JP4574651B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP4574651B2
JP4574651B2 JP2007188402A JP2007188402A JP4574651B2 JP 4574651 B2 JP4574651 B2 JP 4574651B2 JP 2007188402 A JP2007188402 A JP 2007188402A JP 2007188402 A JP2007188402 A JP 2007188402A JP 4574651 B2 JP4574651 B2 JP 4574651B2
Authority
JP
Japan
Prior art keywords
circuit
bus
power conversion
power
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007188402A
Other languages
Japanese (ja)
Other versions
JP2009027832A (en
Inventor
永田  寛
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007188402A priority Critical patent/JP4574651B2/en
Priority to KR1020080069985A priority patent/KR20090009156A/en
Priority to CN2008101316576A priority patent/CN101350567B/en
Publication of JP2009027832A publication Critical patent/JP2009027832A/en
Application granted granted Critical
Publication of JP4574651B2 publication Critical patent/JP4574651B2/en
Priority to KR1020110041693A priority patent/KR20110051175A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Description

本発明は、電力変換装置に係り、特に、電力変換装置の主回路を構成する電力変換素子を駆動する駆動回路における電気的絶縁構成に関する。   The present invention relates to a power conversion device, and more particularly to an electrical insulation configuration in a drive circuit that drives a power conversion element that constitutes a main circuit of the power conversion device.

図8は、従来の電力変換装置の全体構成を説明する図である。図8において、電力変換装置(200)は、正極母線(P)、負極母線(N)、正極母線(P)と負極母線(N)との中間電位である中間電位母線(COM)のそれぞれを電力変換素子を介して出力点に接続する構成を備える。そして、それらの電力変換素子を導通・遮断(以後、スイッチングと称する)させることで、実質的に交流電圧を作り出す。この図の例では、商用電源(500)から変圧器(300)を介して得られる交流電圧を直流電圧(Ep)(En)に変換し、得られた直流電圧(Ep)(En)を、任意の周波数および振幅の交流電圧に変換して交流電動機(400)に供給することで、交流電動機を可変速制御することができる。   FIG. 8 is a diagram illustrating an overall configuration of a conventional power conversion device. In FIG. 8, the power conversion device (200) includes a positive bus (P), a negative bus (N), and an intermediate potential bus (COM) that is an intermediate potential between the positive bus (P) and the negative bus (N). A configuration for connecting to an output point through a power conversion element is provided. Then, by making these power conversion elements conductive / interrupted (hereinafter referred to as switching), an AC voltage is substantially generated. In the example of this figure, the AC voltage obtained from the commercial power supply (500) via the transformer (300) is converted into a DC voltage (Ep) (En), and the obtained DC voltage (Ep) (En) is The AC motor can be controlled at a variable speed by converting it to an AC voltage having an arbitrary frequency and amplitude and supplying it to the AC motor (400).

また、前記電力変換素子のスイッチングにより、交流電動機(400)からの交流電力を直流電圧(Ep)(En)に変換し、さらに、得られた直流電圧(Ep)(En)を商用周波数の交流電圧へ変換することにより、変圧器(300)を介して商用電源(500)に電力を回生することができる。これにより、交流電動機の速度を減速制御することができる。   In addition, by switching the power conversion element, the AC power from the AC motor (400) is converted into a DC voltage (Ep) (En), and the obtained DC voltage (Ep) (En) is converted to a commercial frequency AC. By converting to voltage, electric power can be regenerated to the commercial power source (500) via the transformer (300). As a result, the speed of the AC motor can be controlled to be reduced.

図7は、図8の電力変換装置(200)を構成する電力変換主回路(100)の詳細を示す図である。図において、電力変換素子(QP)(QPC)(QNC)(QN)は、それぞれ、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)に接続されており、駆動回路からの駆動信号(GP)(GPC)(GNC)(GN)により、スイッチングを繰返している。   FIG. 7 is a diagram showing details of the power conversion main circuit (100) constituting the power conversion device (200) of FIG. In the figure, the power conversion elements (QP) (QPC) (QNC) (QN) are connected to the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN), respectively, and the drive signal (GP ) (GPC) (GNC) (GN), switching is repeated.

駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)に電力を供給する電源(DRVS)は、主電源(MSRC)より交流電力を得て動作する。前記電源(DRVS)は、1回路で構成される場合もあれば、複数の回路を組み合わせて構成される場合もあるが、ここでは、駆動回路の電源回路として、ひとまとめにして記載している。   A power supply (DRVS) that supplies power to the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) operates by obtaining AC power from the main power supply (MSRC). The power supply (DRVS) may be configured by one circuit or may be configured by combining a plurality of circuits, but here, the power supply (DRVS) is described collectively as a power supply circuit of a drive circuit.

主電源(MSRC)は、一般の商用系統から得られる交流電源で、単相または多相の交流電源である(図7は単相電源で示している)。   The main power source (MSRC) is an AC power source obtained from a general commercial system and is a single-phase or multi-phase AC power source (FIG. 7 shows a single-phase power source).

ここで、電力変換素子(QP)(QPC)(QNC)(QN)の電位は、そのスイッチングの状態により、主回路母線 (P)(COM)(N)のいずれかの電位となる。これらのいずれかの電位になることを「主回路電位になる」と称することとすれば、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)もまた、電力変換素子と同じ主回路電位になる。よって、電力変換主回路(100)において、領域(MCPA)は、主回路電位になる部分となる。   Here, the potential of the power conversion elements (QP) (QPC) (QNC) (QN) is any potential of the main circuit bus (P) (COM) (N) depending on the switching state. Assuming that any of these potentials becomes `` main circuit potential '', the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) also has the same main circuit potential as the power conversion element. Become. Therefore, in the power conversion main circuit (100), the region (MCPA) is a portion that becomes the main circuit potential.

一方、電源(DRVS)の回路基準電位となる接地点(BP)は、主電源(MSRC)を経由し、大地(アース)に接地されている。ここで、電源(DRVS)の出力(SCP)(SCPC)(SCNC)(SCN)の基準電位を決める接地点(BPP)(BPPC)(BPNC)(BPN)は、接地点(BP)と同電位になっている。従って、電源(DRVS)は大地(アース)電位となり、電力変換主回路(100)において、領域(EPA)は、大地(アース)電位になる部分となる。   On the other hand, the ground point (BP) that is the circuit reference potential of the power source (DRVS) is grounded to the ground (earth) via the main power source (MSRC). Here, the ground point (BPP) (BPPC) (BPNC) (BPN) that determines the reference potential of the output (SCP) (SCPC) (SCNC) (SCN) of the power supply (DRVS) is the same potential as the ground point (BP) It has become. Accordingly, the power supply (DRVS) is at ground (earth) potential, and the region (EPA) is a portion at which ground (earth) potential is reached in the power conversion main circuit (100).

さて、電源(DRVS)から駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)に電源を供給する場合、前記電源および駆動回路は、それぞれ、領域(MCPA)と領域(EPA)に含まれるため、その電気的絶縁が必要となる。また、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)それぞれも、電力変換素子のスイッチング状態により、主回路母線(P)(COM)(N)のいずれかの電位になり、かつ、互いに異なる電位となるため、電気的絶縁が必要となる。   When supplying power from the power supply (DRVS) to the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN), the power supply and drive circuit are included in the region (MCPA) and the region (EPA), respectively. The electrical insulation is required. Also, each of the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) is at one of the potentials of the main circuit buses (P), (COM), and (N) depending on the switching state of the power conversion elements and Since the potentials are different, electrical insulation is required.

このため、大地(アース)との電気的絶縁、および異なる電力変換素子間の電気的絶縁のため、電源(DRVS)と駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)間に、絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)を配置している。   For this reason, an insulating transformer is used between the power supply (DRVS) and the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) for electrical isolation from the ground (earth) and between different power conversion elements. (TRP) (TRPC) (TRNC) (TRN) are arranged.

一方、特許文献1には、電力変換器の各アーム毎に半導体スイッチング素子を複数個直列接続し、低圧側のゲート駆動装置から高圧側ゲート駆動装置まで、絶縁トランスを介して順々に電力を分岐して伝達供給する構成とすることにより、高圧側の絶縁トランスの一次巻線と二次巻線間に印加される電圧を低減させ、絶縁トランスの小容量化を図ることが示されている。
特開2006−81232号公報
On the other hand, in Patent Document 1, a plurality of semiconductor switching elements are connected in series for each arm of the power converter, and power is sequentially supplied from the low-voltage side gate driving device to the high-voltage side gate driving device through an insulating transformer. It has been shown that the voltage applied between the primary and secondary windings of the high-voltage side isolation transformer can be reduced by reducing the voltage applied to the high-voltage side isolation transformer by reducing the capacity of the isolation transformer. .
JP 2006-81232 A

ところで、鉄鋼圧延プラントに適用される交流電動機は、用途により、数kWの補機電動機から、数千kWの主機電動機まで多種存在する。従って、これらの電動機を駆動する電力変換装置も様々な容量のものが存在し、例えば、前記主機電動機駆動用の電力変換装置では数千kVA以上の容量が必要となる。  By the way, there are various types of AC motors applied to the steel rolling plant, ranging from several kW auxiliary motors to several thousand kW main motors depending on the application. Therefore, power converters for driving these motors have various capacities. For example, the power converter for driving the main motor requires a capacity of several thousand kVA or more.

電力変換装置の容量を増加する方法として、それを構成する電力変換主回路の主回路直流電圧を高電圧化する方法がある。高電圧化をする場合、主回路電位になる部位と大地(アース)間の絶縁電圧も高電圧化されるため、その絶縁能力も強化しなければならない。   As a method of increasing the capacity of the power conversion device, there is a method of increasing the main circuit DC voltage of the power conversion main circuit constituting the power conversion device. When the voltage is increased, the insulation voltage between the portion that becomes the main circuit potential and the ground (earth) is also increased, so that the insulation capability must be strengthened.

これは、図7の電力変換装置(200)においては、絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)の絶縁能力を強化することを意味している。 This means that in the power conversion device (200) of FIG. 7, the insulation capability of the insulation transformers (TRP) (TRPC) (TRNC) (TRN) is enhanced.

絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)の絶縁能力を強化するためには、それぞれの絶縁変圧器の1次側巻線と2次側巻線の間の絶縁距離を大きくする必要がある。この場合、絶縁変圧器の寸法は大きくなり、かつ、絶縁圧器の製造コストも高くなる。また、これに伴い、電力変換装置(200)の寸法も大きくなり、かつ、装置コストも高くなる。なお、前記特許文献1は、各アーム毎に複数個直列接続される半導体スイッチング素子を各アームを単位として駆動するゲート駆動回路に関する技術であり、本発明のように正極側電力変換素子と負極側電力変換素子、すなわち正極側アームと負極側アームとを交互にオンオフするゲート駆動回路における絶縁構成を対象とする技術ではない。   In order to enhance the insulation capability of the insulation transformer (TRP) (TRPC) (TRNC) (TRN), increase the insulation distance between the primary and secondary windings of each insulation transformer. There is a need. In this case, the size of the insulation transformer is increased, and the manufacturing cost of the insulation voltage transformer is also increased. Further, along with this, the size of the power conversion device (200) increases and the device cost also increases. In addition, the said patent document 1 is the technique regarding the gate drive circuit which drives the semiconductor switching element connected in series for every arm for every arm as a unit. This is not a technique for a power conversion element, that is, an insulation configuration in a gate drive circuit that alternately turns on and off the positive electrode side arm and the negative electrode side arm.

本発明は、前述のような問題点に鑑みてなされたもので、電力変換素子を駆動する駆動回路と該駆動回路の電源間に配置される絶縁変圧器を低コスト化することのできる電力変換装置を提供することにある。   The present invention has been made in view of the above-described problems, and is capable of reducing the cost of an insulating transformer disposed between a drive circuit for driving a power conversion element and a power source of the drive circuit. To provide an apparatus.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

正極母線、負極母線、および中間電位母線を備えた主回路母線と、該主回路母線に接続されて主回路母線間に供給される直流電力を交流電力に変換して交流出力端子に出力する電力変換回路とを備えた電力変換装置において、前記電力変換回路は、前記正極母線と交流出力端子間に接続した正極側電力変換素子、および前記交流出力端子と前記負極母線間に接続された負極側電力変換素子と、前記正極側電力変換素子をオンオフ駆動する正極側駆動回路および前記負極側電力変換素子をオンオフ駆動する負極側駆動回路とを備えた駆動回路と、前記正極側駆動回路および負極側駆動回路のそれぞれに駆動用の電力を駆動回路用絶縁変圧器を介して絶縁して供給する駆動電源回路と、該駆動電源回路に駆動用の電力を絶縁して供給する制御電源用絶縁変圧器を備え、前記駆動電源回路の共通電位点を正極母線に接続した A main circuit bus having a positive bus, a negative bus, and an intermediate potential bus, and power that is connected to the main circuit bus and supplied between the main circuit buses is converted into AC power and output to an AC output terminal In the power conversion device including the conversion circuit, the power conversion circuit includes a positive power conversion element connected between the positive electrode bus and the AC output terminal, and a negative electrode side connected between the AC output terminal and the negative electrode bus. A drive circuit comprising: a power conversion element; a positive side drive circuit that drives the positive side power conversion element on and off; and a negative side drive circuit that drives the negative side power conversion element on and off; and the positive side drive circuit and the negative side A drive power supply circuit that supplies drive power to each of the drive circuits through an insulation transformer for the drive circuit, and a control power supply that supplies drive power to the drive power circuit after being insulated It comprises an insulating transformer and connects the common potential point of the drive power supply circuit to the positive electrode bus.

本発明は、以上の構成を備えるため、電力変換素子を駆動する駆動回路と該駆動回路の電源間に配置される絶縁変圧器を低コスト化することのできる電力変換装置を提供することができる。   Since the present invention has the above-described configuration, it is possible to provide a power conversion device that can reduce the cost of a drive circuit that drives a power conversion element and an insulating transformer disposed between the power supplies of the drive circuit. .

以下、最良の実施形態を添付図面を参照しながら説明する。 まず、電力変換装置の基本動作について、図7を用いて説明する。   Hereinafter, the best embodiment will be described with reference to the accompanying drawings. First, the basic operation of the power conversion apparatus will be described with reference to FIG.

図7に示す電力変換装置(200)において、直流電圧(Ep)(En)は、直流母線(P)(COM)(N)を介して電力変換主回路(100)とつながる。ここで、直流電圧(Ep)(En)は、通常の回路動作中においては、(Ep)=(En)となっている。   In the power conversion device (200) shown in FIG. 7, the DC voltage (Ep) (En) is connected to the power conversion main circuit (100) via the DC bus (P) (COM) (N). Here, the DC voltage (Ep) (En) is (Ep) = (En) during normal circuit operation.

電力変換主回路(100)において、電力変換素子(QP)(QPC)(QNC)(QN) は、任意の時間幅と周期でスイッチングしており、かつ、電力変換素子(QP)(QPC)(QNC)(QN)のそれぞれを「単位素子」としたとき、その「単位素子」は、一つの電力変換素子(1直列)または直列接続された複数の電力変換素子(2直列以上)からなっている。また、2つの「素子単位」以上の電力変換素子が同時にオンしないように制御される。図7は、電力変換素子の「素子単位」が、電力変換素子の1直列接続で構成される場合を示している。   In the power conversion main circuit (100), the power conversion element (QP) (QPC) (QNC) (QN) is switched at an arbitrary time width and cycle, and the power conversion element (QP) (QPC) ( When each of (QNC) (QN) is a “unit element”, the “unit element” consists of one power conversion element (one series) or a plurality of power conversion elements connected in series (two or more series). Yes. Further, control is performed so that two or more “element units” or more of power conversion elements are not turned on simultaneously. FIG. 7 shows a case where the “element unit” of the power conversion element is configured by one series connection of the power conversion elements.

電力変換素子(QP)(QPC)(QNC)(QN)のスイッチングは、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)で作成される素子駆動信号(GP)(GPC)(GNC)(GN)により駆動される。   Switching of the power conversion element (QP) (QPC) (QNC) (QN) is performed by the element drive signal (GP) (GPC) (GNC) (GNC) (DRV) (DRVNC) (DRVN) GN).

図9は、電力変換主回路の電力変換素子駆動信号(オンオフ指令信号)を説明する図である。図9では、出力点(AC)に対する電圧指令(V*)と、出力点(AC)の実際の出力電圧(VAC)と、素子駆動信号(GP)(GPC)(GNC)(GN)の一例を示している。   FIG. 9 is a diagram for explaining a power conversion element drive signal (on / off command signal) of the power conversion main circuit. In FIG. 9, an example of the voltage command (V *) for the output point (AC), the actual output voltage (VAC) of the output point (AC), and the element drive signal (GP) (GPC) (GNC) (GN) Is shown.

図9において、任意周波数および振幅の交流電圧指令(V*)は、搬送波(Cr31)(Cr32)と、その振幅が比較され、その大小関係に基づき、素子駆動信号(GP)(GPC)(GNC)(GN)が作成される。作成された素子駆動信号(GP)(GPC)(GNC)(GN)に基づき、電力変換素子(QP)(QPC)(QNC)(QN)をスイッチングすることで、出力点(AC)には、交流電圧指令(V*)と等価な出力電圧(VAC)が出力される。   In FIG. 9, the AC voltage command (V *) of arbitrary frequency and amplitude is compared with the carrier wave (Cr31) (Cr32) and the amplitude, and based on the magnitude relationship, the element drive signal (GP) (GPC) (GNC ) (GN) is created. By switching the power conversion element (QP) (QPC) (QNC) (QN) based on the created element drive signal (GP) (GPC) (GNC) (GN), the output point (AC) Output voltage (VAC) equivalent to AC voltage command (V *) is output.

ここで、電力変換素子(QP)(QPC)(QNC)(QN)がIGBTのような電圧駆動素子の場合、素子駆動信号(GP)(GPC)(GNC)(GN)は、電圧信号となる。   Here, when the power conversion element (QP) (QPC) (QNC) (QN) is a voltage driving element such as an IGBT, the element driving signals (GP) (GPC) (GNC) (GN) are voltage signals. .

出力点(AC)には、負荷回路(図8における交流電動機(400)あるいは変圧器(300))が接続され、負荷回路に対して、直流電圧と任意周波数および振幅の交流電圧間を順または逆変換することで、電力の供給および回収をすることができる。   A load circuit (the AC motor (400) or the transformer (300) in FIG. 8) is connected to the output point (AC). By performing reverse conversion, power can be supplied and recovered.

次に、図8の電力変換装置における電力変換素子駆動回路の絶縁構成について、図7を用いて説明する。   Next, an insulating configuration of the power conversion element driving circuit in the power conversion device of FIG. 8 will be described with reference to FIG.

駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)は、電力変換素子(QP)(QPC)(QNC)(QN)に接続されるため、その回路基準電位は、主回路母線(P)(COM)(N)いずれかの電位となる。よって、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)それぞれの回路基準電位は、電力変換素子のスイッチング状態により異なり、その最大電位差は式[1]となる。   Since the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) is connected to the power conversion element (QP) (QPC) (QNC) (QN), its circuit reference potential is the main circuit bus (P) ( COM) (N) potential. Therefore, the circuit reference potential of each of the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) varies depending on the switching state of the power conversion element, and the maximum potential difference is expressed by Equation [1].

駆動回路間最大電位差=(Ep)+(En) ・・・[1]
ここで、(Ep)=(En)であるから、式[1]は、式[1']に改めることができる。
Maximum potential difference between drive circuits = (Ep) + (En) ... [1]
Here, since (Ep) = (En), the expression [1] can be changed to the expression [1 ′].

駆動回路間最大電位差=2×(En) ・・・[1']
駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)の大地(アース)に対する電位差は、電力変換主回路(100)の対地電位により決定される。図7においては、主回路母線(COM)が接地抵抗(ER)を介して接地されており、このときの主回路母線(N)の対地電位は(MP)となっている。
Maximum potential difference between drive circuits = 2 x (En) ... [1 ']
The potential difference of the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) with respect to the ground (earth) is determined by the ground potential of the power conversion main circuit (100). In FIG. 7, the main circuit bus (COM) is grounded via the ground resistor (ER), and the ground potential of the main circuit bus (N) at this time is (MP).

このとき、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)の対地電位は、式[1']より、式[2]となる。   At this time, the ground potential of the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) is expressed by equation [2] from equation [1 ′].

駆動回路対地電位
=(MP)+駆動回路間最大電位差(式[1])
=(MP)+2×(En) ・・・[2]
一方、電源(DRVS)の回路基準電位となる接地点(BP)は、主電源(MSRC)を経由し、大地(アース)に接地されている。また、電源(DRVS)の出力(SCP)(SCPC)(SCNC)(SCN)において、それぞれの基準電位を決める接地点(BPP)(BPPC)(BPNC)(BPN)は、接地点(BP)と同電位である。ここで、領域(MCPA)は主回路電位になり、領域(EPA)は大地(アース)電位になる。
Drive circuit ground potential = (MP) + maximum potential difference between drive circuits (formula [1])
= (MP) + 2 x (En) ... [2]
On the other hand, the ground point (BP) that is the circuit reference potential of the power source (DRVS) is grounded to the ground (earth) via the main power source (MSRC). Also, in the output (SCP) (SCPC) (SCNC) (SCN) of the power supply (DRVS), the ground point (BPP) (BPPC) (BPNC) (BPN) that determines each reference potential is the ground point (BP). It is the same potential. Here, the region (MCPA) becomes the main circuit potential, and the region (EPA) becomes the ground (earth) potential.

従って、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)は、個々の駆動回路間の電気的絶縁と、電源(DRVS)との電気的絶縁が必要となり、個々の駆動回路間の絶縁電圧は式[1]で表され、電源(DRVS)との絶縁電圧は式[2]で表される。   Therefore, the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) requires electrical insulation between the individual drive circuits and electrical insulation from the power supply (DRVS), and the insulation voltage between the individual drive circuits. Is expressed by equation [1], and the insulation voltage from the power supply (DRVS) is expressed by equation [2].

それらの大小関係は、式[1']、式[2]から明らかであるように、式[3]で表される。   The magnitude relationship between them is expressed by equation [3], as is clear from equations [1 ′] and [2].

式[2] ≧ 式[1'] ・・・[3]
このため、前記駆動回路間の電気絶縁と前記電源との電気的絶縁を目的とし、絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)を設置する。なお、絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)に必要な絶縁電圧仕様は、式[3]の関係を考慮して、式[2]で表される。
Formula [2] ≧ Formula [1 '] ... [3]
For this reason, an isolation transformer (TRP) (TRPC) (TRNC) (TRN) is installed for the purpose of electrical isolation between the drive circuits and the power source. The insulation voltage specification required for the insulation transformers (TRP), (TRPC), (TRNC), and (TRN) is expressed by equation [2] in consideration of the relationship of equation [3].

次に、第一の実施例を図1を用いて説明する。図1に示すように、電力変換装置(200)における直流電圧(Ep)(En)は、直流母線(P)(COM)(N)を介して電力変換主回路(101)に供給される。これは、図7における電力変換装置(200) と電力変換主回路(100)の関係と同様である。   Next, a first embodiment will be described with reference to FIG. As shown in FIG. 1, the DC voltage (Ep) (En) in the power conversion device (200) is supplied to the power conversion main circuit (101) via the DC bus (P) (COM) (N). This is the same as the relationship between the power conversion device (200) and the power conversion main circuit (100) in FIG.

また、電力変換主回路(101)における、電力変換素子(QP)(QPC)(QNC)(QN)の動作も、図7における電力変換主回路(100)の中のそれらの動作と同じである。   The operations of the power conversion elements (QP) (QPC) (QNC) (QN) in the power conversion main circuit (101) are also the same as those in the power conversion main circuit (100) in FIG. .

さらに、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)の回路基準電位も、図7における電力変換主回路(100)の中のそれらと同様に、主回路母線(P)(COM)(N)いずれかの電位となる。   Further, the circuit reference potentials of the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) are also the same as those in the power conversion main circuit (100) in FIG. N) Either potential.

よって、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)それぞれの最大電位差は、式[1']で表され、また、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)の大地に対する電位は、式[2]で表される。   Therefore, the maximum potential difference of each of the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) is expressed by the equation [1 ′], and the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) with respect to the ground. The potential is expressed by the formula [2].

さて、電源(DRVS)の回路基準電位を決める接地点(BP)は、配線(COMP)により、主回路母線(COM)に接続されている。また、電源(DRVS)の出力(SCP)(SCPC)(SCNC)(SCN)の、それぞれの基準電位を決める接地点(BPP)(BPPC)(BPNC)(BPN)は、接地点(BP)と同電位である。   The ground point (BP) that determines the circuit reference potential of the power supply (DRVS) is connected to the main circuit bus (COM) by wiring (COMP). Also, the ground point (BPP) (BPPC) (BPNC) (BPN) that determines the respective reference potential of the output (SCP) (SCPC) (SCNC) (SCN) of the power supply (DRVS) is the ground point (BP). It is the same potential.

ここで、領域(MCPA1)は主回路電位となり、領域(EPA1)は大地(アース)電位となり、電源(DRVS)の対地電位差は式[4]で表される。   Here, the region (MCPA1) is the main circuit potential, the region (EPA1) is the ground (earth) potential, and the ground potential difference of the power supply (DRVS) is expressed by Equation [4].

電源(DRVS)の対地電位差=(MP)+(En) ・・・[4]
従って、絶縁変圧器(TRSRC)の1次巻線−2次巻線間に要求される絶縁電位差も式[4]で表され、絶縁変圧器(TRSRC)に必要な絶縁電圧仕様もまた、式[4]で表される。
Ground potential difference of power supply (DRVS) = (MP) + (En) ... [4]
Therefore, the insulation potential difference required between the primary and secondary windings of the insulation transformer (TRSRC) is also expressed by Equation [4], and the insulation voltage specification required for the insulation transformer (TRSRC) is also expressed by Equation (4). [4]

一方、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)と電源(DRVS)の間の電位差は、式[2]の駆動回路対地電位差から式[4]の電源(DRVS)対地電位差を減算した値となる(式[5])。   On the other hand, the potential difference between the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) and the power supply (DRVS) is obtained by subtracting the power supply (DRVS) ground potential difference of the formula [4] from the drive circuit ground potential difference of the formula [2]. (Expression [5]).

駆動回路対地電位差(式[4])−電源対地電位差(式[5])
=(MP)+2×(En)−{(MP)+(En)}
=(En) ・・・[5]
従って、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)は、個々の駆動回路間の電気的絶縁と、電源(DRVS)との電気的絶縁が必要となる。個々の駆動回路間の絶縁電位差は式[1']で表され、電源(DRVS)との絶縁電位差は式[5]で表される。
Drive circuit ground potential difference (Formula [4])-Power supply ground potential difference (Formula [5])
= (MP) + 2 x (En)-{(MP) + (En)}
= (En) ・ ・ ・ [5]
Therefore, the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) require electrical insulation between the individual drive circuits and electrical power supply (DRVS). The insulation potential difference between the individual drive circuits is represented by equation [1 ′], and the insulation potential difference from the power supply (DRVS) is represented by equation [5].

それらの大小関係は、式[1']、式[5]から明らかであるように、式[6]で表される。 The magnitude relationship between them is expressed by equation [6] as is clear from equations [1 ′] and [5].

式[1'] ≧ 式[5] ・・・[6]
上述 の電気的絶縁(駆動回路間の電気的絶縁と、電源(DRVS)との電気的絶縁)を目的とし、絶縁変圧器(TRP1)(TRPC1)(TRNC1)(TRN1)を設置する。
Formula [1 '] ≧ Formula [5] ... [6]
Insulating transformers (TRP1) (TRPC1) (TRNC1) (TRN1) are installed for the purpose of the above-mentioned electrical insulation (electrical insulation between drive circuits and electrical insulation with the power supply (DRVS)).

ここで、式[6]より、絶縁変圧器(TRP1)(TRPC1)(TRNC1)(TRN1)に必要な絶縁電圧仕様は、式[1]となるが、実際は、電源(DRVS)の回路基準電位(BP)および接地点(BPP)(BPPC)(BPNC)(BPN)が主回路母線電位(COM)となっているため、絶縁変圧器の1次巻線−2次巻線間の絶縁電位差は、式[7]〜式[9]で表される。   Here, from equation [6], the insulation voltage specification required for the isolation transformers (TRP1), (TRPC1), (TRNC1), and (TRN1) is equation [1], but in reality the circuit reference potential of the power supply (DRVS) (BP) and ground point (BPP) (BPPC) (BPNC) (BPN) are the main circuit bus potential (COM), so the insulation potential difference between the primary winding and secondary winding of the isolation transformer is And represented by equations [7] to [9].

駆動回路電位が主回路母線(P)電位の場合 :電位差=(Ep) ・・・[7]
駆動回路電位が主回路母線(COM)電位の場合 :電位差=0 ・・・[8]
駆動回路電位が主回路母線(N)電位の場合 :電位差=(En) ・・・[9]
すなわち、絶縁変圧器(TRP1)(TRPC1)(TRNC1)(TRN1)に要求される絶縁能力は、式[7]〜式[9]より、式[10]で与えられる。
When the drive circuit potential is the main circuit bus (P) potential: Potential difference = (Ep) ... [7]
When drive circuit potential is main circuit bus (COM) potential: Potential difference = 0 [8]
When the drive circuit potential is the main circuit bus (N) potential: Potential difference = (En) ... [9]
That is, the insulation capacity required for the insulation transformers (TRP1), (TRPC1), (TRNC1), and (TRN1) is given by Expression [10] from Expressions [7] to [9].

絶縁変圧器絶縁能力=(Ep) または (En) ・・・[10]
なお、(Ep)、(En)>0、かつ、(Ep)=(En)であるから、式[10]は、式[11]に改められる。
Insulation transformer insulation capacity = (Ep) or (En) ・ ・ ・ [10]
Since (Ep), (En)> 0 and (Ep) = (En), Expression [10] is changed to Expression [11].

絶縁変圧器絶縁能力=(En) ・・・[11]
ここで、従来の絶縁変圧器(TRP)(TRPC)(TRNC)(TRN) の絶縁電圧仕様と、第一の実施例の絶縁変圧器(TRP1)(TRPC1)(TRNC1)(TRN1)の絶縁電圧仕様を比較する。
Insulation transformer insulation capacity = (En) [11]
Here, the isolation voltage specifications of the conventional isolation transformer (TRP) (TRPC) (TRNC) (TRN) and the isolation voltage of the isolation transformer (TRP1) (TRPC1) (TRNC1) (TRN1) of the first embodiment Compare specifications.

式[2]の右辺を、式[11]の右辺で除算すると、式[12]となる。 When the right side of Expression [2] is divided by the right side of Expression [11], Expression [12] is obtained.

式[2]/式[11]={(MP)+2×(En)}/{(En)}=A+2 ・・・[12]
(ここで、A=(MP)/(En)>0)
式[12]より、本発明の第一の実施例の絶縁変圧器(TRP1)(TRPC1)(TRNC1)(TRN1)の絶縁電圧仕様に対して、図7に示す従来の絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)の絶縁電圧仕様は、2倍以上必要であることが分かる。なお、前記抵抗(ER)は交流出力(AC)の設置故障を検出するための接地抵抗であり、前記対置電位差(MP)は、前記接地抵抗を流れる電流の影響を受けて変動する。
Formula [2] / Formula [11] = {(MP) + 2 × (En)} / {(En)} = A + 2 (12)
(Where A = (MP) / (En)> 0)
From the expression [12], the conventional insulation transformer (TRP) shown in FIG. 7 is compared with the insulation voltage specification of the insulation transformer (TRP1) (TRPC1) (TRNC1) (TRN1) of the first embodiment of the present invention. It can be seen that the insulation voltage specification of (TRPC) (TRNC) (TRN) requires more than twice. The resistance (ER) is a grounding resistance for detecting an AC output (AC) installation failure, and the counter potential difference (MP) varies under the influence of the current flowing through the grounding resistance.

絶縁変圧器の絶縁電圧仕様は、1次側巻線と2次側巻線の間の絶縁距離に影響を及ぼし、絶縁電圧仕様が2倍になれば、その必要絶縁距離も2倍以上になる。従って、従来の絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)に対して、第一の実施例の絶縁変圧器(TRP1)(TRPC1)(TRNC1)(TRN1)の変圧器寸法は1/2以下にすることができる。また、その製造コストも、一般的に変圧器寸法に比例するため、1/2以下になる。   The insulation voltage specification of the insulation transformer affects the insulation distance between the primary side winding and the secondary side winding. If the insulation voltage specification is doubled, the necessary insulation distance is also more than doubled. . Therefore, the transformer size of the insulation transformer (TRP1) (TRPC1) (TRNC1) (TRN1) of the first embodiment is 1 compared to the conventional insulation transformer (TRP) (TRPC) (TRNC) (TRN). / 2 or less. Further, the manufacturing cost is generally proportional to the size of the transformer, so that it is ½ or less.

以上説明したように、第一の実施例では、電力変換装置の電力変換素子駆動回路の系統において必要となる絶縁変圧器を1/2以下に小型化し、かつ、その製造コストを低減することができる。   As described above, in the first embodiment, the insulation transformer required in the system of the power conversion element drive circuit of the power conversion device can be reduced to 1/2 or less, and the manufacturing cost can be reduced. it can.

なお、図7に示す従来例に比して、新たに、絶縁変圧器(TRSRC)が必要となるが、その追加台数は少ないため、電力変換装置そのものの小型化および装置コストへの影響は少ない。   As compared with the conventional example shown in FIG. 7, an insulation transformer (TRSRC) is newly required, but since the number of additional transformers is small, there is little influence on downsizing of the power conversion device itself and device cost. .

図2は、第二の実施例を説明する図である。第一の実施例との違いは、電源(DRVS)の接地点(BP)を、横流を抑制するための抵抗(COMPR)を介して配線(COMP)により主回路母線(COM)に接続した点にある。各部の電位差および得られる効果については、図1と同じであるため、説明は省略する。   FIG. 2 is a diagram for explaining the second embodiment. The difference from the first embodiment is that the ground point (BP) of the power supply (DRVS) is connected to the main circuit bus (COM) by wiring (COMP) through the resistor (COMPR) for suppressing cross current. It is in. Since the potential difference of each part and the obtained effect are the same as those in FIG.

図3は、第三の実施例を説明する図である。電力変換装置(200)における直流電圧(Ep)(En)は、直流母線(P)(COM)(N)を介して電力変換主回路(103)に供給される。これは、従来構成の図7における電力変換装置(200) と電力変換主回路(100)の関係と同様である。   FIG. 3 is a diagram for explaining the third embodiment. The DC voltage (Ep) (En) in the power conversion device (200) is supplied to the power conversion main circuit (103) via the DC bus (P) (COM) (N). This is the same as the relationship between the power conversion device (200) and the power conversion main circuit (100) in FIG.

また、電力変換主回路(103)における、電力変換素子(QP)(QPC)(QNC)(QN)の動作も、図7における電力変換主回路(100)の中のそれらの動作と同じである。 The operations of the power conversion elements (QP) (QPC) (QNC) (QN) in the power conversion main circuit (103) are also the same as those in the power conversion main circuit (100) in FIG. .

さらに、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)の回路基準電位も、図7における電力変換主回路(100)の中のそれらと同様に、主回路母線(P)(COM)(N)いずれかの電位となる。   Further, the circuit reference potentials of the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) are also the same as those in the power conversion main circuit (100) in FIG. N) Either potential.

よって、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)それぞれの最大電位差は、式[1']で表され、かつ、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)の大地に対する電位も、式[2]で表される。   Therefore, the maximum potential difference of each of the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) is expressed by the equation [1 ′] and is relative to the ground of the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN). The potential is also expressed by equation [2].

さて、電源(DRVS)の回路基準電位を決める接地点(BP)は、配線(NP)により、主回路母線(N)に接続されている。また、電源(DRVS)の出力(SCP)(SCPC)(SCNC)(SCN)の、それぞれの基準電位を決める接地点(BPP)(BPPC)(BPNC)(BPN)は、接地点(BP)と同電位である。   The ground point (BP) that determines the circuit reference potential of the power supply (DRVS) is connected to the main circuit bus (N) by wiring (NP). Also, the ground point (BPP) (BPPC) (BPNC) (BPN) that determines the respective reference potential of the output (SCP) (SCPC) (SCNC) (SCN) of the power supply (DRVS) is the ground point (BP). It is the same potential.

ここで、領域(MCPA3)は主回路電位となり、領域(EPA3)は大地電位となり、電源(DRVS)の対地電位差は式[13]で表される。   Here, the region (MCPA3) is the main circuit potential, the region (EPA3) is the ground potential, and the ground potential difference of the power supply (DRVS) is expressed by Equation [13].

電源(DRVS)対地電位差=(MP) ・・・[13]
従って、絶縁変圧器(TRSRC3)の1次巻線−2次巻線間の絶縁電位差も式[13]で表され、絶縁変圧器(TRSRC3)に必要な絶縁電圧仕様もまた、式[13]で表される。
Power supply (DRVS) ground potential difference = (MP) ・ ・ ・ [13]
Therefore, the insulation potential difference between the primary and secondary windings of the insulation transformer (TRSRC3) is also expressed by equation [13], and the insulation voltage specification required for the insulation transformer (TRSRC3) is also expressed by equation [13]. It is represented by

一方、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)と電源(DRVS)の間の電位差は、式[2]の駆動回路対地電位差から式[13]の電源回路対地電位差を減算した値となる(式[14])。 On the other hand, the potential difference between the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) and the power supply (DRVS) is the value obtained by subtracting the power supply circuit ground potential difference of equation [13] from the drive circuit ground potential difference of equation [2]. (Equation [14]).

駆動回路対地電位差(式[2])−電源回路対地電位差(式[13])
=(MP)+2×(En)−(MP)
=2×(En) ・・・[14]
従って、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)は、個々の駆動回路間の電気的絶縁と、電源(DRVS)との電気的絶縁が必要となる。個々の駆動回路間の絶縁電位差は式[1']で表され、電源(DRVS)との絶縁電位差は式[14]で表されるため、その値は同値となる。
Driver circuit ground potential difference (Formula [2])-Power circuit ground potential difference (Formula [13])
= (MP) + 2 x (En)-(MP)
= 2 × (En) ・ ・ ・ [14]
Therefore, the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) require electrical insulation between the individual drive circuits and electrical power supply (DRVS). Since the insulation potential difference between the individual drive circuits is expressed by the equation [1 ′] and the insulation potential difference from the power supply (DRVS) is expressed by the equation [14], the values are the same.

上述の電気的絶縁(駆動回路間の電気的絶縁と、電源(DRVS)との電気的絶縁)を目的とし、絶縁変圧器(TRP3)(TRPC3)(TRNC3)(TRN3)を設置する。   Insulating transformers (TRP3) (TRPC3) (TRNC3) (TRN3) are installed for the purpose of the above-mentioned electrical insulation (electrical insulation between drive circuits and electrical insulation with the power supply (DRVS)).

絶縁変圧器(TRP3)(TRPC3)(TRNC3)(TRN3)に必要な絶縁電圧仕様は、式[14]で表されるが、従来の絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)に必要な絶縁電圧仕様である式[2]との差は、次式で表される。   The insulation voltage specification required for the isolation transformer (TRP3) (TRPC3) (TRNC3) (TRN3) is expressed by equation [14], but the conventional isolation transformer (TRP) (TRPC) (TRNC) (TRN) The difference from the formula [2], which is the insulation voltage specification necessary for the above, is expressed by the following formula.

式[2]−式[14]=(MP)+2×(En)−2×(En)=(MP) ・・・[15]
式[15]より、本発明の第三の実施例の絶縁変圧器(TRP3)(TRPC3)(TRNC3)(TRN3)の絶縁電圧仕様は、従来の絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)の絶縁電圧仕様に比して、(MP)分だけ低減される。
Formula [2] −Formula [14] = (MP) + 2 × (En) −2 × (En) = (MP) (15)
From the equation [15], the insulation voltage specification of the insulation transformer (TRP3) (TRPC3) (TRNC3) (TRN3) of the third embodiment of the present invention is the conventional insulation transformer (TRP) (TRPC) (TRNC) Compared to the (TRN) insulation voltage specification, it is reduced by (MP).

絶縁変圧器の絶縁電圧仕様は、1次側巻線と2次側巻線の間の絶縁距離に影響を及ぼし、絶縁電圧仕様が2倍になれば、その必要絶縁距離も2倍以上になる。従って、従来の絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)に対して、第三の実施例の絶縁変圧器(TRP3)(TRPC3)(TRNC3)(TRN3)の変圧器寸法は、絶縁電圧仕様が(MP)分低減しただけ小型になる。また、その製造コストも、一般的に変圧器寸法に比例するため、低減される。   The insulation voltage specification of the insulation transformer affects the insulation distance between the primary side winding and the secondary side winding. If the insulation voltage specification is doubled, the necessary insulation distance is also more than doubled. . Therefore, with respect to the conventional insulation transformer (TRP) (TRPC) (TRNC) (TRN), the transformer dimensions of the insulation transformer (TRP3) (TRPC3) (TRNC3) (TRN3) of the third embodiment are: The insulation voltage specification is reduced by (MP). Also, the manufacturing cost is generally reduced because it is proportional to the transformer dimensions.

以上説明したように、第三の実施例では、電力変換装置の電力変換素子駆動回路の系統において必要となる絶縁変圧器を、絶縁電圧仕様が(MP)分低減しただけ小型化し、かつ、製造コストを低減することができる。なお、図7に示す従来例に比して、新たに、絶縁変圧器(TRSRC3)が必要となるが、その追加台数は少ないため、電力変換装置そのものの小型化、および装置コストへの影響は少ない。   As described above, in the third embodiment, the insulation transformer required in the system of the power conversion element drive circuit of the power conversion device is downsized and manufactured by reducing the insulation voltage specification by (MP). Cost can be reduced. Compared to the conventional example shown in FIG. 7, an insulation transformer (TRSRC3) is newly required. However, since the number of additional transformers is small, the power conversion device itself is downsized and the effect on the device cost is not affected. Few.

図4は、第四の実施例を説明する図である。第三の実施例との違いは、電源(DRVS)の接地点(BP)を、横流を抑制するための抵抗(NPR)を介して配線(NP)により主回路母線(N)と接続していることである。各部の電位差および得られる効果については、図3と同じであるため、説明は省略する。   FIG. 4 is a diagram for explaining the fourth embodiment. The difference from the third embodiment is that the ground point (BP) of the power supply (DRVS) is connected to the main circuit bus (N) by wiring (NP) through the resistor (NPR) for suppressing cross current. It is that you are. Since the potential difference of each part and the obtained effect are the same as those in FIG.

図5は、第五の実施例を説明する図である。電力変換装置(200)の、直流電圧(Ep)(En)は、直流母線(P)(COM)(N)を介して電力変換主回路(105)に供給される。これは、図7における電力変換装置(200) と電力変換主回路(100)の関係と同様である。   FIG. 5 is a diagram for explaining the fifth embodiment. The DC voltage (Ep) (En) of the power conversion device (200) is supplied to the power conversion main circuit (105) via the DC bus (P) (COM) (N). This is the same as the relationship between the power conversion device (200) and the power conversion main circuit (100) in FIG.

また、電力変換主回路(105)における、電力変換素子(QP)(QPC)(QNC)(QN)の動作も、図7における電力変換主回路(100)の中のそれらの動作と同じである。   The operations of the power conversion elements (QP) (QPC) (QNC) (QN) in the power conversion main circuit (105) are also the same as those in the power conversion main circuit (100) in FIG. .

さらに、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)の回路基準電位も、図7における電力変換主回路(100)の中のそれらと同様に、主回路母線(P)(COM)(N)いずれかの電位となる。   Further, the circuit reference potentials of the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) are also the same as those in the power conversion main circuit (100) in FIG. N) Either potential.

よって、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)それぞれの最大電位差は、式[1']で表され、かつ、大地(アース)に対する電位は、主回路母線(P)の対地電位は(MPP)となっているので式[16]で表される。   Therefore, the maximum potential difference of each drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) is expressed by the equation [1 '], and the potential with respect to the ground (earth) is the ground potential of the main circuit bus (P). Since it is (MPP), it is expressed by equation [16].

駆動回路対地電位差
=(MPP)+駆動回路間最大電位差(式[1])
=(MPP)+2×(En) ・・・[16]
さて、電源(DRVS)の回路基準電位を決める接地点(BP)は、配線(PP)により、主回路母線(P)に接続されている。また、出力(SCP)(SCPC)(SCNC)(SCN)において、それぞれの基準電位を決める接地点(BPP)(BPPC)(BPNC)(BPN)は、接地点(BP)と同電位である。
Drive circuit ground potential difference = (MPP) + maximum potential difference between drive circuits (formula [1])
= (MPP) + 2 x (En) [16]
The ground point (BP) that determines the circuit reference potential of the power supply (DRVS) is connected to the main circuit bus (P) by the wiring (PP). In the outputs (SCP), (SCPC), (SCNC), and (SCN), the ground points (BPP), (BPPC), (BPNC), and (BPN) that determine the respective reference potentials have the same potential as the ground point (BP).

ここで、図5において、領域(MCPA5)は主回路電位となり、領域(EPA5)は大地電位となり、電源(DRVS)の対地電位差は式[17]で表される。   Here, in FIG. 5, the region (MCPA5) is the main circuit potential, the region (EPA5) is the ground potential, and the ground potential difference of the power supply (DRVS) is expressed by Equation [17].

電源(DRVS)対地電位差=(MPP) ・・・[17]
従って、絶縁変圧器(TRSRC5)の1次巻線−2次巻線間の絶縁電位差も式[17]で表され、絶縁変圧器(TRSRC5)に必要な絶縁電圧仕様もまた、式[17]で表される。
Power supply (DRVS) ground potential difference = (MPP) ・ ・ ・ [17]
Therefore, the insulation potential difference between the primary and secondary windings of the insulation transformer (TRSRC5) is also expressed by equation [17], and the insulation voltage specification required for the insulation transformer (TRSRC5) is also expressed by equation [17]. It is represented by

一方、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)と電源(DRVS)の間の電位差は、式[16]の駆動回路対地電位差から式[17]の電源回路対地電位差を減算した値となる(式[18])。   On the other hand, the potential difference between the drive circuit (DRVP) (DRVPC) (DRVNC) (DRVN) and the power supply (DRVS) is the value obtained by subtracting the power supply circuit ground potential difference of Equation [17] from the drive circuit ground potential difference of Equation [16]. (Equation [18]).

駆動回路対地電位差(式[16])−電源回路対地電位差(式[17])
=(MPP)−{(MPP)−2×(En)}
=2×(En) ・・・[18]
従って、駆動回路(DRVP)(DRVPC)(DRVNC)(DRVN)は、個々の駆動回路間の電気的絶縁と、電源(DRVS)との電気的絶縁が必要となる。個々の駆動回路間の絶縁電位差は式[1']で表され、電源(DRVS)との絶縁電位差は式[18]で表されるため、その値は同値である。
Driver circuit ground potential difference (Formula [16])-Power supply circuit ground potential difference (Formula [17])
= (MPP)-{(MPP) -2 × (En)}
= 2 × (En) ・ ・ ・ [18]
Therefore, the drive circuits (DRVP) (DRVPC) (DRVNC) (DRVN) require electrical insulation between the individual drive circuits and electrical insulation from the power supply (DRVS). The insulation potential difference between the individual drive circuits is expressed by the equation [1 ′], and the insulation potential difference from the power supply (DRVS) is expressed by the equation [18].

上述の電気的絶縁(駆動回路間の電気的絶縁と、電源(DRVS)との電気的絶縁)を目的とし、絶縁変圧器(TRP5)(TRPC5)(TRNC5)(TRN5)を設置する。   Insulating transformers (TRP5) (TRPC5) (TRNC5) (TRN5) are installed for the purpose of the above-mentioned electrical insulation (electrical insulation between drive circuits and electrical insulation with the power supply (DRVS)).

絶縁変圧器(TRP5)(TRPC5)(TRNC5)(TRN5)に必要な絶縁電圧仕様は、式[18]で表されるが、従来の絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)に必要な絶縁電圧仕様である式[2]との差は、次式で表される。   The insulation voltage specification required for the isolation transformer (TRP5) (TRPC5) (TRNC5) (TRN5) is expressed by equation [18], but the conventional isolation transformer (TRP) (TRPC) (TRNC) (TRN) The difference from the formula [2], which is the insulation voltage specification necessary for the above, is expressed by the following formula.

式[2]−式[18]=(MP)+2×(En)−2×(En)=(MP) ・・・[19]
式[19]より、本発明の第五の実施例の絶縁変圧器(TRP5)(TRPC5)(TRNC5)(TRN5)の絶縁電圧仕様は、従来の絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)の絶縁電圧仕様に比して、(MP)分だけ仕様低減される。
Formula [2] −Formula [18] = (MP) + 2 × (En) −2 × (En) = (MP) (19)
From the equation [19], the insulation voltage specification of the insulation transformer (TRP5) (TRPC5) (TRNC5) (TRN5) of the fifth embodiment of the present invention is the conventional insulation transformer (TRP) (TRPC) (TRNC) The specification is reduced by (MP) compared to the (TRN) insulation voltage specification.

絶縁変圧器の絶縁電圧仕様は、1次側巻線と2次側巻線の間の絶縁距離に影響を及ぼし、絶縁電圧仕様が2倍になれば、その必要絶縁距離も2倍以上になる。従って、従来の絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)に対して、第五の実施例の絶縁変圧器(TRP5)(TRPC5)(TRNC5)(TRN5)の変圧器寸法は、絶縁電圧仕様が(MP)分低減しただけ小型になる。また、その製造コストも、一般的に変圧器寸法に比例するため、低減される。   The insulation voltage specification of the insulation transformer affects the insulation distance between the primary side winding and the secondary side winding. If the insulation voltage specification is doubled, the necessary insulation distance is also more than doubled. . Therefore, with respect to the conventional insulation transformer (TRP) (TRPC) (TRNC) (TRN), the transformer dimensions of the insulation transformer (TRP5) (TRPC5) (TRNC5) (TRN5) of the fifth embodiment, The insulation voltage specification is reduced by (MP). Also, the manufacturing cost is generally reduced because it is proportional to the transformer dimensions.

以上説明したように、第五の実施例では、電力変換装置の電力変換素子駆動回路の系統において必要となる絶縁変圧器の絶縁電圧仕様を(MP)分仕様低減しただけ小型化し、かつ、製造コストの低減をすることができる。なお、従来に比して、新たに、絶縁変圧器(TRSRC5)が必要となるが、その追加台数は少ないため、電力変換装置そのものの小型化および装置コストへの影響は少ない。   As explained above, in the fifth embodiment, the insulation voltage specification of the insulation transformer required in the system of the power conversion element drive circuit of the power conversion device is reduced in size by reducing the specification by (MP), and manufactured. Cost can be reduced. In addition, an insulation transformer (TRSRC5) is newly required as compared with the conventional one, but since the additional number is small, the power conversion device itself is reduced in size and has little influence on the device cost.

図6は、第六の実施例を説明する図である。第五の実施例との違いは、電源(DRVS)の接地点(BP)を、横流を抑制するための抵抗(PPR)を介して配線(PP)により主回路母線(P)に接続したことである。各部の電位差、および得られる効果については、図5と同じであるため、説明は省略する。   FIG. 6 is a diagram for explaining the sixth embodiment. The difference from the fifth embodiment is that the ground point (BP) of the power supply (DRVS) is connected to the main circuit bus (P) by the wiring (PP) through the resistor (PPR) for suppressing the cross current. It is. The potential difference of each part and the obtained effect are the same as in FIG.

以上説明したように、本発明の実施形態によれば、電源回路(DRVS)と主電源(MSRC)の間に、大地(アース)との電気的絶縁のための新たな絶縁変圧器を設け、電源回路(DRVS)の基準電位を任意の主回路電位とした。これにより、絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)の絶縁能力は、異なる電力変換素子間の電気的絶縁のみでよく、大地絶縁のための能力は不要となる。このため、絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)の小型化、低コスト化が可能になる。   As described above, according to the embodiment of the present invention, a new isolation transformer for electrical insulation from the ground (earth) is provided between the power supply circuit (DRVS) and the main power supply (MSRC). The reference potential of the power supply circuit (DRVS) is an arbitrary main circuit potential. As a result, the insulation capability of the isolation transformers (TRP), (TRPC), (TRNC), and (TRN) may be only electrical insulation between different power conversion elements, and the capability for ground insulation becomes unnecessary. Therefore, it is possible to reduce the size and cost of the insulating transformers (TRP) (TRPC) (TRNC) (TRN).

なお、新たに絶縁変圧器を増設することが必要となるが、電源回路(DRVS)と主電源(MSRC)間を一括して電気的絶縁すれば良いため、その増設個数は1個でよい。前記増設による部品実装空間の増加およびコスト増加は、前述の絶縁変圧器(TRP)(TRPC)(TRNC)(TRN)の小型化による実装空間の低減、コスト低減により充分吸収できるものである。   In addition, although it is necessary to newly install an isolation transformer, since it is sufficient to electrically insulate between the power supply circuit (DRVS) and the main power supply (MSRC), the number of expansion may be one. The increase in the component mounting space and the cost increase due to the expansion can be sufficiently absorbed by the reduction in the mounting space and the cost due to the downsizing of the above-described insulation transformer (TRP) (TRPC) (TRNC) (TRN).

第一の実施例を説明する図である。It is a figure explaining a 1st Example. 第二の実施例を説明する図である。It is a figure explaining a 2nd Example. 第三の実施例を説明する図である。It is a figure explaining a 3rd Example. 第四の実施例を説明する図である。It is a figure explaining a 4th Example. 第五の実施例を説明する図である。It is a figure explaining the 5th Example. 第六の実施例を説明する図である。It is a figure explaining a 6th Example. 図8の電力変換装置(200)を構成する電力変換主回路(100)の詳細を示す図である。It is a figure which shows the detail of the power conversion main circuit (100) which comprises the power converter device (200) of FIG. 従来の電力変換装置の全体構成を説明する図である。It is a figure explaining the whole structure of the conventional power converter device. 電力変換主回路の電力変換素子駆動信号(オンオフ指令信号)を説明する図である。It is a figure explaining the power conversion element drive signal (on-off command signal) of a power conversion main circuit.

符号の説明Explanation of symbols

200 電力変換装置、
300 変圧器、
400 交流電動機、
500 商用電源、
AC 電力変換装置の出力点、
Ep、En 直流電源、
P、COM、N 主回路母線、
100 電力変換主回路、
QP、QPC、QNC、QN 電力変換素子、
FWP、FWPC、FWNC、FWN フリーホイルダイオード、
DCP、DCN クランプダイオード、
V* 交流電圧指令、
Cr31、Cr32 交流電圧指令値と振幅を比較する搬送波、
GP、GPC、GNC、GN 電力変換素子QP、QPC、QN、QNの素子駆動信号、
VAC 出力点ACの出力電圧、
DRVP、DRVPC、DRVNC、DRVN 駆動回路、
DRVS 電源、
MSRC 主電源、
BP 電源の接地点、
SCP、SCPC、SCNC、SCN 電源の出力、
BPP、BPPC、BPNV、BPN 電源の出力の接地点、
MP 主回路100の対地電位差、
ER 接地抵抗、
TRP、TRPC、TRNC、TRN 主回路100の絶縁変圧器、
MCPA 主回路電位範囲、
EPA 大地電位範囲、
101 第一の実施例における電力変換主回路、
102 第二の実施例における電力変換主回路、
TRP1、TRPC1、TRNC1、TRN1 、本発明第一、第二の実施例における絶縁変圧器、
MCPA1 第一、第二の実施例における主回路電位範囲、
EPA1 第一、第二の実施例における大地電位範囲、
COMP 第一、第二の実施例における電源の基準電位設定用配線、
COMPR 第二の実施例における横流抑制用抵抗、
103 第三の実施例における電力変換主回路、
104 第四の実施例における電力変換主回路、
TRP3、TRPC3、TRNC3、TRN3 、第三、第四の実施例における絶縁変圧器、
MCPA3 第三、第四の実施例における主回路電位範囲、
EPA3 第三、第四の実施例における大地電位範囲、
NP 第三、第四の実施例における電源の基準電位設定用配線、
NPR 第四の実施例における横流抑制用抵抗、
105 第五の実施例における電力変換主回路、
106 第六の実施例における電力変換主回路、
TRP5、TRPC5、TRNC5、TRN5 第五、第六の実施例における絶縁変圧器、
MCPA5 第五、第六の実施例における主回路電位範囲、
EPA5 第五、第六の実施例における大地電位範囲、
PP 第五、第六の実施例における電源の基準電位設定用配線、
PPR 第六の実施例における横流抑制用抵抗、
TRSRC 第一、第二の実施例における制御電源用絶縁変圧器、
TRSRC3 第三、第四の実施例における制御電源用絶縁変圧器、
TRSRC5 第五、第六の実施例における制御電源用絶縁変圧器、
200 power converter,
300 transformers,
400 AC motor,
500 commercial power,
AC power converter output point,
Ep, En DC power supply,
P, COM, N Main circuit bus,
100 power conversion main circuit,
QP, QPC, QNC, QN power conversion element,
FWP, FWPC, FWNC, FWN Free foil diode,
DCP, DCN clamp diode,
V * AC voltage command,
Cr31, Cr32 Carrier voltage to compare AC voltage command value and amplitude,
GP, GPC, GNC, GN Power conversion elements QP, QPC, QN, QN element drive signals,
VAC Output point AC output voltage,
DRVP, DRVPC, DRVNC, DRVN drive circuit,
DRVS power supply,
MSRC main power,
BP power ground,
SCP, SCPC, SCNC, SCN power output,
BPP, BPPC, BPNV, BPN power supply output grounding point,
MP Ground potential difference of main circuit 100,
ER ground resistance,
TRP, TRPC, TRNC, TRN main circuit 100 isolation transformer,
MCPA main circuit potential range,
EPA earth potential range,
101 Power conversion main circuit in the first embodiment,
102 Power conversion main circuit in the second embodiment,
TRP1, TRPC1, TRNC1, TRN1, the isolation transformer in the first and second embodiments of the present invention,
MCPA1 main circuit potential range in the first and second embodiments,
EPA1 Ground potential range in the first and second examples,
COMP Wiring for setting the reference potential of the power supply in the first and second embodiments,
COMPR Resistance for cross current suppression in the second embodiment,
103 Power conversion main circuit in the third embodiment,
104 Power conversion main circuit in the fourth embodiment,
TRP3, TRPC3, TRNC3, TRN3, insulation transformer in the third and fourth embodiments,
MCPA3 Main circuit potential range in the third and fourth embodiments,
EPA3 Ground potential range in the third and fourth examples,
NP Power supply reference potential setting wiring in the third and fourth embodiments,
NPR resistance for cross current suppression in the fourth embodiment,
105 Power conversion main circuit in the fifth embodiment,
106 Power conversion main circuit in the sixth embodiment,
TRP5, TRPC5, TRNC5, TRN5 Insulation transformer in the fifth and sixth embodiments,
MCPA5 main circuit potential range in the fifth and sixth embodiments,
EPA5 Earth potential range in the fifth and sixth examples,
PP Reference potential setting wiring of the power supply in the fifth and sixth embodiments,
PPR resistance for cross current suppression in the sixth embodiment,
TRSRC Insulation transformer for control power supply in the first and second embodiments,
TRSRC3 Insulation transformer for control power supply in the third and fourth embodiments,
TRSRC5 Insulation transformer for control power supply in the fifth and sixth embodiments,

Claims (4)

正極母線、負極母線、および中間電位母線を備えた主回路母線と、該主回路母線に接続されて主回路母線間に供給される直流電力を交流電力に変換して交流出力端子に出力する電力変換回路とを備えた電力変換装置において、
前記電力変換回路は、
前記正極母線と交流出力端子間に接続した正極側電力変換素子、および前記交流出力端子と前記負極母線間に接続された負極側電力変換素子と、
前記正極側電力変換素子をオンオフ駆動する正極側駆動回路および前記負極側電力変換素子をオンオフ駆動する負極側駆動回路とを備えた駆動回路と、
前記正極側駆動回路および負極側駆動回路のそれぞれに駆動用の電力を駆動回路用絶縁変圧器を介して絶縁して供給する駆動電源回路と、
該駆動電源回路に駆動用の電力を絶縁して供給する制御電源用絶縁変圧器を備え、
前記駆動電源回路の共通電位点を正極母線に接続したことを特徴とする電力変換装置。
A main circuit bus having a positive bus, a negative bus, and an intermediate potential bus, and power that is connected to the main circuit bus and supplied between the main circuit buses is converted into AC power and output to an AC output terminal In a power conversion device comprising a conversion circuit,
The power conversion circuit includes:
A positive power conversion element connected between the positive electrode bus and the AC output terminal; and a negative power conversion element connected between the AC output terminal and the negative electrode bus;
A drive circuit comprising a positive electrode side drive circuit for driving the positive electrode side power conversion element on and off, and a negative electrode side drive circuit for driving the negative electrode side power conversion element on and off;
A drive power supply circuit that supplies drive power to each of the positive electrode side drive circuit and the negative electrode side drive circuit through an insulation transformer for drive circuit;
An insulation transformer for a control power supply that insulates and supplies power for driving to the drive power supply circuit;
A power conversion device, wherein a common potential point of the drive power supply circuit is connected to a positive bus .
正極母線、負極母線、および中間電位母線を備えた主回路母線と、該主回路母線に接続されて主回路母線間に供給される直流電力を交流電力に変換して交流出力端子に出力する電力変換回路とを備えた電力変換装置において、
前記電力変換回路は、
前記正極母線と交流出力端子間に接続した正極側電力変換素子、および前記交流出力端子と前記負極母線間に接続された負極側電力変換素子と、
前記正極側電力変換素子をオンオフ駆動する正極側駆動回路および前記負極側電力変換素子をオンオフ駆動する負極側駆動回路とを備えた駆動回路と、
前記正極側駆動回路および負極側駆動回路のそれぞれに駆動用の電力を駆動回路用絶縁変圧器を介して絶縁して供給する駆動電源回路と、
該駆動電源回路に駆動用の電力を絶縁して供給する制御電源用絶縁変圧器を備え、
前記駆動電源回路の共通電位点を中間電位母線に接続したことを特徴とする電力変換装置。
A main circuit bus having a positive bus, a negative bus, and an intermediate potential bus, and power that is connected to the main circuit bus and supplied between the main circuit buses is converted into AC power and output to an AC output terminal In a power conversion device comprising a conversion circuit,
The power conversion circuit includes:
A positive power conversion element connected between the positive electrode bus and the AC output terminal; and a negative power conversion element connected between the AC output terminal and the negative electrode bus;
A drive circuit comprising a positive electrode side drive circuit for driving the positive electrode side power conversion element on and off, and a negative electrode side drive circuit for driving the negative electrode side power conversion element on and off;
A drive power supply circuit that supplies drive power to each of the positive electrode side drive circuit and the negative electrode side drive circuit through an insulation transformer for drive circuit;
An insulation transformer for a control power supply that insulates and supplies power for driving to the drive power supply circuit;
A power conversion device, wherein a common potential point of the drive power supply circuit is connected to an intermediate potential bus .
正極母線、負極母線、および中間電位母線を備えた主回路母線と、該主回路母線に接続されて主回路母線間に供給される直流電力を交流電力に変換して交流出力端子に出力する電力変換回路とを備えた電力変換装置において、
前記電力変換回路は、
前記正極母線と交流出力端子間に接続した正極側電力変換素子、および前記交流出力端子と前記負極母線間に接続された負極側電力変換素子と、
前記正極側電力変換素子をオンオフ駆動する正極側駆動回路および前記負極側電力変換素子をオンオフ駆動する負極側駆動回路とを備えた駆動回路と、
前記正極側駆動回路および負極側駆動回路のそれぞれに駆動用の電力を駆動回路用絶縁変圧器を介して絶縁して供給する駆動電源回路と、
該駆動電源回路に駆動用の電力を絶縁して供給する制御電源用絶縁変圧器を備え、
前記駆動電源回路の共通電位点を横流抑制抵抗を介して主回路母線に接続したことを特徴とする電力変換装置。
A main circuit bus having a positive bus, a negative bus, and an intermediate potential bus, and power that is connected to the main circuit bus and supplied between the main circuit buses is converted into AC power and output to an AC output terminal In a power conversion device comprising a conversion circuit,
The power conversion circuit includes:
A positive power conversion element connected between the positive electrode bus and the AC output terminal; and a negative power conversion element connected between the AC output terminal and the negative electrode bus;
A drive circuit comprising a positive electrode side drive circuit for driving the positive electrode side power conversion element on and off, and a negative electrode side drive circuit for driving the negative electrode side power conversion element on and off;
A drive power supply circuit that supplies drive power to each of the positive electrode side drive circuit and the negative electrode side drive circuit through an insulation transformer for drive circuit;
An insulation transformer for a control power supply that insulates and supplies power for driving to the drive power supply circuit;
A power conversion device, wherein a common potential point of the drive power supply circuit is connected to a main circuit bus via a cross current suppression resistor .
正極母線、負極母線、および中間電位母線を備えた主回路母線と、該主回路母線に接続されて主回路母線間に供給される直流電力を交流電力に変換して交流出力端子に出力する電力変換回路とを備えた電力変換装置において、
前記電力変換回路は、
前記正極母線と交流出力端子間に接続した正極側電力変換素子、および前記交流出力端子と前記負極母線間に接続された負極側電力変換素子と、
前記正極側電力変換素子をオンオフ駆動する正極側駆動回路および前記負極側電力変換素子をオンオフ駆動する負極側駆動回路とを備えた駆動回路と、
前記正極側駆動回路および負極側駆動回路のそれぞれに駆動用の電力を駆動回路用絶縁変圧器を介して絶縁して供給する駆動電源回路と、
該駆動電源回路に駆動用の電力を絶縁して供給する制御電源用絶縁変圧器を備え、
前記駆動電源回路の共通電位点を横流抑制抵抗を介して中間電位母線に接続したことを特徴とする電力変換装置。
A main circuit bus having a positive bus, a negative bus, and an intermediate potential bus, and power that is connected to the main circuit bus and supplied between the main circuit buses is converted into AC power and output to an AC output terminal In a power conversion device comprising a conversion circuit,
The power conversion circuit includes:
A positive power conversion element connected between the positive electrode bus and the AC output terminal; and a negative power conversion element connected between the AC output terminal and the negative electrode bus;
A drive circuit comprising a positive electrode side drive circuit for driving the positive electrode side power conversion element on and off, and a negative electrode side drive circuit for driving the negative electrode side power conversion element on and off;
A drive power supply circuit that supplies drive power to each of the positive electrode side drive circuit and the negative electrode side drive circuit through an insulation transformer for drive circuit;
An insulation transformer for a control power supply that insulates and supplies power for driving to the drive power supply circuit;
A power conversion device, wherein a common potential point of the drive power supply circuit is connected to an intermediate potential bus through a cross current suppressing resistor .
JP2007188402A 2007-07-19 2007-07-19 Power converter Active JP4574651B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007188402A JP4574651B2 (en) 2007-07-19 2007-07-19 Power converter
KR1020080069985A KR20090009156A (en) 2007-07-19 2008-07-18 Power conversion device
CN2008101316576A CN101350567B (en) 2007-07-19 2008-07-21 Power conversion apparatus
KR1020110041693A KR20110051175A (en) 2007-07-19 2011-05-02 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188402A JP4574651B2 (en) 2007-07-19 2007-07-19 Power converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010155834A Division JP5318040B2 (en) 2010-07-08 2010-07-08 Power converter

Publications (2)

Publication Number Publication Date
JP2009027832A JP2009027832A (en) 2009-02-05
JP4574651B2 true JP4574651B2 (en) 2010-11-04

Family

ID=40269201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188402A Active JP4574651B2 (en) 2007-07-19 2007-07-19 Power converter

Country Status (3)

Country Link
JP (1) JP4574651B2 (en)
KR (2) KR20090009156A (en)
CN (1) CN101350567B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268680A (en) * 2010-07-08 2010-11-25 Hitachi Ltd Power conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018126235B4 (en) * 2018-10-22 2020-06-04 Sma Solar Technology Ag Process for measuring insulation resistance in inverters with multi-point topology and inverters with multi-point topology

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032574A (en) * 1983-08-01 1985-02-19 Hitachi Ltd Inverter device
JPH0837775A (en) * 1994-07-22 1996-02-06 Toshiba Corp Power conversion apparatus
JPH08172772A (en) * 1994-12-19 1996-07-02 Fanuc Ltd Transistor driving floating power supply
JP2002354840A (en) * 2001-05-23 2002-12-06 Toshiba Corp Power converter
JP2004088858A (en) * 2002-08-26 2004-03-18 Mitsubishi Electric Corp Power conversion device
JP2006081232A (en) * 2004-09-07 2006-03-23 Fuji Electric Holdings Co Ltd Power supply system for gate driving unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2798410Y (en) * 2005-05-13 2006-07-19 浙江工业大学 Combined switch electric source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032574A (en) * 1983-08-01 1985-02-19 Hitachi Ltd Inverter device
JPH0837775A (en) * 1994-07-22 1996-02-06 Toshiba Corp Power conversion apparatus
JPH08172772A (en) * 1994-12-19 1996-07-02 Fanuc Ltd Transistor driving floating power supply
JP2002354840A (en) * 2001-05-23 2002-12-06 Toshiba Corp Power converter
JP2004088858A (en) * 2002-08-26 2004-03-18 Mitsubishi Electric Corp Power conversion device
JP2006081232A (en) * 2004-09-07 2006-03-23 Fuji Electric Holdings Co Ltd Power supply system for gate driving unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268680A (en) * 2010-07-08 2010-11-25 Hitachi Ltd Power conversion device

Also Published As

Publication number Publication date
CN101350567B (en) 2012-05-30
KR20090009156A (en) 2009-01-22
CN101350567A (en) 2009-01-21
KR20110051175A (en) 2011-05-17
JP2009027832A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP6951222B2 (en) Power converter and power conversion system
JP3361047B2 (en) Power supply for vehicles
JP4695138B2 (en) Low harmonic multiphase converter circuit
US9621094B2 (en) Method and apparatus for reducing radiated emissions in switching power converters
US20090225570A1 (en) Twelve-pulse HVDC Transmission
JP2011120440A (en) Power conversion apparatus
US10270366B2 (en) Device and method for generating a negative voltage for a high side switch in an inverter
CN115836469A (en) Power conversion device and power system
JP2009273355A (en) Apparatus for transmitting electric power
KR20160040378A (en) Dab convertor with multi-phase structure
JP4574651B2 (en) Power converter
JPWO2002082627A1 (en) Power converter
JP6928013B2 (en) Power supply
Lin et al. Design and Testing of a 13.8 kV/1.1 MVA 3-Phase 5-Level Flying Capacitor Converter with 10 kV SiC MOSFETs
JP5318040B2 (en) Power converter
JP5465023B2 (en) Power converter
JP4352787B2 (en) Power converter
JP3454345B2 (en) Inverter device
JP2005522974A (en) Equipment for inductive transmission of electric power
JP5342254B2 (en) Power converter
JPH03215140A (en) Insulation of ac power supply, switching power supply and insulation in switching power supply
US11095246B1 (en) Redundant electric motor drive
JP2001128467A (en) Power conversion device
JP2003324972A (en) Insulating structure of power conversion device
WO2023021933A1 (en) Power converter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100330

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4574651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3