JP4575217B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4575217B2
JP4575217B2 JP2005114501A JP2005114501A JP4575217B2 JP 4575217 B2 JP4575217 B2 JP 4575217B2 JP 2005114501 A JP2005114501 A JP 2005114501A JP 2005114501 A JP2005114501 A JP 2005114501A JP 4575217 B2 JP4575217 B2 JP 4575217B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerator
path
temperature
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005114501A
Other languages
Japanese (ja)
Other versions
JP2006292294A (en
Inventor
圭一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005114501A priority Critical patent/JP4575217B2/en
Publication of JP2006292294A publication Critical patent/JP2006292294A/en
Application granted granted Critical
Publication of JP4575217B2 publication Critical patent/JP4575217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は,冷凍サイクルにおいて2つの蒸発手段を有する冷蔵庫に関するものであり,前記冷凍サイクルにおける冷媒の流路に応じて前記冷媒の絞り量を調節することが可能な冷蔵庫に関するものである。   The present invention relates to a refrigerator having two evaporating means in a refrigeration cycle, and relates to a refrigerator capable of adjusting the throttle amount of the refrigerant in accordance with the refrigerant flow path in the refrigeration cycle.

近年,例えば特許文献1などに記載のように,冷蔵室及び冷凍室を備え,それぞれの室に対して熱交換(以下,冷却)を行うための2つの蒸発器が設けられた冷蔵庫が用いられている。
図1は,そのような2つの蒸発手段が設けられた,従来例における冷蔵庫の概略構成図である。以下,図1を参照しつつ,従来例における冷蔵庫について説明する。
図1に示されるように,従来例における冷蔵庫Bは,冷蔵室1,冷凍室2,冷蔵室用温度計3,冷凍室用温度計4,制御装置5,冷蔵室用送風機6,冷凍室用送風機7,冷凍サイクルβなどからなる。
前記冷蔵室1及び前記冷凍室2は,それぞれ氷点上,氷点下の温度において食品等の被冷却物を保存する収容室であり,相互間の冷気混合が生じないように隔壁で区分されている。また,前記冷蔵室1,前記冷凍室2各々の温度は前記冷蔵室用温度計3,前記冷凍室用温度計4により検出されている。その検出温度は,前記制御装置5に入力されている。
前記制御装置5はMPU等の演算部,ROM,RAM等の記憶部を有しており,前記ROMに記憶された制御プログラムを実行することにより,前記冷蔵室用温度計3,前記冷凍室用温度計4の検出温度に基づいた前記冷凍サイクルβの制御等を行う。
In recent years, for example, as described in Patent Document 1, a refrigerator having a refrigerator compartment and a freezer compartment and having two evaporators for performing heat exchange (hereinafter referred to as cooling) is used. ing.
FIG. 1 is a schematic configuration diagram of a conventional refrigerator provided with such two evaporation means. The conventional refrigerator will be described below with reference to FIG.
As shown in FIG. 1, the refrigerator B in the conventional example includes a refrigerator compartment 1, a freezer compartment 2, a refrigerator thermometer 3, a freezer thermometer 4, a control device 5, a refrigerator refrigerator 6, and a freezer compartment. It consists of a blower 7 and a refrigeration cycle β.
The refrigerating room 1 and the freezing room 2 are storage rooms for storing objects to be cooled such as food at temperatures above and below the freezing point, and are separated by partition walls so that no cold air mixing occurs between them. The temperatures of the refrigerator compartment 1 and the freezer compartment 2 are detected by the refrigerator compartment thermometer 3 and the refrigerator compartment thermometer 4, respectively. The detected temperature is input to the control device 5.
The control device 5 has a calculation unit such as an MPU, and a storage unit such as a ROM and a RAM. By executing a control program stored in the ROM, the refrigerator thermometer 3 and the freezer compartment The refrigeration cycle β is controlled based on the temperature detected by the thermometer 4.

以下,前記制御装置5による前記冷凍サイクルβの制御について説明する。前記冷凍サイクルβは,ノンフロン化への対応のため可燃性冷媒が満たされた冷媒経路中に,前記冷媒を高温・高圧のガス状に圧縮する圧縮機8と,その圧縮機8により圧縮されたガス状の冷媒を,放熱させることにより,中温・中圧の液状に凝縮する凝縮器9と,その凝縮器9により液状にされた冷媒から水分を除去するドライヤ10と,そのドライヤ10を経由した冷媒を蒸発しやすい状態まで減圧するキャピラリチューブ11(毛細管)と,その減圧後の冷媒を蒸発させてガス状にして,周辺空気と熱交換を行う冷凍室用蒸発器12,冷蔵室用蒸発器13とを具備している。また,前記冷凍室用蒸発器12により冷却された空気は前記冷凍室用送風機7により,前記冷蔵室用蒸発器13により冷却された空気は前記冷蔵室用送風機6により各々強制送風され,これにより前記冷蔵室1,前記冷凍室2の温度が低下される。
前記冷凍室用温度計4による検出温度(以下,冷凍温度)が,前記制御装置5に設定されている冷凍設定温度よりも高い(冷凍室2が十分に冷却されていない)場合には前記制御装置5により前記圧縮機8の稼働制御が行われる。更に,前記冷蔵室用温度計3による検出温度(以下,冷蔵温度)が,前記制御装置5に設定されている冷蔵設定温度よりも高い(冷蔵室1が十分に冷却されていない)場合には,前記制御装置5により前記冷蔵室用送風機6のみの稼働制御が行われ,これにより前記冷蔵室1のみが選択的に冷却される。一方,前記冷蔵温度が前記冷蔵設定温度よりも低い場合には,前記制御装置5により前記冷凍室用送風機7のみの稼働制御が行われ,これにより前記冷凍室2のみが選択的に冷却される。
また,前記冷凍温度が前記冷凍設定温度よりも低い(冷凍室2が必要以上に冷却されている)場合には,前記圧縮機8,前記冷蔵室用送風機6,前記冷凍室用送風機7の運転が停止される。
尚,前記冷凍設定温度,前記冷蔵設定温度は不図示の入力部からの操作入力により可変となっている。
特開平8―210753号公報 特開平7−110184号公報
Hereinafter, control of the refrigeration cycle β by the control device 5 will be described. The refrigeration cycle β is compressed by a compressor 8 that compresses the refrigerant into a high-temperature and high-pressure gas in a refrigerant path filled with a flammable refrigerant to cope with non-fluorocarbons. The refrigerant 9 that condenses into gaseous liquid at medium temperature and medium pressure by releasing heat from the gaseous refrigerant, the dryer 10 that removes moisture from the refrigerant liquefied by the condenser 9, and the dryer 10 are passed through. Capillary tube 11 (capillary tube) that depressurizes the refrigerant to an easily evaporable state, evaporator 12 for the freezer compartment that evaporates the refrigerant after the decompression into a gaseous state, and exchanges heat with the surrounding air, evaporator for the refrigerator compartment 13. The air cooled by the freezer compartment evaporator 12 is forcibly blown by the freezer compartment blower 7, and the air cooled by the refrigerator compartment evaporator 13 is forcibly blown by the refrigerator compartment fan 6, respectively. The temperature of the refrigerator compartment 1 and the freezer compartment 2 is lowered.
When the temperature detected by the freezer thermometer 4 (hereinafter referred to as the freezing temperature) is higher than the freezing set temperature set in the control device 5 (the freezing room 2 is not sufficiently cooled), the control is performed. The operation of the compressor 8 is controlled by the device 5. Furthermore, when the temperature detected by the refrigerating room thermometer 3 (hereinafter referred to as refrigerating temperature) is higher than the refrigerating set temperature set in the control device 5 (the refrigerating room 1 is not sufficiently cooled). Thus, only the refrigerator compartment fan 6 is controlled by the control device 5 so that only the refrigerator compartment 1 is selectively cooled. On the other hand, when the refrigeration temperature is lower than the refrigeration set temperature, only the freezer compartment blower 7 is controlled by the control device 5 so that only the freezer compartment 2 is selectively cooled. .
When the freezing temperature is lower than the freezing set temperature (the freezer compartment 2 is cooled more than necessary), the compressor 8, the refrigerator compartment fan 6, and the freezer compartment fan 7 are operated. Is stopped.
The refrigeration set temperature and the refrigeration set temperature are variable by an operation input from an input unit (not shown).
Japanese Patent Application Laid-Open No. 8-210553 Japanese Patent Laid-Open No. 7-110184

上述の実施例において,冷凍室用蒸発器12と冷蔵室用蒸発器13とは配管により接続されているのみであり,従って各々に流入する冷媒の圧力はほぼ等しくなる。従って,前記冷凍室用蒸発器12と前記冷蔵室用蒸発器13により冷媒が蒸発されるときの蒸発温度もほぼ等しくなるため,冷蔵室1,冷凍室2各々の温度調節は,冷蔵室用送風機6,冷凍室用送風機7による稼働時間を調節することにより行わねばならない。
ところで,前記冷媒の蒸発温度は,より低温を必要とする冷凍室2に対して相応しいものになっており,従って前記冷蔵室1の適温と前記蒸発温度との差は必然的に大きいものである。しかし,そのような大きな温度差のある状態において,前記冷蔵室用送風機6の稼働時間を制御することのみで,前記冷蔵室1の温度を適温周辺で保つことは困難である。つまり,冷却の際に適温を遙かに通り越すような過度の冷却を招きやすく,冷却効率が低下し,無駄に電力を消費してしまうという問題点がある。
また,過度の冷却により,収容されている食品(収容物の例)に温度ストレスが作用し,乾燥が促進される等,前記食品の品質を低下させるという問題点もある。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,冷蔵室の冷却に相応しい蒸発温度,冷凍室の冷却に相応しい蒸発温度の各々を得ることにより,冷却効率が高く,また収容物の品質低下を防止することが可能な冷蔵庫を提供することにある。
In the above-described embodiment, the freezer compartment evaporator 12 and the refrigerator compartment evaporator 13 are only connected by piping, and therefore the pressure of the refrigerant flowing into each of them is substantially equal. Accordingly, the evaporating temperatures when the refrigerant is evaporated by the freezer evaporator 12 and the freezer evaporator 13 are substantially equal. 6, must be done by adjusting the operating time by the freezer blower 7.
By the way, the evaporation temperature of the refrigerant is suitable for the freezer compartment 2 that requires a lower temperature, and therefore the difference between the appropriate temperature of the refrigerator compartment 1 and the evaporation temperature is inevitably large. . However, in such a large temperature difference state, it is difficult to keep the temperature of the refrigerator compartment 1 around the appropriate temperature only by controlling the operation time of the refrigerator refrigerator 6. In other words, there is a problem in that excessive cooling that goes far beyond the optimum temperature is likely to occur during cooling, cooling efficiency is reduced, and power is consumed wastefully.
Moreover, there is a problem that the quality of the food is deteriorated, for example, due to excessive cooling, temperature stress acts on the stored food (example of stored items) and drying is promoted.
Accordingly, the present invention has been made in view of the above circumstances, and the object of the present invention is to obtain an evaporating temperature suitable for cooling of the refrigerator compartment and an evaporating temperature suitable for cooling of the freezer compartment, thereby improving the cooling efficiency. An object of the present invention is to provide a refrigerator that is expensive and can prevent deterioration in the quality of the contents.

上記目的を達成するために本発明は, 冷媒経路中に直列接続され低温室の室内空気と熱交換する低温室用及び該低温室の前記冷媒経路中の上流側に接続され,該低音室より設定温度が高く高温室の室内空気と熱交換する高温室用の2つの蒸発手段12,13と,
その冷媒経路に接続され,前記上流側の高温室用の前記蒸発手段13をバイパスし前記低温室用の蒸発手段12に冷媒が流入するバイパス経路Xと,
前記冷媒経路における前記バイパス経路Xへの分岐部において冷媒の流路を切り替える流路切替手段14と
記分岐部の冷媒経路上流側に設けられた固定絞り手段11と,
を備えた冷凍サイクルを備え,
前記冷凍サイクルの,前記分岐部の下流側には,前記流路切替手段14の冷媒経路下流側の前記バイパス経路X内であって,前記低温室用の前記蒸発手段12へ冷媒が流入する側にのみ可変絞り手段15が設けられてなるなることを特徴とする冷蔵庫である。
これにより,冷媒の流入先の蒸発器(言い換えると,冷却の対象とする室)に応じて前記冷媒の絞り量が調節されるので,前記冷媒の流路状況に応じた適宜の絞り量(蒸発温度)を得ることが可能である。
例えば,冷蔵室,冷凍室の両方が十分に冷却されていない状況では,前記冷蔵室冷却用,冷凍室冷却用の蒸発器各々に前記冷媒が流入するように前記冷媒経路を切り替えつつ,前記冷媒の絞り量を蒸発温度が前記冷蔵室の冷却に相応しい温度となるように調節する。それにより冷蔵室のみが十分に冷却されたときには,前記冷媒が冷凍室冷却用の蒸発器のみに流入するように前記冷媒経路を切り替えつつ,前記絞り量を前記冷媒の蒸発温度を前記冷凍室の冷却に相応しい温度にする,等といった制御が可能である。
また,前記冷媒経路において,前記2つの蒸発器を並列的に接続する冷凍サイクルを用いる場合も考えられ,この場合にも同様の効果が得られる。
In order to achieve the above object, the present invention is connected to a low-temperature chamber that is connected in series in the refrigerant path and exchanges heat with the room air of the low-temperature chamber, and is connected to the upstream side of the low-temperature chamber in the refrigerant path. Two evaporating means 12 , 13 for the high temperature chamber having a high set temperature and exchanging heat with the indoor air of the high temperature chamber ;
A bypass path X connected to the refrigerant path , bypassing the evaporating means 13 for the upstream high temperature chamber and allowing the refrigerant to flow into the evaporating means 12 for the low temperature chamber ;
Flow path switching means 14 for switching the flow path of the refrigerant at a branching portion of the refrigerant path to the bypass path X ;
A fixed throttle means 11 provided in the refrigerant passage upstream of the front Symbol bifurcation,
A refrigeration cycle with
Of the freezing cycle, the downstream side of the branch portion is the above flow direction switching means in said bypass path X of the refrigerant passage downstream of 14, the side where refrigerant flows into said evaporator means 12 for cold room The variable throttle means 15 is provided only in the refrigerator.
Thereby, the throttle amount of the refrigerant is adjusted according to the evaporator into which the refrigerant flows (in other words, the chamber to be cooled), so that an appropriate throttle amount (evaporation) according to the refrigerant flow condition is adjusted. Temperature).
For example, in a situation where both the refrigerator compartment and the freezer compartment are not sufficiently cooled, the refrigerant path is switched so that the refrigerant flows into the evaporator for cooling the refrigerator compartment and the evaporator for cooling the freezer compartment, respectively. The amount of squeezing is adjusted so that the evaporation temperature becomes a temperature suitable for cooling the refrigerator compartment. As a result, when only the refrigerator compartment is sufficiently cooled, the refrigerant path is switched so that the refrigerant flows only into the freezer cooling evaporator, and the throttle amount is set to the evaporating temperature of the refrigerant. Control such as a temperature suitable for cooling is possible.
Further, a case where a refrigeration cycle in which the two evaporators are connected in parallel is used in the refrigerant path is conceivable. In this case, the same effect can be obtained.

尚,前記可変絞り部については一方の前記蒸発器に流入する冷媒の絞り量を可変とするものであれば,本発明の目的上十分である。即ち,通常の冷蔵庫ではキャピラリチューブ等により一定圧まで前記冷媒が減圧される(絞られる)ため,その圧力の冷媒を冷却温度の高い冷蔵室等の冷却(熱交換)に用い,前記可変絞り部により更に減圧された前記冷媒を冷凍室の冷却,製氷の際の冷却に用いるものとすればよい。もちろん,両方の前記蒸発器に流入する前記冷媒の絞り量を可変とする例も考えられる。
ところで,通常一方の蒸発器に前記冷媒が流入する場合には,両方の蒸発器に前記冷媒が流入する場合に比較して冷却効率が低下する。従って,前記一方の蒸発器に前記冷媒が流される場合には,前記冷媒の絞り量が強くなるように制御するものとすると,前記冷媒の蒸発温度が低下されることにより,冷却効率の低下を防止することが可能である。
更に,前記可変絞り部が前記冷媒をより減圧するものであれば,より減圧された前記冷媒が冷凍室冷却用の蒸発器,又は製氷用の蒸発器に流入するように冷媒経路を切り替えるものと考えられる。一方,可変絞り部が前記冷媒を更に加圧する(絞りを低くする)ものであれば,前記絞り部によって絞られた前記冷媒は設定温度の高い冷蔵室冷却用に用いられるものと考えられる。
As for the variable throttle section, it is sufficient for the purpose of the present invention if the throttle amount of the refrigerant flowing into one of the evaporators is variable. That is, in a normal refrigerator, the refrigerant is depressurized (squeezed) to a certain pressure by a capillary tube or the like, so that the refrigerant at that pressure is used for cooling (heat exchange) of a refrigerator room or the like having a high cooling temperature, and the variable throttle unit The refrigerant further reduced in pressure by the above may be used for cooling the freezing chamber and cooling during ice making. Of course, an example in which the throttle amount of the refrigerant flowing into both the evaporators is variable is also conceivable.
By the way, normally, when the refrigerant flows into one evaporator, the cooling efficiency is lower than when the refrigerant flows into both evaporators. Therefore, when the refrigerant is caused to flow through the one evaporator, if the refrigerant is controlled so that the throttle amount is increased, the evaporating temperature of the refrigerant is lowered, thereby reducing the cooling efficiency. It is possible to prevent.
Further, if the variable throttle part further depressurizes the refrigerant, the refrigerant path is switched so that the depressurized refrigerant flows into the freezer cooling evaporator or the ice making evaporator. Conceivable. On the other hand, if the variable throttle part further pressurizes the refrigerant (lowers the throttle), it is considered that the refrigerant throttled by the throttle part is used for cooling the refrigerator with a high set temperature.

また,流路の切り替えは,前記冷蔵室の検出温度,前記冷凍室の検出温度などに基づいて行うことが考えられる。例えば,前記冷蔵室の検出温度が設定温度よりも高い場合にのみ,前記冷蔵室冷却用の蒸発器に前記冷媒を流すような制御をすることが考えられる。
流路の切り替えには三方弁を用いるのが簡単であり,可変絞り部は前記三方弁の備える絞り量調節機能等を用いるものとするのが,三方弁,可変絞り弁を独立に設ける場合に対してコスト上有利である。
ところで,前記冷媒は大きく減圧されるほど熱交換しやすくなるため,蒸発器以外における余計な熱交換を極力防止するためには,より絞り量の高い(減圧された)方の前記冷媒が流入する蒸発器と前記分岐部との距離はできるだけ短くしておくのが望ましい。
更に,本発明では,前記三方弁(分岐部)の前記冷媒流れ方向上流側,詳しくは前記分岐部と前記冷媒を凝縮する凝縮器9の間(図2,図3参照)に,絞り量が固定のキャピラリチューブ(毛細管)などの固定絞り手段が設けられる。通常,前記凝縮器は冷蔵庫本体の外部に設けられており,冷媒経路において前記凝縮器から前記分岐部までの経路は比較的長距離である。従って,前記凝縮器と前記分岐部とを前記キャピラリチューブ(毛細管)で接続することにより,前記冷媒経路形成用の金属量を減らすことが可能であり,コストを低下させることが可能である。また,前記可変絞り器が故障した場合であっても,とりあえず前記冷媒を減圧することが可能であるため,収容物の冷却が不可能であるといった事態を回避することが可能である。
ところで,前記蒸発器と前記圧縮機とを結ぶ配管と,キャピラリチューブ(毛細管)とをそれらの間で熱交換するように半田付けし,これにより冷却能力を向上させる技術が従来から広く用いられている。本発明は,そのような従来技術を更に適用したものであってもよい。
このような半田付けを適用する場合には,前記キャピラリチューブ(毛細管)は前記蒸発器と前記三方弁との間に設けるのが一層望ましい(図2,図3の冷凍サイクルを参照)。何故なら,逆に前記凝縮器と前記キャピラリチューブの間に絞り量調節機能を備えた三方弁を設けた場合,前記冷媒が三方弁において膨張が生じ,温度低下する。従って,前記蒸発器と前記圧縮機を結ぶ配管と膨張した前記冷媒との温度差が小さくなり,半田付けにより生じる熱交換量が減少する(半田付けの意義が半減する)ためである。つまり,前記凝縮器と前記絞り量調節機能を備えた前記三方弁(流路の分岐部)との間にキャピラリチューブ(毛細管)が設けられた場合には,前記冷媒に膨張が生じない状態で(温度差の高い状態で)半田付けによる熱交換を生じさせることが可能であり,三方弁における該キャピラリチューブ(毛細管)と半田付けされた配管とが効果的に熱交換されるためである。
Further, it is conceivable that the flow path is switched based on the detected temperature of the refrigerator compartment, the detected temperature of the freezer compartment, and the like. For example, it is conceivable to perform control so that the refrigerant flows through the refrigerator for cooling the refrigerator only when the detected temperature of the refrigerator is higher than a set temperature.
It is easy to use a three-way valve for switching the flow path, and the variable throttle part uses the throttle amount adjustment function provided by the three-way valve, etc., when the three-way valve and variable throttle valve are provided independently. On the other hand, it is advantageous in terms of cost.
By the way, since the refrigerant becomes easier to exchange heat as the pressure is greatly reduced, in order to prevent extra heat exchange other than the evaporator as much as possible, the refrigerant having a higher throttle amount (depressurized) flows in. It is desirable to keep the distance between the evaporator and the branch portion as short as possible.
Furthermore, in the present invention , the throttle amount is upstream of the three-way valve (branch part) in the refrigerant flow direction, specifically between the branch part and the condenser 9 for condensing the refrigerant (see FIGS. 2 and 3). A fixed throttle means such as a fixed capillary tube (capillary tube) is provided . Usually, the condenser is provided outside the refrigerator main body, and the path from the condenser to the branch portion in the refrigerant path is relatively long. Therefore, by connecting the condenser and the branching portion with the capillary tube (capillary tube), it is possible to reduce the amount of metal for forming the refrigerant path, and it is possible to reduce the cost. Even when the variable throttle is out of order, the refrigerant can be depressurized for the time being, so that it is possible to avoid a situation in which the contents cannot be cooled.
By the way, a technique for improving the cooling capacity by soldering the pipe connecting the evaporator and the compressor and the capillary tube (capillary tube) so as to exchange heat between them has been widely used. Yes. The present invention may be a further application of such a conventional technique.
When such soldering is applied, it is more desirable to provide the capillary tube (capillary tube) between the evaporator and the three-way valve (see the refrigeration cycle in FIGS. 2 and 3). This is because, conversely, when a three-way valve having a throttle amount adjusting function is provided between the condenser and the capillary tube, the refrigerant expands in the three-way valve and the temperature decreases. Therefore, the temperature difference between the piping connecting the evaporator and the compressor and the expanded refrigerant is reduced, and the amount of heat exchange caused by soldering is reduced (the significance of soldering is halved). That is, in the case where a capillary tube (capillary tube) is provided between the condenser and the three-way valve (flow path branching portion) having the throttle amount adjusting function, the refrigerant does not expand. This is because it is possible to cause heat exchange by soldering (in a state where the temperature difference is high), and heat exchange is effectively performed between the capillary tube (capillary tube) and the soldered pipe in the three-way valve.

本発明によれば,直列もしくは並列に設けられた蒸発器のうち,冷媒の流入先の蒸発器(言い換えると,冷却の対象とする室)に応じて前記冷媒の絞り量が調節されるので,前記冷媒の流路状況に応じた適宜の絞り量(蒸発温度)を得ることが可能であり,冷却効率が高く,また収容物の品質低下を防止することが可能である。   According to the present invention, among the evaporators provided in series or in parallel, the throttle amount of the refrigerant is adjusted according to the evaporator into which the refrigerant flows (in other words, the chamber to be cooled). It is possible to obtain an appropriate throttle amount (evaporation temperature) according to the flow path state of the refrigerant, to have high cooling efficiency, and to prevent deterioration in the quality of the contents.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は従来例における冷蔵庫の概略構成図,図2は本発明の第1の実施形態に係る冷蔵庫の概略構成図,図3は本発明の第2の実施形態に係る冷蔵庫の概略構成図,図4は本発明の第1の実施形態に係る冷蔵庫の有する制御装置により実行される冷凍サイクルの制御手順を示すフローチャート,図5は本発明の第1の実施形態に係る冷蔵庫の有する制御装置による各部の制御のタイミングを表すグラフである。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
Here, FIG. 1 is a schematic configuration diagram of a refrigerator in a conventional example, FIG. 2 is a schematic configuration diagram of a refrigerator according to the first embodiment of the present invention, and FIG. 3 is an overview of the refrigerator according to the second embodiment of the present invention. FIG. 4 is a configuration diagram, FIG. 4 is a flowchart showing a control procedure of a refrigeration cycle executed by the control device included in the refrigerator according to the first embodiment of the present invention, and FIG. 5 is included in the refrigerator according to the first embodiment of the present invention. It is a graph showing the timing of control of each part by a control apparatus.

(1)本発明の第1の実施形態に係る冷蔵庫A1の概略について。
以下,図2を参照しつつ,本発明の第1の実施形態に係る冷蔵庫について説明する。
図2に示されるように,本発明の第1の実施形態に係る冷蔵庫A1は,冷蔵室1,冷凍室2,冷蔵室用温度計3,冷凍室用温度計4,制御装置5,冷蔵室用送風機6,冷凍室用送風機7,冷凍サイクルα1を有しており,前記冷凍サイクルα1及び前記制御装置5による前記冷凍サイクルα1及び各部の制御において従来例とは異なるものである。
以下,前記冷凍サイクルα1について詳述する。前記冷凍サイクルα1は,ノンフロン化への対応のため可燃性冷媒が満たされた冷媒経路において,圧縮機8,凝縮器9と,ドライヤ10,キャピラリチューブ11が直列的に設けられている。前記キャピラリチューブ11(冷媒の絞り量が固定である固定絞り手段の一例)の前記冷媒の流れ方向下流には前記冷媒経路を分岐させる分岐部Sが形成され,該分岐部Sには三方弁14が設けられている(即ち,前記分岐部Sの上流側に前記キャピラリチューブ11が設けられている)。前記三方弁14は,分岐後の前記冷媒経路の片方に流入する前記冷媒の絞り量を高める(冷媒を減圧させる)ものであり,かつその絞り量が可変である可変絞り器15と一体型である。即ち絞り量変更機能付きである。前記三方弁14(流路切替手段の一部の一例)による前記冷媒の流路の切り替えは,前記制御装置5(流路切替制御手段の一例)が,前記冷蔵室1の温度(冷蔵室用蒸発手段による冷却温度)を検出する前記冷蔵室用温度計3,前記冷凍室2の温度(冷凍室用蒸発手段による冷却温度)を検出する前記冷凍室用温度計4による検出温度を参照しつつ行うものであり,これについては後述する。前記冷蔵室用温度計3,前記冷凍室用温度計4が温度検知手段の一例である。
(1) About the outline of refrigerator A1 which concerns on the 1st Embodiment of this invention.
Hereinafter, the refrigerator according to the first embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 2, the refrigerator A1 according to the first embodiment of the present invention includes a refrigerator compartment 1, a freezer compartment 2, a refrigerator thermometer 3, a freezer thermometer 4, a control device 5, and a refrigerator compartment. The refrigeration cycle α1 and the control device 5 control the refrigeration cycle α1 and each part, which is different from the conventional example.
Hereinafter, the refrigeration cycle α1 will be described in detail. In the refrigeration cycle α1, a compressor 8, a condenser 9, a dryer 10, and a capillary tube 11 are provided in series in a refrigerant path filled with a combustible refrigerant in order to cope with non-fluorocarbons. A branch section S that branches the refrigerant path is formed downstream of the capillary tube 11 (an example of a fixed throttle means in which the throttle amount of the refrigerant is fixed) in the flow direction of the refrigerant, and a three-way valve 14 is formed in the branch section S. (That is, the capillary tube 11 is provided on the upstream side of the branch portion S). The three-way valve 14 increases the throttle amount of the refrigerant flowing into one side of the refrigerant path after branching (decompresses the refrigerant) and is integrated with a variable throttle 15 whose throttle amount is variable. is there. That is, it has a diaphragm amount changing function. Switching of the flow path of the refrigerant by the three-way valve 14 (an example of part of the flow path switching means) is performed by the control device 5 (an example of the flow path switching control means) of the temperature of the refrigerating chamber 1 (for the refrigerating room). While referring to the temperature detected by the freezer compartment thermometer 4 for detecting the temperature of the freezer compartment 3 for detecting the cooling temperature by the evaporation means) and the temperature of the freezer compartment 2 (cooling temperature by the evaporator means for freezer). This will be described later. The refrigerating room thermometer 3 and the freezing room thermometer 4 are examples of temperature detecting means.

(2)本発明の第1の実施形態に係る冷蔵庫A1の有する冷凍サイクルα1の特徴について。
前記三方弁14の下流側では,冷媒を蒸発させてガス状にして,前記冷蔵室1内の空気と熱交換を行う(冷蔵室1を冷却する)冷蔵室用蒸発器13,前記冷凍室2内の空気と熱交換を行う(冷凍室2を冷却する)冷凍室用蒸発器12がその順序で直列配置されている。また,前記三方弁14の一方側は前記冷蔵室用蒸発器13,前記可変絞り器15が設けられた他方側は前記冷凍室用蒸発器12に接続されており,即ち前記冷媒経路には前記冷蔵室用蒸発器13(上流側の蒸発手段の一例)をバイパスするバイパス経路Xが設けられている。前記三方弁14は,詳しくは後述のように,前記制御装置5の制御に基づいて,前記冷媒経路における前記バイパス経路Xの分岐部Sにおいて前記冷媒の流路を切り替える。前記三方弁14,前記制御装置5が流路切替手段の一例である。
尚,前記可変絞り器15は,前記冷凍室用蒸発器12(一方の蒸発手段の一例)と前記分岐部Sとの間において,前記冷凍室用蒸発器12(一方の蒸発手段の一例)に流入する冷媒の絞り量を,前記冷蔵室用蒸発器13に流入する冷媒の絞り量よりも高める(即ち,冷媒をより減圧する)ことが可能である。より絞られた(大きく減圧された)前記冷媒は熱交換を行いやすい。従って,そのような冷媒の,前記バイパス経路Xにおける余計な熱交換を防止するために,前記バイパス経路Xの距離(前記冷媒経路における分岐部Sと前記冷凍室用蒸発器12との距離)は,前記冷媒経路における分岐部Sと前記冷蔵室用蒸発器13との距離よりも短く設定されている。
また,前記冷凍室用蒸発器12と前記圧縮機8との間の配管及び前記キャピラリチューブ11は,互いに熱接触するように無鉛半田により半田付けがなされている。
(2) About the characteristic of refrigerating cycle (alpha) 1 which refrigerator A1 which concerns on the 1st Embodiment of this invention has.
On the downstream side of the three-way valve 14, the refrigerant is evaporated to form a gas and exchanges heat with the air in the refrigerator compartment 1 (cools the refrigerator compartment 1), the refrigerator compartment evaporator 13, and the freezer compartment 2. Freezer compartment evaporators 12 that exchange heat with the air inside (cool the freezer compartment 2) are arranged in series in that order. Further, one side of the three-way valve 14 is connected to the refrigerator compartment evaporator 13 and the other side provided with the variable throttle 15 is connected to the freezer compartment evaporator 12, that is, the refrigerant path is connected to the refrigerant path. A bypass path X is provided to bypass the refrigerator 13 for refrigerator compartment (an example of the upstream evaporation means). As will be described in detail later, the three-way valve 14 switches the flow path of the refrigerant in the branch portion S of the bypass path X in the refrigerant path based on the control of the control device 5. The three-way valve 14 and the control device 5 are examples of flow path switching means.
The variable throttle 15 is connected to the freezer compartment evaporator 12 (an example of one evaporator) between the freezer compartment evaporator 12 (an example of one evaporator) and the branch portion S. The throttle amount of the refrigerant flowing in can be increased (that is, the refrigerant is further depressurized) than the throttle amount of the refrigerant flowing into the refrigerator 13 for the refrigerator compartment. The refrigerant that has been squeezed more (highly depressurized) is likely to perform heat exchange. Accordingly, in order to prevent such refrigerant from excessive heat exchange in the bypass path X, the distance of the bypass path X (the distance between the branch portion S in the refrigerant path and the freezer compartment evaporator 12) is The distance between the branch portion S in the refrigerant path and the evaporator 13 for the refrigerator compartment is set to be shorter.
The piping between the freezer compartment evaporator 12 and the compressor 8 and the capillary tube 11 are soldered with lead-free solder so as to be in thermal contact with each other.

(3)流路の切り替え及び絞り量の調節について。
図4は,本発明の実施形態に係る冷蔵庫A1の有する制御装置5により実行される,前記冷凍サイクルα1及び各部の制御手順を表すフローチャートである。以下,図4を参照しつつ,前記制御装置5による前記冷凍サイクルα1の制御について詳述する。図4のフローチャートに示されるS1,S2…は処理の手順(ステップ)を表す番号であり,不図示のROMに記憶されている制御プログラムを前記制御装置5が実行することにより,前記冷蔵庫A1の通電開始時等にステップS1の処理から開始される。
ステップS1では,前記制御装置5は前記冷蔵室用温度計3により検出された前記冷蔵室1の検出温度(冷蔵温度)Rth,前記冷凍室用温度計4により検出された前記冷凍室2の検出温度(冷凍温度)Fthを参照し,それらが予め設定されている冷蔵室冷却開始温度Ron,冷凍室冷却開始温度Fonよりも大きいか否かを判別する。前記冷蔵温度Rth,前記冷凍温度Fthのいずれもが大きいと判別された場合には(S1YES)ステップS2に進む一方,小さいと判別されている間は(S1NO)当該ステップにおける処理を繰り返す。
(3) About switching the flow path and adjusting the amount of restriction.
FIG. 4 is a flowchart showing a control procedure of the refrigeration cycle α1 and each part, which is executed by the control device 5 of the refrigerator A1 according to the embodiment of the present invention. Hereinafter, the control of the refrigeration cycle α1 by the control device 5 will be described in detail with reference to FIG. S1, S2,... Shown in the flowchart of FIG. 4 are numbers representing processing steps (steps), and when the control device 5 executes a control program stored in a ROM (not shown), The process starts from step S1 at the start of energization.
In step S1, the control device 5 detects the temperature (refrigeration temperature) Rth of the refrigerating chamber 1 detected by the refrigerating chamber thermometer 3, and the detection of the freezing chamber 2 detected by the freezing chamber thermometer 4. With reference to the temperature (refrigeration temperature) Fth, it is determined whether or not they are higher than the preset cold room cooling start temperature Ron and freezing room cooling start temperature Fon. If it is determined that both the refrigeration temperature Rth and the refrigeration temperature Fth are high (S1 YES), the process proceeds to step S2. On the other hand, while it is determined that the refrigerating temperature Rth is low (S1 NO), the process in the step is repeated.

ステップS2では,前記制御装置5は前記三方弁14を制御することにより,前記冷蔵室用蒸発器13,前記冷凍室用蒸発器12側の経路の両方を全開にする。
ステップS2に続くステップS3では,前記制御装置5は,前記圧縮機8,前記冷蔵室用送風機6,前記冷凍室用送風機7各々の稼働制御を行う。
ステップS3に続くステップS4では,前記制御装置5は前記可変絞り器15を制御し,前記バイパス経路Xにおける絞り量を低下させる。つまり,前記可変絞り器15により前記冷媒が減圧されない状態にする。尚,前記キャピラリチューブ11による減圧量は,前記冷媒の蒸発温度が前記冷蔵室1の適温(前記冷蔵室冷却開始温度Ronと後述の冷蔵室冷却停止温度Roffの中間温度であり,冷蔵室1の目標温度である)に相応しいものとなるように調節されている。従って,この状態では前記冷蔵室1に対して過冷却等が生じない適切な冷却が可能である。
In step S2, the control device 5 controls the three-way valve 14 to fully open both the refrigerator compartment evaporator 13 and the freezer compartment evaporator 12 side paths.
In step S3 following step S2, the control device 5 controls the operation of the compressor 8, the refrigerator compartment fan 6, and the freezer compartment fan 7, respectively.
In step S4 following step S3, the control device 5 controls the variable throttle 15 to reduce the throttle amount in the bypass path X. That is, the refrigerant is not decompressed by the variable throttle 15. The amount of decompression by the capillary tube 11 is such that the evaporating temperature of the refrigerant is an appropriate temperature of the refrigerating chamber 1 (an intermediate temperature between the refrigerating chamber cooling start temperature Ron and a refrigerating chamber cooling stop temperature Roff described later). It is adjusted to be suitable for the target temperature. Therefore, in this state, it is possible to appropriately cool the refrigerator compartment 1 without overcooling or the like.

ステップS4に続くステップS5では,前記制御装置5は前記冷蔵室用温度計3により検出された前記冷蔵室1の検出温度(冷蔵温度)Rthを参照し,予め設定されている冷蔵室冷却停止温度Roffよりも小さいか否か,即ち前記冷蔵室1が十分に冷却されたか否かを判別する。小さいと判別された場合には(S5YES)ステップS6に進む一方,大きいと判別されている間は(S5NO)当該ステップの処理を繰り返す。
ステップS6では,ステップS5で前記冷蔵室1が十分に冷却されたと判別したので,前記制御装置5は前記冷蔵室1(前記冷蔵室用蒸発器13)への前記冷媒の流入を停止するべく,前記三方弁14を制御して前記冷蔵室用蒸発器13側の経路を遮断する。
ステップS6に続くステップS7では,前記制御装置5は前記冷蔵室用送風機6の稼働を休止する。
ステップS7に続くステップS8では,前記制御装置5は前記可変絞り器15を制御し,前記バイパス経路Xに流入する冷媒の絞り量を増加させる。これにより前記冷媒はより低圧にまで減圧させ,蒸発温度が低い状態にする。つまり,前記冷蔵室1の冷却の必要がなくなったため,前記冷媒の前記蒸発温度を前記冷凍室2の冷却用の適切な温度にまで低下させつつ,前記冷媒が前記冷凍室用蒸発器12のみに流入するように前記冷媒経路を調節する。
このように,前記制御装置5は,前記三方弁14(冷媒経路切替手段の一例)による前記冷媒経路の切り替え(ステップS2,ステップS6)に応じて,前記可変絞り器15を制御することにより,前記バイパス経路Xに流入する前記冷媒の絞り量を変更する。前記制御装置5及び前記可変絞り器15が可変絞り手段の一例である。また,前記制御装置5は,前記可変絞り器15を制御することにより,前記冷蔵室用蒸発器13,前記冷凍室用蒸発器12の両方に前記冷媒が流入する場合(分岐部Sにおける両方の分岐先)よりも,前記冷凍室用蒸発器12(一方の分岐先)に前記冷媒が流入する場合の方が,前記冷媒の絞り量が強まるようにする。
In step S5 subsequent to step S4, the control device 5 refers to the temperature (refrigeration temperature) Rth detected in the refrigerator compartment 1 detected by the refrigerator thermometer 3, and is set in the refrigerator compartment cooling stop temperature set in advance. It is determined whether or not it is smaller than Roff, that is, whether or not the refrigerator compartment 1 is sufficiently cooled. If it is determined that the value is small (S5 YES), the process proceeds to step S6. On the other hand, if it is determined that the value is large (S5 NO), the process of the step is repeated.
In step S6, since it is determined in step S5 that the refrigerating chamber 1 has been sufficiently cooled, the control device 5 is configured to stop the flow of the refrigerant into the refrigerating chamber 1 (the refrigerating chamber evaporator 13). The three-way valve 14 is controlled to shut off the path on the refrigerator compartment evaporator 13 side.
In step S7 following step S6, the control device 5 stops the operation of the refrigerator compartment fan 6.
In step S8 following step S7, the control device 5 controls the variable throttle 15 to increase the throttle amount of the refrigerant flowing into the bypass path X. As a result, the refrigerant is depressurized to a lower pressure, and the evaporation temperature is lowered. That is, since it is no longer necessary to cool the refrigerating chamber 1, the refrigerant is supplied only to the freezer compartment evaporator 12 while lowering the evaporation temperature of the refrigerant to an appropriate temperature for cooling the freezer compartment 2. The refrigerant path is adjusted to flow in.
As described above, the control device 5 controls the variable throttle 15 according to the switching of the refrigerant path (step S2, step S6) by the three-way valve 14 (an example of the refrigerant path switching means). The throttle amount of the refrigerant flowing into the bypass path X is changed. The control device 5 and the variable diaphragm 15 are examples of variable diaphragm means. Further, the control device 5 controls the variable restrictor 15 so that the refrigerant flows into both the refrigerator compartment evaporator 13 and the freezer compartment evaporator 12 (both in the branch section S). The amount of restriction of the refrigerant is increased when the refrigerant flows into the freezer compartment evaporator 12 (one branch destination) rather than the branch destination).

ステップS8に続くステップS9では,前記冷凍室用温度計4により検出された前記冷凍室2の検出温度(冷凍温度)Fthを参照し,それが予め設定されている冷凍室冷却停止温度Roffよりも小さいか否か,即ち前記冷凍室2が十分に冷却されたか否かを判別する。小さいと判別された場合には,(S9YES)S10に進む一方,大きいと判別されている間は(S9NO)当該ステップの処理を繰り返す。
ステップS10では,前記制御装置5は前記冷蔵室用温度計3により検出された前記冷蔵室1の検出温度(冷蔵温度)Rthを参照し,前記冷蔵室冷却開始温度Ronよりも小さいか否か,即ち前記冷凍室2の集中冷却を行っている間に,前記冷蔵室1の温度が,再び冷却が必要な温度にまで上昇したか否かを判別する。上昇したと判別された(S10NO)場合には,ステップS2に進む。一方,上昇していないと判別された(S10YES)場合には,ステップS11に進む。
ステップS11では,ステップS9で前記冷凍室2が十分に冷却されたと判別したので,前記制御装置5は前記冷凍室2(前記冷凍室用蒸発器12)への前記冷媒の流入を休止するべく,前記三方弁14を制御して前記冷凍室用蒸発器12側の経路を遮断する。これにより,前記三方弁14からは前記冷蔵室用蒸発器13側,前記冷凍室用蒸発器12側(バイパス経路X側)のいずれにも前記冷媒が流出しない状態になる。
ステップS11に続くステップS12では,前記制御装置5は前記冷凍室用送風機7及び前記圧縮機8の稼働を停止する。ステップS12が終了すると,ステップS1に戻り,再びステップS1〜ステップS12の処理を適宜繰り返す。
In step S9 following step S8, the detected temperature (freezing temperature) Fth of the freezer compartment 2 detected by the freezer compartment thermometer 4 is referred to, which is higher than the preset freezer compartment cooling stop temperature Roff. It is determined whether or not it is small, that is, whether or not the freezer compartment 2 is sufficiently cooled. If it is determined that the value is small (S9 YES), the process proceeds to S10. On the other hand, if it is determined that the value is large (S9 NO), the process in this step is repeated.
In step S10, the control device 5 refers to the detected temperature (refrigeration temperature) Rth of the refrigerator compartment 1 detected by the refrigerator compartment thermometer 3, and determines whether or not it is lower than the refrigerator compartment cooling start temperature Ron. That is, it is determined whether or not the temperature of the refrigerating chamber 1 has risen again to a temperature that requires cooling while the freezing chamber 2 is being intensively cooled. If it is determined that it has risen (NO in S10), the process proceeds to step S2. On the other hand, if it is determined that it has not risen (S10 YES), the process proceeds to step S11.
In step S11, since it was determined that the freezer compartment 2 was sufficiently cooled in step S9, the control device 5 is configured to pause the flow of the refrigerant into the freezer compartment 2 (the freezer compartment evaporator 12). The three-way valve 14 is controlled to cut off the path on the evaporator 12 side of the freezer compartment. As a result, the refrigerant does not flow out from the three-way valve 14 to either the refrigerator compartment evaporator 13 side or the freezer compartment evaporator 12 side (bypass path X side).
In step S12 following step S11, the control device 5 stops the operation of the freezer compartment fan 7 and the compressor 8. When step S12 ends, the process returns to step S1, and the processes of steps S1 to S12 are repeated as appropriate.

(4)各部の制御のタイミングについて。
図5には,図4に示されるフローチャートの処理の結果による,各部の制御のタイミングを表すグラフが示されている。尚,前記冷媒の絞り量が高められた状態は,図5においては前記三方弁の「半開」状態として示されている。
図5に示されるように,前記三方弁14は,前記圧縮機8の稼働の所定時間前に開制御がなされる。これは,前記冷媒経路の各部において圧力差が生じることを防止して,前記圧縮機8の稼働開始時の安定化を図ったものである。
また,図5に示されるように,前記圧縮機8の稼働開始直後には前記冷凍室用蒸発器12及び前記冷蔵室用蒸発器13の両方に前記冷媒が流入するように前記冷媒経路が制御される。その後,前記冷蔵室1の温度が十分に低下された場合には,前記三方弁14が制御され,前記冷蔵室用蒸発器13への前記冷媒の流入が禁止される。また,それと同時に前記可変絞り器15が制御され,前記冷媒の絞り量が調節される。
このように,本実施形態によれば,前記冷媒経路に応じて,前記冷媒の蒸発温度が前記冷蔵室1及び前記冷凍室2の両方の冷却用,前記冷凍室2のみの冷却用各々に相応しい温度に適宜調節される。これにより,例えば前記冷凍室2の適温に近い蒸発温度で前記冷蔵室1の冷却を行うといった非効率が回避され,また過冷却により生じる収容物の品質低下を防止することが可能である。
(4) About control timing of each part.
FIG. 5 shows a graph representing the timing of control of each part based on the processing result of the flowchart shown in FIG. Note that the state in which the refrigerant throttle amount is increased is shown in FIG. 5 as the “half-open” state of the three-way valve.
As shown in FIG. 5, the three-way valve 14 is controlled to open before a predetermined time of operation of the compressor 8. This prevents a pressure difference from occurring in each part of the refrigerant path and stabilizes the compressor 8 at the start of operation.
Further, as shown in FIG. 5, the refrigerant path is controlled so that the refrigerant flows into both the freezer compartment evaporator 12 and the refrigerator compartment evaporator 13 immediately after the start of operation of the compressor 8. Is done. Thereafter, when the temperature of the refrigerating chamber 1 is sufficiently lowered, the three-way valve 14 is controlled to prevent the refrigerant from flowing into the refrigerating chamber evaporator 13. At the same time, the variable throttle 15 is controlled to adjust the throttle amount of the refrigerant.
Thus, according to this embodiment, the evaporation temperature of the refrigerant is suitable for cooling both the refrigerator compartment 1 and the freezer compartment 2 and for cooling only the freezer compartment 2 according to the refrigerant path. The temperature is adjusted appropriately. Thereby, for example, the inefficiency of cooling the refrigerator compartment 1 at an evaporating temperature close to an appropriate temperature of the freezer compartment 2 can be avoided, and it is possible to prevent deterioration of the quality of the contents caused by supercooling.

(5)第2の実施形態に係る冷蔵庫A2について。
上述した第1の実施形態に係る冷蔵庫A1では,前記冷蔵室用蒸発器13,前記冷凍室用蒸発器12が直列に接続されていたが,本発明はこれに限られるものではない。即ち,図3に示されるように,前記冷蔵室用蒸発器13,前記冷凍室用蒸発器12を冷媒経路において並列に設けた冷凍サイクルα2を有する冷蔵庫A2も考えられる。
本発明の第2の実施形態に係る冷蔵庫A2においても各部の動作は同様であり,また,図4に示されるフローチャートの制御に従うものとすると,前記三方弁14により切り替えられた前記冷媒経路に応じて,前記冷媒の蒸発温度が,前記冷蔵室1及び前記冷凍室2の両方の冷却用,前記冷凍室2のみの冷却用各々に相応しい温度に適宜調節される。
(5) About refrigerator A2 which concerns on 2nd Embodiment.
In the refrigerator A1 according to the first embodiment described above, the refrigerator compartment evaporator 13 and the refrigerator compartment evaporator 12 are connected in series, but the present invention is not limited to this. That is, as shown in FIG. 3, a refrigerator A2 having a refrigeration cycle α2 in which the refrigerator 13 evaporator and the evaporator 12 are provided in parallel in the refrigerant path is also conceivable.
The operation of each part is the same also in the refrigerator A2 according to the second embodiment of the present invention, and according to the control of the flowchart shown in FIG. 4, according to the refrigerant path switched by the three-way valve 14. Thus, the evaporating temperature of the refrigerant is appropriately adjusted to a temperature suitable for cooling both the refrigerator compartment 1 and the freezer compartment 2 and for cooling only the freezer compartment 2.

上述の実施例では,三方弁14と一体である可変絞り器15により,冷媒の絞り量が冷媒経路(冷媒の流入先の蒸発器)のみに応じて変更されるものであったが,前記冷媒の絞り量を変更する条件として他の条件を追加することも考えられる。
例えば前記冷媒を圧縮する圧縮機8(図1〜図3参照)の回転数を可変とした場合,その回転数に応じて前記可変絞り器15を制御することが考えられる。即ち,前記回転数が大きい場合には前記冷媒がより高圧にまで圧縮されるので,絞り量を減少させて減圧の度合いを小さくする,逆に,前記回転数が小さい場合には,絞り量を大きくする等の制御を行うものとする。また,前記冷媒を凝縮する凝縮器9による凝縮温度に基づいて前記可変絞り器15の制御を行うことも考えられる。
これらの場合には,前記冷蔵室1の冷却用である冷蔵室用蒸発器13,前記冷凍室2の冷却用である冷凍室用蒸発器12の両方に流入する冷媒の絞り量を調節することが想定されるので,前記可変絞り器15を両者の蒸発器への冷媒流入経路に設けるのが望ましい。
更に,製氷を行う場合には,前記可変絞り器15が製氷用の熱交換を行う蒸発器(図2,図3の例では,冷凍室用蒸発器12)に流入する前記冷媒の絞り量を更に高めることような制御も考えられる。つまり,冷蔵庫の外面に設けられた操作部から,製氷を要求する操作入力がなされた場合などに,制御装置5(図2,図3参照)が前記可変絞り器15を制御して,上述の製氷用の熱交換を行う蒸発器に流入する前記冷媒の絞り量を製氷に相応しい蒸発温度が得られるまで増加させる。これにより,もう一方の蒸発器に流入する冷媒の蒸発温度に影響なく製氷を行うことができる。
In the above-described embodiment, the variable throttle 15 integrated with the three-way valve 14 changes the refrigerant throttle amount only in accordance with the refrigerant path (the refrigerant into which the refrigerant flows). It is also conceivable to add other conditions as conditions for changing the aperture amount.
For example, when the rotational speed of the compressor 8 (see FIGS. 1 to 3) for compressing the refrigerant is variable, it is conceivable to control the variable throttle 15 according to the rotational speed. That is, when the rotational speed is high, the refrigerant is compressed to a higher pressure, so the throttle amount is decreased to reduce the degree of decompression. Conversely, when the rotational speed is small, the throttle amount is reduced. Control such as enlarging is performed. It is also conceivable to control the variable throttle 15 based on the condensation temperature of the condenser 9 that condenses the refrigerant.
In these cases, the throttle amount of the refrigerant flowing into both the refrigerator compartment evaporator 13 for cooling the refrigerator compartment 1 and the refrigerator compartment evaporator 12 for cooling the freezer compartment 2 is adjusted. Therefore, it is desirable to provide the variable throttle 15 in the refrigerant inflow path to both evaporators.
Further, when ice making is performed, the throttle amount of the refrigerant flowing into the evaporator (the freezer compartment evaporator 12 in the examples of FIGS. 2 and 3) in which the variable throttle 15 performs heat exchange for ice making is set. Further control can be considered. That is, the control device 5 (see FIGS. 2 and 3) controls the variable restrictor 15 when the operation input requesting ice making is made from the operation unit provided on the outer surface of the refrigerator, so that The throttle amount of the refrigerant flowing into the evaporator for heat exchange for ice making is increased until an evaporation temperature suitable for ice making is obtained. Thereby, ice making can be performed without affecting the evaporation temperature of the refrigerant flowing into the other evaporator.

上述の実施形態では,固定型の絞り手段であるキャピラリチューブ11(毛細管)が前記三方弁の上流側に設けられている例について開示したが,これに限られるものではなく,前記キャピラリチューブ11の代わりに可変絞り器を設けたものであっても良い。また,キャピラリチューブ11を設ける位置を,前記三方弁の上流側の前記三方弁と前記冷蔵室用蒸発器13との間に変更した例も考えられる。
更に,上述の実施形態では,前記可変絞り器15が前記冷媒の絞り量をより高める(減圧する)ものであったが,逆に前記冷媒の絞り量を低くする(冷媒を加圧する)ものである場合も考えられる。その場合,可変絞り器は前記分岐部Sと前記冷蔵室用蒸発器13との間に設けておく。また,前記キャピラリチューブ11では,前記冷媒の蒸発温度が前記冷凍室2の冷却用に相応しい温度となるように,前記冷媒の絞り量を調節する。
その他,本発明の要旨を逸脱しない限りにおいて様々な変形例を採用し得る。
In the above-described embodiment, the example in which the capillary tube 11 (capillary tube) that is a fixed-type throttle means is provided on the upstream side of the three-way valve is disclosed, but the present invention is not limited to this. Instead, a variable diaphragm may be provided. In addition, an example in which the position where the capillary tube 11 is provided is changed between the three-way valve upstream of the three-way valve and the refrigerator 13 for the refrigerator compartment is also conceivable.
Further, in the above-described embodiment, the variable restrictor 15 increases (decreases) the amount of the refrigerant, but conversely reduces the amount of the refrigerant (pressurizes the refrigerant). There are some cases. In that case, the variable throttle is provided between the branch portion S and the evaporator 13 for the refrigerator compartment. In the capillary tube 11, the throttle amount of the refrigerant is adjusted so that the evaporation temperature of the refrigerant becomes a temperature suitable for cooling the freezer compartment 2.
In addition, various modifications can be adopted without departing from the gist of the present invention.

従来例における冷蔵庫の概略構成図。The schematic block diagram of the refrigerator in a prior art example. 本発明の第1の実施形態に係る冷蔵庫の概略構成図。The schematic block diagram of the refrigerator which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る冷蔵庫の概略構成図。The schematic block diagram of the refrigerator which concerns on the 2nd Embodiment of this invention. 本発明の第1の実施形態に係る冷蔵庫の有する制御装置により実行される冷凍サイクルの制御手順を示すフローチャート。The flowchart which shows the control procedure of the refrigerating cycle performed by the control apparatus which the refrigerator which concerns on the 1st Embodiment of this invention has. 本発明の第1の実施形態に係る冷蔵庫の有する制御装置による各部の制御のタイミングを表すグラフ。The graph showing the timing of control of each part by the control apparatus which the refrigerator which concerns on the 1st Embodiment of this invention has.

符号の説明Explanation of symbols

A1…本発明の第1の実施形態に係る冷蔵庫
A2…本発明の第2の実施形態に係る冷蔵庫
B…従来例における冷蔵庫
α1…冷蔵庫A1において用いられている冷凍サイクル
α2…冷蔵庫A2において用いられている冷凍サイクル
β…冷蔵庫Bにおいて用いられている冷凍サイクル
S…分岐部
1…冷蔵室
2…冷凍室
3…冷蔵室用温度計
4…冷凍室用温度計
5…制御装置
6…冷蔵室用送風機
7…冷凍室用送風機
8…圧縮機
9…凝縮器
10…ドライヤ
11…キャピラリチューブ
12…冷凍室用蒸発器
13…冷蔵室用蒸発器
14…三方弁
15…可変絞り器
A1 ... refrigerator A2 according to the first embodiment of the present invention ... refrigerator B according to the second embodiment of the present invention ... refrigerator α1 in the conventional example ... refrigeration cycle α2 used in the refrigerator A1 ... used in the refrigerator A2 Refrigeration cycle β ... refrigeration cycle S used in refrigerator B ... branch 1 ... refrigerator compartment 2 ... refrigerator compartment 3 ... refrigerator compartment thermometer 4 ... refrigerator compartment thermometer 5 ... controller 6 ... refrigerator compartment Blower 7 ... Freezer compartment blower 8 ... Compressor 9 ... Condenser 10 ... Dryer 11 ... Capillary tube 12 ... Freezer compartment evaporator 13 ... Refrigerating compartment evaporator 14 ... Three-way valve 15 ... Variable throttle

Claims (5)

冷媒経路中に直列接続され低温室の室内空気と熱交換する低温室用及び該低温室の前記冷媒経路中の上流側に接続され,該低音室より設定温度が高く高温室の室内空気と熱交換する高温室用の2つの蒸発手段12,13と,
その冷媒経路に接続され,前記上流側の高温室用の前記蒸発手段13をバイパスし前記低温室用の蒸発手段12に冷媒が流入するバイパス経路Xと,
前記冷媒経路における前記バイパス経路Xへの分岐部において冷媒の流路を切り替える流路切替手段14と
記分岐部の冷媒経路上流側に設けられた固定絞り手段11と,
を備えた冷凍サイクルを備え,
前記冷凍サイクルの,前記分岐部の下流側には,前記流路切替手段14の冷媒経路下流側の前記バイパス経路X内であって,前記低温室用の前記蒸発手段12へ冷媒が流入する側にのみ可変絞り手段15が設けられてなることを特徴とする冷蔵庫。
Connected in series in the refrigerant path for the cold room that exchanges heat with the room air in the cold room and connected to the upstream side in the refrigerant path of the cold room, the set temperature is higher than the low temperature room, and the room air and heat in the high temperature room Two evaporation means 12 , 13 for the hot chamber to be replaced ;
A bypass path X connected to the refrigerant path , bypassing the evaporating means 13 for the upstream high temperature chamber and allowing the refrigerant to flow into the evaporating means 12 for the low temperature chamber ;
Flow path switching means 14 for switching the flow path of the refrigerant at a branching portion of the refrigerant path to the bypass path X ;
A fixed throttle means 11 provided in the refrigerant passage upstream of the front Symbol bifurcation,
A refrigeration cycle with
Of the freezing cycle, the downstream side of the branch portion is the above flow direction switching means in said bypass path X of the refrigerant passage downstream of 14, the side where refrigerant flows into said evaporator means 12 for cold room The refrigerator is characterized in that the variable throttle means 15 is provided only in the refrigerator.
冷媒経路中に並列接続され低温室の室内空気と熱交換する低温室用及び該低温室より設定温度が高く高温室の室内空気と熱交換する高温室用の2つの蒸発手段12,13を備えた冷凍サイクルを具備する冷蔵庫であって,
前記冷媒経路における前記2つの蒸発手段への分岐部において冷媒の流路を切り替える流路切替手段14と,
前記流路切替手段14の冷媒経路下流側であって,前記低温室用の前記蒸発手段12へ冷媒が流入する側に設けられ,冷媒の絞り量を可変に調整する可変絞り手段15と,
前記分岐部の冷媒経路上流側に設けられた固定型の絞り手段11と,
を具備してなることを特徴とする冷蔵庫。
Two evaporating means 12 and 13 are provided for a low temperature chamber that is connected in parallel in the refrigerant path and exchanges heat with the room air of the low temperature chamber and for a high temperature chamber that has a higher set temperature than the low temperature chamber and exchanges heat with the room air of the high temperature chamber A refrigerator equipped with a freezing cycle,
Flow path switching means 14 for switching the flow path of the refrigerant at a branching portion to the two evaporation means in the refrigerant path;
A variable throttle means 15 provided on the downstream side of the refrigerant path of the flow path switching means 14 and on the side where the refrigerant flows into the evaporation means 12 for the low temperature chamber, and variably adjusts the throttle amount of the refrigerant;
A fixed throttling means 11 provided on the upstream side of the refrigerant path of the branch portion;
The refrigerator characterized by comprising.
前記可変絞り手段により絞り量変更の結果,絞り量の高い前記冷媒が流入する前記低温室用の蒸発手段と前記分岐部との前記冷媒経路における距離が,前記高温室用の蒸発手段と前記分岐部との前記冷媒経路における距離よりも短く設定されてなる請求項1あるいは2のいずれかに記載の冷蔵庫。   As a result of changing the throttle amount by the variable throttle means, the distance in the refrigerant path between the low temperature chamber evaporating means and the branch portion into which the refrigerant with a high throttle amount flows is equal to the high temperature chamber evaporating means and the branch. The refrigerator in any one of Claim 1 or 2 set shorter than the distance in the said refrigerant | coolant path | route with a part. 前記固定絞り手段による減圧量が,冷媒の蒸発温度が前記高温室用蒸発手段の目標温度が得られるような減圧量に設定されてなる請求項1〜3のいずれかに記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 3, wherein the amount of decompression by the fixed throttle means is set to an amount of decompression so that a refrigerant evaporating temperature can obtain a target temperature of the high temperature chamber evaporating means. 前記可変絞り手段が,前記流路切替手段により前記分岐部における両方の分岐先に冷媒が流される場合よりも,一方の分岐先に冷媒が流される場合の方が冷媒の絞り量が強まるようにするものであり,且つ,
前記2つの蒸発手段の一方が冷凍室冷却用に用いられる冷凍室用蒸発手段であり,他方が冷蔵室冷却用に用いられる冷蔵室用蒸発手段であり,更に,
前記可変絞り手段により絞り量変更の結果,絞り量の高い冷媒が前記冷凍室用蒸発手段に流入するように定められてなる請求項1〜4いずれかに記載の冷蔵庫。
The throttle amount of the refrigerant is increased in the case where the refrigerant is flowed to one branch destination than in the case where the variable throttle means causes the flow path switching means to flow the refrigerant to both branch destinations. And
One of the two evaporation means is a freezing room evaporation means used for freezing room cooling, the other is a refrigerating room evaporation means used for refrigerating room cooling,
The refrigerator according to any one of claims 1 to 4, wherein a refrigerant with a high throttle amount is determined to flow into the freezer compartment evaporator as a result of changing the throttle amount by the variable throttle means.
JP2005114501A 2005-04-12 2005-04-12 refrigerator Expired - Fee Related JP4575217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114501A JP4575217B2 (en) 2005-04-12 2005-04-12 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114501A JP4575217B2 (en) 2005-04-12 2005-04-12 refrigerator

Publications (2)

Publication Number Publication Date
JP2006292294A JP2006292294A (en) 2006-10-26
JP4575217B2 true JP4575217B2 (en) 2010-11-04

Family

ID=37413040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114501A Expired - Fee Related JP4575217B2 (en) 2005-04-12 2005-04-12 refrigerator

Country Status (1)

Country Link
JP (1) JP4575217B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124453A (en) * 1999-10-27 2001-05-11 Sharp Corp Refrigerator
JP2002062020A (en) * 2000-08-17 2002-02-28 Toshiba Corp Refrigerator
JP2002089981A (en) * 2000-09-20 2002-03-27 Sharp Corp Refrigerator
JP2004003867A (en) * 2003-08-21 2004-01-08 Toshiba Corp Refrigerator
JP2004132635A (en) * 2002-10-11 2004-04-30 Mitsubishi Heavy Ind Ltd Vehicular refrigeration unit with two cold storages, and its control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169485U (en) * 1982-05-08 1983-11-11 松下冷機株式会社 Cold/hot storage
JP3124876B2 (en) * 1993-10-15 2001-01-15 シャープ株式会社 refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124453A (en) * 1999-10-27 2001-05-11 Sharp Corp Refrigerator
JP2002062020A (en) * 2000-08-17 2002-02-28 Toshiba Corp Refrigerator
JP2002089981A (en) * 2000-09-20 2002-03-27 Sharp Corp Refrigerator
JP2004132635A (en) * 2002-10-11 2004-04-30 Mitsubishi Heavy Ind Ltd Vehicular refrigeration unit with two cold storages, and its control method
JP2004003867A (en) * 2003-08-21 2004-01-08 Toshiba Corp Refrigerator

Also Published As

Publication number Publication date
JP2006292294A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
EP2075516A2 (en) Refrigeration unit for land transportation and operation control method of refrigeration unit for land transportation
JP2005249254A (en) Refrigerator-freezer
JP6545252B2 (en) Refrigeration cycle device
KR102472504B1 (en) Cooling apparatus
JP5988953B2 (en) Heat pump water heater
JP4760974B2 (en) Refrigeration equipment
JP6420686B2 (en) Refrigeration cycle equipment
JP2008096033A (en) Refrigerating device
WO2021014640A1 (en) Refrigeration cycle device
WO2011064927A1 (en) Refrigeration device for container
JP5404761B2 (en) Refrigeration equipment
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
US20190032985A1 (en) Refrigeration device comprising multiple storage chambers
JP4178646B2 (en) refrigerator
JP2008121980A (en) Refrigerator
JP5119513B2 (en) Dual refrigerator
JP2019163867A (en) Vapor-compression refrigerator
JP4575217B2 (en) refrigerator
JP2021055876A (en) Heat source unit and refrigerating device
JP2007247997A (en) Air conditioner
JP2009293887A (en) Refrigerating device
JP2016151410A (en) Transport refrigeration unit
JP4727523B2 (en) Refrigeration equipment
JP4690801B2 (en) Refrigeration equipment
JP2010014386A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees