JP4412663B2 - Piezoelectric actuator and electronic device using the same - Google Patents

Piezoelectric actuator and electronic device using the same Download PDF

Info

Publication number
JP4412663B2
JP4412663B2 JP2004373915A JP2004373915A JP4412663B2 JP 4412663 B2 JP4412663 B2 JP 4412663B2 JP 2004373915 A JP2004373915 A JP 2004373915A JP 2004373915 A JP2004373915 A JP 2004373915A JP 4412663 B2 JP4412663 B2 JP 4412663B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
rotating body
piezoelectric actuator
piezoelectric
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004373915A
Other languages
Japanese (ja)
Other versions
JP2005210888A (en
Inventor
朗弘 飯野
哲也 野邉
鈴木  誠
政雄 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004373915A priority Critical patent/JP4412663B2/en
Publication of JP2005210888A publication Critical patent/JP2005210888A/en
Application granted granted Critical
Publication of JP4412663B2 publication Critical patent/JP4412663B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電素子の変位の速度もしくは加速度を変え、移動体に一方向の変位だけを伝え移動体を駆動する圧電アクチュエータ及びそれを用いた電子機器に関する。   The present invention relates to a piezoelectric actuator that changes a displacement speed or acceleration of a piezoelectric element, transmits only a displacement in one direction to a moving body, and drives the moving body, and an electronic apparatus using the piezoelectric actuator.

近年電子機器の小型化が進み、そこで用いられるアクチュエータの小型化も要求されている。このアクチュエータの代表例として、電磁型のモータの回転力により減速歯車列を介して稼働部材を駆動する方式が一般に行われており、そこで用いられるDCモータやステッピングモータの小型化が進んでいる。   In recent years, electronic devices have been miniaturized, and actuators used there have also been required to be miniaturized. As a typical example of this actuator, a system in which an operating member is driven via a reduction gear train by the rotational force of an electromagnetic motor is generally performed, and miniaturization of DC motors and stepping motors used therein is progressing.

また一方では、新原理のアクチュエータの開発も盛んに行われており、発生力の大きな圧電素子を用いたものにも期待が掛かっている。例えば稼働部材と、これを一方向に移動可能にガイドする軸との間に摩擦力を生じさせておき、軸の先端に設けた圧電素子を周期的に変形させたときに生じる稼働部材の慣性力により稼働部材を稼働する方式が開発されている(例えば、非特許文献1参照。)。また、このようなアクチュエ−タは、カメラのズーム機構やオートフォーカス機構への応用も試みられている。
吉田龍一、岡本康弘、マイクロ圧電アクチュエータ 精密工学会誌Vol.68、NO.5,2002
On the other hand, actuators based on a new principle have been actively developed, and expectations are also high for those using piezoelectric elements with a large generated force. For example, the inertia of the working member generated when a frictional force is generated between the working member and the shaft that guides the working member so as to be movable in one direction, and the piezoelectric element provided at the tip of the shaft is periodically deformed. A method of operating the operating member by force has been developed (see, for example, Non-Patent Document 1). Further, such an actuator has been tried to be applied to a zoom mechanism and an autofocus mechanism of a camera.
Ryuichi Yoshida, Yasuhiro Okamoto, Journal of Precision Engineering, Vol. 68, NO. 5,2002

しかしながら電磁モータは小型化が難しいばかりでなく、小型化してもトルクが極めて弱くなってしまう為、その分だけ減速歯車列が必要となり、機構自体の大きさは小さくするのが難しかった。   However, the electromagnetic motor is not only difficult to miniaturize, but the torque becomes extremely weak even if the motor is miniaturized. Therefore, a reduction gear train is required, and it is difficult to reduce the size of the mechanism itself.

また圧電素子の変形により生じる慣性力を利用したものは、直動動作のため応用する機器が限られてしまった。この場合、稼働部材をダイレクトに稼働させることができるというメリットはあるが、その発生力は小さいと共に、アクチュエータを搭載する機器に落下や振動が生じた場合、稼働部が動いてしまう恐れが有った。そこで、その対応策として稼働部材と軸の間の摩擦力を大きくすることが考えられるが、この場合には稼働部材を駆動するために、圧電素子に大きな電圧を印加しなければならず、消費電力の増大並びに昇圧回路等駆動回路の複雑化、大型化を招く恐れがあった。そして、稼働部材をガイドする軸を必要とする構造から設計の自由度に制限を与え、機器に塔載することへの障害となる恐れがあった。   In addition, devices using the inertial force generated by the deformation of the piezoelectric element are limited in equipment to be applied because of the linear motion operation. In this case, there is a merit that the operating member can be operated directly, but the generated force is small and there is a risk that the operating part will move if the actuator mounting device falls or vibrates. It was. Therefore, as a countermeasure, it is conceivable to increase the frictional force between the working member and the shaft. In this case, in order to drive the working member, a large voltage must be applied to the piezoelectric element. There is a risk of increasing the power and complicating and increasing the size of the drive circuit such as a booster circuit. In addition, there is a possibility that the degree of freedom in design is restricted due to the structure that requires the shaft for guiding the operating member, which may be an obstacle to mounting on the equipment.

上記課題を解決する本発明の第1の態様は、移動体と、伸縮変形する圧電素子と、前記圧電素子を固定する固定部材と、前記圧電素子の伸縮変形の方向と直交する方向に突出して設けられた摩擦部材と、前記固定部材に加圧力を働かせ前記移動体と前記摩擦部材との間に接触圧を働かせる加圧部材と、前記圧電素子を往復変位させる信号を出力する駆動回路とからなり、前記駆動回路は前記圧電素子の第一の方向の変位の加速度もしくは速度と前記第一の方向とは逆方向となる第二の方向の変位の加速度もしくは速度とが異なるように変位させる信号を出力することで前記移動体を駆動することを特徴とする圧電アクチュエータにある。 According to a first aspect of the present invention for solving the above problem, a movable body, a piezoelectric element that expands and contracts, a fixing member that fixes the piezoelectric element, and a direction orthogonal to the direction of expansion and contraction of the piezoelectric element protrude. A friction member provided; a pressure member that applies pressure to the fixed member to apply contact pressure between the movable body and the friction member; and a drive circuit that outputs a signal for reciprocally displacing the piezoelectric element. The drive circuit is a signal for displacing the piezoelectric element so that the acceleration or velocity of the displacement in the first direction is different from the acceleration or velocity of the displacement in the second direction which is opposite to the first direction. in pressure conductive actuator and drives the movable body by outputting.

本発明の第2の態様は、第一の態様の圧電アクチュエータにおいて前記固定部材は回転可能に支持されるとともに、前記加圧部材の加圧力が働くことを特徴とする圧電アクチュエータにある。 According to a second aspect of the present invention, in the piezoelectric actuator according to the first aspect, the fixing member is rotatably supported and the pressing force of the pressure member acts .

本発明の第3の態様は、第1または2の態様において、前記固定部材は前記圧電素子の一部であることを特徴とする圧電アクチュエータにある。 According to a third aspect of the present invention, in the piezoelectric actuator according to the first or second aspect, the fixing member is a part of the piezoelectric element .

本発明の第4の態様は、第1から3のいずれかの態様の圧電アクチュエータと、前記移動体の駆動と連動して回転する出力軸と、前記出力軸の回転に連動して前記出力軸の回転中心軸方向に移動する移動体を有することを特徴とする駆動機構にある。 According to a fourth aspect of the present invention, there is provided the piezoelectric actuator according to any one of the first to third aspects, an output shaft that rotates in conjunction with driving of the movable body, and the output shaft that operates in conjunction with rotation of the output shaft. The drive mechanism is characterized by having a moving body that moves in the direction of the rotation center axis .

本発明の第5の態様は、第1からのいずれかの態様における圧電アクチュエータの移動体の移動により稼動部材が稼動されることを特徴とする電子機器にある。 According to a fifth aspect of the present invention, there is provided an electronic apparatus characterized in that the operating member is operated by the movement of the moving body of the piezoelectric actuator according to any one of the first to third aspects.

本発明の第6の態様は、第4の態様の駆動機構の移動体により稼動部材が稼動されることを特徴とする電子機器にある。 According to a sixth aspect of the present invention, there is provided an electronic apparatus characterized in that the operating member is operated by the moving body of the driving mechanism according to the fourth aspect.

本発明によれば、圧電素子を非共振状態で駆動できるため、消費電流が小さく、また駆動回路が小さな回転型の圧電アクチュエータが実現できる。しかも支持機構、加圧機構が単純で小型化が容易なため、アクチュエータ全体を小型化し易い。そして回転体の外形を変えるだけで、出力特性(回転数、トルク)を任意に設定できる。   According to the present invention, since the piezoelectric element can be driven in a non-resonant state, a rotary type piezoelectric actuator with a small current consumption and a small driving circuit can be realized. In addition, since the support mechanism and the pressure mechanism are simple and can be easily downsized, the entire actuator can be easily downsized. The output characteristics (rotation speed, torque) can be set arbitrarily by simply changing the outer shape of the rotating body.

また回転体の回転に連動して回転する出力軸と、出力軸の回転に連動して出力軸の回転中心軸方向に移動する移動体を有する駆動機構とすることで、リニヤ駆動が実現できると共に、大きな発生力が出力可能となる。そして落下等の衝撃や振動等が加わっても動作しない大きな保持力を有することが可能となる。   In addition, linear drive can be realized by providing a drive mechanism having an output shaft that rotates in conjunction with rotation of the rotating body and a moving body that moves in the direction of the rotation center axis of the output shaft in conjunction with rotation of the output shaft. A large generated force can be output. Further, it is possible to have a large holding force that does not operate even when an impact such as a drop or vibration is applied.

そして、これらの回転体の回転により稼動部材を稼動するか、駆動機構の移動体により稼動部材を稼動することで、電子機器の小型化、低消費電力化が実現できる。   Then, the operating member is operated by the rotation of these rotating bodies, or the operating member is operated by the moving body of the driving mechanism, whereby the downsizing and low power consumption of the electronic device can be realized.

そこで、本発明の圧電アクチュエータは回転体と、一端が固定部材に固定され、他端が回転体の径方向の延長上に位置する側面に接する様に配置された圧電素子と、圧電素子に回転体との間に接触圧を働かせる加圧部材からなり、圧電素子の第一の方向の変位の加速度もしくは速度と、第二の方向の変位の加速度もしくは速度とが異なるように変位させることで回転体を駆動する。   Accordingly, the piezoelectric actuator of the present invention has a rotating body, a piezoelectric element arranged at one end fixed to a fixing member, and the other end being in contact with a side surface located on a radial extension of the rotating body, and a rotating piezoelectric element. It consists of a pressure member that applies contact pressure to the body, and rotates by displacing the acceleration or speed of displacement in the first direction of the piezoelectric element so that the acceleration or speed of displacement in the second direction is different. Drive the body.

ここで固定部材は、回転体の径方向の面内で回転可能に支持されると共に、加圧部材の加圧力が働くようにする。もしくは、固定部材は回転体の径方向に移動可能に案内されると共に、加圧部材の加圧力が働くようにする。   Here, the fixing member is supported so as to be rotatable in a radial plane of the rotating body, and the pressing force of the pressurizing member works. Alternatively, the fixing member is guided so as to be movable in the radial direction of the rotating body, and the pressing force of the pressing member is applied.

また、回転体の回転と一体的に回転する出力軸と、出力軸の回転に連動して出力軸の回転中心軸方向に移動する移動体を有する駆動機構とする。   Further, the driving mechanism has an output shaft that rotates integrally with the rotation of the rotating body, and a moving body that moves in the direction of the rotation center axis of the output shaft in conjunction with the rotation of the output shaft.

そして、これらの回転体の回転により稼動部材を稼動するか、駆動機構の移動体により稼動部材が稼動されるようにした電子機器とする。
(実施の形態1)
本発明の実施の形態を図面を基に説明する。図1は、本発明の実施の形態1の圧電アクチュエータ100の構成を示した図である。固定部材3には、圧電素子で構成されるバイモルフ1の一端が固定されている。移動体となる円板形状の回転体2は中心軸2aを有し、図示しない軸受けによって回転可能に支持されている。固定部材3の一端には穴を有する軸受け部3aが設けられており、図示しない軸を中心に回転可能に支持されている。固体部材3の他端3bを板ばねからなる加圧部材4によって圧電素子1と回転体2は加圧接触している。尚、図1に示した様に、圧電素子1の回転体3の接触部には、耐磨耗性に優れたエンジニヤリングプラスチックやアルミナ等のエンジニヤリングセラミクス等の摩擦部材5を接合しても良い。
The operating member is operated by the rotation of the rotating body, or the operating member is operated by the moving body of the driving mechanism.
(Embodiment 1)
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a piezoelectric actuator 100 according to the first embodiment of the present invention. One end of a bimorph 1 composed of a piezoelectric element is fixed to the fixing member 3. A disc-shaped rotating body 2 serving as a moving body has a central axis 2a and is rotatably supported by a bearing (not shown). A bearing portion 3a having a hole is provided at one end of the fixed member 3, and is supported so as to be rotatable about a shaft (not shown). The piezoelectric element 1 and the rotating body 2 are in pressure contact with the other end 3b of the solid member 3 by a pressure member 4 made of a leaf spring. As shown in FIG. 1, a friction member 5 such as an engineering plastic such as engineering plastics or alumina having excellent wear resistance is joined to the contact portion of the rotating body 3 of the piezoelectric element 1. good.

次に本発明の圧電アクチュエータ100の駆動原理について、図1、図2を用いて説明する。圧電素子からなるバイモルフ1は例えば、回転体2の径方向と直交する接線方向(
図2中矢印の方向)に分極処理された圧電素子1a、1bを重ねて接合し構成されている。圧電素子1a、1bの接合面と他方の面には図示しない電極が設けられている。ここで、圧電素子1a、1bの接合面にある電極に接続したリード2bをGNDとし、圧電素子1a、1bの他の面にある電極を短絡するリード2aに、図示していない駆動回路により電圧を印可すると、一方の圧電素子は伸び、一方の圧電素子は縮む為、圧電素子1は全体として屈曲変位を示す。そして、電圧の極性を変えると変形の方向も逆になる。ここで、図1(b)の状態から図1(c)状態に急速に変形させる動作と、図1(c)の状態から図1(b)の状態へ緩やかに変形させる行為を交互に行えば、前者の動作では回転体2と圧電素子1の間には滑りが生じ、後者の動作では圧電素子1の変形に伴い回転体2も回転するため回転体は一方向に移動する。実際には、両者の動作において滑りと移動が共存していても、その割合が異なれば結果として一方向に回転体2を移動させることが出来る。
Next, the driving principle of the piezoelectric actuator 100 of the present invention will be described with reference to FIGS. The bimorph 1 made of a piezoelectric element is, for example, a tangential direction orthogonal to the radial direction of the rotating body 2 (
The piezoelectric elements 1a and 1b polarized in the direction of the arrow in FIG. Electrodes (not shown) are provided on the bonding surface and the other surface of the piezoelectric elements 1a and 1b. Here, the lead 2b connected to the electrode on the bonding surface of the piezoelectric elements 1a and 1b is set to GND, and the lead 2a that short-circuits the electrode on the other surface of the piezoelectric elements 1a and 1b is applied with a voltage by a drive circuit not shown When one is applied, one piezoelectric element expands and one piezoelectric element contracts, so that the piezoelectric element 1 exhibits bending displacement as a whole. When the polarity of the voltage is changed, the direction of deformation is also reversed. Here, the operation of rapidly deforming from the state of FIG. 1 (b) to the state of FIG. 1 (c) and the act of gently deforming from the state of FIG. 1 (c) to the state of FIG. 1 (b) are alternately performed. For example, in the former operation, slip occurs between the rotating body 2 and the piezoelectric element 1, and in the latter operation, the rotating body 2 also rotates as the piezoelectric element 1 is deformed, so that the rotating body moves in one direction. Actually, even if slippage and movement coexist in both operations, the rotating body 2 can be moved in one direction as a result if the ratios are different.

この様な駆動を圧電素子1にさせるためには、駆動信号を交番電圧とするとともに、電圧を上げる際のスピードと下げる際のスピードを変えることで、圧電素子1の変形の速度、加速度は変形する方向である第一の方向と、第一の方向と逆方向である第二の方向とによって異なる。例えば、リード2a、2bの間に、図2(b)もしくは図2(c)に示した駆動信号を加えることで、回転体2の回転方向を変えることが出来る。ここでは+極性だけの駆動信号を印加したが、+,−極性を交互に繰り返す駆動信号を印加しても良い。この場合、圧電素子1は図1(a)の状態を中心として左右に振れる変位となる為、大きな変位が得られる。   In order to cause the piezoelectric element 1 to perform such driving, the drive signal is changed to an alternating voltage, and the speed at which the voltage is increased and the speed at which the voltage is decreased are changed to change the deformation speed and acceleration of the piezoelectric element 1. The first direction, which is the direction to be changed, and the second direction, which is the opposite direction to the first direction. For example, the rotation direction of the rotating body 2 can be changed by applying the drive signal shown in FIG. 2B or 2C between the leads 2a and 2b. Here, a drive signal having only + polarity is applied, but a drive signal in which + and -polarities are alternately repeated may be applied. In this case, since the piezoelectric element 1 is displaced to the left and right with the state of FIG. 1A as the center, a large displacement can be obtained.

この様に、圧電素子1の第一の方向の変形により生じる回転体3の移動量と、第二の方向(第一の方向と逆方向)により生じる回転体3の移動量に差を持たせるような駆動信号であれば、図3に示したものに限らない。要求される出力仕様や回路構成に応じて適当なものを採用すれば良い。またバイモルフ素子の代わりに、圧電素子と金属等の弾性部材を用いてユニモルフを構成したものを用いても構わない。本実施の形態のように、圧電素子1の屈曲変形を利用することで大きな変位が得られる為、低電圧で駆動できる。   In this way, the moving amount of the rotating body 3 generated by the deformation of the piezoelectric element 1 in the first direction and the moving amount of the rotating body 3 generated by the second direction (the direction opposite to the first direction) are made different. Such a drive signal is not limited to that shown in FIG. Appropriate ones may be adopted according to required output specifications and circuit configurations. Moreover, you may use what comprised the unimorph using elastic members, such as a piezoelectric element and a metal, instead of a bimorph element. Since a large displacement can be obtained by using the bending deformation of the piezoelectric element 1 as in this embodiment, the piezoelectric element 1 can be driven at a low voltage.

また、支持方法は本実施の形態のものに限るものではなく、以下に示す他の実施の形態の支持方法を用いても構わない。   Further, the support method is not limited to that of the present embodiment, and support methods of other embodiments described below may be used.

また、本実施の形態において、圧電素子は回転体の径方向と直交する接線方向に分極処理されているが、分極方向や電圧のかけ方は異なっていたとしても、結果として回転体の径方向と直交する接線方向に変形を発生させる構成であれば良い。
(実施の形態2)
本発明の実施の形態3を図面に基づいて説明する。図3は、本発明の実施の形態2の圧電アクチュエータ200の構成を示したものである。基本的な圧電アクチュエータ200
の構成は、実施の形態1に示したものと同様であるので、相違点のみを説明する。
In the present embodiment, the piezoelectric element is polarized in a tangential direction orthogonal to the radial direction of the rotating body. However, even if the polarization direction and the method of applying voltage are different, as a result, the radial direction of the rotating body Any configuration may be used as long as the deformation is generated in the tangential direction orthogonal to the line.
(Embodiment 2)
A third embodiment of the present invention will be described with reference to the drawings. FIG. 3 shows the configuration of the piezoelectric actuator 200 according to the second embodiment of the present invention. Basic piezoelectric actuator 200
Since the configuration is the same as that shown in the first embodiment, only the differences will be described.

図3において、圧電素子6の一端は固定部材8の一端8aに固定されている。円板形状の回転体7は中心軸7aを有し、図示しない軸受けによって回転可能に支持されている。
固定部材8は案内部材9a、9bに案内され、回転体7の径方向にのみ移動可能に支持されている。固定部材8の他端8bを、コイルばねからなる加圧部材10によって加圧することにより、圧電素子6と回転体7は加圧接触している。尚、図3に示した様に、圧電素子6の回転体7との接触部には、耐磨耗性に優れたエンジニヤリングプラスチックやアルミナ等のエンジニヤリングセラミクス等の摩擦部材11を接合しても良い。
In FIG. 3, one end of the piezoelectric element 6 is fixed to one end 8 a of the fixing member 8. The disk-shaped rotating body 7 has a central shaft 7a and is rotatably supported by a bearing (not shown).
The fixed member 8 is guided by the guide members 9a and 9b and supported so as to be movable only in the radial direction of the rotating body 7. By pressing the other end 8b of the fixing member 8 with a pressing member 10 made of a coil spring, the piezoelectric element 6 and the rotating body 7 are in pressure contact. As shown in FIG. 3, a friction member 11 such as an engineering plastic such as engineering plastics or alumina having excellent wear resistance is joined to the contact portion of the piezoelectric element 6 with the rotating body 7. Also good.

次に本発明の圧電アクチュエータ200の駆動原理について、図3、図4を用いて説明する。圧電素子6は、例えば、回転体2の径方向(図4中矢印の方向)に分極処理されている。圧電素子6の分極方向と直交する方向と直交する面に設けられた図示しない電極に、リード12a、12bを通じて、図示していない駆動回路により電圧を印加することで、圧電素子6はせん断変形する。そして、電圧の極性を変えると変形の方向も逆になる。ここで、図3(b)の状態から(c)状態に急速に変形させる動作と、図3(c)の状態から(b)の状態へ緩やかに変形させる行為を交互に行えば、前者の動作では回転体7と圧電素子6の間には滑りが生じ、後者の動作では圧電素子6の変形に伴い回転体7も回転するため回転体は一方向に移動する。実際には、両者の動作において滑りと移動が共存していても、その割合が異なれば結果として一方向に回転体7を移動させることが出来る。   Next, the driving principle of the piezoelectric actuator 200 of the present invention will be described with reference to FIGS. The piezoelectric element 6 is polarized, for example, in the radial direction of the rotating body 2 (the direction of the arrow in FIG. 4). When a voltage is applied to an electrode (not shown) provided on a surface orthogonal to the direction orthogonal to the polarization direction of the piezoelectric element 6 by a drive circuit (not shown) through leads 12a and 12b, the piezoelectric element 6 undergoes shear deformation. . When the polarity of the voltage is changed, the direction of deformation is also reversed. Here, if the operation of rapidly deforming from the state of FIG. 3B to the state of (c) and the act of gently deforming from the state of FIG. 3C to the state of (b) are alternately performed, the former In the operation, slip occurs between the rotating body 7 and the piezoelectric element 6, and in the latter operation, the rotating body 7 also rotates with the deformation of the piezoelectric element 6, so that the rotating body moves in one direction. Actually, even if slip and movement coexist in both operations, if the ratios are different, the rotating body 7 can be moved in one direction as a result.

この様な駆動を圧電素子6にさせるためには、駆動信号を交番電圧とするとともに、電圧を上げる際のスピードと下げる際のスピードを変えることで、圧電素子6の変形の速度、加速度は、変形する方向である第一の方向と、第一の方向と逆方向である第二の方向とによって異なる。例えば、リード12a、12bの間に図4(a)もしくは図4(b)に示した駆動信号を加えることで、回転体7の回転方向を変えることが出来る。   In order to cause the piezoelectric element 6 to perform such driving, while changing the driving signal to an alternating voltage and changing the speed at which the voltage is raised and the speed at which the voltage is lowered, the deformation speed and acceleration of the piezoelectric element 6 are It differs depending on the first direction that is the direction of deformation and the second direction that is opposite to the first direction. For example, the rotation direction of the rotating body 7 can be changed by applying the drive signal shown in FIG. 4A or 4B between the leads 12a and 12b.

この様に、圧電素子6の第一の方向の変形により生じる回転体7の移動量と、第二の方向(第一の方向と逆方向)により生じる回転体7の移動量に、差を持たせるような駆動信号であれば図4に示したものに限らない。要求される出力仕様や回路構成に応じて適当なものを採用すれば良い。本実施の形態のように、圧電素子6のせん断変形を利用することで大きな発生力が得られると共に、高い周波数で駆動が可能な為、大きなトルク、速度を発生できる。   Thus, there is a difference between the amount of movement of the rotating body 7 caused by the deformation of the piezoelectric element 6 in the first direction and the amount of movement of the rotating body 7 caused by the second direction (the direction opposite to the first direction). The driving signal is not limited to that shown in FIG. Appropriate ones may be adopted according to required output specifications and circuit configurations. As in the present embodiment, by using the shear deformation of the piezoelectric element 6, a large generated force can be obtained, and since it can be driven at a high frequency, a large torque and speed can be generated.

また、支持方法は本実施の形態のものに限るものではなく、本発明にかかわる他の実施の形態の支持方法を用いても構わない。
(実施の形態3)
本発明の実施の形態3を図面を基に説明する。図5は、本発明の実施の形態3の圧電アクチュエータ300の構成を示したものである。基本的な圧電アクチュエータ300の構成は、実施の形態1に示したものと同様であるので、相違点のみを説明する。
Further, the supporting method is not limited to the one in this embodiment, and the supporting method in another embodiment according to the present invention may be used.
(Embodiment 3)
A third embodiment of the present invention will be described with reference to the drawings. FIG. 5 shows the configuration of the piezoelectric actuator 300 according to the third embodiment of the present invention. Since the basic configuration of the piezoelectric actuator 300 is the same as that shown in the first embodiment, only the differences will be described.

図5において、圧電素子13の一端は固定部材14に固定されている。円板形状の回転体15は中心軸15aを有し、図示しない軸受けによって回転可能に支持されている。固定部材14の一端には穴を有する軸受け部14aが設けられており、図示しない軸を中心によって回転可能に支持されている。固体部材14の他端14bを、板ばねからなる加圧部材16によって、圧電素子13と回転体15は加圧接触している。尚、図5に示した様に、圧電素子13の回転体15との接触部には、耐磨耗性に優れたエンジニヤリングプラスチックやアルミナ等のエンジニヤリングセラミクス等の摩擦部材17を接合しても良い。   In FIG. 5, one end of the piezoelectric element 13 is fixed to the fixing member 14. The disk-shaped rotating body 15 has a central shaft 15a and is rotatably supported by a bearing (not shown). A bearing portion 14a having a hole is provided at one end of the fixing member 14, and is supported rotatably about a shaft (not shown). The piezoelectric element 13 and the rotating body 15 are in pressure contact with the other end 14b of the solid member 14 by a pressure member 16 made of a leaf spring. As shown in FIG. 5, a friction member 17 such as an engineering plastic such as engineering plastic or alumina having excellent wear resistance is joined to the contact portion of the piezoelectric element 13 with the rotating body 15. Also good.

次に、本発明の圧電アクチュエータ300の駆動原理について、図6を用いて説明する。圧電素子13は例えば、回転体15の径方向と直交する接線方向(図6中矢印の方向)に分極処理されている。圧電素子13に、図示していない駆動回路により電圧を印加すると、圧電素子13は伸縮変形する。そして電圧の極性を変えると変形の方向も逆になる。ここで図6(a)の状態から図6(b)状態に急速に変形させる動作と、図6(b)の状態から図6(a)の状態へ緩やかに変形させる行為を交互に行えば、前者の動作では回転体15と圧電素子13の間には滑りが生じ、後者の動作では圧電素子13の変形に伴い回転体15も回転するため回転体は一方向に移動する。実際には、両者の動作において滑りと移動が共存していても、その割合が異なれば、結果として一方向に回転体15を移動させることが出来る。   Next, the driving principle of the piezoelectric actuator 300 of the present invention will be described with reference to FIG. For example, the piezoelectric element 13 is polarized in a tangential direction (in the direction of the arrow in FIG. 6) perpendicular to the radial direction of the rotating body 15. When a voltage is applied to the piezoelectric element 13 by a drive circuit (not shown), the piezoelectric element 13 expands and contracts. When the polarity of the voltage is changed, the direction of deformation is reversed. If the operation of rapidly deforming from the state of FIG. 6A to the state of FIG. 6B and the act of gently deforming from the state of FIG. 6B to the state of FIG. In the former operation, slip occurs between the rotating body 15 and the piezoelectric element 13, and in the latter operation, the rotating body 15 also rotates with the deformation of the piezoelectric element 13, so that the rotating body moves in one direction. Actually, even if slip and movement coexist in both operations, if the ratios are different, the rotating body 15 can be moved in one direction as a result.

この様な駆動を圧電素子13にさせるためには、駆動信号を交番電圧とするとともに、電圧を上げる際のスピードと下げる際のスピードを変えることで、圧電素子13の変形の速度、加速度は変形する方向である第一の方向と、第一の方向と逆方向である第二の方向とによって異なる。基本的には実施の形態1や2に示したものと同様で良い。   In order to cause the piezoelectric element 13 to perform such driving, the drive signal is changed to an alternating voltage, and the speed at which the voltage is increased and the speed at which the voltage is decreased are changed, so that the deformation speed and acceleration of the piezoelectric element 13 are changed. The first direction, which is the direction to be changed, and the second direction, which is the opposite direction to the first direction. Basically, it may be the same as that shown in the first and second embodiments.

本実施の形態のように、圧電素子13の伸縮変形を利用することで大きな発生力が得られるとともに、屈曲変位を利用したものに比べ高い周波数で駆動できる為、大きなトルク、速度が得られる。   As in the present embodiment, a large generated force can be obtained by using the expansion and contraction deformation of the piezoelectric element 13, and a large torque and speed can be obtained because the piezoelectric element 13 can be driven at a higher frequency than that using the bending displacement.

また、支持方法は本実施の形態のものに限るものではなく、本発明にかかわる他の実施の形態の支持方法を用いても構わない。
(実施の形態4)
次に、本発明の圧電アクチュエータを電子機器に応用した例について、図7を用いて説明する。
本実施の形態は、本発明の圧電アクチュエータを電子機器の駆動源に適用した例を示すものである。駆動源は、回転体20と、これと図示しない加圧機構により加圧接触する圧電素子18と、圧電素子18を支持する固定部材19と、回転体20の回転中心軸上に設けられ回転体20と一体的に回転する出力軸21と、出力軸21並びに回転体20の回転を回転体20、出力軸と一体的に設けられた軸部21a,21bと勘合して案内する軸受け22,23と、出力軸21の側面に設けられた、おねじ部21cと係合する、雌ねじ部23aを有する移動体23と、移動体23に設けられた穴状の案内部23bと係合する案内軸25とからなる。
Further, the supporting method is not limited to the one in this embodiment, and the supporting method in another embodiment according to the present invention may be used.
(Embodiment 4)
Next, an example in which the piezoelectric actuator of the present invention is applied to an electronic device will be described with reference to FIG.
This embodiment shows an example in which the piezoelectric actuator of the present invention is applied to a drive source of an electronic device. The driving source includes a rotating body 20, a piezoelectric element 18 that is in pressure contact with a pressing mechanism (not shown), a fixing member 19 that supports the piezoelectric element 18, and a rotating body that is provided on the rotation center axis of the rotating body 20. The output shaft 21 that rotates integrally with the shaft 20, and the bearings 22 and 23 that guide the rotation of the output shaft 21 and the rotating body 20 with the rotating body 20 and shaft portions 21a and 21b provided integrally with the output shaft. And a moving body 23 having a female screw portion 23a that is provided on the side surface of the output shaft 21 and that engages with the external thread portion 21c, and a guide shaft that engages with a hole-shaped guide portion 23b provided in the moving body 23. 25.

圧電素子18の動作に伴い回転体20が回転すると出力軸21も一体に回転し、移動体23は出力軸21の回転中心軸方向へ稼動する。回転体20の回転方向を変えることで移動体23の稼動方向は変わる。この様に、回転部の慣性モーメントは回転体20と出力軸21の慣性モーメントの和となり、大きなものとなる為、圧電素子の変形が終了してもこの慣性を利用して大きな出力が得られる。   When the rotating body 20 rotates with the operation of the piezoelectric element 18, the output shaft 21 also rotates integrally, and the moving body 23 operates in the direction of the rotation center axis of the output shaft 21. The operating direction of the moving body 23 is changed by changing the rotating direction of the rotating body 20. In this manner, the inertia moment of the rotating portion is the sum of the inertia moments of the rotating body 20 and the output shaft 21, and becomes large. Therefore, even if the deformation of the piezoelectric element is completed, a large output can be obtained using this inertia. .

従って、例えば移動体23に設けられた穴部23cに接合された稼動体24をレンズとすれば、カメラのズーム機構やオートフォーカス機構等が実現できる。このような構造とすることで、回転体20の移動角に対して移動体23の移動量が小さい減速機構となる為、高精度な位置決めが可能となると共に、外部からの衝撃や振動に対しても移動体23は動きにくい信頼性の高い電子機器が実現できる。   Therefore, for example, if the operating body 24 joined to the hole 23c provided in the moving body 23 is a lens, a zoom mechanism, an autofocus mechanism, or the like of the camera can be realized. By adopting such a structure, since the moving mechanism of the moving body 23 is small with respect to the moving angle of the rotating body 20, a highly accurate positioning is possible, and against external impacts and vibrations. However, the mobile object 23 can realize a highly reliable electronic device that is difficult to move.

このように、回転体20と一体的に出力軸21を回転させることにより、バックラッシュがなく高精度な位置決めが可能となるが、大きな出力を取り出すために回転体20と出力軸21の間にギヤ等の減速機構としても良い。   Thus, by rotating the output shaft 21 integrally with the rotating body 20, high-accuracy positioning is possible without backlash. However, in order to take out a large output, the rotating shaft 20 can be positioned between the rotating body 20 and the output shaft 21. A reduction mechanism such as a gear may be used.

ところで、圧電素子18は、本発明にかかわる実施の形態1〜3の動作原理に基づくものであれば、その形態は問わない。
(実施の形態5)
次に、本発明の圧電アクチュエータをリニヤ型圧電アクチュエータとして用いた例について、図8を用いて説明する。
本実施の形態は、リニヤ型の圧電アクチュエータの構成例を示すものである。移動体として実施の形態1から4に示した回転体の代わりに矢印30の方向に直動運動する移動体28を用いる。移動体28はローラー部材29によって矢印30の方向にのみ移動可能に案内されている。圧電素子25の一端には摩擦部材29が設けられており、加圧部材27の加圧力を受け移動体28と接触する。圧電素子の未分極部25aは案内部材26で案内され、この接触圧方向にのみ移動可能に案内されている。
ところで、圧電素子28は、本発明にかかわる実施の形態1〜3の動作原理に基づくものであれば、その形態は問わない。そしてこのような形態の圧電素子25を用いることにより移動体28は矢印30の方向に移動できる。ここで圧電素子25の未分極部25aを固定部材とすることで部品個数の低減のみならず圧電アクチュエータの小型化が可能となる。
ところで、未分極部でなくても例えば駆動信号が印加されない部分のように圧電素子の変位が生じない部分であれば圧電素子の案内や加圧に影響を与えないため固定部材として扱って構わない。
By the way, the form of the piezoelectric element 18 is not limited as long as it is based on the operation principle of the first to third embodiments according to the present invention.
(Embodiment 5)
Next, an example in which the piezoelectric actuator of the present invention is used as a linear type piezoelectric actuator will be described with reference to FIG.
This embodiment shows a configuration example of a linear type piezoelectric actuator. Instead of the rotating body shown in the first to fourth embodiments, a moving body 28 that linearly moves in the direction of arrow 30 is used as the moving body. The moving body 28 is guided by the roller member 29 so as to be movable only in the direction of the arrow 30. A friction member 29 is provided at one end of the piezoelectric element 25, and receives a pressing force from the pressing member 27 to come into contact with the moving body 28. The unpolarized portion 25a of the piezoelectric element is guided by the guide member 26 and is guided so as to be movable only in the contact pressure direction.
By the way, the form of the piezoelectric element 28 is not limited as long as it is based on the operation principle of the first to third embodiments according to the present invention. The moving body 28 can move in the direction of the arrow 30 by using the piezoelectric element 25 having such a configuration. Here, by using the non-polarized portion 25a of the piezoelectric element 25 as a fixed member, not only the number of components but also the piezoelectric actuator can be miniaturized.
By the way, even if it is not an unpolarized part, any part where the displacement of the piezoelectric element does not occur, such as a part where no drive signal is applied, may be treated as a fixed member because it does not affect the guide or pressurization of the piezoelectric element. .

本発明の圧電アクチュエータの移動体を例えばレンズとすれば、カメラのズーム機構、オートフォーカス機構等の電子機器へ応用できる。   If the moving body of the piezoelectric actuator of the present invention is a lens, for example, it can be applied to electronic devices such as a zoom mechanism and an autofocus mechanism of a camera.

本発明の実施の形態1にかかわる圧電アクチュエータの構成を示す図である。It is a figure which shows the structure of the piezoelectric actuator concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかわる圧電アクチュエータの構成並びに駆動信号を示す図である。It is a figure which shows the structure and drive signal of a piezoelectric actuator which concern on Embodiment 1 of this invention. 本発明の実施の形態2にかかわる圧電アクチュエータの構成を示す図である。It is a figure which shows the structure of the piezoelectric actuator concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかわる圧電アクチュエータの駆動信号を示す図である。It is a figure which shows the drive signal of the piezoelectric actuator concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかわる圧電アクチュエータの構成を示す図である。It is a figure which shows the structure of the piezoelectric actuator concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかわる圧電アクチュエータの駆動原理を示す図である。It is a figure which shows the drive principle of the piezoelectric actuator concerning Embodiment 3 of this invention. 本発明の圧電アクチュエータを電子機器に応用した例を示す図である。It is a figure which shows the example which applied the piezoelectric actuator of this invention to the electronic device. 本発明の圧電アクチュエータをリニヤ型圧電アクチュエータとして用いた例を示す図である。It is a figure which shows the example which used the piezoelectric actuator of this invention as a linear type piezoelectric actuator.

符号の説明Explanation of symbols

2,7,15、28 移動体
3,8,14 固定部材
23 駆動体
24 稼動部材
4,10,16 加圧部材
1,6,13 圧電素子
2, 7, 15, 28 Moving body 3, 8, 14 Fixed member 23 Driving body 24 Operating member 4, 10, 16 Pressure member 1, 6, 13 Piezoelectric element

Claims (5)

伸縮変形する圧電素子と、前記圧電素子を固定し回転可能に支持された固定部材と、前記圧電素子の伸縮変形の方向と直交する方向に突出して設けられた摩擦部材と、前記摩擦部材の突出方向に設けられた移動体と、前記固定部材に加圧力を働かせ前記移動体と前記摩擦部材との間に接触圧を働かせる加圧部材と、前記圧電素子を往復変位させる信号を出力する駆動回路とからなり、前記駆動回路は前記圧電素子の第一の方向の変位の加速度もしくは速度と前記第一の方向とは逆方向となる第二の方向の変位の加速度もしくは速度とが異なるように変位させる信号を出力することで前記移動体を駆動することを特徴とする圧電アクチュエータ。 A piezoelectric element that expands and contracts, a fixing member that fixes and rotates the piezoelectric element, a friction member that protrudes in a direction orthogonal to the direction of expansion and contraction of the piezoelectric element, and a protrusion of the friction member A movable body provided in a direction, a pressure member that applies pressure to the fixed member to apply a contact pressure between the movable body and the friction member, and a drive circuit that outputs a signal for reciprocally displacing the piezoelectric element The drive circuit is displaced so that the acceleration or velocity of the displacement in the first direction of the piezoelectric element is different from the acceleration or velocity of the displacement in the second direction which is opposite to the first direction. A piezoelectric actuator characterized in that the moving body is driven by outputting a signal to be operated. 前記固定部材は前記圧電素子の一部であることを特徴とする請求項1に記載の圧電アクチュエータ。 The piezoelectric actuator according to claim 1, wherein the fixing member is a part of the piezoelectric element . 請求項1または2に記載の圧電アクチュエータと、前記移動体の駆動と連動して回転する出力軸と、前記出力軸の回転に連動して前記出力軸の回転中心軸方向に移動する移動体を有することを特徴とする駆動機構。A piezoelectric actuator according to claim 1, an output shaft that rotates in conjunction with driving of the movable body, and a movable body that moves in the direction of the rotation center axis of the output shaft in conjunction with rotation of the output shaft. A drive mechanism comprising: 請求項1または2に記載の圧電アクチュエータの移動体の移動により稼動部材が稼動されることを特徴とする電子機器。An electronic device in which an operation member is operated by movement of a moving body of the piezoelectric actuator according to claim 1. 請求項3記載の駆動機構の移動体により稼動部材が稼動されることを特徴とする電子機器。 An electronic device, wherein the operating member is operated by the moving body of the driving mechanism according to claim 3 .
JP2004373915A 2003-12-25 2004-12-24 Piezoelectric actuator and electronic device using the same Expired - Fee Related JP4412663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373915A JP4412663B2 (en) 2003-12-25 2004-12-24 Piezoelectric actuator and electronic device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003430344 2003-12-25
JP2004373915A JP4412663B2 (en) 2003-12-25 2004-12-24 Piezoelectric actuator and electronic device using the same

Publications (2)

Publication Number Publication Date
JP2005210888A JP2005210888A (en) 2005-08-04
JP4412663B2 true JP4412663B2 (en) 2010-02-10

Family

ID=34914142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373915A Expired - Fee Related JP4412663B2 (en) 2003-12-25 2004-12-24 Piezoelectric actuator and electronic device using the same

Country Status (1)

Country Link
JP (1) JP4412663B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183921B2 (en) * 2006-01-17 2013-04-17 セイコーインスツル株式会社 Piezoelectric actuator and electronic device using the same

Also Published As

Publication number Publication date
JP2005210888A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
EP2216837A1 (en) Piezoelectric motor
JP2006330053A (en) Lens barrel
JP2006330054A (en) Lens barrel
US7095159B2 (en) Devices with mechanical drivers for displaceable elements
US20070182277A1 (en) Piezoelectric drive unit and piezoelectric drive element
KR100902923B1 (en) Piezoelectric motor
JP4412663B2 (en) Piezoelectric actuator and electronic device using the same
JP2005354866A (en) Actuator
JP4578815B2 (en) Control system and electronic device using piezoelectric actuator
JP4213555B2 (en) Piezoelectric actuator and electronic device using the same
JP4369720B2 (en) Piezoelectric actuator and electronic device using the same
JP4550620B2 (en) Piezoelectric actuator and electronic device using the same
JP2007181261A (en) Drive unit and camera module
KR100957190B1 (en) Stage apparatus using a Piezoelectric linear motor
JP2006333571A (en) Vibration actuator and lens barrel
JP5183921B2 (en) Piezoelectric actuator and electronic device using the same
JP2004274916A (en) Actuator
JP4578799B2 (en) Piezoelectric actuator and electronic device using the same
JP4634174B2 (en) Ultrasonic motor and electronic device using the same
KR100752698B1 (en) Piezoelectric actuator and lens driving apparatus therewith
JP4316350B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2005354832A (en) Actuator
JP4623714B2 (en) Camera module and portable terminal using the camera module
JP5466253B2 (en) Piezoelectric actuator and electronic device using the same
KR20130136876A (en) Pantilt device for cctv

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090924

TRDD Decision of grant or rejection written
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4412663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees