JP4574680B2 - マルチキャリア符号分割多重伝送システム及び方法、受信装置 - Google Patents

マルチキャリア符号分割多重伝送システム及び方法、受信装置 Download PDF

Info

Publication number
JP4574680B2
JP4574680B2 JP2007537671A JP2007537671A JP4574680B2 JP 4574680 B2 JP4574680 B2 JP 4574680B2 JP 2007537671 A JP2007537671 A JP 2007537671A JP 2007537671 A JP2007537671 A JP 2007537671A JP 4574680 B2 JP4574680 B2 JP 4574680B2
Authority
JP
Japan
Prior art keywords
signal point
coordinates
spread
reference signal
code division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007537671A
Other languages
English (en)
Other versions
JPWO2007037320A1 (ja
Inventor
利則 鈴木
功旭 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Publication of JPWO2007037320A1 publication Critical patent/JPWO2007037320A1/ja
Application granted granted Critical
Publication of JP4574680B2 publication Critical patent/JP4574680B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03401PSK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Error Detection And Correction (AREA)

Description

本発明は、マルチキャリア符号分割多重伝送システム及び方法、受信装置に関する。
本願は、2005年9月28日に日本に出願された特願2005−281550号に基づき優先権を主張し、その内容をここに援用する。
従来、複数のサブキャリアを用いて信号を多重伝送するマルチキャリア伝送システムの代表的なものの一つに、マルチキャリア符号分割多重伝送システム(MC−CDM(Multi Carrier-Code Division Multiplexing)方式)が知られている。MC−CDM方式においては、直交符号を用いて周波数方向に拡散した信号を複数のサブキャリアで周波数多重することにより、周波数ダイバーシチ効果を得ることができ、変調シンボルの受信特性がよいという特長を持つ。しかしながら、無線伝送路の周波数選択性によって符号間の直交性が損なわれると、符号間干渉が発生して受信特性が劣化するという問題がある。
図13は、従来のマルチキャリア符号分割多重伝送システムの構成を示すブロック図である。図13に示す送信機100において、変調器(MOD)101は送信データを変調して変調シンボルを出力する。その変調シンボルをb[n]として説明する。但し、nは時刻を表す記号であり、変調シンボルの番号を与える。また、ここでは、変調方式の一例としてQPSK(Quadrature Phase Shift Keying, Quadri-Phase Shift Keying)方式を用いる。変調シンボルb[n]は、IQ平面(Iチャネル(実数部)とQチャネル(虚数部)がとりうる値で構成される平面)上で、図14に示されるような信号点配置を取りうる。図14には、変調シンボルb[n]がとりうる4つの基準信号点が示されている。
拡散・多重化部102は、変調シンボルを符号で拡散し、その拡散された変調シンボルを多重化する。ここでは、最も簡単な2倍拡散(拡散率が2であり、1つの変調シンボルが2つのサブキャリアに拡散される)、2多重(多重数が2であり、1つのサブキャリアに2つの変調シンボルをマッピングする)とする。また、拡散符号としてウォルシュ(Walsh)符号を用いる。Walsh符号は、アダマール行列(Hadamard matrix)から生成される。アダマール行列は、+1と−1を要素として、行と列が互いに直交している正方の配列である。ウォルシュ行列(Walsh matrix)は、アダマール行列において列を符号が入れ替わった回数の昇順に再配置することで得られる。本2倍拡散かつ2多重に対応する拡散多重変換行列Tは(1)式で表される。
Figure 0004574680
拡散・多重化部102は、(2)式により、2倍拡散と2多重を行う。この結果、2つの変調シンボルb[2n−1]、b[2n]は2つのチップ信号c1[n]、c2[n]として出力される。
Figure 0004574680
シリアル/パラレル変換部(S/P)103は、2系統のチップ信号c1[n]、c2[n]をそれぞれシリアル信号入力としてパラレル信号に変換する。そのパラレル信号数は、データ伝送に使用するサブキャリア数と拡散率の比である。例えば、サブキャリア数が512であれば、拡散率が2であるので、512/2=256となり、パラレル数は256となる。
逆高速フーリエ変換部(IFFT)104は、パラレル化されたチップ信号hを逆フーリエ変換処理し、周波数領域の信号から時間領域の信号に変換する。ここで、nが同一のチップ信号c1[n]、c2[n]については、できるだけ周波数領域上の距離をとるようにする。これにより、より高い周波数ダイバシチ効果を得ることができる。
パラレル/シリアル変換部(P/S)105は、IFFT104出力後の時間領域の信号をシリアル信号に変換する。ガードインターバル挿入部(+GI)106は、そのシリアル信号にガードインターバルを付加する。ガードインターバルは、サブキャリア間の直交性を受信側でも保持させるための信号である。そのガードインターバル付加後の信号は、パイロット信号(図示せず)とともに無線送信される。パイロット信号は、受信側で伝送路を推定するための信号である。
図13に示す受信機200において、ガードインターバル除去部(−GI)201は、無線受信した信号からガードインターバルを除去する。S/P202は、ガードインターバル除去後の信号をパラレル信号に変換する。高速フーリエ変換部(FFT)203は、そのパラレル化された信号をフーリエ変換処理し、時間領域の信号から周波数領域のサブキャリア信号Hに変換する。ここでのサブキャリア信号Hには、伝送路(チャネル)で受けた振幅と位相の変化が含まれている。
CH推定・MMSE補正部204は、パイロット信号の受信特性等に基づいて、伝送路の状態を測定する。また、周波数帯域内の雑音電力密度も測定する。そして、CH推定・MMSE補正部204は、その伝送路状態及び雑音電力密度に基づいて、MMSE(Minimum Mean Square Error;最小平均二乗誤差)を用いた等化処理を行う。CH推定・MMSE補正部204から出力されるサブキャリア信号H'は(3)式で表される。
Figure 0004574680
但し、Hは入力されるk番目のサブキャリア信号、H'は出力されるk番目のサブキャリア信号、Aはサブキャリア番号kの伝送路状態、Nは雑音電力密度である。
P/S205は、サブキャリア信号H'をシリアル信号に変換し、2倍拡散されたチップ信号の組合せ(c1'[n]、c2'[n])として出力する。
逆拡散部206は、チップ信号と拡散符号の相関を求め、拡散された変調シンボルを復元する。具体的には、(4)式で表される操作を行う。
Figure 0004574680
ここで、サブキャリア数がKの場合に、「K/2≧k」なる番号kのサブキャリア信号Hに対応するチップ信号c1[n]に拡散されている変調シンボルは、サブキャリア信号Hk+K/2(このサブキャリア信号はチップ信号c2[n]に対応する)にも拡散されている。それら2つのサブキャリア信号H、Hk+K/2に混入している背景雑音をそれぞれn、nk+K/2とすると、(5)式の関係が成り立つ。
Figure 0004574680
そして、上記(3)式と(5)式を(4)式に代入すると、逆拡散後の復調シンボルが得られる。例えば、b'[n−1]は(6)式で表される。
Figure 0004574680
上記(6)式において、右辺の第1項は目的とする変調シンボルb[n−1]に係る項、第2項は干渉する変調シンボルb[n]に係る項(干渉雑音に係る項)、第3項は背景雑音に係る項である。ここで、仮に(7)式の関係が成り立つならば、変調シンボルb[n−1]とb[n]は相互に干渉することなく、背景雑音のみが雑音成分として混入する。
Figure 0004574680
一般的には上記(7)式の関係は成り立たないが、そのような場合であっても、上記(3)式に基づいた操作によって、平均的な雑音(背景雑音と干渉雑音を合わせたもの)の電力が最小となることが保障される。この結果、変調シンボルb[n−1]、b[n]に対応する信号は、IQ平面上の信号点として復調器(DEM)207に入力される。復調器207は、受信信号点に最も近い変調シンボルの基準信号点(図14参照)が受信データであると判定する。しかし、その受信信号点は、上記(6)式に示されるように、逆拡散時に混入する干渉成分を含むものである。このため、復調器207における受信精度は劣化する。
N. Miyazaki and T. Suzuki, "A Study on Forward Link Capacity in MC-CDMA Cellular System with MMSEC Receiver," IEICE Trans. Commun., Vol. E88-B, No. 2, pp. 585-593, Feb. 2005.
上述したように従来のMC−CDM方式では、最も特性が優れるとされるMMSEベースの等化技術を適用した場合であっても、無線伝送路の周波数選択性に起因した符号間干渉の影響による受信特性の劣化が避けられない。
本発明は、このような事情を考慮してなされたもので、その目的は、符号間干渉の影響を被ることを防止し、受信特性の向上を図ることのできるマルチキャリア符号分割多重伝送システム及び方法、受信装置を提供することにある。
上記の課題を解決するために、本発明に係るマルチキャリア符号分割多重伝送システムは、変調シンボルを周波数方向に符号拡散して複数のサブキャリアで周波数多重し伝送するマルチキャリア符号分割多重伝送システムにおいて、一つの変調シンボルが拡散された範囲のサブキャリアにおける拡散状態の受信値の組合せから成る受信信号点と、前記拡散状態の受信値の組合せが取りうる値から成る参照信号点とに基づき、送信された信号を判定する復調手段、を備えたことを特徴とする。
本発明に係るマルチキャリア符号分割多重伝送システムにおいては、前記復調手段は、変調シンボルが特定の値を取りうる確率にも基づき、前記判定を行うことを特徴とする。
本発明に係るマルチキャリア符号分割多重伝送システムにおいては、前記マルチキャリア符号分割多重伝送システムは、誤り訂正符号を適用し、前記復調手段の判定結果から前記誤り訂正符号の復号を行い、該復号過程で得られる復号結果の確からしさを前記確率としてフィードバックする復号手段、を備えたことを特徴とする。
本発明に係るマルチキャリア符号分割多重伝送システムにおいては、調整パラメータを引数とする三角関数から成る回転直交符号を拡散符号として用いることを特徴とする。
本発明に係るマルチキャリア符号分割多重伝送方法は、変調シンボルを周波数方向に符号拡散して複数のサブキャリアで周波数多重し伝送するマルチキャリア符号分割多重伝送方法であって、一つの変調シンボルが拡散された範囲のサブキャリアにおける拡散状態の受信値の組合せから成る受信信号点と、前記拡散状態の受信値の組合せが取りうる値から成る参照信号点とに基づき、送信された信号を判定する復調過程、を含むことを特徴とする。
本発明に係る受信装置は、変調シンボルが周波数方向に符号拡散されて複数のサブキャリアで周波数多重され伝送された信号を受信する受信装置において、一つの変調シンボルが拡散された範囲のサブキャリアにおける拡散状態の受信値の組合せから成る受信信号点と、前記拡散状態の受信値の組合せが取りうる値から成る参照信号点とに基づき、送信された信号を判定する復調手段、を備えたことを特徴とする。
本発明に係るマルチキャリア符号分割多重伝送システムにおいては、前記復調手段は、変調方式の種類、拡散多重方式の種類およびサブキャリア信号の受信強度情報に基づいて、参照信号点の座標を作成する参照信号点作成手段と、前記拡散状態の受信値の組合せから受信信号点の座標を作成する受信信号点作成手段と、前記参照信号点の座標と前記受信信号点の座標に基づいて、尤度を算出する尤度演算手段と、を備えたことを特徴とする。
本発明に係るマルチキャリア符号分割多重伝送システムにおいては、前記参照信号点の座標、前記受信信号点の座標および前記尤度を、実数部と虚数部に分けて、それぞれ算出することを特徴とする。
本発明に係るマルチキャリア符号分割多重伝送方法においては、前記復調過程は、変調方式の種類、拡散多重方式の種類およびサブキャリア信号の受信強度情報に基づいて、参照信号点の座標を作成する過程と、前記拡散状態の受信値の組合せから受信信号点の座標を作成する過程と、前記参照信号点の座標と前記受信信号点の座標に基づいて、尤度を算出する過程と、を有することを特徴とする。
本発明に係るマルチキャリア符号分割多重伝送方法においては、前記参照信号点の座標、前記受信信号点の座標および前記尤度を、実数部と虚数部に分けて、それぞれ算出することを特徴とする。
本発明に係る受信装置においては、前記復調手段は、変調方式の種類、拡散多重方式の種類およびサブキャリア信号の受信強度情報に基づいて、参照信号点の座標を作成する参照信号点作成手段と、前記拡散状態の受信値の組合せから受信信号点の座標を作成する受信信号点作成手段と、前記参照信号点の座標と前記受信信号点の座標に基づいて、尤度を算出する尤度演算手段と、を備えたことを特徴とする。
本発明に係る受信装置においては、前記参照信号点の座標、前記受信信号点の座標および前記尤度を、実数部と虚数部に分けて、それぞれ算出することを特徴とする。
本発明によれば、逆拡散を行わずに拡散状態のままで復調を行うことができるので、符号間干渉の影響を被ることなく復調を行うことができる。これにより、復調精度を高めることができ、受信特性の向上を図ることが可能になる。
本発明の第1実施形態に係るマルチキャリア符号分割多重伝送システムの受信機1の構成を示すブロック図である。 同実施形態に係る参照信号点を示す複素空間座標図である。 同実施形態に係る直接復調処理を説明するための説明図である。 本発明の第2実施形態に係るマルチキャリア符号分割多重伝送システムの構成を示すブロック図である。 図4に示す符号化器110としてのターボ符号化器110の構成を示すブロック図である。 図4に示す復号器210としてのターボ復号器210の構成を示すブロック図である。 図4に示す復号器210としてのLDPC復号器210の構成を示すブロック図である。 本発明の第3実施形態に係るマルチキャリア符号分割多重伝送システムの構成を示すブロック図である。 図8に示すターボ復号器210bの一実施例を示すブロック構成図である。 本発明の第4実施形態に係るマルチキャリア符号分割多重伝送システムの構成を示すブロック図である。 図10に示すLDPC復号器210cの一実施例を示すブロック構成図である。 本発明の他の実施形態に係る参照信号点を示す複素空間座標図である。 従来のマルチキャリア符号分割多重伝送システムの構成を示すブロック図である。 QPSK方式の変調シンボルの基準信号点を示す図である。 本発明の実施形態に係る直接復調器12aの一実施例を説明するためのマルチキャリア符号分割多重伝送システムの構成を示すブロック図である。 本発明の実施形態に係る直接復調器12aの構成例を示すブロック図である。 図16に示す直接復調器12aが作成する参照信号点および受信信号点の座標例である。
符号の説明
1,1a,1b,1c 受信機
11 CH推定・位相補正部
12,12a 直接復調器(D−DEM)
202 シリアル/パラレル変換部(S/P)
203 高速フーリエ変換部(FFT)
205 パラレル/シリアル変換部(P/S)
210 復号器
210b ターボ復号器
210c LDPC復号器
1201 参照信号点作成部
1202 受信信号点作成部
1203 尤度演算部
以下、図面を参照し、本発明の各実施形態について説明する。
[第1実施形態]
図1は、本発明の第1実施形態に係るマルチキャリア符号分割多重伝送システムの受信機1の構成を示すブロック図である。この図1において従来の受信機200(図13参照)の各部に対応する部分には同一の符号を付け、その説明を省略する。なお、本実施形態に係るマルチキャリア符号分割多重伝送システムの送信機は、従来の送信機100(図13参照)と同様であり、その変調方式はQPSK方式、拡散率は2、多重数は2である。
図1に示す受信機1おいて、CH推定・位相補正部11は、パイロット信号の受信特性等に基づいて伝送路の状態を測定する。そして、サブキャリア毎に、伝送路で受けた位相変化量を補正する。この結果、CH推定・位相補正部11から出力されるサブキャリア信号H''(k番目のサブキャリアに対応する信号)は、送信時のk番目のサブキャリア信号hに伝送路の振幅値a(実数)が乗じられた信号に対してさらに背景雑音nが加わった信号となり、(8)式で表される。
Figure 0004574680
そのサブキャリア信号H''は、P/S205によって、シリアル信号に変換されて、2倍拡散されたチップ信号の組合せ(c1''[n]、c2''[n])として出力される。
直接復調器(D−DEM)12は、その2倍拡散されたチップ信号の組合せ(c1''[n]、c2''[n])から、直接、復調を行う。つまり、逆拡散を行わずに、受信データを求める。その直接復調処理について、図2、図3を参照して説明する。
図2は、本実施形態に係る参照信号点を示す複素空間座標図であり、図2(1)は実数空間、図2(2)は虚数空間を示している。図2には、c1''[n]とc2''[n]の組合せが取りうる値(参照信号点)が、Iチャネルに対応する実数部(図2(1))とQチャネルに対応する虚数部(図2(2))とに分けて示されている。図2中の表記として、Re(z)は複素数zの実数部(Iチャネル成分)を表し、Im(z)は複素数zの虚数部(Qチャネル成分)を表す。
ここで、本実施形態では、拡散率は2であるので、c1''[n]とc2''[n]の組合せは、一つの変調シンボルが拡散された範囲のサブキャリアにおける拡散状態の受信値の組合せである。そして、そのc1''[n]とc2''[n]の組合せが取りうる値(参照信号点)は、上記(2)式で示される。具体的には、実数部(Iチャネル成分)については、
Re(c1''[n]c2''[n])=“00”の場合、Re(b[2n−1]b[2n])=“+1+1”であり、
Re(c1''[n]c2''[n])=“01”の場合、Re(b[2n−1]b[2n])=“+1−1”であり、
Re(c1''[n]c2''[n])=“10”の場合、Re(b[2n−1]b[2n])=“−1+1”であり、
Re(c1''[n]c2''[n])=“11”の場合、Re(b[2n−1]b[2n])=“−1−1”である。
また、虚数部(Qチャネル成分)については、
Im(c1''[n]c2''[n])=“00”の場合、Im(b[2n−1]b[2n])=“+1+1”であり、
Im(c1''[n]c2''[n])=“01”の場合、Im(b[2n−1]b[2n])=“+1−1”であり、
Im(c1''[n]c2''[n])=“10”の場合、Im(b[2n−1]b[2n])=“−1+1”であり、
Im(c1''[n]c2''[n])=“11”の場合、Im(b[2n−1]b[2n])=“−1−1”である。
本実施形態に係る直接復調処理においては、一つの変調シンボルが拡散された範囲のサブキャリアの拡散状態の受信値の組合せから成る受信信号点と、該サブキャリアの拡散状態の受信値の組合せが取りうる値から成る参照信号点とに基づき、送信された信号を判定する。
具体的には、上記図2の参照信号点を示す複素空間座標系に受信信号点を配置する。そして、その受信信号点の位置に最も近い参照信号点を受信データとして出力する。例えば、図3には受信信号点の一例が示されている(実数部のみ)。図3の例では、c1''[n]とc2''[n]の各実数部(Iチャネル成分)の組合せの値(受信信号点301)が示されている。その値301は、4つの参照信号点“00”、“01”、“10”、“11”のうち、“01”に最も近い位置にある。これにより、受信データ(実数部)は、Re(b[2n−1])=+1、Re(b[2n])=−1、とする。
上述した実施形態によれば、MC−CDM方式の復調処理において、逆拡散を行わずに拡散状態のままで復調を行うことができる。従って、従来において逆拡散時に発生していた干渉成分の混入はなくなり、本実施形態の復調時には、符号間干渉の影響を被ることがない。これにより、復調精度を高めることができ、受信特性が向上する。
[第2実施形態]
図4は、本発明の第2実施形態に係るマルチキャリア符号分割多重伝送システムの構成を示すブロック図である。第2実施形態では、上記第1実施形態の変形例であり、上記第1実施形態に対してさらに誤り訂正符号を適用している。
図4に示す送信機100aにおいては、符号化器(ENC)110が設けられており、その他の構成は図13の送信機100と同様である。送信機100aにおいて、符号化器110は、送信データに対して誤り訂正符号を付加する。その符号化データは、符号化器110から変調器101に入力される。それ以降の処理は図13の送信機100と同様である。
図4に示す受信機1aにおいては、復号器(DEC)210が設けられている。直接復調器12aについては、上記図1の直接復調器12とは復号器210に対応する処理の変更がある。その他の構成は図1の受信機1と同様である。
復号器210は、直接復調器12aが復調した信号に基づき、誤り訂正処理を行って受信データを出力する。直接復調器12aは、その誤り訂正処理に使用される軟判定入力信号(ビット毎の尤度)を出力する。その直接復調器12aの動作を上記図3の例を用いて説明する。
図3に示される受信信号点301は、Re(b[2n−1])とRe(b[2n])の2ビットに対応する受信信号点である。ここで、Re(b[2n−1]に着目すると、その尤度pは(9)式で表される。
Figure 0004574680
但し、x=Re(b[2n−1])、y=Re(b[2n])、dxy は受信信号点と参照信号点(xy)の間の自乗距離、σはサブキャリア当たりの雑音電力を表す。また、p(y=0)は、yが0となる確率であって事前に判明している事前確率である。その事前確率は、変調シンボルが特定の値を取りうる確率を表す。
直接復調器12aは、上記(9)式により尤度pを算出する。なお、yに関する事前情報がない場合は、p(y=0)=p(y=1)=1/2としてxの尤度pを算出する。また、Max-log近似を用いて尤度pに係る演算を行ってもよい。特に、復号器210がMax-log-MAP復号に基づく復号処理を行う場合には、σに依存しないので、雑音電力を求める必要がなくなり、演算処理が簡略化できる。
上述した第2実施形態によれば、誤り訂正符号を用いたシステムにも適用可能となる。また、変調シンボルが特定の値をとりうる事前確率によって確率結合による復号を行うことができるので、復調精度の向上が期待できる。
ここで、上述した第2実施形態の具体的な実施例を説明する。
初めに、図5、図6を参照して、ターボ符号を適用した実施例について説明する。
図5は、図4に示す符号化器110としてのターボ符号化器110の構成を示すブロック図である。図5の構成は周知のものである。図5に示すターボ符号化器110は、2つの要素符号器1101、1102を備え、2つの要素符号によって符号化を行うものである。
図5において、要素符号器1101は、送信情報ビットからパリティビットa1を生成する。インタリーバ1103は、入力された送信情報ビットの順番を交錯する。要素符号器1102は、インタリーバ1103出力後の送信情報ビットからパリティビットa2を生成する。これにより、同じ送信情報ビットから、パリティビットa1及びa2が生成される。但し、要素符号器1101と1102とでは、送信情報ビットの入力順序は交錯されている。
ターボ符号化器110は、入力された送信情報ビット、パリティビットa1及びa2の合計3ビットを符号化データとして出力する。
図6は、図4に示す復号器210としてのターボ復号器210の構成を示すブロック図である。
図6において、直接復調器12aは、変調シンボルのビット毎の軟判定値を軟判定データとして出力する。この軟判定データは、通信路値としてターボ復号器210に入力される。
図6に示すターボ復号器210は、図5に示すターボ符号化器110に対応する構成となっており、要素符号器1101に対応する復号器2101と、要素符号器1102に対応する復号器2102を備える。なお、図6中のターボ復号器210の構成は周知のものである。
ターボ復号器210において、まず、復号器2101は、送信情報ビット及びパリティビットa1の両方の通信路値を入力する。また、復号器2101で最初に復号処理を行う際には、送信情報ビットの事前値を「1/2」(対数尤度で0)とする。この結果、送信情報ビットの外部値と事後値が計算される。但し、一般にこの段階では、外部値のみが次の処理に用いられる。
復号器2101出力後の外部値は、インタリーバ2103で交錯された後に、事前値として復号器2102に入力される。また、送信情報ビット及びパリティビットa2の両方の通信路値を復号器2102に入力する。ここで、送信情報ビットの通信路値に関しては、復号器2101出力後の外部値と同様に、インタリーバ2104で交錯された後に復号器2102に入力される。復号器2102は、復号処理の結果として送信情報ビットの外部値と事後値を出力する。復号器2102出力後の事後値は、ビット判定されて、受信データ(受信情報ビット)として出力される。
復号器2102出力後の外部値は、逆インタリーバ2105で逆交錯された後に、事前値として復号器2101に入力される。これにより、再度、復号器2101から演算処理が実行される。
なお、上記した実施例では、ターボ符号化器110において、パリティビットをそのまま出力しているが、パリティビットをパンクチャしたり、又は、送信情報ビットとパリティビットに対してチャネルインタリーブを施したりする等、各種の変形を行うことは可能であり、ターボ復号器210の構成をその変形に合わせればよい。
次に、図7を参照して、低密度パリティ検査符号(Low-Density Parity-Check Codes;LDPC符号)を適用した実施例について説明する。
図7は、図4に示す復号器210としてのLDPC復号器210の構成を示すブロック図である。図7中のLDPC復号器210の構成は周知のものである。
図7において、直接復調器12aは、変調シンボルのビット毎の軟判定値を軟判定データとして出力する。この軟判定データは、通信路値としてLDPC復号器210に入力される。
LDPC復号器210は、上記したターボ符号の場合と同様に、事後値を反復計算する。その復号アルゴリズムとしては、Min SumやSum Productが代表的なものである。その反復計算は、復号結果が正しい符号語になるか、あるいは、規定の反復数に到達するまで行う。
LDPC復号器210において、まず、行方向演算部2201は、入力された通信路値に対して行方向演算を行い、事前値(或いは外部値)を出力する。その行方向演算を行う際には、列方向演算部2203から入力される外部値(或いは事前値)を参照する。符号語推定部2202は、直接復調器12a出力後の通信路値および行方向演算部2201出力後の事前値(或いは外部値)に基づいて符号語推定を行い、事後値を出力する。列方向演算部2203は、最大反復数判定部2213の判定結果に基づいて行方向演算を行い、外部値(或いは事前値)を出力する。
ビット判定部2211は、入力された事後値に基づき、ビット判定を行う。符号検査部2212は、そのビット判定の結果から、符号検査の合否を判断する。符号検査が合格の場合には、そのビット判定の結果が受信データ(受信情報ビット)として出力される。一方、符号検査が不合格の場合には、最大反復数判定部2213は、LDPC復号器210における反復回数が最大反復数に達したか否かを判断する。最大反復数に達した場合には、今回のビット判定の結果が受信データ(受信情報ビット)として出力される。一方、最大反復数に達していない場合には、LDPC復号器210に対して、反復を指示する。
[第3実施形態]
図8は、本発明の第3実施形態に係るマルチキャリア符号分割多重伝送システムの構成を示すブロック図である。第3実施形態では、上記第2実施形態の変形例であり、ターボ符号を適用し、その復号過程において上記事前確率を計算している。
図8に示す送信機100bにおいては、ターボ符号化器110bが設けられており、その他の構成は図13の送信機100と同様である。送信機100bにおいて、ターボ符号化器110bは、送信データに対してターボ符号に係る誤り訂正符号を付加する。その符号化データは、ターボ符号化器110bから変調器101に入力される。それ以降の処理は図13の送信機100と同様である。
図8に示す受信機1bにおいては、ターボ復号器210bが設けられている。直接復調器12aについては、上記図4の直接復調器12aと同様であるが、上記事前確率をターボ復号器210bから受け取る。
ターボ復号器210bは、直接復調器12aが復調した信号に基づき、ターボ符号に係る復号処理を行って受信データを出力する。また、その復号結果の確からしさを表す信号を事前確率として直接復調器12aに出力する。その事前確率としては、例えば、ターボ符号に係る復号過程で得られる、事後値、外部値、或いは、事後値及び外部値の両方の値を加味した値などが利用可能である。
図9は、図8に示すターボ復号器210bの一実施例を示すブロック構成図である。この図9において図6の各部に対応する部分には同一の符号を付け、その説明を省略する。
図9においては、直接復調器12aを2つ(直接復調器12a−1、12a−2)設けている。
図9のターボ復号器210bにおいて、復号器2102出力後の事後値は、逆インタリーバ2110で逆交錯された後に、変調シンボルの事前確率として直接復調器12a−1に入力される。これにより、復号器2101からの再度の演算処理の実行時において使用する軟判定データ(通信路値)は、直接復調器12a−1によって変調シンボルの事前確率が反映されて更新されたものであり、前回の軟判定データ(通信路値)よりも精度が向上していると期待できる。
また、図9において、直接復調器12a−2は、復号器2101出力後の事後値(事前確率)を用いて、復号器2102に入力する通信路値を更新する。その更新処理では、各情報ビットの事前確率に基づいて通信路値を更新する。これにより、復号器2101で得られた送信情報ビットの確からしさを用いて、復号器2102へ引き渡す通信路値を更新することができ、復号器2102に入力する通信路値の精度向上を図ることが可能となる。
本実施例のターボ復号処理によれば、誤り訂正の性能が向上し、伝送誤りの一層の防止を図ることが可能となる。
上述した第3実施形態によれば、ターボ符号を用いたシステムに適用して、変調シンボルが特定の値をとりうる事前確率をその復号過程において得ることができ、復調精度の向上に寄与することができる。
[第4実施形態]
図10は、本発明の第4実施形態に係るマルチキャリア符号分割多重伝送システムの構成を示すブロック図である。第4実施形態では、上記第2実施形態の変形例であり、低密度パリティ検査符号(Low-Density Parity-Check Codes;LDPC符号)を適用し、その復号過程において上記事前確率を計算している。
図10に示す送信機100cにおいては、LDPC符号化器110cが設けられており、その他の構成は図13の送信機100と同様である。送信機100cにおいて、LDPC符号化器110cは、送信データに対してLDPC符号に係る誤り訂正符号を付加する。その符号化データは、LDPC符号化器110cから変調器101に入力される。それ以降の処理は図13の送信機100と同様である。
図10に示す受信機1cにおいては、LDPC復号器210cが設けられている。直接復調器12aについては、上記図4の直接復調器12aと同様であるが、上記事前確率をLDPC復号器210cから受け取る。
LDPC復号器210cは、直接復調器12aが復調した信号に基づき、LDPC符号に係る復号処理を行って受信データを出力する。また、その復号結果の確からしさを表す信号を事前確率として直接復調器12aに出力する。その事前確率としては、例えば、LDPC符号に係る復号過程で得られる事後値などが利用可能である。
図11は、図10に示すLDPC復号器210cの一実施例を示すブロック構成図である。この図11において図7の各部に対応する部分には同一の符号を付け、その説明を省略する。
図11においては、LDPC復号器210cの符号語推定部2202出力後の事後値を事前確率として直接復調器12aにフィードバックしている。これにより、直接復調器12aからの次回の軟判定データ(通信路値)は、直接復調器12aによって変調シンボルの事前確率が反映されて更新されたものであり、前回の軟判定データ(通信路値)よりも精度が向上していると期待できる。これにより、誤り訂正の性能が向上し、伝送誤りの一層の防止を図ることが可能となる。
上述した第4実施形態によれば、LDPC符号を用いたシステムに適用して、変調シンボルが特定の値をとりうる事前確率をその復号過程において得ることができ、復調精度の向上に寄与することができる。
以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、上述した実施形態においては、変調方式の一例としてQPSK方式を用いたが、本発明はこれに限定するものではない。例えば、他の位相偏移変調(PSK;Phase Shift Keying)方式、或いは直交振幅変調(QAM;Quadrature Amplitude Modulation)方式なども適用可能である。
また、本発明は、任意の拡散率、多重数に適用可能である。
また、本発明は、各種の拡散符号に適用可能である。例えば、(10)式に示されるような回転直交符号を用いる場合にも同様に適用可能である。(10)式は、拡散率が2かつ多重数が2の場合に対応する拡散多重変換行列である。
Figure 0004574680
上記(10)式の具体的な例として、(11)式には拡散率が2かつ多重数が2の場合に対応する拡散多重変換行列T、(12)式には拡散率が4かつ多重数が4の場合に対応する拡散多重変換行列Tがそれぞれ示されている。
ある。
Figure 0004574680
Figure 0004574680
なお、上記(11)式の回転直交符号(拡散多重変換行列T)を用いた場合の参照信号点の配置は、図12に示されている。図12は、上記図2(1)に対応する例で示している。図12に示されるように、上記(11)式の回転直交符号を用いた場合の参照信号点の配置は、図2(1)の場合の参照信号点の配置から角度「π/4−p(ラジアン)」だけ回転した位置となる。なお、図12には実数部(Iチャネル)の配置を示しているが、虚数部(Qチャネル)についても同様である。
また、拡散率と同数分のパラメータを導入することにより、きめ細かく信号点を決定することができる。例えば、(13)式とした場合に、(14)式が得られる。
Figure 0004574680
Figure 0004574680
なお、上記(10)式の回転直交符号において、三角関数の引数である角度pは調整パラメータである。そして、その調整パラメータpの設定値によって、ダイバーシチ効果と符号間干渉とを調整することができ、伝送品質の安定化を図ることが可能である。
次に、本発明の実施形態に係る直接復調器の一実施例を説明する。ここでは、上述の図4に示す第2実施形態を例に挙げて説明する。本実施例では、図15に示されるように、CH推定・位相補正部11は、サブキャリア信号の受信強度情報ra1,ra2を検出する。受信強度情報ra1は、チップ信号c1[n]に対応するサブキャリア信号の受信強度を表す。受信強度情報ra2は、チップ信号c2[n]に対応するサブキャリア信号の受信強度を表す。受信強度情報ra1,ra2は、直接復調器12aに入力される。なお、受信強度情報としては、例えば、サブキャリア信号の受信電力もしくは受信振幅を表す値を利用することができる。
図16は、直接復調器12aの構成例を示すブロック図である。図16において、直接復調器12aは、参照信号点作成部1201と受信信号点作成部1202と二つの尤度演算部1203を有する。尤度演算部1203は、尤度pの実数部p_Re(b)の算出用と尤度pの虚数部p_Im(b)の算出用とに分けて、それぞれ設けられる。
参照信号点作成部1201は、変調方式の種類、拡散多重方式の種類および受信強度情報ra1,ra2に基づいて、参照信号点の座標を作成する。参照信号点の座標は、実数部(Iチャネル成分)用と虚数部(Qチャネル成分)用とに分けて、それぞれ作成される。図17に、参照信号点作成部1201により作成された参照信号点の例が示されている。図17の例は、変調方式がQPSK方式、拡散多重方式がウォルシュ(Walsh)符号による2倍拡散の2多重の場合であって、実数部用の参照信号点“00”,“01”,“10”,“11”が示されている。参照信号点作成部1201は、受信強度情報ra1,ra2に基づいて、チップ信号c1[n]に対応する成分(図17中の横軸の成分)“00”,“11”の座標と、チップ信号c2[n]に対応する成分(図17中の縦軸の成分)“01”,“10”の座標を計算する。受信強度の大きさに参照信号点の成分の座標の大きさを比例させる。図17の例では、受信強度情報ra1が示す受信強度の方が、受信強度情報ra2が示す受信強度よりも大きい。そのため、チップ信号c1[n]に対応する成分“00”,“11”の座標の方が、チップ信号c2[n]に対応する成分“01”,“10” の座標よりも大きくなっている。
受信信号点作成部1202は、チップ信号の組合せ(c1''[n]、c2''[n])から、受信信号点の座標を作成する。受信信号点は、実数部(Iチャネル成分)と虚数部(Qチャネル成分)とに分けて、それぞれ作成される。受信信号点の座標は、参照信号点の座標系に合わせる。受信信号点の実数部は、c1''[n]の実数部とc2''[n]の実数部の組合せである。受信信号点の虚数部は、c1''[n]の虚数部とc2''[n]の虚数部の組合せである。図17には、受信信号点の実数部の例(図17中の×印)が示されている。
尤度pの実数部p_Re(b)の算出用の尤度演算部1203には、参照信号点作成部1201から実数部用の参照信号点の座標が入力され、又、受信信号点作成部1202から受信信号点の実数部の座標が入力される。尤度pの虚数部p_Im(b)の算出用の尤度演算部1203には、参照信号点作成部1201から虚数部用の参照信号点の座標が入力され、又、受信信号点作成部1202から受信信号点の虚数部の座標が入力される。尤度演算部1203は、参照信号点の座標と受信信号点の座標の間の距離の二乗を計算し、その二乗距離から尤度(実数部p_Re(b)もしくは虚数部p_Im(b))を上記(9)式により算出する。その算出結果の尤度p(実数部p_Re(b)と虚数部p_Im(b))は、復号器210に入力される。
本発明は、直交符号を用いて周波数方向に拡散した信号を複数のサブキャリアで周波数多重することにより、周波数ダイバーシチ効果を得るマルチキャリア符号分割多重伝送システムに適用することができ、逆拡散を行わずに拡散状態のままで復調を行うことができるので、符号間干渉の影響を被ることなく復調を行うことができる。これにより、復調精度を高めることができ、受信特性の向上を図ることを可能としている。

Claims (12)

  1. 変調シンボルを周波数方向に符号拡散して複数のサブキャリアで周波数多重し伝送するマルチキャリア符号分割多重伝送システムにおいて、
    一つの変調シンボルが拡散された範囲のサブキャリアにおける拡散状態の受信値の組合せから成る受信信号点と、前記拡散状態の受信値の組合せが取りうる値から成る参照信号点とに基づき、送信された信号を判定する復調手段、
    を備えたことを特徴とするマルチキャリア符号分割多重伝送システム。
  2. 前記復調手段は、変調シンボルが特定の値を取りうる確率にも基づき、前記判定を行うことを特徴とする請求項1に記載のマルチキャリア符号分割多重伝送システム。
  3. 前記マルチキャリア符号分割多重伝送システムは、誤り訂正符号を適用し、
    前記復調手段の判定結果から前記誤り訂正符号の復号を行い、該復号過程で得られる復号結果の確からしさを前記確率としてフィードバックする復号手段、
    を備えたことを特徴とする請求項2に記載のマルチキャリア符号分割多重伝送システム。
  4. 調整パラメータを引数とする三角関数から成る回転直交符号を拡散符号として用いることを特徴とする請求項1から3のいずれかの項に記載のマルチキャリア符号分割多重伝送システム。
  5. 変調シンボルを周波数方向に符号拡散して複数のサブキャリアで周波数多重し伝送するマルチキャリア符号分割多重伝送方法であって、
    一つの変調シンボルが拡散された範囲のサブキャリアにおける拡散状態の受信値の組合せから成る受信信号点と、前記拡散状態の受信値の組合せが取りうる値から成る参照信号点とに基づき、送信された信号を判定する復調過程、
    を含むことを特徴とするマルチキャリア符号分割多重伝送方法。
  6. 変調シンボルが周波数方向に符号拡散されて複数のサブキャリアで周波数多重され伝送された信号を受信する受信装置において、
    一つの変調シンボルが拡散された範囲のサブキャリアにおける拡散状態の受信値の組合せから成る受信信号点と、前記拡散状態の受信値の組合せが取りうる値から成る参照信号点とに基づき、送信された信号を判定する復調手段、
    を備えたことを特徴とする受信装置。
  7. 前記復調手段は、
    変調方式の種類、拡散多重方式の種類およびサブキャリア信号の受信強度情報に基づいて、参照信号点の座標を作成する参照信号点作成手段と、
    前記拡散状態の受信値の組合せから受信信号点の座標を作成する受信信号点作成手段と、
    前記参照信号点の座標と前記受信信号点の座標に基づいて、尤度を算出する尤度演算手段と、
    を備えたことを特徴とする請求項1から請求項4のいずれかの項に記載のマルチキャリア符号分割多重伝送システム。
  8. 前記参照信号点の座標、前記受信信号点の座標および前記尤度を、実数部と虚数部に分けて、それぞれ算出することを特徴とする請求項7に記載のマルチキャリア符号分割多重伝送システム。
  9. 前記復調過程は、
    変調方式の種類、拡散多重方式の種類およびサブキャリア信号の受信強度情報に基づいて、参照信号点の座標を作成する過程と、
    前記拡散状態の受信値の組合せから受信信号点の座標を作成する過程と、
    前記参照信号点の座標と前記受信信号点の座標に基づいて、尤度を算出する過程と、
    を有することを特徴とする請求項5に記載のマルチキャリア符号分割多重伝送方法。
  10. 前記参照信号点の座標、前記受信信号点の座標および前記尤度を、実数部と虚数部に分けて、それぞれ算出することを特徴とする請求項9に記載のマルチキャリア符号分割多重伝送方法。
  11. 前記復調手段は、
    変調方式の種類、拡散多重方式の種類およびサブキャリア信号の受信強度情報に基づいて、参照信号点の座標を作成する参照信号点作成手段と、
    前記拡散状態の受信値の組合せから受信信号点の座標を作成する受信信号点作成手段と、
    前記参照信号点の座標と前記受信信号点の座標に基づいて、尤度を算出する尤度演算手段と、
    を備えたことを特徴とする請求項6に記載の受信装置。
  12. 前記参照信号点の座標、前記受信信号点の座標および前記尤度を、実数部と虚数部に分けて、それぞれ算出することを特徴とする請求項11に記載の受信装置。
JP2007537671A 2005-09-28 2006-09-28 マルチキャリア符号分割多重伝送システム及び方法、受信装置 Expired - Fee Related JP4574680B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005281550 2005-09-28
JP2005281550 2005-09-28
PCT/JP2006/319285 WO2007037320A1 (ja) 2005-09-28 2006-09-28 マルチキャリア符号分割多重伝送システム及び方法、受信装置

Publications (2)

Publication Number Publication Date
JPWO2007037320A1 JPWO2007037320A1 (ja) 2009-04-09
JP4574680B2 true JP4574680B2 (ja) 2010-11-04

Family

ID=37899744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007537671A Expired - Fee Related JP4574680B2 (ja) 2005-09-28 2006-09-28 マルチキャリア符号分割多重伝送システム及び方法、受信装置

Country Status (3)

Country Link
US (1) US7974330B2 (ja)
JP (1) JP4574680B2 (ja)
WO (1) WO2007037320A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220816B2 (ja) * 2010-08-19 2013-06-26 Kddi株式会社 伝送方式
US9602232B2 (en) * 2015-05-19 2017-03-21 Samsung Electronics Co., Ltd. Transmitting apparatus and mapping method thereof
US9590758B2 (en) 2015-05-19 2017-03-07 Samsung Electronics Co., Ltd. Transmitting apparatus and mapping method thereof
CN113794478A (zh) * 2021-09-06 2021-12-14 深圳市极致汇仪科技有限公司 一种基于噪声功率的ldpc分步译码方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504655A (ja) * 1996-11-14 2001-04-03 エリクソン インコーポレイテッド 直接シーケンススペクトル拡散通信信号の逆拡散
WO2004082200A1 (en) * 2003-03-10 2004-09-23 Docomo Communications Laboratories Europe Gmbh Apparatus and method for detecting a group of received symbols

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035345B2 (en) * 2001-06-08 2006-04-25 Polyvalor S.E.C. Adaptive predistortion device and method using digital receiver
JP3727283B2 (ja) * 2001-11-26 2005-12-14 松下電器産業株式会社 無線送信装置、無線受信装置及び無線送信方法
US7564906B2 (en) * 2004-02-17 2009-07-21 Nokia Siemens Networks Oy OFDM transceiver structure with time-domain scrambling
KR100640474B1 (ko) * 2004-07-10 2006-10-30 삼성전자주식회사 다중 반송파 기반의 코드분할다중접속 시스템을 위한 하향링크 자원 할당 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504655A (ja) * 1996-11-14 2001-04-03 エリクソン インコーポレイテッド 直接シーケンススペクトル拡散通信信号の逆拡散
WO2004082200A1 (en) * 2003-03-10 2004-09-23 Docomo Communications Laboratories Europe Gmbh Apparatus and method for detecting a group of received symbols

Also Published As

Publication number Publication date
US7974330B2 (en) 2011-07-05
US20100142589A1 (en) 2010-06-10
WO2007037320A1 (ja) 2007-04-05
JPWO2007037320A1 (ja) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5896320B2 (ja) 送信装置、受信装置、送信方法、受信方法、及び多次元コンステレーションの生成方法
KR100434473B1 (ko) 직교주파수 분할 다중 시스템에서 채널 복호 장치 및 방법
JP4808722B2 (ja) データ伝送システム及びデータ伝送方法
US8660199B2 (en) Method of demodulating a quadrature amplitude modulation signal and method of data communication
US20050122896A1 (en) Apparatus and method for canceling interference signal in an orthogonal frequency division multiplexing system using multiple antennas
JP5356073B2 (ja) 符号化装置、受信装置、無線通信システム、パンクチャパターン選択方法及びそのプログラム
US7889813B2 (en) Method, apparatus and receiver for demapping dual carrier modulated COFDM signals
EP1583271A2 (en) System and method for spreading on fading channels
JP2007214783A (ja) 送信装置、受信装置及び伝送方法
WO2007112168A2 (en) Orthogonal frequency division multiplexing (ofdm) system receiver using low-density parity-check (ldpc) codes
JP4574680B2 (ja) マルチキャリア符号分割多重伝送システム及び方法、受信装置
KR101265800B1 (ko) 다중 반송파 시스템의 제어신호 전송 방법
JP4863262B2 (ja) 送信機,通信システム及び送信方法
US20080240273A1 (en) Radio transmitting apparatus and radio receiving apparatus using ofdm
JP5013617B2 (ja) 通信装置、通信システムおよび受信方法
WO2009104515A1 (ja) 中継装置、通信システム、及び通信方法
KR101694789B1 (ko) 차동 변조를 구현하는 변조 방법과 장치, 대응하는 복조 방법과 장치, 신호, 및 컴퓨터 프로그램 제품
US8255781B2 (en) Method for generating codeword in wireless communication system
JP2009509388A (ja) データのダイバーシティ伝送の方法及びシステム
JP4611271B2 (ja) 受信装置
KR101040605B1 (ko) 공간 변조 방법과 장치, 그리고 공간 변조된 신호의 복조 방법과 장치
Gill Coded-waveform design for high speed data transfer over high frequency radio channels
JP2008035442A (ja) マルチアンテナ受信装置、マルチアンテナ送信装置及びマルチアンテナ通信システム
JP4637721B2 (ja) 多元接続方法
JP4854091B2 (ja) 通信システム、受信装置及び通信方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4574680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees