JP4572028B2 - Steel-concrete composite truss joint structure and steel-concrete composite truss erection method - Google Patents

Steel-concrete composite truss joint structure and steel-concrete composite truss erection method Download PDF

Info

Publication number
JP4572028B2
JP4572028B2 JP2000314992A JP2000314992A JP4572028B2 JP 4572028 B2 JP4572028 B2 JP 4572028B2 JP 2000314992 A JP2000314992 A JP 2000314992A JP 2000314992 A JP2000314992 A JP 2000314992A JP 4572028 B2 JP4572028 B2 JP 4572028B2
Authority
JP
Japan
Prior art keywords
steel
concrete
concrete composite
diagonal
truss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000314992A
Other languages
Japanese (ja)
Other versions
JP2002121822A (en
Inventor
宗弘 大主
Original Assignee
株式会社ピーエス三菱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ピーエス三菱 filed Critical 株式会社ピーエス三菱
Priority to JP2000314992A priority Critical patent/JP4572028B2/en
Publication of JP2002121822A publication Critical patent/JP2002121822A/en
Application granted granted Critical
Publication of JP4572028B2 publication Critical patent/JP4572028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート上下弦材と鋼斜材とから成る鋼コンクリート複合トラスの接合部構造及び鋼コンクリート複合トラスの架設方法に関する。
【0002】
【従来の技術】
コンクリート製上下弦材(例えばコンクリートスラブ)を互いに連結する部分(ウエブなど)を鋼材を用いて結合して形成した鋼コンクリート複合桁は、軽量で強度の大きい鋼材を上下弦材の連結に用いるので経済性に富み、すぐれた構造物となる。このような鋼コンクリート複合構造物としては、ウエブを波形鋼板その他の鋼材で連結する複合構造の他、長大な橋梁等ではコンクリート上下床版を鋼管斜材で連結する鋼コンクリート複合トラスの方が波形ウエブより経済的な構造であると考えられている。
【0003】
このような鋼コンクリート複合トラス構造物においては、コンクリート部材と鋼部材との接合部で力を円滑に伝達するとともに、大きな局部的応力の発生を抑え、構造上の弱点とならないようにしなければならない。鋼コンクリート複合トラス構造物では鋼製の斜材のそれぞれを直接コンクリートの上床版又は下床版と接合する構造を採用するのが望ましい。例えば、図10に示す従前の接合構造は、斜材である鋼部材101の端部に、この部材の軸線とほぼ直角に鋼板102を溶接し、この鋼板から複数のスタッドジベル103を立設する。そして、このスタッドジベル103を埋込むようにコンクリートを打設して鋼部材101と一体に接合されたコンクリート部材104を形成するものである。また、図11に示す接合構造は、図10に示す例と同様に鋼部材111の端部に鋼板112を溶接接合し、この鋼板112に穿設されたねじ孔にPC鋼棒又は棒鋼等の棒状鋼材113を螺合する。そして、このPC鋼棒又は棒鋼をコンクリート内に埋込むことによってコンクリート部材114と鋼部材111とを一体化するものである。
【0004】
図10に示すような構造では、鋼部材101に作用する力は、端部の鋼板102及びこれに溶接接合されたスタッドジベル103を介してコンクリート部材104に伝達される。このため、鋼部材101と鋼板102との溶接部及び鋼板102とスタッドジベル103との溶接部は十分な強度及び信頼性が要求され、溶接工程の管理及び検査を厳重に行なう必要がある。また、溶接接合されるスタッドジベル103には高強度の鋼材を用いることが難しく、必要なスタッドジベルの数が多くなって配置が困難となる場合が生じる。さらに、鋼コンクリート複合トラス橋等ではコンクリート部材と鋼部材との接合部に繰り返し変動する力が作用することになり、鋼部材101と鋼板102との溶接接合部およびスタッドジベル103の基部が疲労破壊を起こす問題がある。
【0005】
図11に示すような構造では、棒状鋼材113としてPC鋼棒等の高強度鋼を用いることができ、棒状鋼材113の本数を低減して接合部の構造を簡単なものにすることができるが、棒状鋼材113に螺条が設けられており、コンクリート部材114と鋼部材111との接合部に大きな軸力又は曲げモーメントが繰り返し作用すると、螺条が設けられている部分で棒状鋼材113に疲労破壊が生じるおそれがある。また、図10に示す構造と同様に、鋼部材111と鋼板112との溶接接合部に疲労破壊が生じるおそれもある。
【0006】
これに対して図6に示すように、斜材131の端部にジベル132を設け、上下弦部材134に突出部135を形成してこの突出部135中に斜材131の端部を埋め込む技術がある。この技術では、突出部135が大きくなり好ましくない。図7に示す技術は、斜材141の端部にガセットプレート143を取付け、このガセットプレート143に多数のジベル145を設け、このジベル145を上下弦材144中に埋め込む形式である。この技術もまた図6と同様の問題がある。
【0007】
さらに、改善された技術として図8に示すような技術が特開2000−17731に開示されている。この技術は鋼管部材151の端部から鋼管部材151の内部に棒状鋼材152の一部が差し入れられ、鋼管部材151の棒状鋼材152が差し入れられた部分の内面に突起が形成されており、この鋼管部材151の端部付近の内側に、棒状鋼材152を包み込み、硬化して棒状鋼材152及び鋼管部材151と付着する充填材が充填され、鋼管部材151の端部が、コンクリートに突き当てられるようにコンクリート部材154が形成され、棒状鋼材152の鋼管部材151端から突き出した部分がコンクリート部材154内に埋込まれているコンクリート部材154と鋼管部材151との接合構造である。
【0008】
この技術は充填材153から棒状鋼材152周面の広い範囲に分布して作用する付着力によって力が伝達され、棒状鋼材152に応力の集中が生じることがなく、耐疲労性が向上する。また、鋼管部材151の内面に設けられた複数の突起により鋼管部材151と充填材153との間の付着性は強固なものとなる。一方、充填材153と棒状鋼材152、充填材153と鋼管部材151との付着性が損なわれた場合にも、棒状鋼材152に係止された鋼板材155、鋼管部材151に溶接接合された端部鋼板156によって、充填材153の固結体と棒状鋼材152、又は充填材153の固結体と鋼管部材151との間の相対変位が拘束され、鋼管部材151に作用する引張力は確実に棒状鋼材152に伝達される。このため、接合部分は二重の安全性を有し、信頼性及び耐久性に優れた構造となる。しかし、この技術は構造が複雑で部品が多く、施工が困難であるという問題がある。
【0009】
また別の技術として特許第2971044号公報には図9に示すように上弦材及び下弦材をプレストレストコンクリートで構成し、斜材を鋼材で構成したトラス橋であって、隣接する斜材161、162の各端部を自在継手163を介して連結し、この自在継手163をコンクリート164中に埋設することによって、各斜材161、162と上弦材又は下弦材とを連結するように構成したトラス橋が開示されている。この技術は隣接する斜材161、162のなす角度を自在継手163によって容易に調節することができ、この角度の調節を行ってから、コンクリート164を打つことによって、斜材161、162の端部と、上弦材又は下弦材165とを連結することができる。また、上弦材及び下弦材に対するプレストレス導入は、コンクリートの硬化後に行う。
【0010】
そして、例えば、張出し架設工法によって施工する場合、所定の長さのブロックごとに橋桁を張り出すように施工することになるが、隣接する斜材161、162のなす角度を自在継手163によって容易に調節することができるから、張り出し施工するブロックの位置を常に目標に一致するように修正しながら施工することができる。したがって、精度良く施工することができるとともに、コンクリートの施工管理も、通常の簡単な施工管理ですむという利点がある。また、自在継手163及び斜材161、162の端部がプレストレストコンクリートで圧縮された状態で固定されることになるので、斜材161、162と、上弦材又は下弦材165とを強固に連結することができる。さらに、自在継手163が斜材の端部とともに上弦材又は下弦材165に埋設された状態になるだけであるから、これらの斜材161、162と、上弦材又は下弦材165とを連結する格点構造が大きくなることがない。しかも、斜材を鋼材で構成していることから、重量の低減を図ることができる。さらに、上弦材及び下弦材をプレストレストコンクリートで構成していること、施工管理が簡単なこと、及び重量の低減を図ることができることから、コストの低減を図ることができる。また、重量の低減は、耐震性を向上させる上でも有利であると記載されている。
【0011】
【発明が解決しようとする課題】
鋼コンクリート複合トラス構造は、従来のコンクリート橋に比べて自重の軽減やスパンの長大化が可能であることから、好ましい構造である。この複合トラス構造においては、その接合部がコンクリート床版と鋼斜材を一体化し、かつ断面力を十分に伝達しなければならない構造上重要な部分である。このようなことから、いままで数種類の格点構造が開発されているが、現在のところ決定的なものが無い状態である。
【0012】
上述の図7,図8,図9に示す鋼コンクリート複合トラス用格点構造に関する技術は、従前の鋼コンクリート複合トラス接合部を改善したもので、すぐれた特性を有し、疲労試験や耐荷力試験を行った結果、いずれも強度的には、実用上問題がないことが確認されている(「鋼・コンクリート複合トラス接合部の疲労試験」プレストレストコンクリート技術協会第8回シンポジウム論文集:1998年10月)。しかし、これらの格点構造は外観が問題があるか又は構造が複雑で部品が多く高価であるという問題がある。すなわち、
(1)図7に示す技術については、鋼板とスタッドとを組み合わせる方式は、格点構造がすべて床版外に設置されるため外観的によくないこと
(2)図8に示す技術では、格点を構成する部品数が多く、かつ施工に手間がかかること
(3)図9に示す技術では、高価な金型を使用する鋳物製であるため、斜材角度等が変るごとに新しい金型を製作する必要があり、経済性に疑問があること
等、それぞれ一長一短があり、決定的な構造となっていないのが現状である。
【0013】
本発明の格点構造は、構成部品の種類が少なく、製作、施工が容易であり、今後、本格的に採用される鋼コンクリート複合トラス向けの合理的な格点構造を提供することを目的とする。
【0014】
また、本発明は長スパンの橋体として適切な鋼コンクリート複合トラスを架設する場合に、本発明のトラス接合部構造を有するトラスを、高能率で容易に架設することができる架設方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明は、トラス本来の考え方である、格点をピン構造とし、ガセットプレートとスタッドジベルのみを使用した格点構造を提供する。すなわち、本発明は、鋼コンクリート複合トラスにおいて、斜材を角鋼管とし、引張側の斜材は両端にピン結合部を備え、圧縮側の斜材は両端に上下弦材コンクリート中に埋設される一対のスタッドジベルつきガセットプレートを備え、このガセットプレートに前記ピン結合部に挿入するピンの挿通孔を設けたことを特徴とする鋼コンクリート複合トラスの接合部構造である。
【0016】
本発明方法は、上記本発明に係る鋼コンクリート複合トラスの接合部構造を有するトラスを架設するに当たり、連設する斜材をピン結合し、結合した隣接する斜材相互の中間部を仮連結材で連結して連接する斜材を据え付け姿勢に組み立て、組み立てた斜材を既施工トラスの先方に取り付けて順次張出し架設し、張出し架設した部分に上下弦コンクリートを順次打設してトラスを延長施工することを特徴とする鋼コンクリート複合トラスの架設方法である。すなわち、斜材を既設斜材から先方に2〜3本ピン結合して張出し、各斜材の中間部を伸縮可能な結合材で連結して据付姿勢に保持し、順次コンクリートを打設してトラスを延長する。このことによって、本発明の鋼コンクリート複合トラスの接合部構造を有する鋼コンクリート複合トラスの架設を円滑に行うことができる。
【0017】
なお、短スパンの複合トラスではオフラインで橋体全体を製造し、従来の架設を行うことがもちろんできる。
【0018】
本発明の鋼コンクリート複合トラスの接合部構造及び鋼コンクリート複合トラスの架設方法の特徴は次のとおりである。
【0019】
(a)引張り側の斜材(角型鋼管)は、所定の長さに切断し、ピンを通す孔を明けそのまわりを補強プレートを付けるだけの簡単な構造であり、製作が簡単である。
【0020】
(b)圧縮側の斜材(引張側と同様に角型鋼管を使用)は端部にスタッドジベルを溶植した鋼板を両側に工場溶接で取り付けるだけで製作が完了する構造であり、引張側と同様に製作が容易な構造としている。
【0021】
(c)現場での組立ては、圧縮側の2枚のガセットプレートに引張側の鋼管を差し込んでピンを差し込むだけであり、至って簡単に接合が可能な構造となっている。
【0022】
(d)各斜材からの軸力はガセットプレートに溶植した(溶接により植えるように取付けた)スタッドジベルにより、床版コンクリートに伝達されるが、本構造ではスタッドの部分は完全に床版コンクリートの厚さ内に納まっているため、力の伝達もスムーズであり、従来のものと同等の強度が確保される構造となっている。
【0023】
(e)格点を構成している部品としては、ピン、ガセットプレート、スタッドジベルの3種類であるため、製作が簡単のみならず施工コストも安価で、かつ現場施工が簡単であるので時間的にも工程の短縮に寄与できる画期的な、格点構造であると言える。
【0024】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を説明する。
【0025】
図3は鋼コンクリート複合トラスを模式的に示す側面図、図4はその正面図である。上弦材10、下弦材20は例えばプレストレストコンクリート上床版、下床版であり、これを連結する斜材30、31、41(斜材31は圧縮側の斜材、斜材41は引張り側の斜材を示す)は鋼材例えば角鋼管である。このような鋼コンクリート複合トラスの上下弦材10、20と斜材30、31、41との接合部は格点43である。従来、この格点43の構造は図6〜図11に示すようにジベル、鋼棒、特殊金物などであったが、本発明では図1、図2に示すようにピン結合を用いる。
【0026】
図1は本発明の実施例の格点構造を示すもので、下弦材20との結合部を示している。下弦材20を上弦材10としても同様の構造である。図2は斜材31の正面図である。角鋼管からなる圧縮側の斜材31の端部にはガセットプレート32が取り付けられ、このガセットプレート32には多数のスタッドジベル33が溶植されており、下弦材20のコンクリート中に埋設されガセットプレートと下弦材20は一体化されている。そして引張側の斜材41との結合部にピン孔34が設けられている。ピン42を挿入するピン孔34の部分は補強板36で補強されている。孔35は検査用の孔である。
【0027】
引張側の斜材41は先端部にピン42を挿入するピン孔を備えており、上記圧縮側のピン孔34と一致させてピン42を挿入して斜材31、41を結合する。
【0028】
次に図5を参照して本発明の鋼コンクリート複合トラスの架設方法について説明する。上弦材10、下弦材20、斜材31、41を組立てた既施工鋼コンクリート複合トラス上に張出作業装置60がその先端を前方に張出して固定されている。張出作業装置60は上記梁61から上下弦材(上下床版)10、20を形成するための型枠受台62、足場63を吊下している。張出作業装置60は通常のプレストレストコンクリート橋体の現場打ち施工と同様の作業手順により、上下弦材(上下床版)10、20を築造する。
【0029】
本発明の接合部構造を有する鋼コンクリート複合トラスの施工では、上下弦材(上下床版)10、20の施工に先立ち、連接する斜材31、41を前方に張出して組み立てる。このため張出作業装置60の上記梁61上に斜材を吊下げて先方に搬送するトラス建込用トロリー66を備えている。複数本の斜材31、41はその結合部をピン結合し、かつトラス建込用治具51、52で斜材を据付姿勢で組立て、この結合体をトラス建込用トロリー66で前方に搬送して既施工鋼コンクリート複合トラスの先端に取付ける。トラス建込用治具51、52はターンバックル方式などにより伸縮自在な構造を有し、斜材同士の方向、高さなどの組立姿勢を調節することができる。また斜材31、41には予めこのトラス建込用治具51、52を取付ける取付座を設けてある。斜材31、41を張出した状態で順次上下弦材(上下床版)11、21を施工する。
【0030】
以上を繰返して本発明の接合部構造を有する長スパンの鋼コンクリート複合トラスを容易に施工することができる。
【0031】
【発明の効果】
本発明によれば、鋼コンクリート複合トラスにおいて、格点構造は、構成部品の種類が少なく、製作、施工が容易であり、鋼コンクリート複合トラス向けの合理的な格点構造である。
【図面の簡単な説明】
【図1】本発明の実施例の格点構造を示す図である。
【図2】図2は斜材の正面図である。
【図3】鋼コンクリート複合トラスを模式的に示す側面図である。
【図4】図3の正面図である。
【図5】本発明方法の説明図である。
【図6】従来技術の説明図である。
【図7】従来技術の説明図である。
【図8】従来技術の説明図である。
【図9】従来技術の説明図である。
【図10】従来技術の説明図である。
【図11】従来技術の説明図である。
【符号の説明】
10 上弦材
20 下弦材
11、21 上下弦材(上下床版)
30、31、41 斜材
32 ガセットプレート
33 ジベル
34 ピン孔
35 孔
36 補強板
42 ピン
43 格点
51、52 トラス建込用治具
60 張出作業装置
61 梁
62 型枠受台
63 足場
66 トラス建込用トロリー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joint structure of a steel-concrete composite truss composed of a concrete upper and lower chord material and a steel diagonal material, and a method for installing a steel-concrete composite truss.
[0002]
[Prior art]
A steel-concrete composite girder formed by connecting parts (webs, etc.) that connect concrete upper and lower chords (for example, concrete slabs) to each other using steel, because light and strong steel is used to connect upper and lower chords. It is economical and has an excellent structure. As such a steel-concrete composite structure, in addition to a composite structure in which the web is connected with corrugated steel sheets and other steel materials, a steel-concrete composite truss in which the concrete upper and lower floor slabs are connected with steel pipe diagonals is used for long bridges. It is considered to be a more economical structure than the web.
[0003]
In such a steel-concrete composite truss structure, the force must be transmitted smoothly at the joint between the concrete member and the steel member, and the generation of large local stress must be suppressed so that it does not become a structural weak point. . In the steel-concrete composite truss structure, it is desirable to employ a structure in which each of the steel diagonal members is directly joined to the concrete upper or lower floor slab. For example, in the conventional joining structure shown in FIG. 10, a steel plate 102 is welded to an end portion of a steel member 101 that is an oblique material at a substantially right angle to the axis of this member, and a plurality of stud gibbles 103 are erected from this steel plate. . Then, concrete is placed so as to embed the stud gibber 103 to form a concrete member 104 joined integrally with the steel member 101. Further, in the joining structure shown in FIG. 11, the steel plate 112 is welded to the end of the steel member 111 in the same manner as in the example shown in FIG. 10, and a PC steel rod or a steel bar is inserted into the screw hole drilled in the steel plate 112. The rod-shaped steel material 113 is screwed together. And the concrete member 114 and the steel member 111 are integrated by embedding this PC steel bar or steel bar in concrete.
[0004]
In the structure as shown in FIG. 10, the force acting on the steel member 101 is transmitted to the concrete member 104 through the steel plate 102 at the end and the stud gibel 103 welded to the steel plate 102. For this reason, the welded portion between the steel member 101 and the steel plate 102 and the welded portion between the steel plate 102 and the stud gibber 103 are required to have sufficient strength and reliability, and it is necessary to strictly manage and inspect the welding process. Moreover, it is difficult to use a high-strength steel material for the stud gibber 103 to be welded, and there are cases where the number of necessary stud gibels increases and the arrangement becomes difficult. Furthermore, in a steel-concrete composite truss bridge or the like, a force that repeatedly fluctuates acts on the joint portion between the concrete member and the steel member, and the weld joint portion between the steel member 101 and the steel plate 102 and the base portion of the stud divel 103 are subject to fatigue failure. There is a problem that causes.
[0005]
In the structure shown in FIG. 11, high strength steel such as a PC steel bar can be used as the rod-shaped steel material 113, and the number of the rod-shaped steel materials 113 can be reduced to simplify the structure of the joint portion. When the rod-shaped steel material 113 is provided with a thread, and a large axial force or bending moment is repeatedly applied to the joint portion between the concrete member 114 and the steel member 111, the rod-shaped steel material 113 is fatigued at the portion where the thread is provided. There is a risk of destruction. Further, similarly to the structure shown in FIG. 10, there is a possibility that fatigue failure may occur at the welded joint between the steel member 111 and the steel plate 112.
[0006]
On the other hand, as shown in FIG. 6, a technique is provided in which a bevel 132 is provided at the end of the diagonal member 131, a protrusion 135 is formed on the upper and lower chord members 134, and the end of the diagonal 131 is embedded in the protrusion 135 There is. This technique is not preferable because the protrusion 135 becomes large. The technique shown in FIG. 7 is a type in which a gusset plate 143 is attached to the end portion of the diagonal member 141, a large number of dowels 145 are provided on the gusset plate 143, and the dowels 145 are embedded in the upper and lower chord members 144. This technique also has the same problem as in FIG.
[0007]
Further, as an improved technique, a technique as shown in FIG. 8 is disclosed in Japanese Patent Laid-Open No. 2000-17731. In this technique, a part of the rod-shaped steel material 152 is inserted into the steel tube member 151 from the end of the steel tube member 151, and a protrusion is formed on the inner surface of the portion of the steel tube member 151 where the rod-shaped steel material 152 is inserted. The inside of the vicinity of the end portion of the member 151 wraps the rod-shaped steel material 152 and is filled with a filler that hardens and adheres to the rod-shaped steel material 152 and the steel pipe member 151 so that the end portion of the steel pipe member 151 is abutted against the concrete. A concrete member 154 is formed, and the portion protruding from the end of the steel pipe member 151 of the rod-shaped steel material 152 is a joint structure between the concrete member 154 and the steel pipe member 151 embedded in the concrete member 154.
[0008]
In this technique, force is transmitted from the filler 153 by the adhesive force distributed and acting over a wide range of the circumferential surface of the rod-shaped steel material 152, stress concentration does not occur in the rod-shaped steel material 152, and fatigue resistance is improved. Moreover, the adhesiveness between the steel pipe member 151 and the filler 153 is strengthened by the plurality of protrusions provided on the inner surface of the steel pipe member 151. On the other hand, even when the adhesiveness between the filler 153 and the rod-shaped steel 152 and the filler 153 and the steel pipe member 151 is impaired, the steel plate material 155 locked to the rod-shaped steel 152 and the end welded to the steel pipe member 151 are joined. The relative displacement between the consolidated body of the filler 153 and the rod-shaped steel material 152, or the consolidated body of the filler 153 and the steel pipe member 151 is restrained by the partial steel plate 156, and the tensile force acting on the steel pipe member 151 is ensured. It is transmitted to the rod-shaped steel material 152. For this reason, the joining portion has double safety, and has a structure excellent in reliability and durability. However, this technique has a problem that the structure is complicated, there are many parts, and construction is difficult.
[0009]
As another technique, Japanese Patent No. 2971044 discloses a truss bridge in which the upper chord material and the lower chord material are made of prestressed concrete and the diagonal material is made of steel as shown in FIG. Are connected to each other through a universal joint 163, and the universal joint 163 is embedded in the concrete 164 so that the diagonal members 161 and 162 are connected to the upper chord member or the lower chord member. Is disclosed. In this technique, the angle formed by the adjacent diagonal members 161 and 162 can be easily adjusted by the universal joint 163, and the end of the diagonal members 161 and 162 can be obtained by hitting the concrete 164 after adjusting the angle. And the upper chord member or the lower chord member 165 can be connected. Moreover, the prestress is introduced into the upper chord material and the lower chord material after the concrete is hardened.
[0010]
For example, in the case of construction by the overhanging construction method, construction is performed so that a bridge girder is projected for each block of a predetermined length, but the angle formed by the adjacent diagonal members 161 and 162 can be easily set by the universal joint 163. Since it can be adjusted, it can be applied while correcting the position of the overhanging block so that it always matches the target. Therefore, there is an advantage that the construction can be performed with high accuracy, and the concrete construction management can be performed by a normal simple construction management. In addition, since the end portions of the universal joint 163 and the diagonal members 161 and 162 are fixed in a state compressed with prestressed concrete, the diagonal members 161 and 162 and the upper chord member or the lower chord member 165 are firmly connected. be able to. Further, since the universal joint 163 is only embedded in the upper chord member or the lower chord member 165 together with the end portion of the oblique member, the case where the oblique members 161 and 162 are connected to the upper chord member or the lower chord member 165 is connected. The point structure does not become large. Moreover, since the diagonal material is made of steel, the weight can be reduced. Furthermore, since the upper chord material and the lower chord material are made of prestressed concrete, the construction management is simple, and the weight can be reduced, the cost can be reduced. Moreover, it is described that the reduction in weight is advantageous in improving the earthquake resistance.
[0011]
[Problems to be solved by the invention]
The steel-concrete composite truss structure is a preferable structure because it can reduce its own weight and lengthen the span as compared with a conventional concrete bridge. In this composite truss structure, the joint is an important part in the structure where the concrete floor slab and steel diagonal are integrated and the cross-sectional force must be sufficiently transmitted. For this reason, several types of grading structures have been developed so far, but there is currently no definitive state.
[0012]
The technology related to the steel-concrete composite truss structure shown in FIGS. 7, 8, and 9 is an improvement on the conventional steel-concrete composite truss joint, which has excellent characteristics, fatigue testing and load bearing capacity. As a result of the tests, it has been confirmed that there is no practical problem in terms of strength ("Fatigue test of steel-concrete composite truss joint" Prestressed Concrete Technology Association 8th Symposium Proceedings: 1998 October). However, these scoring structures have a problem in appearance or are complicated in structure and have many parts and are expensive. That is,
(1) Regarding the technique shown in FIG. 7, the method of combining the steel plate and the stud is not good in appearance because all the graded structures are installed outside the floor slab. (2) In the technique shown in FIG. (3) The technology shown in FIG. 9 is made of a casting that uses an expensive mold, so a new mold is used each time the diagonal angle changes. The current situation is that the structure is not decisive and each has its advantages and disadvantages.
[0013]
The grading structure of the present invention has few types of components, is easy to manufacture and construct, and aims to provide a rational grading structure for a steel-concrete composite truss that will be adopted in earnest in the future. To do.
[0014]
The present invention also provides an erection method capable of easily and efficiently constructing a truss having a truss joint structure according to the present invention when an appropriate steel-concrete composite truss is constructed as a long span bridge body. For the purpose.
[0015]
[Means for Solving the Problems]
The present invention provides a grading structure that uses a gusset plate and a stud gibel only, which is the original concept of a truss, with a grading point as a pin structure. That is, according to the present invention, in the steel-concrete composite truss, the diagonal member is a square steel pipe, the tensile member is provided with pin coupling portions at both ends, and the compression member is embedded in the upper and lower chord material concrete at both ends. A steel-concrete composite truss joint structure comprising a pair of stud gusseted gusset plates and a pin insertion hole for insertion into the pin coupling portion.
[0016]
In constructing a truss having a steel-concrete composite truss joint structure according to the present invention, the method of the present invention is configured to pin-connect diagonal members to be connected, and to connect intermediate portions between the adjacent diagonal members temporarily connected to each other. Assemble the diagonal members that are connected and connected to each other in the installation posture, attach the assembled diagonal members to the end of the existing truss, and overhang and install the upper and lower chord concrete sequentially on the overhanging part to extend the truss It is the construction method of the steel concrete composite truss characterized by doing. In other words, two to three pins are connected to the diagonal from the existing diagonal, and the middle part of each diagonal is connected with an extendable binder to hold it in place, and concrete is placed in sequence. Extend the truss. Thus, the steel-concrete composite truss having the joint structure of the steel-concrete composite truss of the present invention can be installed smoothly.
[0017]
Of course, with a short-span composite truss, the entire bridge body can be manufactured off-line and installed in a conventional manner.
[0018]
The features of the joint structure of the steel-concrete composite truss and the construction method of the steel-concrete composite truss of the present invention are as follows.
[0019]
(A) The diagonal member (square steel pipe) on the pulling side has a simple structure in which a pin is cut to a predetermined length, a hole through which a pin is passed, and a reinforcing plate is attached around the hole.
[0020]
(B) Diagonal material on the compression side (using a square steel pipe as in the tension side) is a structure that can be completed by simply attaching the steel plate with the stud gibber on the end to both sides by factory welding. The structure is easy to manufacture.
[0021]
(C) Assembling in the field has a structure that allows easy joining by simply inserting the steel pipe on the tension side into the two gusset plates on the compression side and inserting the pins.
[0022]
(D) The axial force from each diagonal member is transmitted to the floor slab concrete by the stud gibber (installed so as to be planted by welding) on the gusset plate, but in this structure, the stud part is completely the floor slab. Since it is within the thickness of the concrete, the transmission of force is smooth, and the structure has the same strength as the conventional one.
[0023]
(E) Since there are three types of parts that make up the rating: pins, gusset plates, and stud gibbels, it is not only easy to manufacture but also low in construction costs and simple on-site construction. Moreover, it can be said that it is an epoch-making grading structure that can contribute to shortening of the process.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0025]
FIG. 3 is a side view schematically showing a steel-concrete composite truss, and FIG. 4 is a front view thereof. The upper chord member 10 and the lower chord member 20 are, for example, prestressed concrete upper and lower floor slabs, and diagonal members 30, 31, and 41 (the diagonal member 31 is a compression-side diagonal member and the diagonal member 41 is a tensile-side diagonal member). Is a steel material such as a square steel pipe. The joint portion between the upper and lower chord members 10, 20 and the diagonal members 30, 31, 41 of such a steel-concrete composite truss is a rating 43. Conventionally, the structure of the rating point 43 is a gibber, a steel bar, a special hardware or the like as shown in FIGS. 6 to 11, but in the present invention, a pin connection is used as shown in FIGS.
[0026]
FIG. 1 shows a scoring structure according to an embodiment of the present invention, and shows a connecting portion with a lower chord member 20. The lower chord material 20 is the same as the upper chord material 10. FIG. 2 is a front view of the diagonal member 31. A gusset plate 32 is attached to the end of the diagonal member 31 on the compression side made of a square steel pipe, and a large number of stud gibbles 33 are welded to the gusset plate 32 and are embedded in the concrete of the lower chord member 20 to be gusseted. The plate and the lower chord material 20 are integrated. And the pin hole 34 is provided in the connection part with the diagonal material 41 of the tension | pulling side. A portion of the pin hole 34 into which the pin 42 is inserted is reinforced by a reinforcing plate 36. The hole 35 is an inspection hole.
[0027]
The diagonal member 41 on the tension side is provided with a pin hole for inserting a pin 42 at the tip, and the diagonal member 31, 41 is joined by inserting the pin 42 so as to coincide with the pin hole 34 on the compression side.
[0028]
Next, with reference to FIG. 5, the construction method of the steel concrete composite truss of this invention is demonstrated. An overhanging work device 60 is fixed on an already-worked steel-concrete composite truss in which the upper chord member 10, the lower chord member 20, and the diagonal members 31 and 41 are assembled, with its tip projecting forward. The overhanging work device 60 suspends a frame receiving base 62 and a scaffold 63 for forming upper and lower chord members (upper and lower floor slabs) 10 and 20 from the beam 61. The overhanging work device 60 builds the upper and lower chord members (upper and lower floor slabs) 10 and 20 by the same work procedure as that of a conventional prestressed concrete bridge cast-in-place.
[0029]
In the construction of the steel-concrete composite truss having the joint structure according to the present invention, prior to the construction of the upper and lower chord members (upper and lower floor slabs) 10 and 20, the connecting diagonal members 31 and 41 are projected forward and assembled. For this reason, a truss erection trolley 66 is provided that suspends diagonal material on the beam 61 of the overhanging work device 60 and conveys it diagonally. A plurality of diagonal members 31, 41 are pin-bonded at their joints, and the diagonal members are assembled in the installation posture by the truss erection jigs 51, 52, and this combination is conveyed forward by the truss erection trolley 66. And attach it to the tip of the existing steel-concrete composite truss. The truss erection jigs 51 and 52 have a structure that can be expanded and contracted by a turnbuckle method or the like, and can adjust the assembly posture such as the direction and height of the diagonal members. The diagonal members 31, 41 are provided with mounting seats for attaching the truss erection jigs 51, 52 in advance. The upper and lower chord members (upper and lower floor slabs) 11 and 21 are sequentially constructed in a state where the diagonal members 31 and 41 are overhanging.
[0030]
By repeating the above, a long-span steel-concrete composite truss having the joint structure of the present invention can be easily constructed.
[0031]
【The invention's effect】
According to the present invention, in the steel-concrete composite truss, the grade structure is a reasonable grade structure for a steel-concrete composite truss, since the number of types of components is small, and manufacturing and construction are easy.
[Brief description of the drawings]
FIG. 1 is a diagram showing a scoring structure according to an embodiment of the present invention.
FIG. 2 is a front view of a diagonal member.
FIG. 3 is a side view schematically showing a steel-concrete composite truss.
4 is a front view of FIG. 3;
FIG. 5 is an explanatory diagram of the method of the present invention.
FIG. 6 is an explanatory diagram of a conventional technique.
FIG. 7 is an explanatory diagram of a conventional technique.
FIG. 8 is an explanatory diagram of the prior art.
FIG. 9 is an explanatory diagram of a prior art.
FIG. 10 is an explanatory diagram of the prior art.
FIG. 11 is an explanatory diagram of a conventional technique.
[Explanation of symbols]
10 Upper chord material 20 Lower chord material 11, 21 Upper and lower chord materials (upper and lower floor slabs)
30, 31, 41 Diagonal material 32 Gusset plate 33 Givel 34 Pin hole 35 Hole 36 Reinforcement plate 42 Pin 43 Rating point 51, 52 Truss installation jig 60 Overhang work device 61 Beam 62 Formwork base 63 Scaffolding 66 Truss Trolley with shelf

Claims (2)

鋼コンクリート複合トラスにおいて、斜材を角鋼管とし、引張側の斜材は両端にピン結合部を備え、圧縮側の斜材は両端に上下弦材コンクリート中に埋設される一対のスタッドジベルつきガセットプレートを備え、該ガセットプレートに前記ピン結合部に挿入するピンの挿通孔を設けたことを特徴とする鋼コンクリート複合トラスの接合部構造。In a steel-concrete composite truss, the diagonal material is a square steel pipe, the diagonal material on the tension side has pin joints on both ends, and the diagonal material on the compression side is a pair of gussets with studs that are embedded in the upper and lower chord material concrete. A steel-concrete composite truss joint structure, comprising a plate, wherein the gusset plate is provided with a pin insertion hole to be inserted into the pin coupling portion. 請求項1記載の鋼コンクリート複合トラスの接合部構造を有するトラスの架設に当たり、連設する斜材をピン結合し、結合した隣接斜材相互の中間部を仮連結材で連結して連接する斜材を据え付け姿勢に組み立て、組み立てた斜材を既施工トラスの先方に取り付けて順次張出し架設し、張出し架設した部分に上下弦コンクリートを順次打設してトラスを延長施工することを特徴とする鋼コンクリート複合トラスの架設方法。In constructing a truss having a steel-concrete composite truss joint structure according to claim 1, the diagonal members to be connected are connected by pins, and the intermediate portions of the adjacent adjacent diagonal members are connected by a temporary connecting material. The steel is characterized by assembling the materials in the installation posture, attaching the assembled diagonal members to the end of the existing truss, and overhanging them in sequence, and then extending the truss by placing the upper and lower chord concrete sequentially on the overhanging parts. Construction method of concrete composite truss.
JP2000314992A 2000-10-16 2000-10-16 Steel-concrete composite truss joint structure and steel-concrete composite truss erection method Expired - Fee Related JP4572028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000314992A JP4572028B2 (en) 2000-10-16 2000-10-16 Steel-concrete composite truss joint structure and steel-concrete composite truss erection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000314992A JP4572028B2 (en) 2000-10-16 2000-10-16 Steel-concrete composite truss joint structure and steel-concrete composite truss erection method

Publications (2)

Publication Number Publication Date
JP2002121822A JP2002121822A (en) 2002-04-26
JP4572028B2 true JP4572028B2 (en) 2010-10-27

Family

ID=18794161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000314992A Expired - Fee Related JP4572028B2 (en) 2000-10-16 2000-10-16 Steel-concrete composite truss joint structure and steel-concrete composite truss erection method

Country Status (1)

Country Link
JP (1) JP4572028B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776829A (en) * 2012-08-16 2012-11-14 安徽省交通规划设计研究院有限公司 Steel pipe concrete combined truss bridge
CN111119051A (en) * 2019-12-24 2020-05-08 江苏中铁山桥重工有限公司 Novel penetrating type chord structure

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814246B1 (en) 2007-02-27 2008-03-17 현대건설주식회사 Composite girder having connection structure of inclined members in composite girder with steel truss web using embedded perfobond and such connection structure
KR101211691B1 (en) 2011-03-07 2012-12-12 지에스건설 주식회사 Hybrd-structure beam using gusset connection plate
CN102839606A (en) * 2012-04-26 2012-12-26 中国十七冶集团有限公司 Method for pouring concrete in steel tube of steel truss-web box girder
CN106835950A (en) * 2017-03-27 2017-06-13 中铁二院工程集团有限责任公司 Concrete-filled steel tube arch arch rib truss H type web member all welded type coupling configurations
CN111151878B (en) * 2020-03-18 2021-11-12 浙江双森金属科技股份有限公司 Square tube welding equipment
CN111305032A (en) * 2020-03-18 2020-06-19 中铁二院工程集团有限责任公司 Lower chord curve becomes steel purlin continuous beam support node
CN113718624B (en) * 2021-09-18 2023-06-30 中交第二公路勘察设计研究院有限公司 Combined truss node structure, bridge and construction method
CN113802451B (en) * 2021-09-18 2023-04-25 中交第二公路勘察设计研究院有限公司 Steel-concrete combined node structure and construction method
CN114482404B (en) * 2022-03-21 2023-01-10 北京华清安地建筑设计有限公司 Combined roof truss structure of steel ladle low-strength concrete and steel pull rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140525A (en) * 1996-11-07 1998-05-26 Sumitomo Constr Co Ltd Bridge girder
JPH11222816A (en) * 1998-02-05 1999-08-17 Sumitomo Constr Co Ltd Connection method and structure of concrete member and steel pipe member, and composite truss bridge of concrete-steel
JP2000170264A (en) * 1998-12-08 2000-06-20 Kajima Corp Panel point structure of steel-concrete composite structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140525A (en) * 1996-11-07 1998-05-26 Sumitomo Constr Co Ltd Bridge girder
JPH11222816A (en) * 1998-02-05 1999-08-17 Sumitomo Constr Co Ltd Connection method and structure of concrete member and steel pipe member, and composite truss bridge of concrete-steel
JP2000170264A (en) * 1998-12-08 2000-06-20 Kajima Corp Panel point structure of steel-concrete composite structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776829A (en) * 2012-08-16 2012-11-14 安徽省交通规划设计研究院有限公司 Steel pipe concrete combined truss bridge
CN111119051A (en) * 2019-12-24 2020-05-08 江苏中铁山桥重工有限公司 Novel penetrating type chord structure

Also Published As

Publication number Publication date
JP2002121822A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
JP4572028B2 (en) Steel-concrete composite truss joint structure and steel-concrete composite truss erection method
KR101913069B1 (en) Prestressed Steel-Concrete Composite Girder and Method for Fabricating thereof
JP2002188120A (en) Joining structure of corrugated steel plate web beam
JP5661011B2 (en) Manufacturing method of superstructure for bridge, bridge and superstructure for bridge
JP3410368B2 (en) Connection method of corrugated steel web girder
KR101874755B1 (en) Prestressed Steel-Concrete Composite Girder and Method for Fabricating thereof
JP3866194B2 (en) Grade structure of steel truss web PC bridge
JP2006188864A (en) Joint structure of column and beam
JP2750556B2 (en) Manufacturing method of prestressed concrete girder
CN110029729B (en) Splicing joint of prefabricated reinforced concrete main beam and secondary beam and construction method
JP2000355906A (en) Connecting section structure of corrugated steel plate and concrete floor slab in corrugated steel-plate web pc box girder bridge
JP2004285823A (en) Floor slab bridge and floor slab unit
KR101583401B1 (en) The continuous hybrid girder consist of concrete block and steel block which is can add prestress by gap difference between top and bottom of connection face of blocks
WO2016001997A1 (en) Bridge construction method and bridge structure
JP3997876B2 (en) Construction method of composite floor slab
JP2007077628A (en) Joint structure of joint and its construction method
JP3251890B2 (en) Joint structure of steel pipe members in steel pipe truss
JP4154099B2 (en) Joint structure of steel pipe member and concrete member
JP3290636B2 (en) Joint structure between steel column base and foundation concrete
JP3948809B2 (en) Joining structure and joining method between concrete member and steel pipe member, and concrete / steel composite truss bridge
KR100442704B1 (en) Method and structure for reinforcement of ferroconcrete construction by using of exterior tension member
JP3538233B2 (en) Joint structure between steel beam and reinforced concrete beam
JP3870871B2 (en) Reinforcement structure of frame
JP2000336769A (en) Truss structural body and construction method therefor
JPH08253912A (en) Bride structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4572028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees