JP4578815B2 - Control system and electronic device using piezoelectric actuator - Google Patents

Control system and electronic device using piezoelectric actuator Download PDF

Info

Publication number
JP4578815B2
JP4578815B2 JP2004018161A JP2004018161A JP4578815B2 JP 4578815 B2 JP4578815 B2 JP 4578815B2 JP 2004018161 A JP2004018161 A JP 2004018161A JP 2004018161 A JP2004018161 A JP 2004018161A JP 4578815 B2 JP4578815 B2 JP 4578815B2
Authority
JP
Japan
Prior art keywords
moving body
control system
piezoelectric element
piezoelectric actuator
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004018161A
Other languages
Japanese (ja)
Other versions
JP2005218158A (en
Inventor
朗弘 飯野
哲也 野邉
政雄 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004018161A priority Critical patent/JP4578815B2/en
Publication of JP2005218158A publication Critical patent/JP2005218158A/en
Application granted granted Critical
Publication of JP4578815B2 publication Critical patent/JP4578815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、圧電素子の変形の速度もしくは加速度を変え、移動体に一方向の力だけを伝え移動体を駆動する圧電アクチュエータの制御方法及びそれを用いた電子機器に関する。   The present invention relates to a method of controlling a piezoelectric actuator that changes the speed or acceleration of deformation of a piezoelectric element, transmits only a force in one direction to the moving body, and drives the moving body, and an electronic apparatus using the same.

近年電子機器の小型化が進み、そこで用いられるアクチュエータの小型化も要求されている。このアクチュエータの代表例として、電磁型のモータの回転力により減速歯車列を介して稼働部材を駆動する方式があり、そこで用いられるDCモータやステッピングモータの小型化が進んでいる。   In recent years, electronic devices have been miniaturized, and actuators used there have also been required to be miniaturized. As a typical example of this actuator, there is a system in which the operating member is driven through a reduction gear train by the rotational force of an electromagnetic motor, and the DC motor and stepping motor used there are being miniaturized.

また一方では、新原理のアクチュエータの開発も盛んに行われており、発生力の大きな圧電素子を用いたものにも期待が掛かっている。例えば稼働部材と、これを一方向に移動可能にガイドする軸との間に摩擦力を生じさせておき、軸の先端に設けた圧電素子を周期的に変形させたときに生じる稼働部材の慣性力により稼働部材を稼働する方式が開発されている(例えば、非特許文献1参照。)。また、このようなアクチュエ−タは、カメラのズーム機構やオートフォーカス機構への応用も試みられている。
吉田龍一、岡本康弘、マイクロ圧電アクチュエータ 精密工学会誌Vol.68、NO.5,2002
On the other hand, actuators based on a new principle have been actively developed, and expectations are also high for those using piezoelectric elements with a large generated force. For example, the inertia of the working member generated when a frictional force is generated between the working member and the shaft that guides the working member so as to be movable in one direction, and the piezoelectric element provided at the tip of the shaft is periodically deformed. A method of operating the operating member by force has been developed (see, for example, Non-Patent Document 1). Further, such an actuator has been tried to be applied to a zoom mechanism and an autofocus mechanism of a camera.
Ryuichi Yoshida, Yasuhiro Okamoto, Journal of Precision Engineering, Vol. 68, NO. 5,2002

しかしながら電磁モータは小型化が難しいばかりでなく、小型化するとトルクが極めて弱くなってしまう為、その分だけ減速歯車列が必要となり、機構自体の大きさを小さくするのが難しかった。   However, the electromagnetic motor is not only difficult to miniaturize, but if the motor is miniaturized, the torque becomes extremely weak. Therefore, a reduction gear train is required, and it is difficult to reduce the size of the mechanism itself.

また、圧電素子の変形により生じる駆動力を利用して、移動体を摩擦駆動するアクチュエータは、小型化が容易に出来るが、DCモータと同様に位置決め制御する際には位置センサが必要となり、高精度な位置決め制御をするために、大型で高価なセンサや駆動回路が必要となってしまった。これは機構の設計の自由度に制限を与え、機器に塔載することへの障害となる恐れがあった。   In addition, the actuator that frictionally drives the moving body using the driving force generated by the deformation of the piezoelectric element can be easily reduced in size, but a position sensor is required when positioning control is performed in the same way as a DC motor. In order to perform accurate positioning control, a large and expensive sensor and drive circuit are required. This limited the degree of freedom in designing the mechanism and could be an obstacle to mounting on equipment.

また、ステッピングモータの場合にもステップ角に限度があり、特に小型化した際にはステップ角は大きくなってしまった。   Also, in the case of a stepping motor, there is a limit to the step angle, and the step angle has become large especially when miniaturized.

上記課題を解決する本発明の第1の態様は、圧電素子の第一の方向の変位の加速度もしくは速度と、前記圧電素子の第二の方向の変位の加速度もしくは速度とを異ならせることで移動体に駆動力を与える圧電アクチュエータと、前記圧電素子に駆動パルスを出力する駆動回路と、前記移動体の動作もしくは前記移動体の動作に連動して動作する稼動体の位置情報を得る位置センサと、前記位置センサの位置情報に基づいて前記駆動回路から出力される駆動パルスを制御する制御回路からなる制御システムであって、前記位置センサの位置情報を受けた後、予め得られている駆動データに基づいて前記位置センサの分解能よりも小さい範囲で前記移動体を駆動する所定のパルス数の駆動信号を出力することで前記移動体あるいは前記稼動体を所定の位置に位置決めする圧電アクチュエータを用いた制御システムにある。 A first aspect of the present invention to solve the above problems, the mobile by varying the acceleration or velocity of the first direction of displacement of the piezoelectric element, the second direction of displacement of the piezoelectric element and the acceleration or velocity A piezoelectric actuator that applies a driving force to the body; a drive circuit that outputs a drive pulse to the piezoelectric element; and a position sensor that obtains position information of an operating body that operates in conjunction with the operation of the moving body or the operation of the moving body; A control system comprising a control circuit for controlling a drive pulse output from the drive circuit based on position information of the position sensor, wherein drive data obtained in advance after receiving the position information of the position sensor The driving body or the operating body is positioned by outputting a driving signal having a predetermined number of pulses for driving the moving body within a range smaller than the resolution of the position sensor. The control system using a piezoelectric actuator for positioning a position.

(削 除)   (Delete)

(削 除)   (Delete)

(削 除)   (Delete)

(削 除)   (Delete)

(削 除)   (Delete)

(削 除)   (Delete)

本発明の第の態様は、第の態様における圧電アクチュエータを用いた制御システムを備えたことを特徴とする電子機器にある。 According to a second aspect of the present invention, there is provided an electronic apparatus including a control system using the piezoelectric actuator according to the first aspect.

本発明によれば位置センサの分解能が粗くても、高精度で信頼性に富んだ制御システムが実現できる。特に、小型で安価な位置センサを使用でき、またこれに伴い制御回路も小型で簡単なもので良いため、圧電アクチュエータを含めた制御システムが小型化できる。   According to the present invention, a highly accurate and reliable control system can be realized even if the resolution of the position sensor is rough. In particular, since a small and inexpensive position sensor can be used, and the control circuit can be small and simple, the control system including the piezoelectric actuator can be downsized.

特に、位置センサの位置情報を受けた後で所定のパルス数だけ駆動信号を出力する際に用いられる駆動データは、圧電アクチュエータが待機状態になった際に先行動作を行い決めることで、圧電アクチュエータの摩擦状態の経時変化による変動や温度や湿度等の外部環境、あるいは移動体によって稼動される負荷の変動の影響による駆動パルスに対する移動距離の変動を補償することが可能となる。この先行動作は、電源の投入等により制御システムが使用可能となる待機状態となった際に、移動体もしくは稼動体の原点位置を確認する際に同時に行うことで、使用する電子機器に無駄な動作を行わせずに済む。そして、この駆動データは、アクチュエータの動作に基づいて適宜、更新されることで、データの信頼性も高くなる。   In particular, the drive data used when outputting the drive signal for a predetermined number of pulses after receiving the position information of the position sensor is determined by performing the preceding operation when the piezoelectric actuator is in a standby state. It is possible to compensate for fluctuations in the movement distance with respect to the drive pulse due to fluctuations due to changes in the friction state over time, external environments such as temperature and humidity, or fluctuations in the load operated by the moving body. This advance operation is performed at the same time as checking the origin position of the moving body or operating body when the control system becomes ready for use by turning on the power, etc. No action is required. The drive data is appropriately updated based on the operation of the actuator, so that the reliability of the data is increased.

また、この所定のパルス数だけ出力される駆動信号は、それ以前に圧電素子に出力され
る駆動信号とは異ならせる。即ち、細かい位置決めをする際には、速度を落としたり、駆動信号1パルスあたりの移動体の移動量が小さくなるような駆動信号とすることで、トー
タルの移動時間は短くかつ高精度な位置決めが可能となる。
Further, the drive signal output by the predetermined number of pulses is different from the drive signal output to the piezoelectric element before that. In other words, when fine positioning is performed, the speed is reduced or the driving signal is set so that the moving amount of the moving body per pulse of the driving signal is reduced, so that the total moving time is short and highly accurate positioning is possible. It becomes possible.

そして、本制御システムの圧電アクチュエータは圧電素子を非共振状態で駆動できるため、消費電流が小さく、また駆動回路が簡単で小型化が容易なことを併せ、本制御システムを搭載した電子機器の小型化、低消費電力化が実現できる。   Since the piezoelectric actuator of this control system can drive the piezoelectric element in a non-resonant state, the current consumption is small, the drive circuit is simple and easy to downsize, and the electronic equipment equipped with this control system is small. And low power consumption can be realized.

本発明の制御システムは圧電素子の第一の方向の変位の加速度もしくは速度と、圧電素子の第二の方向の変位の加速度もしくは速度とを異ならせることで移動体に駆動力を与える圧電アクチュエータと、圧電素子に駆動パルスを出力する駆動回路と、移動体の動作もしくは移動体の動作に連動して動作する稼動体の位置情報を得る位置センサと、位置センサの位置情報に基づいて駆動回路から出力される駆動パルスを制御する制御回路からなる制御システムであって、位置センサの位置情報を受けた後、予め得られている駆動データに基づいて所定のパルス数だけ駆動信号を出力することで移動体あるいは稼動体を所定の位置に位置決めすることを特徴とする圧電アクチュエータを用いた制御システムとする。   The control system of the present invention includes a piezoelectric actuator that applies a driving force to a moving body by differentiating acceleration or speed of displacement in the first direction of the piezoelectric element and acceleration or speed of displacement in the second direction of the piezoelectric element. A driving circuit that outputs a driving pulse to the piezoelectric element, a position sensor that obtains position information of the moving body that operates in conjunction with the operation of the moving body or the movement of the moving body, and a driving circuit that is based on the position information of the position sensor. A control system composed of a control circuit for controlling output drive pulses, and after receiving position information of a position sensor, outputs a drive signal for a predetermined number of pulses based on drive data obtained in advance. A control system using a piezoelectric actuator characterized by positioning a moving body or an operating body at a predetermined position.

ここで駆動データは、圧電アクチュエータが待機状態になった際に先行動作を行い決める。特に、先行動作は電源の投入等により制御システムが使用可能となる待機状態となった際に移動体もしくは稼動体の原点位置を確認すると同時に行われる。そして、この駆動データはアクチュエータが動作に基づいて適宜更新される。   Here, the drive data is determined by performing a preceding operation when the piezoelectric actuator enters a standby state. In particular, the preceding operation is performed at the same time as confirming the origin position of the moving body or the operating body when the control system becomes ready for use by turning on the power or the like. The drive data is updated as appropriate based on the operation of the actuator.

また、所定のパルス数だけ出力される駆動信号はそれ以前に圧電素子に出力される駆動信号とは異ならせることで高速で高精度な位置決めを可能とする。
(実施の形態1)
本発明の実施の形態を図面に基づいて説明する。図1は、本発明の制御システムに使用
される圧電アクチュエータ100の構成を示した図である。固定部材3には、圧電素子で構成されるバイモルフ1の一端が固定されている。円板形状の移動体2は中心軸2aを有し、図示しない軸受けによって回転可能に支持されている。固定部材3の一端には、穴を有する軸受け部3aが設けられており、図示しない軸を中心に回転可能に支持されている。固体部材3の他端3bを板ばねからなる加圧部材4によって圧電素子1と移動体2は加圧接触している。尚、図1に示した様に、圧電素子1の移動体3の接触部には、耐磨耗性に優れたエンジニヤリングプラスチックやアルミナ等のエンジニヤリングセラミクス等の摩擦部材5を接合しても良い。
Further, the driving signal output by a predetermined number of pulses is different from the driving signal output to the piezoelectric element before that, thereby enabling high-speed and high-precision positioning.
(Embodiment 1)
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a piezoelectric actuator 100 used in the control system of the present invention. One end of a bimorph 1 composed of a piezoelectric element is fixed to the fixing member 3. The disc-shaped moving body 2 has a central shaft 2a and is rotatably supported by a bearing (not shown). One end of the fixing member 3 is provided with a bearing portion 3a having a hole, and is supported so as to be rotatable about a shaft (not shown). The piezoelectric element 1 and the moving body 2 are in pressure contact with the other end 3b of the solid member 3 by a pressure member 4 made of a leaf spring. As shown in FIG. 1, a friction member 5 such as an engineering plastic such as engineering plastics or alumina having excellent wear resistance is joined to the contact portion of the moving body 3 of the piezoelectric element 1. good.

次に、本発明の制御システムに使用される圧電アクチュエータ100の駆動原理について、図1,図2を用いて説明する。圧電素子からなるバイモルフ1は、例えば回転体2の
径方向と直交する接線方向(図2中で矢印の方向)に分極処理された圧電素子1a、1bを重ねて接合し構成されている。圧電素子1a、1bの接合面と他方の面には図示しない電極が設けられている。ここで、圧電素子1a、1bの接合面にある電極に接続したリード22bをGNDとし、圧電素子1a、1bの他の面にある電極を短絡するリード22aに、駆動回路により電圧を印可すると、一方の圧電素子は伸び、一方の圧電素子は縮む為、圧電素子1は全体として屈曲変位を示す。そして、電圧の極性を変えると変形の方向も逆になる。ここで、図1(b)の状態から図1(c)の状態に急速に変形させる動作と、図1(c)の状態から図1(b)の状態へ緩やかに変形させる行為を交互に行えば、前者の動作では移動体2と圧電素子1の間には滑りが生じ、後者の動作では圧電素子1の変形に伴い移動体2も回転するため、移動体2は一方向に移動する。実際には、両者の動作において滑りと移動が共存していても、その割合が異なれば結果として一方向に移動体2を移動させることが出来る。
Next, the driving principle of the piezoelectric actuator 100 used in the control system of the present invention will be described with reference to FIGS. The bimorph 1 composed of piezoelectric elements is formed by, for example, superposing and joining piezoelectric elements 1a and 1b polarized in a tangential direction (direction of an arrow in FIG. 2) perpendicular to the radial direction of the rotating body 2. Electrodes (not shown) are provided on the bonding surface and the other surface of the piezoelectric elements 1a and 1b. Here, when the lead 22b connected to the electrode on the bonding surface of the piezoelectric elements 1a and 1b is set to GND and a voltage is applied to the lead 22a that short-circuits the electrode on the other surface of the piezoelectric elements 1a and 1b by the drive circuit, Since one piezoelectric element extends and one piezoelectric element contracts, the piezoelectric element 1 exhibits a bending displacement as a whole. When the polarity of the voltage is changed, the direction of deformation is also reversed. Here, the operation of rapidly deforming from the state of FIG. 1B to the state of FIG. 1C and the act of gently deforming from the state of FIG. 1C to the state of FIG. 1B are alternately performed. If it carries out, slip will arise between the moving body 2 and the piezoelectric element 1 in the former operation | movement, and since the moving body 2 will also rotate with the deformation | transformation of the piezoelectric element 1 in the latter operation | movement, the moving body 2 will move to one direction. . Actually, even if sliding and movement coexist in both operations, the moving body 2 can be moved in one direction as a result if the ratios are different.

この様な駆動を圧電素子1にさせるためには、駆動信号を交番電圧とする駆動パルスとするとともに、電圧を上げる際のスピードと下げる際のスピードを変えることで、圧電素子1の変形の速度,加速度は変形する方向である第一の方向と、第一の方向と逆方向であ
る第二の方向とによって異なる。例えば、リード22a、22bの間に、図2(b)もしくは図2(c)に示した駆動パルスを加えることで、移動体2の回転方向を変えることが出来る。ここでは+極性だけの駆動パルスを印加したが、+,−極性を交互に繰り返す駆動パルスを印加しても良い。この場合、圧電素子1は図1(a)の状態を中心として左右に振れる変位となる為、大きな変位が得られる。
In order to cause the piezoelectric element 1 to perform such a drive, the speed of deformation of the piezoelectric element 1 is changed by changing the speed at which the voltage is increased and the speed at which the voltage is decreased while using a drive pulse having an alternating voltage as a drive signal. , Acceleration varies depending on the first direction, which is the direction of deformation, and the second direction, which is the opposite direction to the first direction. For example, the rotation direction of the moving body 2 can be changed by applying the drive pulse shown in FIG. 2B or FIG. 2C between the leads 22a and 22b. Here, a drive pulse of only + polarity is applied, but a drive pulse that alternately repeats + and -polarities may be applied. In this case, the piezoelectric element 1 is displaced to the left and right with the state shown in FIG.

この様に、圧電素子1の第一の方向の変形により生じる移動体2の移動量と、第二の方向(第一の方向と逆方向)により生じる移動体2の移動量に差を持たせるような駆動パルスであれば、図2に示したものに限らない。要求される出力仕様や回路構成に応じて適当なものを採用すれば良い。また、バイモルフ素子の代わりに、圧電素子と金属等の弾性部材を用いてユニモルフを構成したものを用いても構わない。本実施の形態のように、圧電素子1の屈曲変形を利用することで大きな変位が得られる為、低電圧で駆動できる。   In this way, the amount of movement of the moving body 2 caused by the deformation of the piezoelectric element 1 in the first direction and the amount of movement of the moving body 2 caused by the second direction (the direction opposite to the first direction) are made different. Such a driving pulse is not limited to that shown in FIG. Appropriate ones may be adopted according to required output specifications and circuit configurations. Moreover, you may use what comprised the unimorph using elastic members, such as a piezoelectric element and a metal, instead of a bimorph element. Since a large displacement can be obtained by using the bending deformation of the piezoelectric element 1 as in this embodiment, the piezoelectric element 1 can be driven at a low voltage.

また、本実施の形態において、圧電素子は移動体の径方向と直交する接線方向に分極処理されているが、分極方向や電圧のかけ方は異なっていたとしても、結果として移動体の径方向と直交する接線方向に変形を発生させる構成であれば良い。次に、本発明の制御システムの構成について図3を基に説明する。本制御システムは移動体2に駆動力を与える圧電素子1からなる圧電アクチュエータ100と、圧電素子1に駆動パルスを出力する駆動回路7と、移動体2の動作もしくは移動体2の動作に連動して動作する図示しない稼動体12の位置情報を得る位置センサ14と、位置センサ14の位置情報に基づいて駆動回路7から出力される駆動パルスを制御する制御回路8からなる。   In the present embodiment, the piezoelectric element is polarized in a tangential direction orthogonal to the radial direction of the moving body. However, even if the polarization direction and the method of applying voltage are different, as a result, the radial direction of the moving body Any configuration may be used as long as the deformation is generated in the tangential direction orthogonal to the line. Next, the configuration of the control system of the present invention will be described with reference to FIG. This control system is interlocked with the piezoelectric actuator 100 composed of the piezoelectric element 1 that applies a driving force to the moving body 2, the drive circuit 7 that outputs a driving pulse to the piezoelectric element 1, and the operation of the moving body 2 or the operation of the moving body 2. The position sensor 14 that obtains the position information of the operating body 12 (not shown) that operates and the control circuit 8 that controls the drive pulse output from the drive circuit 7 based on the position information of the position sensor 14.

本発明の制御システムを電子機器に応用した構成を図4を基に説明する。本駆動機構は、移動体9と、これと図示しない加圧機構により加圧接触する圧電素子1と、圧電素子1を支持する固定部材3と、移動体9の回転中心軸上に設けられ移動体9と一体的に回転する出力軸10と、出力軸10並びに移動体9の回転を移動体9,出力軸10と一体的に設けられた軸部10a,10bと勘合して案内する軸受け16,11と、出力軸10の側面に設けられた、おねじ部10cと係合する、めねじ部12aを有する稼動体12と、稼動体12に設けられた穴状の案内部12bと係合する案内軸15と、出力軸10に設けられたスリット板14aと発光部,受光部からなる検出素子14bで構成される位置センサ14と,稼動体12に取り付けられた突出部13aと受光部,発光部からなる検出素子13bで構成される原点位置検出素子13からなる。   A configuration in which the control system of the present invention is applied to an electronic device will be described with reference to FIG. This drive mechanism is provided on the rotational center axis of the moving body 9, the piezoelectric element 1 that is in pressure contact with the movable body 9 by a pressure mechanism (not shown), the fixing member 3 that supports the piezoelectric element 1, and the movable body 9. An output shaft 10 that rotates integrally with the body 9, and a bearing 16 that guides the rotation of the output shaft 10 and the moving body 9 with the moving body 9 and shaft portions 10 a and 10 b provided integrally with the output shaft 10. , 11, and an operating body 12 having a female screw portion 12 a that engages with the external thread portion 10 c provided on the side surface of the output shaft 10, and a hole-shaped guide portion 12 b provided on the operating body 12. A guide shaft 15, a slit plate 14 a provided on the output shaft 10, a light emitting portion, a position sensor 14 comprising a light receiving portion, a light receiving portion, a projecting portion 13 a attached to the operating body 12, a light receiving portion, Consists of a detection element 13b composed of a light emitting unit Consisting point position detecting element 13.

圧電素子1の動作に伴い移動体9が回転すると、出力軸10も一体に回転し、稼動体12は出力軸10の回転中心軸方向へ稼動する。移動体9の回転方向を変えることで稼動体12の稼動方向は変わる。この稼動体12の位置は、位置センサ14と原点位置検出素子13によって確認できる。まず稼動体12を突出部13aが検出できる位置、即ち原点位置まで移動することで、制御回路8の位置情報を原点(カウンタ値0)に合わせる。その後は、位置センサのパルス数(移動体9の回転量)と稼動体12の移動量の関係から稼動体12の位置を知ることが出来る。   When the movable body 9 rotates with the operation of the piezoelectric element 1, the output shaft 10 also rotates together, and the operating body 12 operates in the direction of the rotation center axis of the output shaft 10. By changing the rotation direction of the moving body 9, the operating direction of the operating body 12 changes. The position of the operating body 12 can be confirmed by the position sensor 14 and the origin position detecting element 13. First, the position information of the control circuit 8 is adjusted to the origin (counter value 0) by moving the operating body 12 to a position where the projecting portion 13a can detect, that is, the origin position. Thereafter, the position of the working body 12 can be known from the relationship between the number of pulses of the position sensor (the amount of rotation of the moving body 9) and the amount of movement of the working body 12.

例えば、稼動体12に設けられた穴部12cにレンズ24を接合すれば、カメラのズーム機構やオートフォーカス機構等が実現できる。このような構造とすることで、移動体9の移動角に対して稼動体12の移動量が小さい減速機構となる為、高精度な位置決めが可能となると共に、位置センサ14の分解能も比較的粗いもので済む。そして、稼動体12の駆動力も大きくなる。また、外部からの衝撃や振動に対しても、稼動体12は動きにくい
信頼性の高い電子機器が実現できる。
For example, if the lens 24 is joined to the hole 12c provided in the operating body 12, a zoom mechanism, an autofocus mechanism, or the like of the camera can be realized. By adopting such a structure, a reduction mechanism is provided in which the moving amount of the operating body 12 is small with respect to the moving angle of the moving body 9, so that highly accurate positioning is possible and the resolution of the position sensor 14 is relatively high. Coarse is enough. And the driving force of the operating body 12 also increases. In addition, it is possible to realize a highly reliable electronic device in which the operating body 12 is difficult to move against external impacts and vibrations.

次に、本発明の圧電アクチュエータ100の制御法について述べる。圧電アクチュエータ100は、基本的に各駆動パルス毎に同一量だけ移動体9を回転させることが可能な為、位置センサ14を用いずに位置決め制御を行っても良いが、圧電素子1と移動体9との間の摩擦状態の変化や温度,湿度等の環境の影響、電池の使用状態による駆動電圧の変動等によって、この1パルス当たりの移動量が変動する恐れがある。そこで、位置センサ14を用いておおよその位置を確認すると共に、位置センサ14の分解能よりも微小な領域に対しては、予め制御回路8に記憶された駆動パルス1パルス当たりの移動量の関係(駆動データ)に基づいて、必要なパルス数を算出し、駆動回路7に必要なパルス数だけを出力するように指令を送る。例えば、移動体9の移動位置が位置センサ14から得られる位置情報であるパルスで8パルスと9パルスの間にある場合には、8パルスを検出した時点から残りの距離を移動するのに必要な駆動パルスの数だけ圧電素子1に出力する。このようにすることで、位置センサ14の分解能が粗い場合でも高精度で信頼性の高い位置決めが可能となる。   Next, a method for controlling the piezoelectric actuator 100 of the present invention will be described. Since the piezoelectric actuator 100 can basically rotate the moving body 9 by the same amount for each drive pulse, the positioning control may be performed without using the position sensor 14, but the piezoelectric element 1 and the moving body The amount of movement per pulse may fluctuate due to changes in the frictional state with respect to 9 and the influence of the environment such as temperature and humidity, fluctuations in the driving voltage depending on the battery usage state, and the like. Accordingly, the approximate position is confirmed using the position sensor 14 and the movement amount per drive pulse stored in the control circuit 8 in advance for an area smaller than the resolution of the position sensor 14 ( The required number of pulses is calculated based on the drive data), and a command is sent to the drive circuit 7 to output only the required number of pulses. For example, if the moving position of the moving body 9 is between 8 and 9 pulses as position information obtained from the position sensor 14, it is necessary to move the remaining distance from the time when 8 pulses are detected. It outputs to the piezoelectric element 1 by the number of driving pulses. By doing in this way, even if the resolution of the position sensor 14 is rough, highly accurate and reliable positioning is possible.

この駆動データは、製造段階で記憶されたものでも良いが、圧電アクチュエータ100が待機状態になった際に、先行動作を行い決められたものであることが望ましく、移動体もしくは稼動体12の原点位置を確認する際に行われることで、電子機器に無駄な動作をさせない。例えば、デジタルカメラの場合、電源を入れた場合や撮影モードにした場合が、この待機状態に当たる。このようにすることで、使用段階で異なる摩擦状態の変化や温度、湿度等の環境の影響、電池の使用状態による駆動電圧の変動等の影響を受けない。また、駆動データとしては例えば、簡単に一定距離動くのに必要なパルスを計測しても良いが、位置センサ14の位置情報の各間隔(パルス)毎の移動に必要な駆動パルスを、移動体9の一周にわたり、あるいは稼動体12の移動距離全域にわたり計測すれば、摩擦むら等によって生じる移動位置による必要駆動パルスの違いを補償することが出来る。また、移動方向によるデータも計測すれば、例えばカメラの場合、姿勢差の影響も補償できる。   The drive data may be stored at the manufacturing stage, but is preferably determined by performing a preceding operation when the piezoelectric actuator 100 is in a standby state. This is done when confirming the position, so that the electronic device is not made useless. For example, in the case of a digital camera, this standby state occurs when the power is turned on or the photographing mode is set. By doing so, it is not affected by changes in the frictional state that differ at the stage of use, environmental influences such as temperature and humidity, and fluctuations in drive voltage due to battery usage. Further, as the drive data, for example, a pulse necessary for easily moving a certain distance may be measured. However, a drive pulse necessary for movement at each interval (pulse) of the position information of the position sensor 14 may be 9 is measured over the entire circumference of the moving body 12 or the entire moving distance of the operating body 12, it is possible to compensate for the difference in the required driving pulse due to the moving position caused by frictional irregularities. Further, if data based on the moving direction is also measured, for example, in the case of a camera, the influence of the posture difference can be compensated.

ところで、この駆動データは、この待機状態になった場合だけでなく、アクチュエータの動作中に計測を行い更新しても良い。例えば、動作中のデータを基に、何パルス出すかを決定しても良い。   By the way, the drive data may be measured and updated during the operation of the actuator, as well as in the standby state. For example, the number of pulses to be output may be determined based on data during operation.

この所定のパルス数だけ出力される駆動パルスは、それ以前、即ち位置センサ14から最後の位置情報を得るまでに圧電素子に出力される駆動信号とは異ならせることで、高速で高精度な位置決めが可能となる。図5に示した様に、駆動パルスによって移動体9の動作の挙動は異なる。即ち、図5(a)に示した様に、駆動パルス1パルス毎に動作,停止を繰り返す場合と、図5(b)に示した様に、停止せずに連続的に動作する場合に大きく分けられる。一般的に、駆動パルスの周波数が高くなると、図5(b)の様な挙動を示す傾向がある。この場合、移動体9のスピードは高くなるが、駆動パルス停止時に移動体7が瞬時に止まれないばかりでなく、駆動パルス1パルス毎の移動距離が特定しずらくなる。即ち、一定距離を連続で動作するのに必要な駆動パルス数で割った値と、1パルスだけ加えたときの移動距離とが一致しないため、駆動データの信憑性が低くなる。因みに、振動体の共振現象を用いた超音波モータも、この状態に近い。そこで、位置センサ14から位置情報を得ている範囲内では、図5(b)の動作で高速に移動し、所定のパルスを印加する際には、図5(a)の動作とすることで微動動作を行う。この微動動作を行うタイミングは、位置センサ14から位置情報を得ている範囲内からでも良く、制御システム全体の特性,要求仕様等に応じて適宜決めれば良い。   The driving pulse output by the predetermined number of pulses is different from the driving signal output to the piezoelectric element before that, that is, until the last position information is obtained from the position sensor 14, thereby enabling high-speed and high-precision positioning. Is possible. As shown in FIG. 5, the behavior of the moving body 9 varies depending on the drive pulse. That is, as shown in FIG. 5 (a), when the operation and stop are repeated for each drive pulse, and when continuously operating without stopping as shown in FIG. 5 (b). Divided. In general, when the frequency of the drive pulse increases, the behavior as shown in FIG. In this case, although the speed of the moving body 9 is increased, not only the moving body 7 is not instantaneously stopped when the driving pulse is stopped, but also the moving distance for each driving pulse is difficult to specify. That is, since the value obtained by dividing a certain distance by the number of driving pulses necessary for continuous operation does not coincide with the moving distance when only one pulse is added, the reliability of the driving data is lowered. Incidentally, an ultrasonic motor using a resonance phenomenon of a vibrating body is also close to this state. Therefore, within the range in which the position information is obtained from the position sensor 14, the movement of FIG. 5B is performed at high speed, and when applying a predetermined pulse, the operation of FIG. Performs fine movement. The timing for performing the fine movement operation may be within the range where the position information is obtained from the position sensor 14, and may be determined as appropriate according to the characteristics of the entire control system, the required specifications, and the like.

ところで、圧電アクチュエータ100は本発明の動作原理に基づくものであれば、その形態は問わずリニヤ型のものでも良く、非特許文献1に示してあるものでも構わない。そ
の他、駆動パルス1パルス毎に動作,停止を繰り返して、一定間隔で動作可能な非共振型の超音波モータでも、同様の効果が得られる。
By the way, as long as the piezoelectric actuator 100 is based on the operation principle of the present invention, the form thereof may be a linear type, or the one shown in Non-Patent Document 1. In addition, the same effect can be obtained with a non-resonant ultrasonic motor that can be operated at a constant interval by repeatedly operating and stopping for each drive pulse.

また位置センサ14は、リニヤ型のセンサでも良く、稼動体に付けても構わない。また、移動体9自体で仕事を行う電子機器であっても構わない。   Further, the position sensor 14 may be a linear sensor or may be attached to an operating body. Moreover, you may be an electronic device which works with the mobile body 9 itself.

本発明の圧電アクチュエータの稼動体に例えばレンズを備えれば、カメラのズーム機構やオートフォーカス機構等の電子機器へ応用できる。   If the operating body of the piezoelectric actuator of the present invention is provided with, for example, a lens, it can be applied to electronic devices such as a zoom mechanism and an autofocus mechanism of a camera.

本発明の実施の形態1にかかわる圧電アクチュエータの構成を示す図である。It is a figure which shows the structure of the piezoelectric actuator concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかわる圧電アクチュエータの構成並びに駆動信号を示す図である。It is a figure which shows the structure and drive signal of a piezoelectric actuator which concern on Embodiment 1 of this invention. 本発明の実施の形態1にかかわる制御システムの構成を示す図である。It is a figure which shows the structure of the control system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかわる制御システムを電子機器に応用した図である。It is the figure which applied the control system concerning Embodiment 1 of the present invention to electronic equipment. 本発明の実施の形態1にかかわる圧電アクチュエータの挙動を示す図である。It is a figure which shows the behavior of the piezoelectric actuator concerning Embodiment 1 of this invention.

1 圧電素子
2 移動体
3 固定部材
4 加圧部材
5 摩擦部材
7 駆動回路
8 制御回路
9 移動体
12 稼動体
14 位置センサ
DESCRIPTION OF SYMBOLS 1 Piezoelectric element 2 Moving body 3 Fixed member 4 Pressurizing member 5 Friction member 7 Drive circuit 8 Control circuit 9 Moving body 12 Working body 14 Position sensor

Claims (4)

圧電素子の第一の方向の変位の加速度もしくは速度と、前記圧電素子の第二の方向の変位の加速度もしくは速度とを異ならせることで移動体に駆動力を与える圧電アクチュエータと、
前記圧電素子に駆動パルスを出力する駆動回路と、
前記移動体の動作もしくは前記移動体の動作に連動して動作する稼動体の位置情報を得る位置センサと、
前記位置センサの位置情報に基づいて前記駆動回路から出力される駆動パルスを制御する制御回路からなる制御システムであって、
前記位置センサの位置情報を受けた後、予め得られている駆動データに基づいて前記位置センサの分解能よりも小さい範囲で前記移動体を駆動する所定のパルス数の駆動信号を出力することで前記移動体あるいは前記稼動体を所定の位置に位置決めし、前記駆動データは、前記圧電アクチュエータが待機状態になった際に先行動作を行い更新されることを特徴とする圧電アクチュエータを用いた制御システム。
A piezoelectric actuator that applies a driving force to the moving body by differentiating the acceleration or speed of displacement of the piezoelectric element in the first direction and the acceleration or speed of displacement of the piezoelectric element in the second direction;
A drive circuit for outputting a drive pulse to the piezoelectric element;
A position sensor for obtaining position information of an operating body that operates in conjunction with the operation of the moving body or the operation of the moving body;
A control system comprising a control circuit for controlling a drive pulse output from the drive circuit based on position information of the position sensor;
After receiving the position information of the position sensor, by outputting a driving signal having a predetermined number of pulses for driving the moving body in a range smaller than the resolution of the position sensor based on driving data obtained in advance. A control system using a piezoelectric actuator, wherein a movable body or the operating body is positioned at a predetermined position, and the drive data is updated by performing a preceding operation when the piezoelectric actuator enters a standby state .
前記先行動作は前記移動体もしくは前記稼動体の原点位置を確認する際に行われることを特徴とする請求項1記載の圧電アクチュエータを用いた制御システム。 2. The control system using a piezoelectric actuator according to claim 1, wherein the preceding operation is performed when an origin position of the moving body or the operating body is confirmed . 前記所定のパルス数だけ出力される駆動信号はそれ以前に前記圧電素子に出力される駆動信号とは異なることを特徴とする請求項1または2記載の圧電アクチュエータを用いた制御システム。 3. The control system using a piezoelectric actuator according to claim 1, wherein the drive signal output by the predetermined number of pulses is different from the drive signal output to the piezoelectric element before that . 請求項1乃至3の何れかに記載の圧電アクチュエータを用いた制御システムを用いたことを特徴とする電子機器。An electronic apparatus using a control system using the piezoelectric actuator according to claim 1.
JP2004018161A 2004-01-27 2004-01-27 Control system and electronic device using piezoelectric actuator Expired - Fee Related JP4578815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018161A JP4578815B2 (en) 2004-01-27 2004-01-27 Control system and electronic device using piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018161A JP4578815B2 (en) 2004-01-27 2004-01-27 Control system and electronic device using piezoelectric actuator

Publications (2)

Publication Number Publication Date
JP2005218158A JP2005218158A (en) 2005-08-11
JP4578815B2 true JP4578815B2 (en) 2010-11-10

Family

ID=34902746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018161A Expired - Fee Related JP4578815B2 (en) 2004-01-27 2004-01-27 Control system and electronic device using piezoelectric actuator

Country Status (1)

Country Link
JP (1) JP4578815B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4999140B2 (en) * 2005-11-21 2012-08-15 富士フイルム株式会社 Drive control device and drive control method
JP4999141B2 (en) * 2005-11-21 2012-08-15 富士フイルム株式会社 Drive control device and drive control method
JP2007143348A (en) * 2005-11-21 2007-06-07 Fujinon Corp Drive controller and drive control method
JP4999139B2 (en) * 2005-11-21 2012-08-15 富士フイルム株式会社 Drive control device and drive control method
JP4999142B2 (en) * 2005-11-21 2012-08-15 富士フイルム株式会社 Drive control device and drive control method
JP2007299455A (en) * 2006-04-28 2007-11-15 Konica Minolta Opto Inc Head positioning mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211669A (en) * 2000-01-20 2001-08-03 Minolta Co Ltd Driver
JP2001265442A (en) * 2000-03-22 2001-09-28 Nikon Corp Driving motor, positioning device and method for controlling vibration motor
JP2002078361A (en) * 2000-08-28 2002-03-15 Shibuya Kogyo Co Ltd Linear positioning apparatus
JP2003102184A (en) * 2001-09-26 2003-04-04 Mitsuba Corp Actuator, wiper, display, and motor
JP2003339176A (en) * 2002-03-11 2003-11-28 Seiko Instruments Inc Ultrasonic motor and electronic apparatus with ultrasonic motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165214A (en) * 1984-09-07 1986-04-03 Nippon Kogaku Kk <Nikon> Camera
JPH04117186A (en) * 1990-09-06 1992-04-17 Brother Ind Ltd High accuracy moving stage device
JP3162486B2 (en) * 1992-06-25 2001-04-25 キヤノン株式会社 Printer device
JPH06276768A (en) * 1993-03-16 1994-09-30 Matsushita Electric Ind Co Ltd Control device for supersonic motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211669A (en) * 2000-01-20 2001-08-03 Minolta Co Ltd Driver
JP2001265442A (en) * 2000-03-22 2001-09-28 Nikon Corp Driving motor, positioning device and method for controlling vibration motor
JP2002078361A (en) * 2000-08-28 2002-03-15 Shibuya Kogyo Co Ltd Linear positioning apparatus
JP2003102184A (en) * 2001-09-26 2003-04-04 Mitsuba Corp Actuator, wiper, display, and motor
JP2003339176A (en) * 2002-03-11 2003-11-28 Seiko Instruments Inc Ultrasonic motor and electronic apparatus with ultrasonic motor

Also Published As

Publication number Publication date
JP2005218158A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US8314532B2 (en) Drive device
US8520327B2 (en) Optical adjustment mounts with piezoelectric inertia driver
US8792051B2 (en) Driving device, lens barrel, and optical apparatus including the lens barrel
US8198786B2 (en) Inertial driving actuator
JP2006330053A (en) Lens barrel
JP2006330054A (en) Lens barrel
JP4578815B2 (en) Control system and electronic device using piezoelectric actuator
US7095159B2 (en) Devices with mechanical drivers for displaceable elements
US7215488B2 (en) Optical apparatus
JP2008197220A (en) Lens barrel driving device
JP4412663B2 (en) Piezoelectric actuator and electronic device using the same
JP4213555B2 (en) Piezoelectric actuator and electronic device using the same
JP4369720B2 (en) Piezoelectric actuator and electronic device using the same
JP6948102B2 (en) Linear drive, camera and electronic equipment
JP4550620B2 (en) Piezoelectric actuator and electronic device using the same
JP2004511010A5 (en)
JP2006333571A (en) Vibration actuator and lens barrel
JP5183921B2 (en) Piezoelectric actuator and electronic device using the same
JP4578799B2 (en) Piezoelectric actuator and electronic device using the same
JP4657429B2 (en) Linear motion mechanism using ultrasonic motor, swing mechanism and electronic equipment using them
JP3047549B2 (en) Serial printer and its home position setting method
JP4543396B2 (en) Magnetic encoder, lens barrel and autofocus camera
JP2005164551A (en) Magnetic type linear absolute encoder
JP4687953B2 (en) LENS DRIVE DEVICE AND IMAGING DEVICE
JP5466253B2 (en) Piezoelectric actuator and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees