JP5183921B2 - Piezoelectric actuator and electronic device using the same - Google Patents

Piezoelectric actuator and electronic device using the same Download PDF

Info

Publication number
JP5183921B2
JP5183921B2 JP2006348991A JP2006348991A JP5183921B2 JP 5183921 B2 JP5183921 B2 JP 5183921B2 JP 2006348991 A JP2006348991 A JP 2006348991A JP 2006348991 A JP2006348991 A JP 2006348991A JP 5183921 B2 JP5183921 B2 JP 5183921B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
moving body
piezoelectric
piezoelectric actuator
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006348991A
Other languages
Japanese (ja)
Other versions
JP2007221988A (en
Inventor
朗弘 飯野
哲也 野邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2006348991A priority Critical patent/JP5183921B2/en
Publication of JP2007221988A publication Critical patent/JP2007221988A/en
Application granted granted Critical
Publication of JP5183921B2 publication Critical patent/JP5183921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は圧電素子の振動により移動体を摩擦駆動する圧電アクチュエータ、及びそれを応用した電子機器に関する。     The present invention relates to a piezoelectric actuator that frictionally drives a moving body by vibration of a piezoelectric element, and an electronic device to which the piezoelectric actuator is applied.

近年、電子機器の小型化が進み、そこで用いられるアクチュエータの小型化が要求されている。このアクチュエータの代表例は電磁型のモータであり、その出力を減速歯車列等を介して稼働部材の駆動力に変換する方式が古くから一般に行われている。   In recent years, downsizing of electronic devices has progressed, and downsizing of actuators used there has been required. A typical example of this actuator is an electromagnetic motor, and a method for converting its output into a driving force of an operating member via a reduction gear train or the like has been generally used for a long time.

しかしながら、電磁型のモータは小型化が難しいばかりでなく、小型化してもトルクが極めて弱くなってしまうため、その分だけ減速歯車列が必要となり機構自体の大きさは、小さくするのが難しかった。   However, electromagnetic motors are not only difficult to miniaturize, but the torque becomes extremely weak even if they are miniaturized, so a reduction gear train is required, and the size of the mechanism itself is difficult to reduce. .

そこで、新原理のアクチュエータの開発も盛んに行われており、小型で発生力の大きな圧電素子を用いたものにも期待が掛かっている。例えば移動体と、これを移動可能にガイドする軸との間に摩擦力を生じさせておき、軸の先端に設けた圧電素子を急速に変形させた際に生じる移動体の慣性力により移動体を稼働する方式が開発され、カメラのズーム機構やオートフォーカス機構への応用も試みられている(特許文献1、2)。   Therefore, development of actuators based on a new principle has been actively carried out, and expectations are also high for small-sized and high-powered piezoelectric elements. For example, a frictional force is generated between the moving body and a shaft that guides the movable body, and the moving body is generated by the inertial force of the moving body that is generated when the piezoelectric element provided at the tip of the shaft is rapidly deformed. Has been developed, and attempts have been made to apply it to camera zoom mechanisms and autofocus mechanisms (Patent Documents 1 and 2).

また、一端が固定部材に固定された圧電素子と、圧電素子と加圧接触する移動体とで構成され、圧電素子の第一の方向の変位の加速度もしくは速度と、第二の方向の変位の加速度もしくは速度とが異なるように変位させることで移動体を駆動する方式が検討されている(特許文献3)。
特開平9−247967号公報 特開平11−265212号公報 特開2005−210888号公報
The piezoelectric element is fixed at one end to a fixed member, and a moving body is in pressure contact with the piezoelectric element. The acceleration or velocity of the displacement in the first direction of the piezoelectric element and the displacement in the second direction A method of driving a moving body by displacing so that the acceleration or speed is different (Patent Document 3).
Japanese Patent Laid-Open No. 9-247967 JP 11-265212 A JP 2005-210888 A

しかしながら、特許文献1に示したものの動作は直動動作に限られるため、応用する機器に制限を与えてしまった。この場合、稼働部材をダイレクトに稼働させることが出きるというメリットはあるが、その発生力は小さいと共に、アクチュエータを搭載する機器に落下や振動が生じた場合、稼働部が動いてしまう恐れが有った。   However, since the operation shown in Patent Document 1 is limited to the linear motion operation, the applied device is limited. In this case, there is a merit that it is possible to operate the operating member directly, but the generated force is small and there is a possibility that the operating part may move if the actuator mounting device falls or vibrates. It was.

そして、特許文献1、2ともに移動体と軸、あるいは移動体と圧電素子との間の接触部で摺動ロスを発生したり、圧電素子の支持部での振動漏れが発生することにより駆動効率が低く、大きな消費電力を必要とするという課題があった。   In both Patent Documents 1 and 2, driving efficiency is caused by occurrence of sliding loss at the contact portion between the moving body and the shaft, or between the moving body and the piezoelectric element, or vibration leakage at the support portion of the piezoelectric element. However, there was a problem that low power consumption is required.

本発明の目的は、駆動効率が高く、小型で低消費電力、大出力が得られる圧電アクチュエータを提供することにある。   An object of the present invention is to provide a piezoelectric actuator having high driving efficiency, small size, low power consumption, and high output.

そこで、本発明の圧電アクチュエータは、第一の方向に往復変位する第一の圧電素子と、第一の方向とは異なる第二の方向に往復変位する第二の圧電素子と、により一体的に構成された直方体形状の振動子と、第一の圧電素子に設けられた摩擦部と接する移動体と、からなり、第一の圧電素子と第二の圧電素子に同一波形形状の駆動信号を同一のタイミングで印加し、第一の方向の変位の行きの速度を帰りの速度よりも遅くするとともに第二の方向の変位の行きの速度を帰りの速度よりも遅くすることで移動体を駆動することを特徴とする圧電アクチュエータとする。 Therefore, the piezoelectric actuator of the present invention is integrally formed by a first piezoelectric element that reciprocates in a first direction and a second piezoelectric element that reciprocates in a second direction different from the first direction. A rectangular parallelepiped vibrator configured and a moving body in contact with the friction portion provided on the first piezoelectric element, and the same waveform drive signal is the same on the first piezoelectric element and the second piezoelectric element. The moving body is driven by making the speed of the displacement in the first direction slower than the return speed and making the speed of the displacement in the second direction slower than the return speed. The piezoelectric actuator is characterized by this.

これによれば、第一の圧電素子の運動をロス無く移動体に伝えられるため、移動体の出力は向上し、圧電アクチュエータの駆動効率は向上する。   According to this, since the movement of the first piezoelectric element can be transmitted to the moving body without loss, the output of the moving body is improved and the driving efficiency of the piezoelectric actuator is improved.

本発明によれば圧電素子を非共振状態で駆動できるため消費電流が小さく、また、簡易な構成の駆動回路で駆動できる圧電アクチュエータが実現できる。しかも、駆動効率が高いため小型で高出力の圧電アクチュエータが実現できる。   According to the present invention, since the piezoelectric element can be driven in a non-resonant state, current consumption is small, and a piezoelectric actuator that can be driven by a drive circuit having a simple configuration can be realized. Moreover, since the drive efficiency is high, a small and high output piezoelectric actuator can be realized.

そして、移動体により稼動部材を駆動することで、電子機器の小型化、低消費電力化が実現できる。   Then, by driving the operating member by the moving body, it is possible to achieve downsizing and low power consumption of the electronic device.

本発明の実施の形態を図面を基に説明する。   Embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1(a)は本発明の実施の形態1の圧電アクチュエータ100の構成を、図1(b)は圧電アクチュエータ100に使用されている振動子20の構成を示した図(変形図)である。
(Embodiment 1)
FIG. 1A shows the configuration of the piezoelectric actuator 100 according to Embodiment 1 of the present invention, and FIG. 1B shows the configuration of the vibrator 20 used in the piezoelectric actuator 100 (modification). .

本発明の圧電アクチュエータ100は、支持部材4と、第一の圧電素子1と第二の圧電素子2から構成され、支持部材4に一端を固定された振動子20と、振動子20の他端に設けられた摩擦部3と、摩擦部3と接する移動体7と、摩擦部3と移動体7の間の接触圧を発生させる加圧ばね6と、支持部材4の移動を案内する案内部材5とで構成されている。   The piezoelectric actuator 100 of the present invention includes a support member 4, a first piezoelectric element 1, and a second piezoelectric element 2, a vibrator 20 having one end fixed to the support member 4, and the other end of the vibrator 20. , A moving member 7 in contact with the friction unit 3, a pressure spring 6 that generates a contact pressure between the friction unit 3 and the moving member 7, and a guide member that guides the movement of the support member 4. And 5.

振動子20は直方体形状であり、第一の圧電素子1と第二の圧電素子2を接着することにより一体的に構成されている。接着剤を用いずに、第一の圧電素子1と、第二の圧電素子2とを同一の圧電素子内に構成されるように一体的に焼結されたものでも良い。第一の圧電素子1は矢印51の方向に分極処理されており、矢印51と直交する方向の端面に設けられた電極8,9間に電圧を印加すると、図中x軸方向へせん断変形を行うことで、移動体7の移動方向(摩擦部3と移動体7との接触圧方向と直交する方向)への変位を発生する。第二の圧電素子2は矢印52の方向に分極処理されており、矢印52の方向の端面に設けられた電極9,10間に電圧を印加すると、y軸方向へ伸縮変形を行うことで摩擦部3と移動体7との接触圧方向への変位を発生する。   The vibrator 20 has a rectangular parallelepiped shape, and is integrally formed by bonding the first piezoelectric element 1 and the second piezoelectric element 2. The first piezoelectric element 1 and the second piezoelectric element 2 may be integrally sintered so as to be configured in the same piezoelectric element without using an adhesive. The first piezoelectric element 1 is polarized in the direction of the arrow 51, and when a voltage is applied between the electrodes 8 and 9 provided on the end face in the direction orthogonal to the arrow 51, the first piezoelectric element 1 undergoes shear deformation in the x-axis direction in the figure. By performing, the displacement to the moving direction of the moving body 7 (direction orthogonal to the contact pressure direction of the friction part 3 and the moving body 7) generate | occur | produces. The second piezoelectric element 2 is polarized in the direction of the arrow 52, and when a voltage is applied between the electrodes 9 and 10 provided on the end face in the direction of the arrow 52, the second piezoelectric element 2 is subjected to expansion and contraction deformation in the y-axis direction. A displacement in the contact pressure direction between the portion 3 and the moving body 7 is generated.

移動体7は、移動体7の回転中心に設けた軸7aを、図示しない軸受けにより案内することにより回転する。案内部材5は二つのガイド面5a,5bに図示しない溝部を有し、溝部は支持部材4の側面4a,4bと係合することで、支持部材4が加圧ばね6の加圧力を受け、移動体7の方向に移動する為の案内となる。摩擦部3は耐磨耗性に優れたエンジ
ニヤリングプラスチックやアルミナ等のエンジニヤリングセラミクス等から出来ており、接着剤により圧電素子11に接合されている。しかしながら、圧電素子1の表面自体を摩擦部3としても良いし、コーティング等によって摩擦部3を形成しても構わない。
The moving body 7 rotates by guiding a shaft 7a provided at the rotation center of the moving body 7 with a bearing (not shown). The guide member 5 has a groove portion (not shown) on the two guide surfaces 5a and 5b, and the groove portion engages with the side surfaces 4a and 4b of the support member 4, so that the support member 4 receives the pressing force of the pressure spring 6, This is a guide for moving in the direction of the moving body 7. The friction portion 3 is made of an engineering plastic having excellent wear resistance, an engineering ceramic such as alumina, or the like, and is bonded to the piezoelectric element 11 with an adhesive. However, the surface of the piezoelectric element 1 itself may be used as the friction part 3, or the friction part 3 may be formed by coating or the like.

ここで、支持部材4は重量の重い真鍮等の金属からできており圧電素子1,2の急速な変形に対するカウンターウエイトとして働く。そして、案内部材5は圧電素子1の変形による支持部材4のx方向の動きを規制し、加圧ばね6は圧電素子2の変形による支持部材4のy方向の動きを規制することを助けることが可能となるから圧電素子1,2の動作は効率良く移動体7の動作に変換される。   Here, the support member 4 is made of a heavy metal such as brass and serves as a counterweight against rapid deformation of the piezoelectric elements 1 and 2. The guide member 5 restricts the movement of the support member 4 in the x direction due to the deformation of the piezoelectric element 1, and the pressure spring 6 helps to restrict the movement of the support member 4 in the y direction due to the deformation of the piezoelectric element 2. Therefore, the operation of the piezoelectric elements 1 and 2 is efficiently converted into the operation of the moving body 7.

次に振動子20の動作を具体的に説明する。図2、3,4は圧電素子1,2へ印加する駆動信号E1,E2のパターンの例(パターン1,2,3)と、これに対応して動作する摩擦部3の動作の様子を示したものである。それぞれ図(b)は横軸に時間を、縦軸に電圧レベルをとって、第一の圧電素子1への印加信号E1、第二の圧電素子2への印加信号E2の変化を示している。図(a)は、変位の方向を指す矢印と変位のスピードを表す言葉でこの駆動信号に対する摩擦部3の動作の様子を示している。   Next, the operation of the vibrator 20 will be specifically described. 2, 3 and 4 show examples of patterns of the drive signals E1 and E2 applied to the piezoelectric elements 1 and 2 (patterns 1, 2 and 3) and the operation of the friction portion 3 which operates correspondingly. It is a thing. FIG. 4B shows changes in the applied signal E1 to the first piezoelectric element 1 and the applied signal E2 to the second piezoelectric element 2, with time on the horizontal axis and voltage level on the vertical axis. . FIG. 4A shows the state of the operation of the friction portion 3 in response to this drive signal with an arrow indicating the direction of displacement and words indicating the speed of displacement.

図2において、第一の圧電素子1、第二の圧電素子2には同一波形形状の駆動信号が印加される。ゆっくりと電圧が増加する期間P1に続いて急速に電圧が減少する期間P2を繰り返す。期間P1では、摩擦部3はゆっくりとx軸+方向に動作すると共に、Y軸+方向に動作するため、これと接する移動体7もこの動作にならって移動する(A1)。期間P2では急速にx軸−方向に動作すると共に、Y軸−方向に動作する(A2)。このとき、摩擦部3と移動体7との接触は離れるから、摩擦部3の動作は移動体7には伝わらない。この動作を繰り返すことによって、移動体7は反時計回りに回転する。このように、摩擦部3の動作は、第一の圧電素子1による移動体7の移動方向と逆の(x軸方向)動作と、第二の圧電素子2による移動体7から離れる方向の(y軸方向)動作を速くして、第一の圧電素子1による移動体7の移動方向(x軸方向)の動作をゆっくりと行うことにより、移動体7には摩擦部3から余計な(逆方向の)駆動力が伝わらないから圧電アクチュエータ100の駆動効率は向上する。そして、このように第一の圧電素子1、第二の圧電素子2に印加する駆動信号を同一波形形状とすることにより図示しない駆動回路の構成が簡単になる。ところで、移動体7を時計回りに回転させる際には図2(c)に示した様に、駆動信号E1もしくはE2の電圧の変化(電圧を急激に変化させる過程と、緩やかに変化させる過程の順序を逆にすれば良い。   In FIG. 2, drive signals having the same waveform shape are applied to the first piezoelectric element 1 and the second piezoelectric element 2. The period P2 in which the voltage decreases rapidly is repeated following the period P1 in which the voltage increases slowly. In the period P1, the friction part 3 moves slowly in the x-axis + direction and also moves in the Y-axis + direction, so that the moving body 7 in contact therewith also moves in accordance with this movement (A1). In the period P2, it rapidly moves in the x-axis direction and moves in the Y-axis direction (A2). At this time, since the contact between the friction portion 3 and the moving body 7 is separated, the operation of the friction portion 3 is not transmitted to the moving body 7. By repeating this operation, the moving body 7 rotates counterclockwise. As described above, the friction unit 3 operates in the direction opposite to the moving direction of the moving body 7 by the first piezoelectric element 1 (in the x-axis direction) and in the direction away from the moving body 7 by the second piezoelectric element 2 ( The movement of the moving body 7 by the first piezoelectric element 1 is accelerated in the y-axis direction), and the movement of the moving body 7 (x-axis direction) is slowly performed. Since the driving force (in the direction) is not transmitted, the driving efficiency of the piezoelectric actuator 100 is improved. In this way, the drive signals applied to the first piezoelectric element 1 and the second piezoelectric element 2 have the same waveform shape, thereby simplifying the configuration of a drive circuit (not shown). By the way, when the moving body 7 is rotated clockwise, as shown in FIG. 2C, the voltage of the drive signal E1 or E2 is changed (the process of changing the voltage abruptly and the process of changing it gently). You can reverse the order.

図3、4については図2との差のみを説明する。図3において、第一の圧電素子1と第二の圧電素子2にはそれぞれ位相が90度ずれた駆動信号が印加される。期間P1においては第二の圧電素子2にのみ緩やかに電圧が増加する駆動信号E1が入力され、摩擦部3はゆっくりとy軸+方向へゆっくりと変位する(A1)。更に、期間P2では第一の圧電素子1に印加される駆動信号は緩やかに電圧が増加し、x軸+方向へゆっくりと変位する(A2)。更に、期間P3では第二の圧電素子2へ印加される駆動信号の電圧は、急速に低下し、摩擦部3はy軸−方向へ急速に変位する(A3)。更に、期間P4では、第一の圧電素子1に印加される駆動信号E1の電圧は、急速に低下し、摩擦部3はy軸−方向へ急速に変位する(A4)。従って、期間P2での動作A2によって、移動体7は駆動される。この動作を繰り返すことによって、移動体7は反時計回りに回転する。このように、摩擦部3の移動体7の移動方向と逆の(x軸方向)動作と移動体7から離れる方向の(y軸方向)動作を早くして、移動体7の移動方向(x軸方向)動作をゆっくりと行うことにより、移動体7には摩擦部3から余計な駆動力が伝わらないから圧電アクチュエータ100の駆動効率は向上する。   Only differences from FIG. 2 will be described with reference to FIGS. In FIG. 3, a drive signal whose phase is shifted by 90 degrees is applied to the first piezoelectric element 1 and the second piezoelectric element 2. In the period P1, the drive signal E1 whose voltage gradually increases is input only to the second piezoelectric element 2, and the friction part 3 is slowly displaced in the y-axis + direction (A1). Furthermore, in the period P2, the voltage of the drive signal applied to the first piezoelectric element 1 increases gradually, and is slowly displaced in the x-axis + direction (A2). Further, in the period P3, the voltage of the drive signal applied to the second piezoelectric element 2 is rapidly decreased, and the friction part 3 is rapidly displaced in the y-axis direction (A3). Furthermore, in the period P4, the voltage of the drive signal E1 applied to the first piezoelectric element 1 rapidly decreases, and the friction part 3 is rapidly displaced in the y-axis direction (A4). Accordingly, the moving body 7 is driven by the operation A2 in the period P2. By repeating this operation, the moving body 7 rotates counterclockwise. Thus, the movement direction (x-axis direction) opposite to the movement direction of the moving body 7 of the friction part 3 (x-axis direction) and the movement direction away from the moving body 7 (y-axis direction) are accelerated. By slowly performing the operation in the axial direction, the driving efficiency of the piezoelectric actuator 100 is improved because no extra driving force is transmitted from the friction portion 3 to the moving body 7.

図4において、期間P1では第二の圧電素子2にのみ緩やかに電圧が増加する駆動信号E2が入力され、摩擦部3はy軸+方向へゆっくりと変位する(A1)。更に、期間P2では第一の圧電素子1に印加される駆動信号は緩やかに電圧が増加し、x軸+方向へゆっくりと変位する(A2)。更に、期間P3では第一の圧電素子1、第二の圧電素子2へ印加される駆動信号E1,E2の電圧は、急速に低下し、摩擦部3はx軸−方向、y軸−方向へ急速に変位する。従って、期間P2での動作A2によって、移動体7は駆動される。この動作を繰り返すことによって、移動体7は反時計回りに回転する。このように、摩擦部3の移動体7の移動方向と逆の(x軸方向)動作と移動体7から離れる方向の(y軸方向)動作を早くして、移動体7の移動方向(x軸方向)動作をゆっくりと行うことにより、移動体7には摩擦部3から余計な駆動力が伝わらないから圧電アクチュエータ100の駆動効率は向上する。   In FIG. 4, during the period P1, the drive signal E2 whose voltage increases gently is input only to the second piezoelectric element 2, and the friction part 3 is slowly displaced in the y-axis + direction (A1). Furthermore, in the period P2, the voltage of the drive signal applied to the first piezoelectric element 1 increases gradually, and is slowly displaced in the x-axis + direction (A2). Further, in the period P3, the voltages of the drive signals E1 and E2 applied to the first piezoelectric element 1 and the second piezoelectric element 2 rapidly decrease, and the friction part 3 moves in the x-axis direction and the y-axis direction. Displaces rapidly. Accordingly, the moving body 7 is driven by the operation A2 in the period P2. By repeating this operation, the moving body 7 rotates counterclockwise. Thus, the movement direction (x-axis direction) opposite to the movement direction of the moving body 7 of the friction part 3 (x-axis direction) and the movement direction away from the moving body 7 (y-axis direction) are accelerated. By slowly performing the operation in the axial direction, the driving efficiency of the piezoelectric actuator 100 is improved because no extra driving force is transmitted from the friction portion 3 to the moving body 7.

本実施の形態に示した様に、第一の圧電素子1にせん断変形を発生可能な圧電素子を用いることで、大きな発生力が得られると共に高い周波数で駆動が可能な為、大きなトルク、速度を発生できる。   As shown in the present embodiment, by using a piezoelectric element capable of generating shear deformation for the first piezoelectric element 1, a large generated force can be obtained and driving can be performed at a high frequency. Can be generated.

本実施の形態では第一の圧電素子1にx軸方向の変位を発生する圧電素子を、第二の圧電素子2にy軸方向の変位を発生する圧電素子としたが、第一の圧電素子1にy軸方向の変位を発生する圧電素子を、第二の圧電素子2にx軸方向の変位を発生する圧電素子とする構成としても構わない。   In this embodiment, the piezoelectric element that generates displacement in the x-axis direction in the first piezoelectric element 1 is the piezoelectric element that generates displacement in the y-axis direction in the second piezoelectric element 2. The piezoelectric element that generates a displacement in the y-axis direction in 1 may be replaced with a piezoelectric element that generates a displacement in the x-axis direction in the second piezoelectric element 2.

また、移動体7としては回転体を使用したが、棒状のレールとすればリニヤ型の圧電アクチュエータが実現できる。そして、圧電素子1,2には単板を使用したが積層型の圧電素子を用いても構わない。   Further, although a rotating body is used as the moving body 7, a linear type piezoelectric actuator can be realized if a rod-shaped rail is used. And although the single plate was used for the piezoelectric elements 1 and 2, a laminated piezoelectric element may be used.

(実施の形態2)
本発明の圧電アクチュエータ100に用いられる振動子12の別の実施の形態について図5を基にして実施の形態1との差を中心に説明する。
(Embodiment 2)
Another embodiment of the vibrator 12 used in the piezoelectric actuator 100 of the present invention will be described based on FIG. 5 with a focus on the difference from the first embodiment.

本発明の振動子12は実施の形態1の振動子20における第一の圧電素子1の代わりに、屈曲変位を発生する圧電素子11を第一の圧電素子としたものである。第一の圧電素子11は厚み方向(図中矢印53,54の方向)に分極処理された圧電素子11a、11bを重ねて接合することによりバイモルフ素子が構成されている。圧電素子11a、11bの表裏には電極13,14,15が設けられている。ここで、圧電素子11a、11bの接合面にある電極14をGNDとし、圧電素子11a、11bの他方の面にある電極13,15を短絡して電圧を印可すると圧電素子11a、11bのうち、一方の圧電素子は伸び、他方の圧電素子は縮む為、第一の圧電素子11は全体として屈曲変位を示す。そして電圧の極性を変えると変形の方向も逆になる。ここで、バイモルフ素子の代わりに圧電素子と金属等の弾性部材を用いてユニモルフを構成したものを用いても構わない。振動子12に印加する駆動信号E1,E2は実施の形態1に示したものと同じで良い。   In the vibrator 12 of the present invention, instead of the first piezoelectric element 1 in the vibrator 20 of the first embodiment, a piezoelectric element 11 that generates bending displacement is used as the first piezoelectric element. The first piezoelectric element 11 is formed as a bimorph element by overlapping and joining piezoelectric elements 11a and 11b polarized in the thickness direction (directions of arrows 53 and 54 in the figure). Electrodes 13, 14, and 15 are provided on the front and back of the piezoelectric elements 11a and 11b. Here, when the electrode 14 on the bonding surface of the piezoelectric elements 11a and 11b is set to GND and the electrodes 13 and 15 on the other surface of the piezoelectric elements 11a and 11b are short-circuited to apply a voltage, the piezoelectric elements 11a and 11b Since one piezoelectric element extends and the other piezoelectric element contracts, the first piezoelectric element 11 exhibits a bending displacement as a whole. When the polarity of the voltage is changed, the direction of deformation is reversed. Here, instead of the bimorph element, a unimorph may be used that uses a piezoelectric element and an elastic member such as metal. The drive signals E1 and E2 applied to the vibrator 12 may be the same as those shown in the first embodiment.

このように第一の圧電素子11の屈曲変形を利用することで、大きな変位が得られる為、低電圧で、移動体7を高速で駆動できる。   Since the large displacement can be obtained by using the bending deformation of the first piezoelectric element 11 in this way, the moving body 7 can be driven at a high speed with a low voltage.

(実施の形態3)
本発明の実施の形態3を図6を基に説明する。本発明の圧電アクチュエータ200は、支持部材23を二つのバイモルフ(圧電素子)21、22で挟み込んだ構造で構成される振動子25と、振動子25と接する円板上の移動体7と、支持部材23に加圧力を与え、振動子25と移動体7との接触圧を発生する加圧ばね24とで構成されている(図6(a))。バイモルフ21は圧電素子21aと圧電素子21bとで構成される。バイモルフ素子22は圧電素子22aと圧電素子22bとで構成され、バイモルフ21と同一形状である。移動体7の回転中心には軸7aが設けられ、図示しない軸受けで案内される。支持部材23の端部には軸23aが設けられ、図示しない軸受けで案内されており、振動子25は軸23aを回転中心軸として回転する。加圧ばね24の加圧力が支持部材23の端部23bに加わることにより、バイモルフ21に設けられた突起状の摩擦部27と移動体7は加圧接触する。
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIG. The piezoelectric actuator 200 of the present invention includes a vibrator 25 having a structure in which a support member 23 is sandwiched between two bimorphs (piezoelectric elements) 21, 22, a moving body 7 on a circular plate in contact with the vibrator 25, and a support The pressure spring 24 applies pressure to the member 23 and generates a contact pressure between the vibrator 25 and the moving body 7 (FIG. 6A). The bimorph 21 includes a piezoelectric element 21a and a piezoelectric element 21b. The bimorph element 22 includes a piezoelectric element 22 a and a piezoelectric element 22 b and has the same shape as the bimorph 21. A shaft 7a is provided at the rotation center of the moving body 7 and is guided by a bearing (not shown). A shaft 23a is provided at the end of the support member 23, and is guided by a bearing (not shown). The vibrator 25 rotates about the shaft 23a as a rotation center axis. When the pressing force of the pressure spring 24 is applied to the end portion 23 b of the support member 23, the protruding friction portion 27 provided on the bimorph 21 and the moving body 7 are in pressure contact.

圧電アクチュエータ200において、バイモルフ21は圧電素子駆動部として移動体7に駆動力を発生する。バイモルフ21の自由端部21cは、矢印26の方向に往復変位する。バイモルフ21の変位の行きの速度と、帰りの速度を異ならせることにより、一方の動作のみを自由端部21cと接する移動体7の駆動力として伝える。具体的な駆動方法は特許文献に示したものと同じであるので省略する。バイモルフ21,22の変形図を図6(b)の点線に示すが、バイモルフ22はバイモルフ21の動作に同期して動作するとともに、変位方向は逆方向となる。このように、バイモルフ22をバイモルフ21と逆方向に変位させることにより、振動子25の重心はバイモルフ21の支持部である支持部材23にあって変動しないため、振動漏れはなく、移動体7を安定に駆動できると共に、圧電アクチュエータ200の駆動効率は向上する。また、バイモルフ22に駆動信号を印加せずに、静止状態としてカウンターウエイトとしても同様の効果が得られる。従って、バイモルフ22の代わりにバイモルフ21の質量と同等以上の錘を設けても良い。このようにバイモルフ22は振動子25の動作を安定化させるバランス部として働く。 In the piezoelectric actuator 200, the bimorph 21 generates a driving force on the moving body 7 as a piezoelectric element driving unit. The free end 21 c of the bimorph 21 is reciprocated in the direction of the arrow 26. By varying the speed of the bimorph 21 toward the displacement and the speed of return, only one operation is transmitted as the driving force of the moving body 7 in contact with the free end 21c. Since the specific driving method is the same as that shown in Patent Document 3 , it will be omitted. The deformation | transformation figure of the bimorphs 21 and 22 is shown by the dotted line of FIG.6 (b), While the bimorph 22 operate | moves synchronizing with the operation | movement of the bimorph 21, the displacement direction becomes a reverse direction. In this way, by displacing the bimorph 22 in the opposite direction to the bimorph 21, the center of gravity of the vibrator 25 does not fluctuate in the support member 23 that is the support portion of the bimorph 21, so there is no vibration leakage and While being able to drive stably, the drive efficiency of the piezoelectric actuator 200 improves. Further, the same effect can be obtained even when the counterweight is set in a stationary state without applying a drive signal to the bimorph 22. Therefore, instead of the bimorph 22, a weight equal to or greater than the mass of the bimorph 21 may be provided. Thus, the bimorph 22 functions as a balance unit that stabilizes the operation of the vibrator 25.

また、ここでは説明の簡易性から、一方向にのみ変位する圧電素子21を用いる例を示したが、実施の形態1,2に示した様に、異なる二つの方向に独立に変位を発生することで、駆動力を得る圧電アクチュエータであっても構わない。   Further, here, for the sake of simplicity of explanation, an example in which the piezoelectric element 21 that is displaced only in one direction is used is shown. However, as shown in the first and second embodiments, the displacement is independently generated in two different directions. Thus, it may be a piezoelectric actuator that obtains a driving force.

(実施の形態4)
実施の形態3の変形例について図7を基にして説明する。振動子35は実施の形態1のアクチュエータ100において、振動子20に代わって置き換え可能なため、振動子35の動作のみを説明する。
(Embodiment 4)
A modification of the third embodiment will be described with reference to FIG. Since the vibrator 35 can be replaced in the actuator 100 of the first embodiment instead of the vibrator 20, only the operation of the vibrator 35 will be described.

図7(a),(b)は、それぞれ振動子35の正面図、側面図である。圧電素子31,32は平行に配置され、支持部材4に固定されている。摩擦部33は圧電素子31の自由端に固定されている。圧電素子31,32は駆動信号の印加によって、せん断変形を生じるものである。圧電素子31,32は夫々逆方向に変形する(図7(c)参照)。   7A and 7B are a front view and a side view of the vibrator 35, respectively. The piezoelectric elements 31 and 32 are arranged in parallel and are fixed to the support member 4. The friction part 33 is fixed to the free end of the piezoelectric element 31. The piezoelectric elements 31 and 32 generate shear deformation when a drive signal is applied. The piezoelectric elements 31 and 32 are deformed in opposite directions (see FIG. 7C).

圧電素子31は圧電素子駆動部として移動体7に駆動力を発生する。圧電素子31の自由端部に設けた摩擦部33は矢印34の方向に往復変位する。圧電素子31の変位の行きの速度と、帰りの速度を異ならせることにより、一方の動作のみを移動体7の駆動力として伝える。圧電素子32は圧電素子31の動作に同期して動作するが、変位方向は逆方向となる。このように、圧電素子32を圧電素子31と逆方向に変位させることにより、振動子35の動作に伴って支持部材4の位置は変動することはないため、振動漏れはなく、移動体7を安定に駆動できると共に、圧電アクチュエータ100の駆動効率は向上する。また、圧電素子32に駆動信号を印加せずに、静止状態としてカウンターウエイトとして機能させても同様の効果が得られる。従って、圧電素子32の代わりに圧電素子31の質量と同等以上の錘を設けても良い。このように圧電素子32は振動子35の動作を安定化させるバランス部として働く。   The piezoelectric element 31 generates a driving force on the moving body 7 as a piezoelectric element driving unit. The friction part 33 provided at the free end of the piezoelectric element 31 is reciprocated in the direction of the arrow 34. Only the one operation is transmitted as the driving force of the moving body 7 by making the speed of the displacement of the piezoelectric element 31 different from the speed of the return. The piezoelectric element 32 operates in synchronization with the operation of the piezoelectric element 31, but the displacement direction is the reverse direction. In this way, by displacing the piezoelectric element 32 in the opposite direction to the piezoelectric element 31, the position of the support member 4 does not vary with the operation of the vibrator 35, so there is no vibration leakage, and the moving body 7 is moved. While being able to drive stably, the drive efficiency of the piezoelectric actuator 100 improves. Further, the same effect can be obtained by causing the piezoelectric element 32 to function as a counterweight in a stationary state without applying a drive signal. Therefore, instead of the piezoelectric element 32, a weight equal to or greater than the mass of the piezoelectric element 31 may be provided. Thus, the piezoelectric element 32 functions as a balance unit that stabilizes the operation of the vibrator 35.

(実施の形態5)
本発明の圧電アクチュエータ400について図8を基に説明する。圧電アクチュエータ400は圧電素子41と、圧電素子41の一端に固定されたガイド軸43と、ガイド軸43に接する移動体44と、圧電素子41の他端に固定された錘42と、圧電素子41を支持する支持部材45とで構成されている。圧電素子41は駆動信号の印加により、伸縮変位を発生する。支持部材45は圧電素子41の中央部、即ち伸縮変位が生じない点を支持している。移動体44は、図示しない加圧ばねの加圧力によって、ガイド軸43に加圧接触している。
(Embodiment 5)
A piezoelectric actuator 400 of the present invention will be described with reference to FIG. The piezoelectric actuator 400 includes a piezoelectric element 41, a guide shaft 43 fixed to one end of the piezoelectric element 41, a moving body 44 in contact with the guide shaft 43, a weight 42 fixed to the other end of the piezoelectric element 41, and the piezoelectric element 41. And a support member 45 that supports The piezoelectric element 41 generates expansion / contraction displacement by application of a drive signal. The support member 45 supports the central portion of the piezoelectric element 41, that is, a point where expansion and contraction does not occur. The moving body 44 is in pressure contact with the guide shaft 43 by the pressure of a pressure spring (not shown).

次に、具体的に圧電アクチュエータ400の動作について説明する。初期位置(図8(a))から、圧電素子41に緩やかに電圧値が増加する駆動信号を圧電素子41に加えると、圧電素子41は緩やかに伸びる。このとき、ガイド軸43の移動に伴い、移動体44も移動する(図8(b))。次に圧電素子41に印加している駆動信号の電圧値を急激に下げると、圧電素子41も急速に縮み、移動体44とガイド軸43の間に滑りが生じ、結果的に移動体44の位置は、初期位置に対して進んだ状態(図8(c))となる。この一連の動作を繰り返すことにより、移動体44は移動を続ける。   Next, the operation of the piezoelectric actuator 400 will be specifically described. When a drive signal whose voltage value gradually increases is applied to the piezoelectric element 41 from the initial position (FIG. 8A), the piezoelectric element 41 is gently expanded. At this time, the moving body 44 also moves with the movement of the guide shaft 43 (FIG. 8B). Next, when the voltage value of the drive signal applied to the piezoelectric element 41 is rapidly lowered, the piezoelectric element 41 is also rapidly contracted, causing slippage between the moving body 44 and the guide shaft 43, resulting in the movement of the moving body 44. The position is in a state advanced from the initial position (FIG. 8C). By repeating this series of operations, the moving body 44 continues to move.

この動作中、圧電素子41中心で分けた二つの部分41a,41bは逆方向に変位する。圧電素子41の一方の部分41aは圧電素子駆動部として移動体44に駆動力を与える。圧電素子41の他方の部分41bはガイド軸43とは逆方向に錘42を動かす。圧電素子41の二つの部分41a、41bによって生じる力は支持部材45では相殺されるため、支持部材45には力が生じない。これにより、支持部材45を通じて振動が漏れることは無い。このように、圧電素子41bは錘42とでバランス部として機能する。錘42の質量はガイド軸43の質量と同等が良い。   During this operation, the two portions 41a and 41b divided at the center of the piezoelectric element 41 are displaced in the opposite directions. One portion 41a of the piezoelectric element 41 provides a driving force to the moving body 44 as a piezoelectric element driving unit. The other portion 41 b of the piezoelectric element 41 moves the weight 42 in the direction opposite to the guide shaft 43. Since the force generated by the two portions 41 a and 41 b of the piezoelectric element 41 is canceled by the support member 45, no force is generated on the support member 45. Thereby, vibration does not leak through the support member 45. Thus, the piezoelectric element 41b functions as a balance portion with the weight 42. The mass of the weight 42 is preferably equal to the mass of the guide shaft 43.

(実施の形態6)
本発明の圧電アクチュエータ600について図9を基に説明する。図9(a)に示した圧電アクチュエータ600は基本的に実施の形態3で示した圧電アクチュエータ200の構造を用いたものであり、これを若干変更したものである。以下両者の違いを中心に説明する圧電アクチュエータ600は圧電アクチュエータ200の移動体7に代わって、レール状の移動体61が設けられている。移動体61は二つの案内部材62,63によって支えられ、案内部材62,63が回転することにより、これと接する移動体61は図中矢印xの方向へ稼動可能となっている。更に、圧電アクチュエータ600ではバイモルフ(圧電素子)21の先端に耐摩耗性に富んだエンジニアリングプラスチックやセラミクスからなる摩擦部64が設けられている。そして摩擦部64はバイモルフ(圧電素子)21の幅方向両端部二箇所に凸部64a、64bを有することを特徴としている。
(Embodiment 6)
A piezoelectric actuator 600 of the present invention will be described with reference to FIG. The piezoelectric actuator 600 shown in FIG. 9A basically uses the structure of the piezoelectric actuator 200 shown in the third embodiment, and is a slight modification. The piezoelectric actuator 600, which will be described below with a focus on the difference between the two, is provided with a rail-like moving body 61 instead of the moving body 7 of the piezoelectric actuator 200. The moving body 61 is supported by two guide members 62 and 63. When the guide members 62 and 63 rotate, the moving body 61 in contact therewith can be operated in the direction of the arrow x in the figure. Further, the piezoelectric actuator 600 is provided with a friction portion 64 made of engineering plastic or ceramic having high wear resistance at the tip of the bimorph (piezoelectric element) 21. The friction part 64 is characterized by having convex parts 64 a and 64 b at two places on both ends of the bimorph (piezoelectric element) 21 in the width direction.

次に、圧電アクチュエータ600の動作について説明する。圧電アクチュエータ600の駆動方法は実施の形態3に示したものと同じであり、バイモルフ(圧電素子)21、22を屈曲変形させる(図9(b))。そして、屈曲変形の行きと帰りの速度を変えることにより速度の遅い変位の動作では移動体61はこの変位に伴い摩擦部64に摩擦駆動され、速度が速い変位の動作では移動体61は摩擦部64と滑りを生じるから移動しないか、あるいは移動量が小さい。従って、移動体64は速度の遅い変位の動作の方向へ移動する。   Next, the operation of the piezoelectric actuator 600 will be described. The driving method of the piezoelectric actuator 600 is the same as that shown in the third embodiment, and the bimorphs (piezoelectric elements) 21 and 22 are bent and deformed (FIG. 9B). Then, the moving body 61 is frictionally driven by the frictional portion 64 along with this displacement in the operation of the slow displacement by changing the going and return speeds of the bending deformation, and the moving body 61 is moved to the frictional portion in the operation of the high speed displacement. No slippage occurs due to slippage with 64, or the amount of movement is small. Accordingly, the moving body 64 moves in the direction of the slow displacement operation.

ここで、摩擦部64にはバイモルフ(圧電素子)21の幅方向両端部二箇所に凸部64a、64bを有している。これによりバイモルフ(圧電素子)21の図中矢印y方向変位が最大となる二点において、安定に移動体61と接触することが可能となる。これにより移動体61の表面のうねりの影響も受けず、またバイモルフ(圧電素子)21や移動体61の組み込みの影響による摩擦部64と移動体61の1点での接触を避けることができる。そして、y方向変位の最大点で摩擦部64と移動体61を接触させることにより、バイモルフ(圧電素子)21の速度の速い変位の動作を移動体61に伝えにくく、速度の遅い変位の動作を移動体61に伝えやすくなるため移動体61の出力は大きくなる。   Here, the friction part 64 has convex parts 64 a and 64 b at two places on both ends in the width direction of the bimorph (piezoelectric element) 21. As a result, the bimorph (piezoelectric element) 21 can stably contact the moving body 61 at two points where the displacement in the direction of the arrow y in the drawing becomes maximum. Accordingly, the surface of the moving body 61 is not affected by the undulation, and the contact of the friction portion 64 and the moving body 61 at one point due to the influence of the bimorph (piezoelectric element) 21 or the moving body 61 can be avoided. Then, by bringing the friction part 64 and the moving body 61 into contact with each other at the maximum point of displacement in the y direction, it is difficult to transmit the fast moving motion of the bimorph (piezoelectric element) 21 to the moving body 61, and the slow moving motion is performed. Since it becomes easy to convey to the moving body 61, the output of the moving body 61 becomes large.

図10は摩擦部64の変形例を示したものである。摩擦部64はバイモルフ(圧電素子)21の幅方向両端に張り出し部65a、65bを有している。このような構造とすることにより、バイモルフ(圧電素子)21の変位は拡大されるから移動体61は安定に駆動できるとともに速度が遅い変位の動作を確実に移動体61に伝えることができるから圧電アクチュエータ600の出力は大きくなる。   FIG. 10 shows a modification of the friction part 64. The friction part 64 has projecting parts 65 a and 65 b at both ends in the width direction of the bimorph (piezoelectric element) 21. By adopting such a structure, the displacement of the bimorph (piezoelectric element) 21 is enlarged, so that the moving body 61 can be driven stably and the displacement operation with a low speed can be reliably transmitted to the moving body 61. The output of the actuator 600 increases.

更に、摩擦部65の張り出し部65a、65bに図10と同様に凸部を設ければ摩擦部65と移動体61の接触も安定するから、圧電アクチュエータ600の効率も改善され出力も大きくなるとともに、圧電アクチュエータ600個々の性能ばらつきは小さくできる。   Further, if the protruding portions 65a and 65b of the friction portion 65 are provided with projections as in FIG. 10, the contact between the friction portion 65 and the moving body 61 is stabilized, so that the efficiency of the piezoelectric actuator 600 is improved and the output is increased. The performance variation of each piezoelectric actuator 600 can be reduced.

本実施の形態では、圧電アクチュエータ200を基に摩擦部の改善例を示したが、屈曲変形する圧電素子の行きの変位の速度と帰りの変位の速度に違いも持たせて移動体を摩擦駆動させる圧電アクチュエータには全て適用可能であり、実施の形態2で示した振動子12に摩擦部64もしくは65を設けても良い。   In the present embodiment, an example of improving the friction portion is shown based on the piezoelectric actuator 200. However, the moving body is friction-driven by making a difference between the speed of the displacement of the piezoelectric element that undergoes bending deformation and the speed of the return displacement. Any piezoelectric actuator can be applied, and the frictional portion 64 or 65 may be provided in the vibrator 12 shown in the second embodiment.

(実施の形態7)
本実施の形態は本発明の圧電アクチュエータを電子機器の駆動源に適用した例を示すものである。
(Embodiment 7)
This embodiment shows an example in which the piezoelectric actuator of the present invention is applied to a drive source of an electronic device.

図11は本発明の原理、構造に基づく圧電アクチュエータ500を搭載した電子機器の構成を示すブロック図である。圧電アクチュエータ500は、主に圧電素子52と移動体53とで構成される。電子機器におけるCPU等の制御回路50の指令がドライバ51に伝達されるとドライバ51は圧電素子52に駆動信号を出力する。移動体53は圧電素子52の駆動力を受け移動する。その際、移動体53の力を受け稼動部材54は移動する。   FIG. 11 is a block diagram showing the configuration of an electronic apparatus equipped with a piezoelectric actuator 500 based on the principle and structure of the present invention. The piezoelectric actuator 500 is mainly composed of a piezoelectric element 52 and a moving body 53. When a command from a control circuit 50 such as a CPU in the electronic device is transmitted to the driver 51, the driver 51 outputs a drive signal to the piezoelectric element 52. The moving body 53 moves by receiving the driving force of the piezoelectric element 52. At that time, the operating member 54 moves under the force of the moving body 53.

電子機器がカメラの場合にはズームを開始する指令が制御回路50から伝達されるとドライバ51は圧電素子52に駆動信号を印加し、移動体53を回転させる。移動体53の力を受け、図示しないカムを介して稼動部材54であるレンズを動かす。   When the electronic device is a camera, when a command to start zooming is transmitted from the control circuit 50, the driver 51 applies a drive signal to the piezoelectric element 52 to rotate the moving body 53. The lens as the operating member 54 is moved through a cam (not shown) under the force of the moving body 53.

電子機器が時計の場合には、稼動部材54は針やカレンダ表示板となる。電子機器がプリンタの場合には稼動部材54は印字ヘッドとなる。電子機器がHDDや光ディスク等の情報記録機器の場合には、稼動部材54は読み取りヘッドとなる。   When the electronic device is a timepiece, the operating member 54 is a hand or a calendar display board. When the electronic device is a printer, the operating member 54 is a print head. When the electronic device is an information recording device such as an HDD or an optical disk, the operating member 54 is a read head.

この様な小型電子機器において、本発明の原理、構造に基づく圧電アクチュエータ500を用いることにより、電子機器は小型で低消費電力となる。   In such a small electronic device, by using the piezoelectric actuator 500 based on the principle and structure of the present invention, the electronic device is small and has low power consumption.

特に、位置決め分解能が高く、移動体53を停止状態にする際には電力を消費せず、保持力を有するという特徴から、高精度な位置決めが必要な電子機器においてその効果を発揮する。電子機器がステージの場合には稼動部材54はテーブルや試料台であり、電子機器が工作機械の場合には、稼動部材54は刃具や砥石等のワークである。   In particular, since the positioning resolution is high and power is not consumed when the moving body 53 is in a stop state, and the holding power is provided, the effect is exhibited in an electronic device that requires highly accurate positioning. When the electronic device is a stage, the operating member 54 is a table or a sample table, and when the electronic device is a machine tool, the operating member 54 is a work such as a cutting tool or a grindstone.

本発明の圧電アクチュエータは小型で低消費電力であることを特徴とするから、時計、カメラ、プリンタ、HDDや光ディスク等の情報記憶装置等の小型電子機器へ応用できる。
また、精密位置決めが可能であるから、各種精密ステージや工作機械への応用が可能である。
Since the piezoelectric actuator of the present invention is small and has low power consumption, it can be applied to small electronic devices such as clocks, cameras, printers, information storage devices such as HDDs and optical disks.
In addition, since precise positioning is possible, application to various precision stages and machine tools is possible.

本発明の実施の形態1の圧電アクチュエータの構成を示す図である。It is a figure which shows the structure of the piezoelectric actuator of Embodiment 1 of this invention. 本発明の圧電アクチュエータに印加する駆動信号のパターン1と、その際の 摩擦部の動作の様子を示す図である。It is a figure which shows the mode 1 of the drive signal applied to the piezoelectric actuator of this invention, and the mode of operation | movement of the friction part in that case. 本発明の圧電アクチュエータに印加する駆動信号のパターン2と、その際の摩擦部の動作の様子を示す図である。It is a figure which shows the mode of the operation | movement of the pattern 2 of the drive signal applied to the piezoelectric actuator of this invention, and the friction part in that case. 本発明の圧電アクチュエータに印加する駆動信号のパターン3と、その際の摩擦部の動作の様子を示す図である。It is a figure which shows the mode 3 of the drive signal pattern 3 applied to the piezoelectric actuator of this invention, and the mode of operation | movement of the friction part in that case. 本発明の実施の形態2の圧電アクチュエータの構成を示す図である。It is a figure which shows the structure of the piezoelectric actuator of Embodiment 2 of this invention. 本発明の実施の形態3の圧電アクチュエータの構成を示す図である。It is a figure which shows the structure of the piezoelectric actuator of Embodiment 3 of this invention. 本発明の実施の形態4の圧電アクチュエータの振動子の構成を示す図である。It is a figure which shows the structure of the vibrator | oscillator of the piezoelectric actuator of Embodiment 4 of this invention. 本発明の実施の形態5の圧電アクチュエータの構成を示す図である。It is a figure which shows the structure of the piezoelectric actuator of Embodiment 5 of this invention. 本発明の実施の形態6の圧電アクチュエータの構成を示す図である。It is a figure which shows the structure of the piezoelectric actuator of Embodiment 6 of this invention. 本発明の実施の形態6の圧電アクチュエータの摩擦部の別な例を示す図である。It is a figure which shows another example of the friction part of the piezoelectric actuator of Embodiment 6 of this invention. 本発明の圧電アクチュエータを搭載した電子機器の構成を示すブロック図である。It is a block diagram which shows the structure of the electronic device carrying the piezoelectric actuator of this invention.

符号の説明Explanation of symbols

1,2,11,21,22,31,32,41,52 圧電素子
100,200,400,500 圧電アクチュエータ
12,20,25,35 振動子
4,23,45 支持部材
7,44,53,61 移動体
5 案内部材
6 加圧ばね
64,65 摩擦部
1, 2, 11, 21, 22, 31, 32, 41, 52 Piezoelectric elements 100, 200, 400, 500 Piezoelectric actuators 12, 20, 25, 35 Vibrators 4, 23, 45 Support members 7, 44, 53, 61 Moving body 5 Guide member 6 Pressure spring 64, 65 Friction part

Claims (6)

第一の方向に往復変位する第一の圧電素子と、
前記第一の方向とは異なる第二の方向に往復変位する第二の圧電素子と、
により一体的に構成された直方体形状の振動子と、
前記第一の圧電素子に設けられた摩擦部と接する移動体と、
からなり、
前記第一の圧電素子と前記第二の圧電素子に同一波形形状の駆動信号を同一のタイミングで印加し、前記第一の方向の変位の行きの速度を帰りの速度よりも遅くするとともに前記第二の方向の変位の行きの速度を帰りの速度よりも遅くすることで前記移動体を駆動することを特徴とする圧電アクチュエータ。
A first piezoelectric element that reciprocates in a first direction;
A second piezoelectric element that reciprocates in a second direction different from the first direction;
A rectangular parallelepiped vibrator integrally formed by:
A moving body in contact with the friction portion provided in the first piezoelectric element;
Consists of
A drive signal having the same waveform shape is applied to the first piezoelectric element and the second piezoelectric element at the same timing, so that the speed of displacement in the first direction is made slower than the return speed, and the first A piezoelectric actuator characterized in that the moving body is driven by making a speed of displacement in two directions slower than a return speed.
前記第二の圧電素子に設けられ、前記第二の圧電素子を支持する支持部材と、
前記摩擦部が前記移動体に接触圧を与える様に前記支持部材の移動を案内する案内部材と、
前記摩擦部と前記移動体との間に接触圧を生じさせる様に前記支持部材を加圧する加圧ばねを有することを特徴とする請求項1に記載の圧電アクチュエータ。
A support member provided on the second piezoelectric element and supporting the second piezoelectric element;
A guide member that guides the movement of the support member so that the friction portion applies a contact pressure to the moving body;
The piezoelectric actuator according to claim 1, further comprising a pressure spring that pressurizes the support member so as to generate a contact pressure between the friction portion and the movable body.
前記第一の方向は前記移動体の移動方向であり、
前記第二の方向は前記摩擦部と前記移動体との接触圧方向であることを特徴とする請求項1記載の圧電アクチュエータ。
The first direction is a moving direction of the moving body,
The piezoelectric actuator according to claim 1, wherein the second direction is a contact pressure direction between the friction portion and the movable body.
前記第一の圧電素子と前記第二の圧電素子の何れか一方は屈曲変形する圧電素子であることを特徴とする請求項1記載の圧電アクチュエータ。   The piezoelectric actuator according to claim 1, wherein one of the first piezoelectric element and the second piezoelectric element is a piezoelectric element that bends and deforms. 前記第一の圧電素子と前記第二の圧電素子の何れか一方はせん断変形する圧電素子であることを特徴とする請求項1記載の圧電アクチュエータ。   The piezoelectric actuator according to claim 1, wherein one of the first piezoelectric element and the second piezoelectric element is a piezoelectric element that undergoes shear deformation. 請求項1乃至5の何れか一項に記載の圧電アクチュエータにより駆動される稼動部材を有することを特徴とする電子機器。   An electronic apparatus comprising an operation member driven by the piezoelectric actuator according to claim 1.
JP2006348991A 2006-01-17 2006-12-26 Piezoelectric actuator and electronic device using the same Expired - Fee Related JP5183921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348991A JP5183921B2 (en) 2006-01-17 2006-12-26 Piezoelectric actuator and electronic device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006009150 2006-01-17
JP2006009150 2006-01-17
JP2006348991A JP5183921B2 (en) 2006-01-17 2006-12-26 Piezoelectric actuator and electronic device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012047536A Division JP5466253B2 (en) 2006-01-17 2012-03-05 Piezoelectric actuator and electronic device using the same

Publications (2)

Publication Number Publication Date
JP2007221988A JP2007221988A (en) 2007-08-30
JP5183921B2 true JP5183921B2 (en) 2013-04-17

Family

ID=38498610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348991A Expired - Fee Related JP5183921B2 (en) 2006-01-17 2006-12-26 Piezoelectric actuator and electronic device using the same

Country Status (1)

Country Link
JP (1) JP5183921B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257434B2 (en) * 2010-09-30 2013-08-07 株式会社ニコン Driving device, lens barrel and camera
JP2015144557A (en) * 2013-12-27 2015-08-06 ニッコー株式会社 Drive control method of ultrasonic motor and drive control device of ultrasonic motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230473A (en) * 1983-06-13 1984-12-25 Hitachi Ltd Drive device
JP2935231B2 (en) * 1990-12-21 1999-08-16 清彦 魚住 Feeder
JPH05105291A (en) * 1991-10-18 1993-04-27 Ricoh Co Ltd Transport device
JPH09247967A (en) * 1996-03-06 1997-09-19 Minolta Co Ltd Driving gear using electromechanical transducer
JPH11265212A (en) * 1998-03-17 1999-09-28 Minolta Co Ltd Driving device
JP4806850B2 (en) * 2001-01-24 2011-11-02 パナソニック株式会社 Actuator
JP4296041B2 (en) * 2002-07-12 2009-07-15 セイコーインスツル株式会社 Piezoelectric motor and electronic device with piezoelectric motor
JP4412663B2 (en) * 2003-12-25 2010-02-10 セイコーインスツル株式会社 Piezoelectric actuator and electronic device using the same
JP2005323450A (en) * 2004-05-10 2005-11-17 Konica Minolta Holdings Inc Driving device

Also Published As

Publication number Publication date
JP2007221988A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP2007185056A (en) Exciting method of elastic vibration body, and vibration drive device
EP1605529A1 (en) Piezoelectric actuator
JP2006330053A (en) Lens barrel
JP2006330054A (en) Lens barrel
JP5185640B2 (en) Inertial drive actuator
TW201310109A (en) Piezoelectric driving module for lens
JP4945587B2 (en) Piezoelectric motor, electronic device with piezoelectric motor, and stage equipped with piezoelectric motor
JP5090707B2 (en) Lens actuator
JP5183921B2 (en) Piezoelectric actuator and electronic device using the same
JP4899634B2 (en) Linear drive device, lens drive device, and camera shake prevention device
JP5273915B2 (en) Vibration type linear drive device and camera lens
JP2005354866A (en) Actuator
EP1983589A2 (en) Driving device capable of reducing height thereof
JP5466253B2 (en) Piezoelectric actuator and electronic device using the same
JP2007318851A (en) Linear driver, lens driving device and camera shake arrester
JP4578815B2 (en) Control system and electronic device using piezoelectric actuator
JP4578799B2 (en) Piezoelectric actuator and electronic device using the same
JP4634174B2 (en) Ultrasonic motor and electronic device using the same
JP4213555B2 (en) Piezoelectric actuator and electronic device using the same
JP2009033837A (en) Method for driving piezoelectric actuator
JP4554261B2 (en) Drive device
JP4412663B2 (en) Piezoelectric actuator and electronic device using the same
JP4369720B2 (en) Piezoelectric actuator and electronic device using the same
JP6305026B2 (en) Vibration type driving device and operation device using the same
JP2007336623A (en) Drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5183921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees