer 57, and 58 is inserted into the mounting hole 55 of the conductive member 49 and is energized. A bolt 60 that fastens and fixes the conductive member 49 to the main body container 31 via the spacer 59, and 60 is a bolt that is inserted into the bolt holes 50 and 51 shown in FIG. The conductive member 48, the bolt 56, and the energizing spacer 57 constitute a shield conductor 61, and the conductive member 49, the bolt 58, and the energizing spacer 59 constitute a shield conductor 62.
[0028]
In the state shown in FIG. 9, the outer peripheral surface of the insulating spacer 33 is covered with the conductive members 48 and 49, so that electromagnetic waves are prevented from leaking outside through the insulating spacer 33. Further, the grounding container 32 and the main body container 31 are electrically connected by the energizing spacer 57, the conductive member 48, the conductive member 49, and the energizing spacer 59. For this reason, the contact of the circuit breaker 21 can be grounded by turning on the ground switch 23.
[0029]
When applying a test voltage to the circuit breaker 21, first, the bolt 60 is removed as shown in FIG. Then, the bolts 56 and 58 are loosened, and the conductive members 48 and 49 are shifted away from each other to leave a gap between the connecting portions 52 and 53. Then, with the gap between the connecting portions 52 and 53, the two conductive members 48 are again fastened and fixed to the grounding device container 32, and the conductive member 49 is connected to the main body container 31 via the energizing spacer 59. Tighten to and fix.
In this state, since the conductive member conductors 48 and 49 are separated from each other, the grounding container 32 and the main body container 31 are electrically disconnected, and the test voltage is connected between the grounding container 32 and the main body container 31. Can be applied.
[0030]
Embodiment 3 FIG.
11 is a front view showing a configuration of a gas insulated switchgear according to Embodiment 3 of the present invention, FIG. 12 is a cross-sectional view showing a state in which the shield conductor of FIG. 11 is rotated in a direction away from the outer peripheral surface of the insulating spacer, FIG. 13 is a perspective view of the spring contact shown in FIGS. 11 and 12.
In the figure, the same or corresponding parts as those in the above embodiments are denoted by the same reference numerals, and description thereof is omitted. 63 is an L-shaped support member formed of an insulator provided in the grounding container 32, 64 is a plate-like support member formed of an insulator provided in the main body container 31, 65 is a support member 63, The shafts 66 and 67 are supported by 64 and extend in the axial direction of the insulating spacer 33 along the side surfaces of the main body container 31 and the grounding container 32. A pair of conductive members formed in a semicircular arc shape along which one end portions 66a and 67a are rotatably connected to the shaft 65, and a connecting portion 70 provided with bolt holes 68 and 69 on the other end portion, 71 is formed.
[0031]
Reference numeral 72 denotes a bolt which is inserted into the bolt holes 68 and 69 to fasten and fix the connecting portions 70 and 71 to each other. As shown in FIG. 13, reference numerals 73 and 74 denote spring contacts in which mounting portions 73a and 74a are formed. The spring contacts 73 are attached to the inner surfaces of the conductive members 66 and 67 on the side connected to the grounding container 32. The spring contact 74 is attached to the inner surface of each conductive member 66, 67 on the side connected to the main body container 31. The pair of conductive members 66 and 67 and the spring contacts 73 and 74 constitute a shield conductor 75.
[0032]
In the state shown in FIG. 11, since the conductive members 66 and 67 cover the outer peripheral surface of the insulating spacer 33, electromagnetic waves are prevented from leaking outside through the insulating pacer 33. Moreover, since the spring contactor 73 is in contact with the grounding device container 32 and the spring contactor 74 is in contact with the main body container 31, the grounding device container 32 is composed of the spring contactor 73, the conductive members 66, 67, and The main body container 31 is electrically connected via a spring contact 74.
[0033]
When applying the test voltage to the circuit breaker 21, as shown in FIG. 12, the bolt 72 is removed and the conductive members 66 and 67 are rotated in a direction away from the outer peripheral surface of the insulating spacer 33. In this state, since the spring contact 73 is separated from the grounding container 32 and the spring contact 74 is separated from the main body container 31, the grounding container 32 is electrically disconnected from the main body container 31.
[0034]
According to the third embodiment, the grounding container 32 can be easily separated from the main body container 31 by rotating the shield conductor 75.
When the grounding device container 32 is separated from the main body container 31, the conductive members 66 and 67 are opened, and the grounding device container 32 and the main body container 31 are provided with the shaft 64 on the outer peripheral surface. Since the opposite side is exposed, a place for attaching the terminal of the test power source can be easily secured.
In the above description, the spring contacts 73 and 74 are attached to the conductive members 66 and 67. On the contrary, the spring contacts 73 and 74 are placed on the grounding container 32 and the main body container 31 side. Even if attached, the same effect is obtained.
[0035]
Embodiment 4 FIG.
14 is a cross-sectional view showing a configuration of a gas insulated switchgear according to Embodiment 4 of the present invention, and FIG. 15 is a cross-sectional view showing a state in which the shield conductor of FIG. 14 is rotated in a direction away from the outer peripheral surface of the insulating spacer. is there.
[0036]
In the figure, the same or corresponding parts as those in the above embodiments are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 76 denotes a pair of support members fixed at respective positions facing the radial direction of the outer peripheral surface of the grounding device container 32, and provided with a shaft 77 extending in a direction orthogonal to the axial direction of the insulating spacer 33. Reference numerals 78 and 79 are formed in a semicircular arc shape along the outer peripheral surfaces of the main body container 31, the insulating spacer 33, and the grounding container 32, and the central portions of the outer peripheral surfaces are rotatable about the shaft 77 via the support arm 80. A bolt hole 81 is provided at an end of the pair of connected conductive members.
[0037]
A spring contact 73 is provided on the inner surface of the conductive members 78, 79 on the side connected to the grounding device container 32, and a spring contact 74 is provided on the inner surface on the side connected to the main body container 31. A shield conductor 82 is constituted by the conductive members 78 and 79 and the spring contacts 73 and 74. Reference numeral 83 denotes a bolt that is inserted into the bolt hole 81 and is not shown, but is screwed into a screw hole formed on the main body container 31 side to fix the conductive members 78 and 79 to the main body container 31.
[0038]
In the state shown in FIG. 14, since the conductive members 77 and 78 cover the outer peripheral surface of the insulating spacer 33, electromagnetic waves are prevented from leaking outside through the insulating pacer 33.
Further, the spring contact 73 contacts the grounding container 32 and the spring contact 74 contacts the main body container 31. The grounding container 32 includes the spring contact 73, the conductive members 66 and 67, and the spring contact. The main body container 31 is electrically connected via the child 74. In this state, the contact switch of the circuit breaker 21 can be grounded by turning on the ground switch 23.
[0039]
When a test voltage is applied to the circuit breaker 21, as shown in FIG. 15, the bolt 83 is removed and the conductive members 77 and 78 are rotated and opened in a direction away from the outer peripheral surface of the insulating spacer 33. In this state, since the spring contact 73 is separated from the grounding container 32 and the spring contact 74 is separated from the main body container 31, the grounding container 32 is electrically disconnected from the main body container 31.
[0040]
According to the fourth embodiment, the grounding container 32 can be easily separated from the main body container 31 by rotating the shield conductor 82.
Further, when the grounding container 32 is separated from the main body container 31, the conductive members 77 and 78 are opened, and the outer peripheral surfaces of the grounding container 32 and the main body container 31 are exposed. A place to attach the terminal can be easily secured.
[0041]
【The invention's effect】
According to the gas-insulated switchgear of the present invention, in the gas-insulated switchgear having the ground switch disposed in the grounder container connected to the main body container on the disconnector side via the insulating spacer, the outer periphery of the insulating spacer Occurs when the disconnector is turned on because both ends of the insulating spacer in the axial direction are connected to the main body container and grounding container, and at least one of the both ends is equipped with a shield conductor that can be contacted and separated. The effect that the electromagnetic wave radiated by the steep wave surge can be prevented from leaking outside through the insulating spacer, and when the test voltage is applied, the main body container and the grounding container can be electrically disconnected. There is.
[0042]
Further, according to the gas insulated switchgear of the present invention, the shield conductor is energized arranged between the cylindrical conductive member, both ends of the conductive member, and either the main body container or the grounding container. Since it is composed of a spacer and a bolt that clamps and fixes the conductive member to the main body container and the grounding container through the energizing spacer, electromagnetic waves radiated by a steep wave surge generated when the disconnector is turned on pass through the insulating spacer. Leakage to the outside can be prevented, and when the test voltage is applied, the main body container and the grounding container can be electrically disconnected.
[0043]
According to the gas insulated switchgear of the present invention, in the gas insulated switchgear provided with the ground switch disposed in the grounder container connected to the main body container on the disconnector side via the insulating spacer, the insulating spacer Since one end of the insulating spacer in the axial direction is connected to one of the main body container and the grounding container, and the other end is disposed so as to be able to contact and separate from each other. The electromagnetic wave radiated by the steep wave surge generated when the disconnector is turned on can be prevented from leaking outside through the insulating spacer, and when applying the test voltage, the There is an effect that can be separated.
[0044]
Further, according to the gas insulated switchgear of the present invention, the shield conductor is energized arranged between the cylindrical conductive member, both ends of the conductive member, and either the main body container or the grounding container. Electromagnetic wave radiated by a steep wave surge generated when the disconnector is turned on because it is composed of a spacer and a bolt that clamps and fixes the conductive member to one of the main body container and the grounding container through a current-carrying spacer. Can be prevented from leaking to the outside through the insulating spacer, and when the test voltage is applied, the main body container and the grounding container can be electrically disconnected.
[0045]
Further, according to the gas insulated switchgear of the present invention, in the gas insulated switchgear provided with the grounding switch disposed in the grounding container connected to the main body container on the disconnector side through the insulating spacer, And an axis extending in the axial direction of the insulating spacer along the side surface of the disconnector container, and rotatably connected to the shaft, covering the outer peripheral surface of the insulating spacer and connected to the main body container and the grounding container. Since the shield conductor is provided, the electromagnetic wave radiated by the steep wave surge generated when the disconnector is turned on can be prevented from leaking outside through the insulating spacer, and when the test voltage is applied, it is grounded to the main body container. There is an effect that it can be electrically disconnected from the container. In addition, when the main body container and the grounding device container are separated from each other, there is an effect that it is possible to easily secure a place for attaching the terminal of the test power source.
[0046]
Also, according to the gas insulated switchgear of the present invention, the shield conductor is connected to the outer peripheral surface of the main body container, the insulating spacer, and the grounding container by connecting one end part to the shaft and the other end part being detachable from each other. Since it is composed of a pair of conductive members formed in an arc shape along the line, electromagnetic waves radiated by a steep wave surge generated when the disconnector is turned on can be prevented from leaking outside through the insulating spacer, When the test voltage is applied, there is an effect that the main body container and the grounding container can be electrically disconnected. Further, when the main body container and the grounding device container are separated from each other, there is an effect that it is possible to easily secure a place for attaching the terminal of the test power source.
[0047]
Further, according to the gas insulated switchgear of the present invention, in the gas insulated switchgear provided with the grounding switch disposed in the grounding container connected to the main body container on the disconnector side through the insulating spacer, And a shaft that is supported by one of the disconnector containers and extends in a direction orthogonal to the axial direction of the insulating spacer, is rotatably connected to the shaft, covers the outer peripheral surface of the insulating spacer, and is connected to the main body container and the grounding container. Since the shield conductor is provided, the electromagnetic wave radiated by the steep wave surge generated when the disconnector is turned on can be prevented from leaking outside through the insulating spacer, and when the test voltage is applied, it is grounded to the main body container. There is an effect that it can be electrically disconnected from the container. Further, when the main body container and the grounding device container are separated from each other, there is an effect that it is possible to easily secure a place for attaching the terminal of the test power source.
[0048]
Further, the gas insulated switchgear according to the present invention is a pair of shield conductors, the central part of which is pivotally connected to the shaft and formed in an arc shape along the outer peripheral surfaces of the main body container, the insulating spacer and the grounding container Because it is composed of a conductive member, it can prevent electromagnetic waves radiated by a steep wave surge generated when the disconnector is turned on from leaking to the outside through the insulating spacer, and when applying a test voltage, There is an effect that it can be electrically disconnected from the container. In addition, when the main body container and the grounding device container are separated from each other, there is an effect that it is possible to easily secure a place for attaching the terminal of the test power source.
[0049]
Further, according to the gas insulated switchgear of the present invention, the side of the pair of conductive members formed in an arc shape along the outer peripheral surface of the main body container, the insulating spacer and the grounding container is connected to the main body container and the grounding container. Since the spring contact is provided on the surface, there is an effect that the electrical connection between the main body container and the grounding container and the conductive member can be ensured.
[Brief description of the drawings]
FIG. 1 is a front view showing a gas insulated switchgear according to Embodiment 1 of the present invention.
2 is a cross-sectional view showing an open state of a ground switch provided in the gas-insulated switchgear shown in FIG.
3 is a cross-sectional view showing a closed state of the grounding switch of FIG. 2;
4 is a perspective view showing a shield conductor shown in FIGS. 2 and 3. FIG.
5 is a cross-sectional view showing a state in which the main body container and the disconnector container are electrically connected by the shield conductor shown in FIGS. 2 and 3. FIG.
6 is a cross-sectional view showing a state where the main body container and the disconnector container are electrically separated by the shield conductor shown in FIGS. 2 and 3. FIG.
7 is a cross-sectional view showing a state different from FIG. 6 in which the main body side container and the disconnector container are electrically separated by the shield conductor shown in FIGS. 2 and 3. FIG.
FIG. 8 is a perspective view showing a conductive member constituting a shield conductor of a gas insulated switchgear according to Embodiment 2 of the present invention.
9 is a cross-sectional view showing a configuration of the gas insulated switchgear of FIG.
10 is a cross-sectional view showing a state where a main body container and a disconnector container of the gas insulated switchgear of FIG. 9 are electrically disconnected.
FIG. 11 is a front view showing a configuration of a gas insulated switchgear according to Embodiment 3 of the present invention.
12 is a cross-sectional view showing a state in which the shield conductor of FIG. 11 is rotated in a direction away from the outer peripheral surface of the insulating spacer.
13 is a perspective view of the spring contact shown in FIGS. 11 and 12. FIG.
FIG. 14 is a cross-sectional view showing a configuration of a gas insulated switchgear according to Embodiment 4 of the present invention.
15 is a cross-sectional view showing a state in which the shield conductor of FIG. 14 is rotated in a direction away from the outer peripheral surface of the insulating spacer.
FIG. 16 is a cross-sectional view showing a conventional gas insulated switchgear.
[Explanation of symbols]
20 disconnectors, 21 circuit breakers, 22 busbars, 23 earthing switches,
24 disconnector container, 25 main conductor, 26 stationary contact,
27, 28 Electric field relaxation shield, 29 Connecting pipe, 30 Flange,
31 body container, 32 grounding container, 33 insulating spacer, 34 flange,
35 current carrying support member, 36 sliding contact, 37 electric field relaxation shield,
38 movable contact, 39 operation mechanism, 40 shield conductor, 41 conductive member,
41a, 41b end, 42, 43 mounting hole, 44 bolt,
45 Energizing spacer, 46 bolts, 47 Energizing spacer,
48, 49 conductive member, 50, 51 bolt hole, 52, 53 connecting part,
54,55 Mounting hole, 56 bolt, 57 Current spacer, 58 bolt,
59 Current carrying spacer, 60 volts, 61 shield conductor,
62 shield conductor, 63 support member, 64 support member, 65 axis,
66, 67 conductive member, 68, 69 bolt hole, 70, 71 connecting part,
72 bolts, 73, 74 spring contacts, 75 shield conductors,
76 support member, 77 shaft, 78, 79 conductive member, 80 support arm,
81 bolt hole, 82 shield conductor, 83 bolt.

Claims (9)

断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、上記絶縁スペーサの外周面を覆うように配置され上記絶縁スペーサの軸方向の両端部が上記本体容器及び上記接地器容器に接続され、上記両端部の少なくとも一方が接離可能なシールド導体を備えたことを特徴とするガス絶縁開閉装置。In a gas insulated switchgear having a grounding switch disposed in a grounding device container connected to a main body container on a disconnector side via an insulating spacer, the insulating spacer is disposed so as to cover an outer peripheral surface of the insulating spacer. A gas-insulated switchgear comprising a shield conductor in which both ends in the axial direction are connected to the main body container and the grounding container, and at least one of the both ends can be contacted and separated. シールド導体は、円筒状の導電性部材と、上記導電性部材の両端部と本体容器及び接地器容器のいずれか一方との間に配置された通電スペーサと、上記通電スペーサを介して上記導電性部材を上記本体容器及び上記接地器容器に締め付け固定するボルトで構成されたことを特徴とする請求項1に記載のガス絶縁開閉装置。The shield conductor includes a cylindrical conductive member, a current-carrying spacer disposed between both ends of the conductive member and one of the main body container and the grounding device container, and the conductive material through the current-carrying spacer. 2. The gas insulated switchgear according to claim 1, wherein the gas insulated switchgear is constituted by a bolt which fastens and fixes a member to the main body container and the grounding container. 断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、上記絶縁スペーサの外周面を覆うように配置され、上記絶縁スペーサの軸方向の一端部が上記本体容器及び上記接地器容器の一方に接続され他端部が互いに接離可能に配置された一対のシールド導体を備えたことを特徴とするガス絶縁開閉装置。In a gas insulated switchgear having a grounding switch disposed in a grounding device container connected to a main body container on a disconnector side via an insulating spacer, the gas insulating switchgear is disposed so as to cover an outer peripheral surface of the insulating spacer. A gas-insulated switchgear comprising a pair of shield conductors, wherein one end of the spacer in the axial direction is connected to one of the main body container and the grounding container, and the other end is arranged so as to be able to contact and separate from each other. シールド導体は、円筒状の導電性部材と、上記導電性部材の両端部と本体容器及び接地器容器のいずれか一方との間に配置された通電スペーサと、上記通電スペーサを介して上記導電性部材を上記本体容器及び上記接地器容器のいずれか一方に締め付け固定するボルトで構成されたことを特徴とする請求項3に記載のガス絶縁開閉装置。The shield conductor includes a cylindrical conductive member, a current-carrying spacer disposed between both ends of the conductive member and one of the main body container and the grounding device container, and the conductive material through the current-carrying spacer. 4. The gas insulated switchgear according to claim 3, wherein the gas insulated switchgear is constituted by a bolt that fastens and fixes a member to one of the main body container and the grounding container. 断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、上記本体容器及び上記断路器容器の側面に沿って上記絶縁スペーサの軸方向に延在する軸、上記軸に回動可能に連結され、上記絶縁スペーサの外周面を覆うと共に上記本体容器及び上記接地器容器に接続されるシールド導体を備えたことを特徴とするガス絶縁開閉装置。In a gas-insulated switchgear having a grounding switch disposed in a grounding device container connected to a main body container on a disconnector side through an insulating spacer, the insulation is provided along a side surface of the main body container and the disconnecting device container. A shaft extending in the axial direction of the spacer, and a shield conductor connected to the shaft so as to be rotatable, covering an outer peripheral surface of the insulating spacer and connected to the main body container and the grounding container. Gas insulated switchgear. シールド導体は、一端部が軸に回動可能に他端部が互いに着脱可能にそれぞれ連結され、本体容器、絶縁スペーサ及び接地器容器の外周面に沿った円弧状に形成された一対の導電性部材で構成されたことを特徴とする請求項5に記載のガス絶縁開閉装置。The shield conductor is a pair of conductive conductors formed in an arc shape along the outer peripheral surface of the main body container, the insulating spacer, and the grounding container, with one end portion being rotatable about an axis and the other end portions being detachably connected to each other. 6. The gas insulated switchgear according to claim 5, wherein the gas insulated switchgear is constituted by a member. 断路器側の本体容器に絶縁スペーサを介して連結された接地器容器内に配置された接地開閉器を備えたガス絶縁開閉装置において、上記本体容器及び上記断路器容器の一方に支持され上記絶縁スペーサの軸方向と直交する方向に延在する軸、上記軸に回動可能に連結され、上記絶縁スペーサの外周面を覆うと共に上記本体容器及び上記接地器容器に接続されるシールド導体を備えたことを特徴とするガス絶縁開閉装置。In a gas-insulated switchgear having a grounding switch disposed in a grounding device container connected to a main body container on a disconnector side through an insulating spacer, the insulating member is supported by one of the main body container and the disconnecting device container. A shaft extending in a direction orthogonal to the axial direction of the spacer, and a shield conductor that is rotatably connected to the shaft, covers the outer peripheral surface of the insulating spacer, and is connected to the main body container and the grounding container. A gas insulated switchgear characterized by the above. シールド導体は、中央部が軸に回動可能に連結され、本体容器、絶縁スペーサ及び接地器容器の外周面に沿った円弧状に形成された一対の導電性部材で構成されたことを特徴とする請求項7に記載のガス絶縁開閉装置。The shield conductor has a central portion rotatably connected to the shaft, and is composed of a pair of conductive members formed in an arc shape along the outer peripheral surface of the main body container, the insulating spacer, and the grounding container. The gas insulated switchgear according to claim 7. 導電性部材の本体容器及び接地器容器と接続する側の面にばね接触子が設けられたことを特徴とする請求項6又は8に記載のガス絶縁開閉装置。The gas insulated switchgear according to claim 6 or 8, wherein a spring contact is provided on a surface of the conductive member that is connected to the main body container and the grounding container.
JP2001114741A 2001-04-13 2001-04-13 Gas insulated switchgear Expired - Fee Related JP4579440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114741A JP4579440B2 (en) 2001-04-13 2001-04-13 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114741A JP4579440B2 (en) 2001-04-13 2001-04-13 Gas insulated switchgear

Publications (2)

Publication Number Publication Date
JP2002315119A JP2002315119A (en) 2002-10-25
JP4579440B2 true JP4579440B2 (en) 2010-11-10

Family

ID=18965755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114741A Expired - Fee Related JP4579440B2 (en) 2001-04-13 2001-04-13 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP4579440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159672B2 (en) * 2009-03-04 2013-03-06 三菱電機株式会社 Gas insulated switchgear

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347537U (en) * 1977-10-25 1978-04-22
JPS54162883U (en) * 1978-05-08 1979-11-14
JPS5837705U (en) * 1981-09-04 1983-03-11 株式会社東芝 gas insulated switchgear
JPS5878715U (en) * 1981-11-20 1983-05-27 三菱電機株式会社 gas insulated electrical equipment
JPH01264505A (en) * 1988-04-13 1989-10-20 Mitsubishi Electric Corp Gas insulated switchgear
JPH0370408A (en) * 1989-08-08 1991-03-26 Toshiba Corp Gas insulated switchgear
JPH04145821A (en) * 1990-10-02 1992-05-19 Toshiba Corp Gas-insulated electric apparatus
JPH05111118A (en) * 1991-10-09 1993-04-30 Mitsubishi Electric Corp Gas insulation grounding switching device
JPH08146076A (en) * 1994-11-25 1996-06-07 Takaoka Electric Mfg Co Ltd Partial discharge detector of gas insulated switch device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347537U (en) * 1977-10-25 1978-04-22
JPS54162883U (en) * 1978-05-08 1979-11-14
JPS5837705U (en) * 1981-09-04 1983-03-11 株式会社東芝 gas insulated switchgear
JPS5878715U (en) * 1981-11-20 1983-05-27 三菱電機株式会社 gas insulated electrical equipment
JPH01264505A (en) * 1988-04-13 1989-10-20 Mitsubishi Electric Corp Gas insulated switchgear
JPH0370408A (en) * 1989-08-08 1991-03-26 Toshiba Corp Gas insulated switchgear
JPH04145821A (en) * 1990-10-02 1992-05-19 Toshiba Corp Gas-insulated electric apparatus
JPH05111118A (en) * 1991-10-09 1993-04-30 Mitsubishi Electric Corp Gas insulation grounding switching device
JPH08146076A (en) * 1994-11-25 1996-06-07 Takaoka Electric Mfg Co Ltd Partial discharge detector of gas insulated switch device

Also Published As

Publication number Publication date
JP2002315119A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
RU96105816A (en) SWITCHGEAR
TWI360145B (en)
RU98114866A (en) VACUUM CIRCUIT BREAKER AND VACUUM DISTRIBUTION DEVICE
US20070119818A1 (en) Compressed-gas-insulated switch-disconnector module and bushing configuration
JPH04123733A (en) Gas-blast circuit breaker
US5578804A (en) Metal-enclosed gas-insulated switching installation
JP4297549B2 (en) Switchgear
JP2005149926A (en) Vacuum switchgear
KR101580088B1 (en) Composite insulated switchboard
US6127641A (en) High-voltage switchgear
JP4579440B2 (en) Gas insulated switchgear
CA1283152C (en) Disconnect switch for a metal-clad, gas-insulated high-voltage switching station
WO2022201493A1 (en) Solid insulated bus and gas-insulated switchgear provided therewith
JP3450122B2 (en) Switchgear
WO2004032169A1 (en) Vacuum beaker
RU2420847C2 (en) Power switch with body
EP1705767A1 (en) Combined disconnector-earthing switch device
JP2000350318A (en) Gas insulated grounding switchgear
JPH0749690Y2 (en) Insulator and insulator tube damage prevention device
JP3695214B2 (en) Insulated switchgear
JPH0516808Y2 (en)
JP3288556B2 (en) Switchgear
JPH1080018A (en) Drawer type high-voltage switchgear
JP6407492B2 (en) Voltage detection device and gas insulated switchgear equipped with voltage detection device
JPH07222315A (en) Gas insulated switchgear

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees