JP4571783B2 - Antimicrobial agent - Google Patents

Antimicrobial agent Download PDF

Info

Publication number
JP4571783B2
JP4571783B2 JP2003108690A JP2003108690A JP4571783B2 JP 4571783 B2 JP4571783 B2 JP 4571783B2 JP 2003108690 A JP2003108690 A JP 2003108690A JP 2003108690 A JP2003108690 A JP 2003108690A JP 4571783 B2 JP4571783 B2 JP 4571783B2
Authority
JP
Japan
Prior art keywords
acid
product
sugar
gallic acid
transfer product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003108690A
Other languages
Japanese (ja)
Other versions
JP2004315386A5 (en
JP2004315386A (en
Inventor
恵温 福田
Original Assignee
林原 健
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林原 健 filed Critical 林原 健
Priority to JP2003108690A priority Critical patent/JP4571783B2/en
Publication of JP2004315386A publication Critical patent/JP2004315386A/en
Publication of JP2004315386A5 publication Critical patent/JP2004315386A5/ja
Application granted granted Critical
Publication of JP4571783B2 publication Critical patent/JP4571783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

【0001】
【発明の属する技術分野】
本発明は抗微生物剤に関し、より詳細には、ヒドロキシ安息香酸の糖転移物、ヒドロキシケイ皮酸の糖転移物、及びそれらの誘導体、並びにそれらの塩から選ばれる1種又は2種以上を、有効成分として含有してなる抗微生物剤に関するものである。
【0002】
【従来の技術】
近年、清潔な生活環境が求められるようになり、抗微生物剤は、医薬品用途以外にも、食品、衣服、化粧品、日用品、建材などの多くの物品に使用されている。しかしながら、抗微生物剤は、金属化合物や有機化合物を有効成分としており、それらの多くが環境及び人体に有害な物質である危険性を秘めている。例えば、ヘキサクロロフェン、ビチオノールなどのハロゲン化フェノール類、ハロゲン化サリチルアニリド、ホウ酸、過酸化水素水、水銀化合物、ホルムアルデヒドなどは、皮膚、呼吸器などへの感作性が強いことから、現在では使用が禁止されている。特に、ホルムアルデヒドは、建材に多量に含まれ、シックハウス症候群の原因物質としてよく知られている。また、医薬品として利用される抗生物質は、大腸における有用な菌叢を破壊したり、耐性菌が発生する危険性がある。
【0003】
安全性の高い抗微生物剤が求められる現在、植物の抽出物又はそれに含まれている成分は安全性が高いという観点から、食品や食品添加物用の抗微生物剤に利用されつつある。例えば、ヒノキチオール、孟宗竹抽出物、緑茶抽出物、藍抽出物、プロポリス抽出物などを抗微生物剤として利用することが提案されている。
しかしながら、これらの抽出物は、安全性及び抗微生物効果に優れるものの、有効成分として含まれる化合物の生体内での持続性及び水溶性が乏しいため、取り扱い性が良好ではないという問題を抱えている。
【0004】
【発明が解決しようとする課題】
斯かる状況に鑑み、生体に安全かつ十分な抗微生物効果を有し、取り扱い性が良好な抗微生物剤を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために、植物の抽出物中に含まれるヒドロキシフェノール化合物に着目して研究を進めたところ、ヒドロキシ安息香酸の1種である没食子酸、及び、ヒドロキシケイ皮酸の1種であるカフェ酸は、植物由来の抗微生物性化合物の中でも比較的抗微生物効果に優れ、かつ、人体への毒性の低いという有利な特徴を有しているものの、摂取した場合、生体内での持続性が著しく低いという問題点があることを見い出した。そこで、没食子酸又はカフェ酸の糖転移物を調製し、抗微生物効果並びに生体内での持続性を調べたところ、これら糖転移物は、糖転移されてない没食子酸又はカフェ酸と比較して、抗微生物効果はやや劣るものの、抗微生物剤として利用可能なレベルの活性を有し、さらに水溶性が優れた取り扱い性が良好な化合物であることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、ヒドロキシ安息香酸の糖転移物、ヒドロキシケイ皮酸の糖転移物、及びそれらの誘導体、並びにそれらの塩から選ばれる1種又は2種以上を、有効成分として含有してなる抗微生物剤を提供することにより、前記課題を解決するものである。
【0007】
【発明の実施の形態】
本発明でいうヒドロキシ安息香酸は、植物成分のタンニンを構成する成分であり、その糖転移物は、本発明の抗微生物剤の有効成分として用いられる。本明細書では、ヒドロキシ安息香酸の一種の没食子酸(3,4,5−トリヒドロキシ安息香酸、分子量約170)について説明するが、本発明の効果を発揮するかぎり、他のヒドロキシ安息香酸を使用することができる。本発明で使用する没食子酸の調製方法としては、没食子酸又はその誘導体を豊富に含む植物から抽出し、必要に応じて、酸、アルカリ、加熱、酵素などを用いて、加水分解して得ることができる。本発明で使用する没食子酸は、その由来、調製方法を問わず、植物体から抽出・精製する方法以外にも、化学合成法によっても得ることができ、市販品を利用することも随意である。また、本発明の効果を損ねない限り、塩の形態のものを用いることもできる。
【0008】
本発明でいうヒドロキシケイ皮酸は、植物成分の1種であり、その糖転移物は、本発明の抗微生物剤の有効成分として用いられる。本明細書では、ヒドロキシケイ皮酸の一種のカフェ酸(3,4−ジヒドロキシケイ皮酸、分子量約180)について説明するが、本発明の効果を発揮するかぎり、他のヒドロキシケイ皮酸を使用することができる。本発明で使用するカフェ酸の調製方法としては、カフェ酸又はその誘導体を豊富に含む植物から抽出し、必要に応じて、酸、アルカリ、加熱、酵素などを用いて、加水分解して得ることができる。本発明で使用するカフェ酸は、その由来、調製方法を問わず、植物体から抽出・精製する方法以外にも、化学的な合成、例えば、3,4−ジヒドロキシベンズアルデヒドと無水酢酸及び酢酸カリウムとを反応させて合成する方法などによっても得ることができ、市販品を利用することも随意である。また、本発明の効果を損ねない限り、塩の形態のものを用いることもできる。
【0009】
本発明の抗微生物剤に用いる没食子酸の糖転移物及びその誘導体、及び、カフェ酸の糖転移物及びその誘導体とは、化学的又は酵素的な糖転移反応により没食子酸又はその誘導体、及び、カフェ酸又はその誘導体に、それらの水酸基を介して糖が転移付加されたものである。糖転移された糖がグルコースの場合、その代表的な没食子酸糖転移物としては、化学式1乃至3のものを、カフェ酸糖転移物としては、化学式4及び5のものを例示できる。なお、式中、m及びnは0以上の整数を、Rは水素原子又は炭化水素基を示す。化学式1乃至5においては、グルコース間の結合は1,4結合であるが、1,3結合、1,6結合であってもよい。さらに、化学式1乃至5においては、糖質と没食子酸又はカフェ酸との結合様式としてα−グルコシド結合を例示しているが、必要に応じて、β−グルコシド結合を選択することも可能である。また、本発明の効果を損ねない範囲で、カフェ酸糖転移物又は没食子酸糖転移物を、塩の形態とすることもできる。
【0010】
【化1】
化学式1:

Figure 0004571783
(式中、nは0以上の整数を表し、Rは水素原子又は炭化水素基を示す)
【0011】
【化2】
化学式2:
Figure 0004571783
(式中、nは0以上の整数を表し、Rは水素原子又は炭化水素基を示す)
【0012】
【化3】
化学式3:
Figure 0004571783
(式中、m及びnは0以上の整数を表し、Rは水素原子又は炭化水素基を示す)
【0013】
【化4】
化学式4:
Figure 0004571783
(式中、nは0以上の整数を表し、Rは水素原子又は炭化水素基を示す)
【0014】
【化5】
化学式5:
Figure 0004571783
(式中、nは0以上の整数を表し、Rは水素原子又は炭化水素基を示す)
【0015】
本発明の抗微生物剤には、没食子酸の糖転移物及びカフェ酸の糖転移物の誘導体を用いることができる。なお、没食子酸及びカフェ酸への糖転移化と誘導体化の順序は問わない。没食子酸の糖転移物及びカフェ酸の糖転移物の誘導体としては、酸、アルカリ、加熱などの処理により、比較的容易に加水分解されて、没食子酸又はカフェ酸が生成され得る化合物が用いられ、それらは天然物であっても人工的な合成物であってもよい。例えば、天然に存在する没食子酸の誘導体としては、加水分解性タンニンと総称される、グルコース1分子に1乃至5分子の没食子酸がエステル結合した化合物、例えば、ガロイルグルコース、ケブリン酸、ケブラグ酸、コリラギンなどが、一方、カフェ酸の誘導体としてクロロゲン酸などが例示できる。これらの誘導体の糖転移物は、加水分解後に没食子酸の糖転移物又はカフェ酸の糖転移物を生成し、抗微生物効果を示すので、本発明の抗微生物剤の成分として使用することができる。没食子酸又はカフェ酸の誘導体に対して糖転移を行う際には、没食子酸及びカフェ酸部分に糖転移可能な水酸基を有する化合物であるのが好ましく、さらに、没食子酸又はカフェ酸部分以外に糖転移可能な水酸基を有しない化合物が好適である。そのような誘導体としては、例えば、化学式6に示すガロイルグルコースの一種であるペンタガロイルグルコース(1,2,3,4,6−pentakis−O−galloyl−β−D−glucose)が挙げられる。
【0016】
【化6】
化学式6:
Figure 0004571783
【0017】
さらに、没食子酸及びカフェ酸の誘導体としては、没食子酸及びカフェ酸の抗微生物効果を向上させるために、適宜の修飾を施した誘導体を利用することができる。このような誘導体としては、例えば、没食子酸及びカフェ酸のカルボキシル基に炭化水素基がエステル結合した化合物が挙げられる。エステル結合させる炭化水素基としては、鎖式炭化水素基であっても環式炭化水素基であってもよく、また、飽和炭化水素基であっても不飽和炭化水素基であってもよい。本発明における好適な炭化水素基は、鎖式炭化水素基、いわゆる脂肪族炭化水素基である。没食子酸及びカフェ酸と脂肪族炭化水素基とのエステル誘導体(以下、単にエステル誘導体ということもある。)は、脂肪族炭化水素基の炭素数に応じて抗微生物性が向上するという特徴を有しており、本発明の抗微生物剤として有利に用いられる。なお、没食子酸又はカフェ酸と脂肪族炭化水素基とのエステル誘導体は、炭化水素基の炭素数が多くなるほど水溶性に乏しくなる傾向があるものの、糖転移することにより水溶性が改善される。炭化水素基の炭素数は、本発明の抗微生物剤の使用方法、形態、対象となる微生物などに応じて適宜選択すればよく、通常、炭素数1乃至12の範囲、好ましくは3乃至8の範囲の炭化水素基とのエステル誘導体に糖転移したものが本発明の抗微生物剤として用いられる。炭素数12を超える炭化水素基とのエステル誘導体は、その水溶性が著しく低下しているので、糖転移によっても十分に水溶性が改善されず、本発明の抗微生物剤を生体に適用する際に好ましくない場合がある。また、没食子酸と炭素数3の脂肪族炭化水素基とのエステル誘導体である没食子酸n−プロピルは、炭化水素基の炭素数が少ない割に抗微生物性が高く、その糖転移物は、本発明の抗微生物剤として特に有利に用いられる。
【0018】
没食子酸の糖転移物、カフェ酸の糖転移物、及び、それらの誘導体(以下、単に「没食子酸の糖転移物」又は「カフェ酸の糖転移物」ということもある。)を得る方法としては、特に限定されず、化学合成法又は酵素反応法などによって製造可能である。このうち、糖転移酵素を利用した酵素反応法が簡便であることから、本発明においては有利に利用できる。例えば、没食子酸又はその誘導体、又は、カフェ酸又はその誘導体にデキストリン、サイクロデキストリン、澱粉あるいはこれらの混合物を添加し、これを、例えば、バチラス属に属する微生物が産生する糖転移酵素、例えば、バチラス・ステアロサーモフィラス由来のサイクロデキストリングルカノトランスフェラーゼ(EC 2.4.1.19)を作用させて糖転移し、次いで所望により、この酵素反応液にグルコアミラーゼ及び/又はβ−アミラーゼを作用させる方法が挙げられる。この方法によれば、没食子酸の糖転移物及びカフェ酸の糖転移物の糖質部分の重合度を調節することが可能である。
【0019】
また、没食子酸の糖転移物又はカフェ酸の糖転移物を得る方法として、これらを含有する植物体の抽出物をそのまま、又は精製工程の適宜の段階で、糖転移することも可能である。この場合、没食子酸又はその誘導体、又は、カフェ酸又はその誘導体とともに、他の成分の中に糖転移物となるものがあり、それらの成分の水溶性をも向上させるので、抽出物の水溶性を大幅に改善する効果も期待できる。没食子酸又はその誘導体、又は、カフェ酸又はその誘導体を含有する植物としては、緑茶、紅茶、コーヒーなどが一般的であり、その他に、モモタマナ属に属する植物、タデ藍(ポリゴナム属)などが挙げられるが、これらに限定されない。
【0020】
本発明の抗微生物剤には、没食子酸の糖転移物又はカフェ酸糖転移物以外にも、製法に由来する未糖転移物である没食子酸又はその誘導体、又は、カフェ酸又はその誘導体(以下、単に「未糖転移物」ということもある。)が含まれることがある。未糖転移物は、高速液体クロマトグラフィー(HPLC)などの手法により糖転移物標品から除去可能であるが、未糖転移物を含んだまま本発明の抗微生物剤に配合することも、また必要に応じて、糖転移物とともに、それに対応する未糖転移物を本発明の抗微生物剤に配合することもできる。この場合、糖転移物の含有量は、糖転移物と未糖転移物との総和に対して、モル比で、通常10%以上、好ましくは20%以上、さらに好ましくは50%以上とする。糖転移物の割合が10%に満たない場合は、生体内での持続性及び水溶性を改善する効果が十分期待できず、好ましくない場合がある。
【0021】
また、本発明で用いる没食子酸の糖転移物又はカフェ酸の糖転移物において、グルコース以外にも、ガラクトース、マンノース、フコースなどの単糖、グルコサミン、ガラクトサミンなどのアミノ糖なども糖転移させる糖として選択することができる。糖転移物における糖質部分の重合度は、好ましくは1乃至5、さらに好ましくは1乃至3から選択され、最も好ましくは1である。糖質部分の重合度の高い糖転移物ほど、没食子酸及びカフェ酸の生体内での持続性及び水溶性を改善する効果に優れ、遅効性の抗微生物剤とする効果が期待できるものの、即効性が低下する傾向にある。したがって、即効性を期待する場合には、重合度が5を超える糖質部分を有する糖転移物は好ましくない場合がある。
【0022】
本発明の抗微生物剤は、没食子酸の糖転移物及び/又はカフェ酸の糖転移物を有効成分として含有し、さらには所望により没食子酸又はその誘導体、及び/又は、カフェ酸又はその誘導体を配合することできる。また、通常、注射用剤、皮膚外用剤、経粘皮用剤、経鼻腔用剤又は経口用剤を構成するための成分の1又は複数を配合することができる。
【0023】
本発明の抗微生物剤は、用途に応じて、例えば、液状、ペースト状又は固状の注射用剤、皮膚外用剤、経粘皮用剤、経鼻腔用剤、経口用剤などの形態に調製して用いられ、具体的には、注射剤、点眼剤、座剤、軟膏剤、さらには、歯磨き、うがい薬などの口腔清浄剤や、歯科領域における口腔殺菌剤をはじめとする口腔用剤の形態が好ましい。したがって、本発明の抗微生物剤は、散剤、細粒剤、丸剤、錠剤、カプセル剤、トローチ剤、リモナーデ剤、エリキシル剤、シロップ剤、芳香水剤、懸濁剤、乳剤、浸剤、煎剤、チンキ剤、エキス剤、流エキス剤、酒精剤、リニメント剤、ローション剤、軟膏剤、パップ剤、硬膏剤、坐剤、点眼剤、眼軟膏剤、注射剤において汎用される、例えば、研磨剤、発泡剤、湿潤剤、粘結剤、香味料、甘味料、保存料、弗素化合物、酵素剤、消臭剤、さらには、賦形剤、軟膏基剤、溶解剤、矯味剤、矯臭剤、着色剤、乳化剤、噴射剤などの調製用薬などの1又は複数と組み合わせて用いることを妨げない。また、本発明の目的を逸脱しない範囲で、斯かる剤形の薬剤において汎用される、例えば、止血剤、抗炎症剤、組織賦活剤、抗微生物剤、さらには、抗生物質、インターフェロンα、インターフェロンβ、インターフェロンγをはじめとする1又は複数の他の薬効成分との併用も妨げない。なお、注射用剤や経粘皮用剤、経鼻腔、口腔用剤における調製用薬としては、没食子の酸糖転移物及びカフェ酸の糖転移物を安定化する性質を兼備する点で、例えば、スクロース、グルコース、マルトース、トレハロース、フルクトース、環状四糖、マンニトール、マルチトールなどの糖又は糖アルコールさらには、アラニン、アルギニン、アスパラギン、アスパラギン酸、シトルリン、システイン、シスチン、グルタミン、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、オルニチン、フェニルアラニン、フェニルグリシン、プロリン、セリン、スレオニン、トリプトファン、チロシン、バリン、ヒドロキシプロリン、γ−カルボキシグルタマート、O−ホスホセリン、β−アラニン、α−アミノ酪酸、γ−アミノ酪酸、α−アミノイソ酪酸、4−(4−アミノフェニル)酪酸、アミノフェニル酪酸、アミノ安息香酸、4−アミノ馬尿酸、アミノメチル安息香酸、ε−アミノカプロン酸、7−アミノへプタン酸、β−アスパラギン酸、γ−グルタミン酸、ε−リジン、メチオニンスルホン、ノルロイシン、ノルバリン、オルニチン、d−オルニチン、p−ニトロ−フェニルアラニン、ヒドロキシプロリン、チオプロリンなどのアミノ酸又はこれらのアミノ酸の誘導体若しくはオリゴペプチドが好ましく、必要に応じて、これらは組み合わせて用いられる。
【0024】
本発明の抗微生物剤の抗微生物スペクトルは比較的広く、グラム陰性菌、グラム陽性菌、真菌、酵母などの多くの微生物に対して抗微生物効果を示す。本発明の抗微生物剤が対象とする微生物としては、例えば、バチラス属、ミコバクテリウム属、シュードモナス属、エッセリシア属、スタフィロコッカス属、ストレプトコッカス属、サルモネラ属、クレブシラ属、プロテウス属、ビブリオ属、シゲラ属、ヘリコバクター属、クラミジア属、アスペルギルス属、カンディダ属などに属する微生物が挙げられる。
【0025】
本発明の抗微生物剤へ配合する没食子酸の糖転移物及び/又はカフェ酸の糖転移物の量は、その剤形、使用方法などを考慮して適宜決定すればよいが、通常、没食子酸又はカフェ酸換算で、没食子酸とカフェ酸の合計量が、0.001乃至100%(w/w)、好ましくは、0.01乃至100%(w/w)、さらに好ましくは0.1乃至100%(w/w)の範囲内から選ばれる。また、投与量としては、抗微生物剤の適用対象、投与経路などにもよるけれども、通常、没食子酸又はカフェ酸換算で、没食子酸とカフェ酸の合計量が、1ng乃至1g/日/成人、好ましくは、10ng乃至100mg/日/成人とする。
【0026】
本発明の抗微生物剤は、斯かる用量で1日又は1週間に1回以上の頻度で注射又は経皮、経粘皮、経鼻腔用剤若しくは経口経路で適用することによって、生体における多種の病原性微生物の増殖を著明に抑制することから、鼻腔、口腔や気道、さらには視覚器、消化器、泌尿器、生殖器などへ侵入した病原性微生物が発症原因となる、例えば、肺炎などの呼吸器系疾患や、動脈硬化、虚血性心疾患などの循環器系疾患、結膜炎などの視覚器系疾患、直腸炎などの消化器系疾患、尿道炎などの泌尿器系疾患、副睾丸炎、卵管炎、子宮頚管炎、切迫早産、卵管の炎症、癒着、閉塞などの生殖器系疾患、食中毒の治療、予防に著効を発揮する。とりわけ、本発明の抗微生物剤は、抗生物質を有効成分とする経口用剤とは違って、耐性菌の出現を招来したり、長期連用しても大腸における有用な菌叢を破壊することがないので、食欲不振、嘔吐、下痢、便秘、膨満感を生じたり、倦怠感、発湿などの副作用を惹起することがない。
【0027】
以上のとおり、没食子酸の糖転移物及び/又はカフェ酸の糖転移物は、生体中での持続性及び水溶性に優れるという利点を兼ね備えている。これらの特徴は、炭素数3以上の脂肪族炭化水素基を有する没食子酸エステル誘導体、カフェ酸及びカフェ酸エステル誘導体のように、水溶性に乏しい化合物を糖転移した場合にも発揮される。また、没食子酸の近接する3つの水酸基は鉄イオンと錯体を形成し、変色することが知られているところ、糖転移することによって、没食子酸の変色を防止する効果も期待できる。
【0028】
以下、本発明による抗微生物剤の性状及び効果につき、実験例に基づいて説明する。
【0029】
【実験例1】
<没食子酸、没食子酸エステル誘導体及びカフェ酸の糖転移物の調製>
1質量部の没食子酸、没食子酸メチル、没食子酸エチル、没食子酸n−プロピル、没食子酸オクチル、没食子酸ドデシル(以上、関東化学株式会社製)又はカフェ酸(和光純薬工業株式会社製)を、それぞれ10質量部の澱粉部分分解物(DE8、商品名『パインデックス#1』、松谷化学株式会社製)とともに200質量部の水に添加して加熱溶解した。適量の水酸化ナトリウムを添加してpH6.0に調整した後、澱粉部分分解物1gあたり200Uのサイクロデキストリングルカノトランスフェラーゼ(株式会社林原生物化学研究所製)を加え、40℃で24時間インキュベートした。その後、100℃で20分間インキュベートして酵素を失活させた後、適量の水酸化ナトリウムを添加してpH4.5に調整した後、澱粉部分分解物1gあたり50Uのグルコアミラーゼ(商品名『グルコチーム』、ナガセ生化学工業株式会社製)を加え、40℃で20時間インキュベートした。次いで、80℃で10分間インキュベートして酵素を失活させた後、ろ紙でろ過した。それぞれの反応液に、没食子酸、没食子酸メチル、没食子酸エチル、没食子酸n−プロピル、没食子酸オクチル、没食子酸ドデシル、又はカフェ酸1gあたり200mlの合成吸着剤(商品名『HP10』、三菱化学株式会社製)を充填したカラムに負荷して吸着させ、水で洗浄後、5%(w/w)エタノール水溶液でさらに洗浄し、各試料の疎水性に応じて、15乃至50%(w/w)エタノール水溶液で溶出した。これらを、減圧乾固した後、水に再溶解した後、同じカラムで同じ操作を繰り返し、溶出液を減圧乾固して、本発明の抗微生物剤に用いる没食子酸の糖転移物、没食子酸メチルの糖転移物、没食子酸エチルの糖転移物、没食子酸n−プロピルの糖転移物、没食子酸オクチルの糖転移物、没食子酸ドデシルの糖転移物、カフェ酸の糖転移物を得た。これらを常法の高速液体クロマトグラフィー(HPLC)分析により、紫外部吸収を測定し組成比(モル比)を求めたところ、調製された糖転移物はすべてがモノグルコシドであり、それらの純度はどれもが95%以上であった。
なお、サイクロデキストリングルカノトランスフェラーゼの1Uは、1mM塩化カルシウムを含む20mM酢酸緩衝液(pH5.5)に加熱溶解した0.3%(w/w)可溶性澱粉粉溶液5mlに酵素液0.2mlを加え、40℃、10分間反応させ、この反応液0.5mlを0.02Nの硫酸15mlに加え反応を停止し、これに、0.1Nヨウ素溶液を0.2mlを加えた後、660nmの吸光度を測定する場合において、吸光度を10%減少させる酵素量と定義されている。また、グルコアミラーゼの1Uは、1.0%(w/w)可溶性澱粉粉溶液(20mM酢酸緩衝液、pH4.5)5mlに、酵素液0.2mlを加え、40℃、10分間反応させ、生成した還元糖量をソモギー−ネルソン法で測定する場合において、40℃、1分間に1μmolのグルコースに相当する還元力を遊離する酵素量と定義されている。
【0030】
【実験例2】
<没食子酸、没食子酸エステル誘導体及びカフェ酸の糖転移物の水溶性>
実験例1で得られた糖転移物の37℃の水に対する溶解度を測定し、それぞれの未糖転移物と比較した。結果を表1に示す。
【0031】
【表1】
Figure 0004571783
【0032】
表1に示す結果から、没食子酸、没食子酸エステル誘導体及びカフェ酸の糖転移物は、それぞれの未糖転移物よりも水溶性に優れており、特に、比較的水溶性に乏しい没食子酸n−プロピル、没食子酸オクチル、没食子酸ドデシル及びカフェ酸については、水溶性の改善効果が顕著であった。また、別途、転移した糖の重合度が1を超える糖転移物について、同様の実験を行ったところ、糖転移された糖質部分の重合度が高いものほど水溶性を改善する効果に優れていた。
【0033】
【実験例3】
<各種糖転移物の抗微生物効果>
実験例1により調製した各種糖転移物、後述の実施例5で調製したターミナリア ベリリカ抽出物の糖転移物、及び、後述の実施例6で調製したタデ藍抽出物の糖転移物の抗微生物効果を、表2に記載の微生物について、常法にしたがい、最小生育阻止濃度(MIC)を測定した。また、対照として、それぞれの未糖転移物を用いた。結果を表2に示す。なお、表2における没食子酸メチル、没食子酸エチル、没食子酸n−プロピル、没食子酸オクチル、没食子酸ドデシル及びその糖転移物のグラム数は、没食子酸換算での数値を示し、ターミナリア ベリリカ抽出物及びタデ藍抽出物、及びそれらの糖転移物は固形分のグラム数で示した。
【0034】
【表2】
Figure 0004571783
【0035】
表2の結果から、微生物に対する最小生育阻止濃度は、糖転移の結果、同等乃至1/32の範囲で低下するものの、抗微生物効果は保持されることが判明した。一方、ターミナリア ベリリカ抽出物及び藍抽出物の場合、有効成分としての没食子酸又はカフェ酸の糖転移物の含量が抽出物の固形分あたり約1%であることを考慮すると抗微生物効果が意外に優れており、他の成分による効果が加算されていることが想定された。また、糖転移物の糖質部分の重合度が高いもので同様の試験を行ったところ、重合度が高くなるほど、抗微生物活性が低下する傾向が認められた。
【0036】
【実験例4】
<生体内での持続性>
実験例1で調製した各種糖転移物を、没食子酸又はカフェ酸換算で、0.1mg/mlの水溶液に調製し、除菌ろ過した。一方、後述の実施例5で調製したターミナリア ベリリカ抽出物の糖転移物及び後述の実施例6で調製したタデ藍抽出物の糖転移物を、それが含有する没食子酸又はカフェ酸が0.1mg/mlの水溶液となるように調製し、除菌ろ過した。これらをそれぞれ5週齢の雌性ウイスターラットの大腿部静脈に1ml(0.1mg)注射した。一定時間放置した後、ラットの尾静脈から経時的に血液を採取し、血清中の没食子酸、カフェ酸の含量を常法の液体高速クロマトグラフィー法により測定した。また、対照として、それぞれの未糖転移物を用いて同様に試験した。その結果、未糖転移物は静脈注射後約2時間で血中から検出できなくなるのに対し、糖転移物の場合は静脈注射後8時間までは血中から没食子酸、没食子酸エステル誘導体又はカフェ酸を検出できた。この結果は、糖転移物は、未糖転移物よりも生体内での持続性に優れることを物語っている。また、同時に、糖質部分の重合度が高い糖転移物で同様の試験を行ったところ、重合度が高くなるにつれて没食子酸、没食子酸エステル誘導体及びカフェ酸の生体内での持続性が向上する傾向が認められた。
【0037】
【実験例5】
<急性毒性試験>
実験例1で調製した各種糖転移物を、常法にしたがって8週齢の雄性マウス各10匹に経皮、経口あるいは腹腔内に投与した。その結果、これらのLD50は、いずれの投与経路による場合にも約100mg/kg(マウス体重)以上であった。この結果は、没食子酸の糖転移物及びカフェ酸の糖転移物がヒトへの投与を前提とする医薬品として安全であることを物語っている。
【0038】
以上の結果から、没食子酸の糖転移物及び/又はカフェ酸の糖転移物は、これらの未糖転移物よりも抗微生物効果に劣るものの、抗微生物剤として有用なレベル以上の抗微生物効果を有しており、さらに、生体内での持続性及び水溶性に優れていた。これらの糖転移物が有する特徴は、本発明の抗微生物剤が、生体に適用する抗微生物剤として有利であることを示している。
【0039】
以下、本発明の実施の形態につき、実施例に基づいて説明する。
【0040】
【実施例1】
<没食子酸糖転移物の調製>
【0041】
【実施例1−1】
1質量部の没食子酸(関東化学株式会社製)を、10質量部の澱粉部分分解物(DE8、商品名『パインデックス#1』、松谷化学株式会社製)とともに200質量部の水に添加して加熱溶解した。適量の水酸化ナトリウムを添加してpH6.0に調整した後、澱粉部分分解物1gあたり200Uのサイクロデキストリングルカノトランスフェラーゼ(株式会社林原生物化学研究所製)を加え、40℃で24時間インキュベートした。その後、100℃で20分間インキュベートして酵素を失活させた後、ろ紙でろ過して、さらに、合成吸着剤(商品名『HP10』、三菱化学株式会社製)に負荷して吸着させ、水で洗浄して澱粉部分分解物を溶出させた後、10乃至20%(w/w)エタノール水溶液で溶出した画分を回収し、減圧乾固し、本発明の抗微生物剤に用いる没食子酸糖転移物を得た。
【0042】
これを常法の高速液体クロマトグラフィー(HPLC)分析に供し、紫外部吸収を測定し組成比(モル比)を求めたところ、グルコース重合度が1の糖質部分を有する没食子酸糖転移物が10%、グルコース重合度が2の糖質部分を有する没食子酸糖転移物が4%、グルコース重合度が6以上の糖質を有する没食子酸糖転移物が6%、未反応のまま残った没食子酸酸が80%であった。
【0043】
【実施例1−2】
実施例1−1で得られたサイクロデキストリングルカノトランスフェラーゼ処理後の反応液に、適量の水酸化ナトリウムを添加してpH4.5に調整した後、澱粉部分分解物1gあたり50Uのグルコアミラーゼ(商品名『グルコチーム』、ナガセ生化学工業株式会社製)を加え、40℃で20時間インキュベートした。次いで、80℃で10分間インキュベートして酵素を失活させた後、実施例1−1におけると同様に、ろ紙でろ過して、さらに、合成吸着剤(商品名『HP10』、三菱化学株式会社製)に負荷して吸着させ、水で洗浄して澱粉部分分解物を溶出させた後、20乃至30%(w/w)エタノール水溶液で溶出した画分を回収し、減圧乾固し、本発明の抗微生物剤に用いる没食子酸糖転移物を得た。
【0044】
これを常法の高速液体クロマトグラフィー(HPLC)分析に供し、紫外部吸収を測定し組成比(モル比)を求めたところ、グルコース重合度が1の糖質部分を有する没食子酸糖転移物が80%、グルコース重合度が2の糖質部分を有する没食子酸糖転移物が4%、グルコース重合度が3以上の糖質部分を有する没食子酸糖転移物が1%、未反応のまま残った没食子酸が15%であった。
【0045】
【実施例2】
<没食子酸n−プロピル糖転移物の調製>
【0046】
【実施例2−1】
実施例1−1の方法に準じて、1質量部の没食子酸n−プロピル(関東化学株式会社製)を、10質量部の澱粉部分分解物(DE8、商品名『パインデックス#1』、松谷化学株式会社製)とともに200質量部の水に添加して加熱溶解した。適量の水酸化ナトリウムを添加してpH6.0に調整した後、澱粉部分分解物1gあたり200Uのサイクロデキストリングルカノトランスフェラーゼ(株式会社林原生物化学研究所製)を加え、40℃で24時間インキュベートした。
その後、100℃で20分間インキュベートして酵素を失活させた後、ろ紙でろ過して、さらに、合成吸着剤(商品名『HP10』、三菱化学株式会社製)に負荷して吸着させ、水で洗浄して澱粉部分分解物を溶出させた後、35乃至50%(w/w)エタノール水溶液で溶出した画分を回収し、減圧乾固し、本発明の抗微生物剤に用いる没食子酸n−プロピル糖転移物を得た。
【0047】
これを常法の高速液体クロマトグラフィー(HPLC)分析に供し、紫外部吸収を測定し組成比(モル比)を求めたところ、グルコース重合度が1の糖質部分を有する没食子酸n−プロピル糖転移物が14%、グルコース重合度が2の糖質部分を有する没食子酸n−プロピル糖転移物が10%、グルコース重合度が3以上の糖質を有する没食子酸n−プロピル糖転移物が9%、未反応のまま残った没食子酸n−プロピルが67%であった。
【0048】
【実施例2−2】
実施例1−2の方法に準じて、実施例2−1で得られたサイクロデキストリングルカノトランスフェラーゼ処理後の反応液に、適量の水酸化ナトリウムを添加してpH4.5に調整した後、澱粉部分分解物1gあたり50Uのグルコアミラーゼ(商品名『グルコチーム』、ナガセ生化学工業株式会社製)を加え、40℃で20時間インキュベートした。次いで、80℃で10分間インキュベートして酵素を失活させた後、実施例2−1におけると同様に、ろ紙でろ過して、さらに、合成吸着剤(商品名『HP10』、三菱化学株式会社製)に負荷して吸着させ、水で洗浄して澱粉部分分解物を溶出させた後、35乃至50%(w/w)エタノール水溶液で溶出した画分を回収し、減圧乾固し、本発明の抗微生物剤に用いる没食子酸n−プロピル糖転移物を得た。
【0049】
これを常法の高速液体クロマトグラフィー(HPLC)分析に供し、紫外部吸収を測定し組成比(モル比)を求めたところ、グルコース重合度が1の糖質部分を有する没食子酸n−プロピル糖転移物が76%、グルコース重合度が2の糖質部分を有する没食子酸n−プロピル糖転移物が7%、グルコース重合度が3以上の糖質部分を有する没食子酸n−プロピル糖転移物が2%、未反応のまま残った没食子酸n−プロピルが15%であった。
【0050】
【実施例3】
<没食子酸オクチル糖転移物の調製>
【0051】
【実施例3−1】
実施例1−1の方法に準じて、1質量部の没食子オクチル(関東化学株式会社製)を、10質量部の澱粉部分分解物(DE8、商品名『パインデックス#1』、松谷化学株式会社製)とともに200質量部の水に添加して加熱溶解した。適量の水酸化ナトリウムを添加してpH6.0に調整した後、澱粉部分分解物1gあたり200Uのサイクロデキストリングルカノトランスフェラーゼ(株式会社林原生物化学研究所製)を加え、40℃で24時間インキュベートした。その後、100℃で20分間インキュベートして酵素を失活させた後、ろ紙でろ過して、さらに、合成吸着剤(商品名『HP10』、三菱化学株式会社製)に負荷して吸着させ、水で洗浄して澱粉部分分解物を溶出させた後、35乃至50%(w/w)エタノール水溶液で溶出した画分を回収し、減圧乾固し、本発明の抗微生物剤に用いる没食子酸オクチル糖転移物を得た。
【0052】
これを常法の高速液体クロマトグラフィー(HPLC)分析に供し、紫外部吸収を測定し組成比(モル比)を求めたところ、グルコース重合度が1の糖質部分を有する没食子酸オクチル糖転移物が14%、グルコース重合度が2の糖質部分を有する没食子酸オクチル糖転移物が5%、グルコース重合度が3以上の糖質を有する没食子酸オクチル糖転移物が7%、未反応のまま残った没食子酸オクチルが74%であった。
【0053】
【実施例3−2】
実施例1−2の方法に準じて、実施例3−1で得られたサイクロデキストリングルカノトランスフェラーゼ処理後の反応液に、適量の水酸化ナトリウムを添加してpH4.5に調整した後、澱粉部分分解物1gあたり50Uのグルコアミラーゼ(商品名『グルコチーム』、ナガセ生化学工業株式会社製)を加え、40℃で20時間インキュベートした。次いで、80℃で10分間インキュベートして酵素を失活させた後、実施例3−1におけると同様に、ろ紙でろ過して、さらに、合成吸着剤(商品名『HP10』、三菱化学株式会社製)に負荷して吸着させ、水で洗浄して澱粉部分分解物を溶出させた後、35乃至50%(w/w)エタノール水溶液で溶出した画分を回収し、減圧乾固し、本発明の抗微生物剤に用いる没食子酸オクチル糖転移物を得た。
【0054】
これを常法の高速液体クロマトグラフィー(HPLC)分析に供し、紫外部吸収を測定し組成比(モル比)を求めたところ、グルコース重合度が1の糖質部分を有する没食子酸オクチル糖転移物が76%、グルコース重合度が2の糖質部分を有する没食子酸オクチル糖転移物が2%、グルコース重合度が3以上の糖質部分を有する没食子酸オクチル糖転移物が1%、未反応のまま残った没食子酸オクチルが21%であった。
【0055】
【実施例4】
<カフェ酸糖転移物の調製>
【0056】
【実施例4−1】
実施例1−1の方法に準じて、1質量部のカフェ酸(和光純薬工業株式会社製)を、10質量部の澱粉部分分解物(DE8、商品名『パインデックス#1』、松谷化学株式会社製)とともに200質量部の水に添加して加熱溶解した。適量の水酸化ナトリウムを添加してpH6.0に調整した後、澱粉部分分解物1gあたり200Uのサイクロデキストリングルカノトランスフェラーゼ(株式会社林原生物化学研究所製)を加え、40℃で24時間インキュベートした。その後、100℃で20分間インキュベートして酵素を失活させた後、ろ紙でろ過して、さらに、合成吸着剤(商品名『HP10』、三菱化学株式会社製)に負荷して吸着させ、水で洗浄して澱粉部分分解物を溶出させた後、35乃至50%(w/w)エタノール水溶液で溶出した画分を回収し、減圧乾固し、本発明の抗微生物剤に用いるカフェ酸糖転移物を得た。
【0057】
これを常法の高速液体クロマトグラフィー(HPLC)分析に供し、紫外部吸収を測定し組成比(モル比)を求めたところ、グルコース重合度が1の糖質部分を有するカフェ酸糖転移物が19%、グルコース重合度が2の糖質部分を有するカフェ酸糖転移物が9%、グルコース重合度が3以上の糖質を有するカフェ酸糖転移物が7%、未反応のまま残ったカフェ酸が65%であった。
【0058】
【実施例4−2】
実施例1−2の方法に準じて、実施例4−1で得られたサイクロデキストリングルカノトランスフェラーゼ処理後の反応液に、適量の水酸化ナトリウムを添加してpH4.5に調整した後、澱粉部分分解物1gあたり50Uのグルコアミラーゼ(商品名『グルコチーム』、ナガセ生化学工業株式会社製)を加え、40℃で20時間インキュベートした。次いで、80℃で10分間インキュベートして酵素を失活させた後、実施例4−1におけると同様に、ろ紙でろ過して、さらに、合成吸着剤(商品名『HP10』、三菱化学株式会社製)に負荷して吸着させ、水で洗浄して澱粉部分分解物を溶出させた後、20乃至30%(w/w)エタノール水溶液で溶出した画分を回収し、減圧乾固し、本発明の抗微生物剤に用いるカフェ酸糖転移物を得た。
【0059】
これを常法の高速液体クロマトグラフィー(HPLC)分析に供し、紫外部吸収を測定し組成比(モル比)を求めたところ、グルコース重合度が1の糖質部分を有するカフェ酸糖転移物が78%、グルコース重合度が2の糖質部分を有するカフェ酸糖転移物が3%、グルコース重合度が3以上の糖質部分を有するカフェ酸糖転移物が1%、未反応のまま残ったカフェ酸が18%であった。
【0060】
【実施例5】
<ターミナリア ベリリカ抽出物の糖転移物の調製>
モモタマナ属のターミナリア ベリリカ (Terminalia bellirica)の果実部1質量部をブレンダーにより粉砕し、10質量部の50%(w/w)エタノール水溶液を加え、50℃で60分間攪拌した。ろ紙でろ過して、ろ液を採取し、遠心分離により固形成分を除去した上清を減圧乾燥して固形分を得た。この固形分1質量部を、実施例1−1の方法に準じて、10質量部の澱粉部分分解物(DE8、商品名『パインデックス#1』、松谷化学株式会社製)とともに200質量部の水に添加して加熱溶解した。適量の水酸化ナトリウムを添加してpH6.0に調整した後、澱粉部分分解物1gあたり200Uのサイクロデキストリングルカノトランスフェラーゼ(株式会社林原生物化学研究所製)を加え、40℃で24時間インキュベートした。その後、100℃で20分間インキュベートして酵素を失活させた後、実施例1−2の方法に準じて、適量の水酸化ナトリウムを添加してpH4.5に調整した後、澱粉部分分解物1gあたり50Uのグルコアミラーゼ(商品名『グルコチーム』、ナガセ生化学工業株式会社製)を加え、40℃で20時間インキュベートした。次いで、80℃で10分間インキュベートして酵素を失活させた後、ろ紙でろ過して、ろ液を採取し、減圧乾固して、本発明の抗微生物剤に用いるターミナリア ベリリカ抽出物の糖転移物を得た。
【0061】
このろ液を常法の高速液体クロマトグラフィー(HPLC)法に供し、没食子酸糖転移物の含量を測定したところ、固形分当り、有効成分である没食子酸糖転移物は8mg/g、没食子酸は7mg/gであった。また、微量ながら、ペンタガロイルグルコースの糖転移物が検出された。
【0062】
【実施例6】
<藍抽出物の糖転移物>
タデ藍(Polygonum Tincorium)の地上部1質量部をブレンダーで粉砕した後、水1.5質量部を加え、ミキサーで攪拌した。ろ紙でろ過して、ろ液を採取し、121℃で10分間加熱し、遠心分離をして固形分を除去し、上清を回収した。次に、この上清を減圧乾燥して固形分を得た。これを実施例1−1の方法に準じて、藍抽出物1質量部に対し、10質量部の澱粉部分分解物(DE8、商品名『パインデックス#1』、松谷化学株式会社製)とともに200質量部の水に添加して加熱溶解した。適量の水酸化ナトリウムを添加してpH6.0に調整した後、澱粉部分分解物1gあたり200Uのサイクロデキストリングルカノトランスフェラーゼ(株式会社林原生物化学研究所製)を加え、40℃で24時間インキュベートした。その後、100℃で20分間インキュベートして酵素を失活させた後、ろ紙でろ過して、ろ液を採取し、減圧乾固して、本発明の抗微生物剤に用いるタデ藍抽出物の糖転移物を得た。
【0063】
このろ液を常法の高速液体クロマトグラフィー(HPLC)法に供し、カフェ酸糖転移物の含量を測定したところ、固形分当り、有効成分であるカフェ酸糖転移物は5mg/g、カフェ酸が12mg/gの濃度で含まれていた。
【0064】
【実施例7】
<口腔清浄剤>
常法にしたがって、下記に示す口腔清浄剤の基本処方に対して、実施例1−1の方法により得た没食子酸糖転移物、実施例2−1の方法により得た没食子酸n−プロピル糖転移物、実施例3−1の方法により得た没食子酸オクチル糖転移物、実施例4−1の方法により得たカフェ酸糖転移物、実施例5の方法により得たターミナリア ベリリカ抽出物の糖転移物、又は実施例6の方法により得たタデ藍抽出物の糖転移物をそれぞれ濃度1%(w/w)になるように配合して液状の口腔清浄剤を得た。
【0065】
エタノール 40質量部
グリセリン 15質量部
ポリオキシエチレン硬化ヒマシ油 1質量部
サッカリン 適量
香料 適量
クロルヘキシジン 適量
水 44重量部
【0066】
本例の口腔洗浄剤は、通常のうがい薬と同様に常用することによって、口腔内のグラム陰性菌、グラム陽性菌、真菌、酵母などに抗微生物性を示す。例えば、バチラス属、ミコバクテリウム属、シュードモナス属、エッセリシア属、スタフィロコッカス属、ストレプトコッカス属、サルモネラ属、クレブシラ属、プロテウス属、ビブリオ属、シゲラ属、ヘリコバクター属、クラミジア属、アスペルギルス属及びカンディダ属の微生物の増殖を効果的に抑制し、それらが発症原因をなる各種疾患を効果的に治療・予防することができる。
【0067】
【実施例8】
<錠剤>
常法にしたがって、マルトース粉末に、実施例1−2の方法により得た没食子酸糖転移物、実施例2−2の方法により得た没食子酸n−プロピル糖転移物、実施例3−2の方法により得た没食子酸オクチル糖転移物、実施例4−2の方法により得たカフェ酸糖転移物、実施例5の方法により得たターミナリア ベリリカ抽出物の糖転移物、又は実施例6の方法により得たタデ藍抽出物の糖転移物をそれぞれ濃度1%(w/w)になるように配合した後、打錠機により、直径1cm、厚さ3.2mmに打錠し、一錠0.5gの錠剤を得た。
【0068】
本例の抗微生物剤は、通常の錠剤と同様に常用することによって、生体内で速やかに溶解し、生体における微生物の増殖を抑制し、かつ、生体における持続性が優れるので長時間抗微生物効果を発揮することから、グラム陰性菌、グラム陽性菌、真菌、酵母などに抗微生物性を示す。例えば、バチラス属、ミコバクテリウム属、シュードモナス属、エッセリシア属、スタフィロコッカス属、ストレプトコッカス属、サルモネラ属、クレブシラ属、プロテウス属、ビブリオ属、シゲラ属、ヘリコバクター属、クラミジア属、アスペルギルス属、カンディダ属の微生物が発症原因になる疾患を効果的に治療・予防することができる。
【0069】
【実施例9】
<練歯磨>
常法にしたがって、下記に示す練歯磨の基本処方に対して、実施例1−1の方法により得た没食子酸糖転移物、実施例2−1の方法により得た没食子酸n−プロピル糖転移物、実施例3−1の方法により得た没食子酸オクチル糖転移物、実施例4−1の方法により得たカフェ酸糖転移物、実施例5の方法により得たターミナリア ベリリカ抽出物の糖転移物、又は実施例6の方法により得たタデ藍抽出物の糖転移物を、それぞれ濃度1%(w/w)になるように配合した後、アルミニウムラミネートチューブへ100gずつ充填してペースト状の抗微生物用の練歯磨を得た。
【0070】
第二燐酸カルシウム 42質量部
グリセリン 18質量部
カラギーナン 0.9質量部
ラウリル硫酸ナトリウム 1.1質量部
香料 適量
サッカリン 適量
水 38質量部
【0071】
本例の抗微生物用の練歯磨は、通常の練歯磨と同様に常用することによって、口腔におけるグラム陰性菌、グラム陽性菌、真菌、酵母などに抗微生物効果を示す。したがって、バチラス属、ミコバクテリウム属、シュードモナス属、エッセリシア属、スタフィロコッカス属、ストレプトコッカス属、サルモネラ属、クレブシラ属、プロテウス属、ビブリオ属、シゲラ属、ヘリコバクター属、クラミジア属、アスペルギルス属、カンディダ属の微生物が発症原因になる疾患を効果的に治療・予防することができる。
【0072】
【実施例10】
<トローチ剤>
常法にしたがって、下記に示すトローチ剤の基本処方に対して、実施例1−1の方法により得た没食子酸糖転移物、実施例2−1の方法により得た没食子酸n−プロピル糖転移物、実施例3−1の方法により得た没食子酸オクチル糖転移物、実施例4−1の方法により得たカフェ酸糖転移物、実施例5の方法により得たターミナリア ベリリカ抽出物の糖転移物、又は実施例6の方法により得たタデ藍抽出物の糖転移物をそれぞれ濃度1%(w/w)になるように配合し、成形して固状の抗微生物用のトローチ剤を得た。
【0073】
マルトース 35質量部
澱粉 34質量部
結晶セルロース 10質量部
ヒドロキシプロピルメチルセルロース 10質量部
ステアリン酸マグネシウム 1質量部
【0074】
本例の抗微生物用のトローチ剤は、通常のトローチ剤と同様に常用することによって、口腔内で速やかに溶解し、口腔内におけるグラム陰性菌、グラム陽性菌、真菌、酵母などに抗微生物効果を示す。したがって、バチラス属、ミコバクテリウム属、シュードモナス属、エッセリシア属、スタフィロコッカス属、ストレプトコッカス属、サルモネラ属、クレブシラ属、プロテウス属、ビブリオ属、シゲラ属、ヘリコバクター属、クラミジア属、アスペルギルス属、カンディダ属の微生物が発症原因になる疾患を効果的に治療・予防することができる。
【0075】
【実施例11】
<液剤>
常法にしたがって、イソロイシンを4質量%含有する注射用精製水に、実施例1−2の方法により得た没食子酸糖転移物、実施例2−2の方法により得た没食子酸n−プロピル糖転移物、実施例3−2の方法により得た没食子酸オクチル糖転移物、実施例4−2の方法により得たカフェ酸糖転移物、実施例5の方法により得たターミナリア ベリリカ抽出物の糖転移物、又は実施例6の方法により得たタデ藍抽出物の糖転移物を濃度1%(w/w)になるように溶解させた後、精密濾過、容器に充填して液状の抗微生物効果を有する液剤を得た。
【0076】
本例の抗微生物効果を有する液剤は、注射用剤、経粘皮用剤、経鼻腔用剤、経口用剤などとして、気道、鼻腔、口腔、視覚器、消化器、泌尿器、生殖器などにおけるグラム陰性菌、グラム陽性菌、真菌、酵母などに抗微生物効果を示す。したがって、バチラス属、ミコバクテリウム属、シュードモナス属、エッセリシア属、スタフィロコッカス属、ストレプトコッカス属、サルモネラ属、クレブシラ属、プロテウス属、ビブリオ属、シゲラ属、ヘリコバクター属、クラミジア属、アスペルギルス属、カンディダ属の微生物が発症原因になる疾患を効果的に治療・予防することができる。
【0077】
【実施例12】
<軟膏>
常法にしたがって、実施例1−1の方法により得た没食子酸糖転移物、実施例2−1の方法により得た没食子酸n−プロピル糖転移物、実施例3−1の方法により得た没食子酸オクチル糖転移物、実施例4−1の方法により得たカフェ酸糖転移物、実施例5の方法により得たターミナリア ベリリカ抽出物の糖転移物、又は実施例6の方法により得たタデ藍抽出物の糖転移物を濃度1%(w/w)になるように適量の燐酸緩衝生理食塩水(pH7.2)に溶解し、その水溶液100質量部を無水結晶マルトース49質量部と均一に配合した後、さらに450質量部の白色ワセリンと練り合わせて抗微生物用の軟膏を得た。
【0078】
本例の抗微生物用の軟膏は、皮膚外用剤、経粘皮用剤などとして、皮膚、泌尿器、生殖器などにおけるグラム陰性菌、グラム陽性菌、真菌、酵母などに抗微生物効果を示す。したがって、バチラス属、ミコバクテリウム属、シュードモナス属、エッセリシア属、スタフィロコッカス属、ストレプトコッカス属、サルモネラ属、クレブシラ属、プロテウス属、ビブリオ属、シゲラ属、ヘリコバクター属、クラミジア属、アスペルギルス属、カンディダ属の微生物が発症原因になる疾患を効果的に治療・予防することができる。
【0079】
【実施例13】
<点眼剤>
常法にしたがって、下記に示す点眼剤の基本処方に対して、実施例1−2の方法により得た没食子酸糖転移物、実施例2−2の方法により得た没食子酸n−プロピル糖転移物、実施例3−2の方法により得た没食子酸オクチル糖転移物、実施例4−2の方法により得たカフェ酸糖転移物、実施例5の方法により得たターミナリア ベリリカ抽出物の糖転移物、又は実施例6の方法により得たタデ藍抽出物の糖転移物を濃度1%(w/w)になるように配合して液状の抗微生物用の点眼剤を得た。
【0080】
トレハロース(2含水物) 20質量部
塩化ナトリウム 0.04質量部
塩化カリウム 0.02質量部
燐酸2水素ナトリウム 0.03質量部
硼砂 0.04質量部
塩化ベンザルコニウム 0.004質量部
精製水 80質量部
【0081】
本例の抗微生物用の点眼剤は、通常の点眼剤と同様に常用することによって、視覚器におけるグラム陰性菌、グラム陽性菌、真菌、酵母などに抗微生物効果を示す。したがって、バチラス属、ミコバクテリウム属、シュードモナス属、エッセリシア属、スタフィロコッカス属、ストレプトコッカス属、サルモネラ属、クレブシラ属、プロテウス属、ビブリオ属、シゲラ属、ヘリコバクター属、クラミジア属、アスペルギルス属、カンディダ属の微生物が発症原因になる疾患を効果的に治療・予防することができる。
【0082】
【発明の効果】
以上説明したとおり、本発明の抗微生物剤は、生体に対する毒性が低いうえ、水溶性に優れ生体内における持続性に優れるので、注射又は経皮、経粘皮、経鼻腔若しくは経口経路など生体に適用することによって、生体にとって好ましくない微生物の増殖を著明に抑制することができる。したがって、鼻腔、口腔、食道や気道、さらには視覚器、消化器、泌尿器、生殖器などへ侵入した微生物が発症原因となる、例えば、肺炎などの呼吸器系疾患や、動脈硬化、虚血性心疾患などの循環器系疾患、結膜炎などの視覚器系疾患、直腸炎などの消化器系疾患、尿道炎などの泌尿器系疾患、副睾丸炎、卵管炎、子宮頚管炎、切迫早産、卵管の炎症、癒着、閉塞などの生殖器系疾患、食中毒などの治療、予防に著効を発揮する。
とりわけ、本発明の抗微生物用口腔用剤は、抗生物質を有効成分とする経口用剤とは違って、耐性菌の出現を招来したり、長期間連用しても大腸における有用な菌叢を破壊する恐れが少ないないので、食欲不振、嘔吐、下痢、便秘、膨満感を生じたり、倦怠感、発湿などの副作用を惹起する恐れが少ない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antimicrobial agent, and more specifically, one or more selected from a glycosyl transfer product of hydroxybenzoic acid, a glycosyl transfer product of hydroxycinnamic acid, and derivatives thereof, and salts thereof. The present invention relates to an antimicrobial agent contained as an active ingredient.
[0002]
[Prior art]
In recent years, a clean living environment has been demanded, and antimicrobial agents are used in many articles such as foods, clothes, cosmetics, daily necessities, and building materials in addition to pharmaceutical applications. However, antimicrobial agents contain metal compounds and organic compounds as active ingredients, and many of them have a risk of being harmful to the environment and the human body. For example, halogenated phenols such as hexachlorophene and bithionol, halogenated salicylanilide, boric acid, hydrogen peroxide, mercury compounds, formaldehyde, etc. are now highly sensitive to skin and respiratory organs. Use is prohibited. In particular, formaldehyde is contained in a large amount in building materials and is well known as a causative substance of sick house syndrome. In addition, antibiotics used as pharmaceuticals have a risk of destroying useful flora in the large intestine and generating resistant bacteria.
[0003]
Currently, antimicrobial agents with high safety are required, and plant extracts or components contained therein are being used as antimicrobial agents for foods and food additives from the viewpoint of high safety. For example, it has been proposed to use hinokitiol, Shoso bamboo extract, green tea extract, indigo extract, propolis extract and the like as antimicrobial agents.
However, although these extracts are excellent in safety and antimicrobial effect, they have a problem that handling property is not good because the in vivo sustainability and water solubility of the compound contained as an active ingredient are poor. .
[0004]
[Problems to be solved by the invention]
In view of such a situation, an object of the present invention is to provide an antimicrobial agent that has a safe and sufficient antimicrobial effect on the living body and has good handleability.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted research focusing on hydroxyphenol compounds contained in plant extracts. As a result, gallic acid, which is a kind of hydroxybenzoic acid, and hydroxysilicate Caffeic acid, a kind of cinnamate, has an advantageous characteristic that it is relatively superior in antimicrobial effect among plant-derived antimicrobial compounds and has low toxicity to the human body. It has been found that there is a problem that sustainability in vivo is extremely low. Therefore, when glycated products of gallic acid or caffeic acid were prepared and the antimicrobial effect and persistence in vivo were examined, these glycosylated products were compared with gallic acid or caffeic acid that had not been transglycosylated. Although the antimicrobial effect is somewhat inferior, the present inventors have found that the compound has a level of activity that can be used as an antimicrobial agent, is excellent in water solubility, and has good handleability, thereby completing the present invention.
[0006]
That is, the present invention contains, as an active ingredient, one or more selected from a glycosylated product of hydroxybenzoic acid, a glycosylated product of hydroxycinnamic acid, and derivatives thereof, and salts thereof. The problem is solved by providing an antimicrobial agent.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hydroxybenzoic acid as referred to in the present invention is a component constituting the plant component tannin, and its sugar transfer product is used as an active ingredient of the antimicrobial agent of the present invention. In this specification, a kind of hydroxybenzoic acid gallic acid (3,4,5-trihydroxybenzoic acid, molecular weight of about 170) will be described. However, as long as the effect of the present invention is exhibited, other hydroxybenzoic acids are used. can do. As a method for preparing gallic acid used in the present invention, it is obtained by extracting from a plant rich in gallic acid or a derivative thereof, and hydrolyzing with an acid, alkali, heat, enzyme, etc., if necessary. Can do. The gallic acid used in the present invention can be obtained by a chemical synthesis method in addition to a method of extracting and purifying from a plant body regardless of its origin and preparation method, and it is optional to use a commercially available product. . In addition, a salt form can be used as long as the effects of the present invention are not impaired.
[0008]
Hydroxycinnamic acid as referred to in the present invention is a kind of plant component, and its glycosylated product is used as an active ingredient of the antimicrobial agent of the present invention. In this specification, a kind of hydroxycinnamic acid, caffeic acid (3,4-dihydroxycinnamic acid, molecular weight of about 180) will be described. However, as long as the effect of the present invention is exhibited, other hydroxycinnamic acids are used. can do. As a method for preparing caffeic acid used in the present invention, it is obtained by extracting from a plant rich in caffeic acid or a derivative thereof, and hydrolyzing with an acid, alkali, heat, enzyme or the like, if necessary. Can do. Caffeic acid used in the present invention is not limited to the method of extraction and purification from plant bodies regardless of its origin and preparation method, but also chemical synthesis, for example, 3,4-dihydroxybenzaldehyde, acetic anhydride and potassium acetate It can also be obtained by a method of synthesizing by reacting, and it is optional to use a commercially available product. In addition, a salt form can be used as long as the effects of the present invention are not impaired.
[0009]
Glycosyl transfer products and derivatives thereof of gallic acid used for the antimicrobial agent of the present invention, and glycosyl transfer products of caffeic acid and derivatives thereof are gallic acid or derivatives thereof by chemical or enzymatic glycosyl transfer reaction, and A sugar is transferred to caffeic acid or a derivative thereof via a hydroxyl group thereof. In the case where the sugar having undergone transglycosylation is glucose, examples of the typical gallic acid glycosyl transfer product include those of chemical formulas 1 to 3, and examples of the caffeic acid glycosyl transfer product include those of chemical formulas 4 and 5. In the formula, m and n represent an integer of 0 or more, and R represents a hydrogen atom or a hydrocarbon group. In Chemical Formulas 1 to 5, the bond between glucose is 1,4 bond, but it may be 1,3 bond or 1,6 bond. Further, in Chemical Formulas 1 to 5, although α-glucoside bonds are exemplified as the binding mode between the saccharide and gallic acid or caffeic acid, it is also possible to select β-glucoside bonds as necessary. . In addition, the caffeic acid sugar transfer product or the gallic acid sugar transfer product can be in the form of a salt as long as the effects of the present invention are not impaired.
[0010]
[Chemical 1]
Chemical formula 1:
Figure 0004571783
(In the formula, n represents an integer of 0 or more, and R represents a hydrogen atom or a hydrocarbon group)
[0011]
[Chemical 2]
Chemical formula 2:
Figure 0004571783
(In the formula, n represents an integer of 0 or more, and R represents a hydrogen atom or a hydrocarbon group)
[0012]
[Chemical Formula 3]
Chemical formula 3:
Figure 0004571783
(In the formula, m and n represent an integer of 0 or more, and R represents a hydrogen atom or a hydrocarbon group)
[0013]
[Formula 4]
Chemical formula 4:
Figure 0004571783
(In the formula, n represents an integer of 0 or more, and R represents a hydrogen atom or a hydrocarbon group)
[0014]
[Chemical formula 5]
Chemical formula 5:
Figure 0004571783
(In the formula, n represents an integer of 0 or more, and R represents a hydrogen atom or a hydrocarbon group)
[0015]
As the antimicrobial agent of the present invention, a gallic acid sugar transfer product and a caffeic acid sugar transfer product derivative can be used. The order of sugar transfer and derivatization to gallic acid and caffeic acid does not matter. As derivatives of gallic acid transfer products and caffeic acid transfer products, compounds that can be hydrolyzed relatively easily by treatment with acid, alkali, heating, etc. to produce gallic acid or caffeic acid are used. They can be natural or artificially synthesized. For example, as derivatives of gallic acid that exist in nature, a compound in which 1 to 5 molecules of gallic acid are ester-linked to one molecule of glucose, which is generically referred to as hydrolyzable tannin, such as galloylglucose, kebric acid, and ketebraic acid On the other hand, chlorogenic acid and the like can be exemplified as a derivative of caffeic acid. Since the glycosylated products of these derivatives produce a glycosylated product of gallic acid or a glycosylated product of caffeic acid after hydrolysis and exhibit an antimicrobial effect, they can be used as a component of the antimicrobial agent of the present invention. . When transglycosylating gallic acid or a derivative of caffeic acid, a compound having a hydroxyl group capable of transglycosylation to gallic acid and caffeic acid moiety is preferred, and sugars other than gallic acid or caffeic acid moiety are also preferred. A compound having no transferable hydroxyl group is preferred. As such a derivative, for example, pentagalloylglucose (1,2,3,4,6-pentakis-O-galloyl-β-D-glucose) which is a kind of galloylglucose represented by Chemical Formula 6 can be mentioned. .
[0016]
[Chemical 6]
Chemical formula 6:
Figure 0004571783
[0017]
Furthermore, as derivatives of gallic acid and caffeic acid, derivatives having appropriate modifications can be used in order to improve the antimicrobial effect of gallic acid and caffeic acid. Examples of such derivatives include compounds in which a hydrocarbon group is ester-bonded to a carboxyl group of gallic acid and caffeic acid. The hydrocarbon group to be ester-bonded may be a chain hydrocarbon group or a cyclic hydrocarbon group, and may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. Preferred hydrocarbon groups in the present invention are chain hydrocarbon groups, so-called aliphatic hydrocarbon groups. An ester derivative of gallic acid or caffeic acid and an aliphatic hydrocarbon group (hereinafter sometimes simply referred to as an ester derivative) has a feature that antimicrobial properties are improved according to the number of carbon atoms of the aliphatic hydrocarbon group. And is advantageously used as the antimicrobial agent of the present invention. In addition, although ester derivatives of gallic acid or caffeic acid and an aliphatic hydrocarbon group tend to become less water-soluble as the number of carbon atoms in the hydrocarbon group increases, water solubility is improved by sugar transfer. The number of carbon atoms of the hydrocarbon group may be appropriately selected according to the method of using the antimicrobial agent of the present invention, the form thereof, the target microorganism, and the like, and is usually in the range of 1 to 12 carbon atoms, preferably 3 to 8 carbon atoms. Those obtained by sugar transfer to ester derivatives with a range of hydrocarbon groups are used as the antimicrobial agent of the present invention. Since ester derivatives with hydrocarbon groups having more than 12 carbon atoms have significantly reduced water solubility, the water solubility is not sufficiently improved even by sugar transfer, and the antimicrobial agent of the present invention is applied to a living body. May not be preferable. In addition, n-propyl gallate, which is an ester derivative of gallic acid and an aliphatic hydrocarbon group having 3 carbon atoms, has high antimicrobial properties despite the small number of carbon atoms in the hydrocarbon group. It is particularly advantageously used as the antimicrobial agent of the invention.
[0018]
As a method for obtaining a glycosylated product of gallic acid, a glycosylated product of caffeic acid, and derivatives thereof (hereinafter sometimes simply referred to as “glycosylated product of gallic acid” or “glycosylated product of caffeic acid”). Is not particularly limited, and can be produced by a chemical synthesis method or an enzymatic reaction method. Among these, since the enzyme reaction method using glycosyltransferase is simple, it can be advantageously used in the present invention. For example, dextrin, cyclodextrin, starch or a mixture thereof is added to gallic acid or a derivative thereof, or caffeic acid or a derivative thereof, and this is added to, for example, a glycosyltransferase produced by a microorganism belonging to the genus Bacillus, for example, Bacillus・ Cyclodextrin glucanotransferase derived from stearothermophilus (EC 2.4.1.19) is allowed to act on sugar, and then, if desired, glucoamylase and / or β-amylase is allowed to act on the enzyme reaction solution. The method of letting it be mentioned. According to this method, it is possible to adjust the degree of polymerization of the saccharide portion of the glycated gallic acid transfer product and the caffeic acid saccharide transfer product.
[0019]
Moreover, as a method for obtaining a glycosylated product of gallic acid or a glycosylated product of caffeic acid, an extract of a plant body containing these can be glycosylated as it is or at an appropriate stage of the purification process. In this case, gallic acid or a derivative thereof, or caffeic acid or a derivative thereof, and some of the other components become a sugar transfer product, which also improves the water solubility of those components, so the water solubility of the extract It can be expected to greatly improve As a plant containing gallic acid or a derivative thereof, or caffeic acid or a derivative thereof, green tea, black tea, coffee, and the like are common. In addition, plants belonging to the genus Momotamana, Tade indigo (Polygonum genus) and the like can be mentioned. However, it is not limited to these.
[0020]
The antimicrobial agent of the present invention includes gallic acid or a derivative thereof, or a caffeic acid or a derivative thereof (hereinafter referred to as a non-glycosyl transfer product derived from the production method), in addition to a glycated sugar-transferred product or a caffeic acid-transferred product May be simply referred to as “unglycosylated product”). The unglycosylated product can be removed from the glycosylated product by a technique such as high performance liquid chromatography (HPLC), but it can also be added to the antimicrobial agent of the present invention while containing the unglycosylated product. If necessary, a non-glycosylated product corresponding to the glycosylated product can be blended with the antimicrobial agent of the present invention. In this case, the content of the glycosylated product is usually 10% or more, preferably 20% or more, and more preferably 50% or more, in molar ratio with respect to the sum of the glycosylated product and the unglycosylated product. If the ratio of the glycosylated product is less than 10%, the effect of improving the in vivo sustainability and water solubility cannot be sufficiently expected, which may be undesirable.
[0021]
Further, in the glycated sugar transfer product or caffeic acid transfer product used in the present invention, in addition to glucose, monosaccharides such as galactose, mannose, and fucose, amino sugars such as glucosamine and galactosamine, and the like can be transferred to sugar. You can choose. The degree of polymerization of the saccharide moiety in the glycosylated product is preferably selected from 1 to 5, more preferably 1 to 3, and most preferably 1. The higher the degree of polymerization of the saccharide part, the better the effect of improving the in vivo persistence and water solubility of gallic acid and caffeic acid. Tend to decrease. Therefore, when an immediate effect is expected, a sugar transfer product having a saccharide portion having a degree of polymerization exceeding 5 may not be preferable.
[0022]
The antimicrobial agent of the present invention contains a gallic acid transfer product and / or a caffeic acid transfer product as an active ingredient, and optionally gallic acid or a derivative thereof, and / or caffeic acid or a derivative thereof. Can be blended. In general, one or more of the components for constituting an injectable agent, an external skin agent, a transmucosal agent, a nasal agent, or an oral agent can be blended.
[0023]
The antimicrobial agent of the present invention is prepared in the form of, for example, liquid, paste or solid injection, external skin preparation, transmucosal agent, nasal cavity agent, oral agent, etc., depending on the use. Specifically, for oral preparations such as injections, eye drops, suppositories, ointments, oral cleansing agents such as toothpastes and mouthwashes, and oral bactericides in the dental field. Form is preferred. Therefore, the antimicrobial agent of the present invention includes powders, fine granules, pills, tablets, capsules, troches, limonades, elixirs, syrups, fragrances, suspensions, emulsions, dipping agents, decoctions, Commonly used in tinctures, extracts, flow extracts, spirits, liniments, lotions, ointments, poultices, plasters, suppositories, eye drops, eye ointments, injections, for example, abrasives, Foaming agent, wetting agent, binder, flavoring agent, sweetener, preservative, fluorine compound, enzyme agent, deodorant, and further, excipient, ointment base, solubilizer, flavoring agent, flavoring agent, coloring Use in combination with one or more preparations such as an agent, an emulsifier, a propellant, etc. In addition, it is widely used in drugs of such dosage forms without departing from the object of the present invention, for example, hemostatic agents, anti-inflammatory agents, tissue activators, antimicrobial agents, antibiotics, interferon α, interferon Combination with one or a plurality of other medicinal components including β and interferon γ is not hindered. In addition, as a preparation for injections, transmucosal agents, nasal cavity, oral preparations, it has the property of stabilizing glycated acid transfer products and caffeic acid transfer products, for example, Sugar, sugar alcohols such as sucrose, glucose, maltose, trehalose, fructose, cyclic tetrasaccharide, mannitol, maltitol, as well as alanine, arginine, asparagine, aspartic acid, citrulline, cysteine, cystine, glutamine, glycine, histidine, isoleucine , Leucine, lysine, methionine, ornithine, phenylalanine, phenylglycine, proline, serine, threonine, tryptophan, tyrosine, valine, hydroxyproline, γ-carboxyglutamate, O-phosphoserine, β-alanine, α-aminobutyric acid, γ- Amino dairy , Α-aminoisobutyric acid, 4- (4-aminophenyl) butyric acid, aminophenylbutyric acid, aminobenzoic acid, 4-aminohippuric acid, aminomethylbenzoic acid, ε-aminocaproic acid, 7-aminoheptanoic acid, β-asparagine Preferred are amino acids such as acid, γ-glutamic acid, ε-lysine, methionine sulfone, norleucine, norvaline, ornithine, d-ornithine, p-nitro-phenylalanine, hydroxyproline, thioproline, or derivatives or oligopeptides of these amino acids, if necessary Accordingly, these are used in combination.
[0024]
The antimicrobial spectrum of the antimicrobial agent of the present invention is relatively wide and exhibits an antimicrobial effect against many microorganisms such as gram-negative bacteria, gram-positive bacteria, fungi and yeast. Examples of the microorganisms targeted by the antimicrobial agent of the present invention include, for example, Bacillus, Mycobacterium, Pseudomonas, Esseria, Staphylococcus, Streptococcus, Salmonella, Klebsiella, Proteus, Vibrio, Examples include microorganisms belonging to the genus Shigella, Helicobacter, Chlamydia, Aspergillus, Candida and the like.
[0025]
The amount of the gallic acid glycosylated product and / or the caffeic acid glycosylated product to be blended with the antimicrobial agent of the present invention may be appropriately determined in consideration of its dosage form, method of use, etc. Alternatively, in terms of caffeic acid, the total amount of gallic acid and caffeic acid is 0.001 to 100% (w / w), preferably 0.01 to 100% (w / w), more preferably 0.1 to It is selected from the range of 100% (w / w). The dose depends on the application target and administration route of the antimicrobial agent, but the total amount of gallic acid and caffeic acid is usually 1 ng to 1 g / day / adult in terms of gallic acid or caffeic acid, Preferably, 10 ng to 100 mg / day / adult.
[0026]
The antimicrobial agent of the present invention can be applied to various kinds of living organisms by injection or transdermal, transmucosal, nasal agent or oral route at such a dose at a frequency of once or more per day or week. Because it significantly suppresses the growth of pathogenic microorganisms, pathogenic microorganisms that have entered the nasal cavity, oral cavity, respiratory tract, visual organs, digestive organs, urinary organs, genitals, etc. cause onset, for example, respiration such as pneumonia Systemic diseases, circulatory system diseases such as arteriosclerosis, ischemic heart disease, visual system diseases such as conjunctivitis, digestive system diseases such as proctitis, urinary system diseases such as urethritis, accessory testicularitis, fallopian tube It is effective for the treatment and prevention of genital system diseases such as inflammation, cervicitis, imminent premature labor, fallopian tube inflammation, adhesion, obstruction, and food poisoning. In particular, the antimicrobial agent of the present invention, unlike oral preparations containing antibiotics as an active ingredient, may cause the appearance of resistant bacteria or destroy the useful flora in the large intestine even after prolonged use. It does not cause loss of appetite, vomiting, diarrhea, constipation, bloating, or causing side effects such as malaise and moisture.
[0027]
As described above, the glycosylated product of gallic acid and / or the glycosylated product of caffeic acid have the advantage of being excellent in sustainability and water solubility in a living body. These characteristics are also exhibited when a compound having poor water solubility, such as a gallic acid ester derivative having an aliphatic hydrocarbon group having 3 or more carbon atoms, caffeic acid and a caffeic acid ester derivative, is transglycosylated. In addition, it is known that three adjacent hydroxyl groups of gallic acid form a complex with iron ions and discolor, and therefore, an effect of preventing discoloration of gallic acid can be expected by sugar transfer.
[0028]
Hereinafter, the properties and effects of the antimicrobial agent according to the present invention will be described based on experimental examples.
[0029]
[Experiment 1]
<Preparation of sugar transfer product of gallic acid, gallic acid ester derivative and caffeic acid>
1 part by weight of gallic acid, methyl gallate, ethyl gallate, n-propyl gallate, octyl gallate, dodecyl gallate (manufactured by Kanto Chemical Co., Ltd.) or caffeic acid (manufactured by Wako Pure Chemical Industries, Ltd.) Each of them was added to 200 parts by mass of water together with 10 parts by mass of a partially decomposed starch (DE8, trade name “Paindex # 1”, manufactured by Matsutani Chemical Co., Ltd.) and dissolved by heating. After adjusting the pH to 6.0 by adding an appropriate amount of sodium hydroxide, 200 U cyclodextrin glucanotransferase (produced by Hayashibara Biochemical Laboratories) was added per 1 g of the partially decomposed starch and incubated at 40 ° C. for 24 hours. . Then, after incubating at 100 ° C. for 20 minutes to inactivate the enzyme, an appropriate amount of sodium hydroxide was added to adjust the pH to 4.5, and then 50 U of glucoamylase (trade name “gluco” Team ”, manufactured by Nagase Seikagaku Corporation), and incubated at 40 ° C. for 20 hours. Next, the enzyme was inactivated by incubating at 80 ° C. for 10 minutes, followed by filtration with filter paper. In each reaction solution, 200 ml of synthetic adsorbent (trade name “HP10”, Mitsubishi Chemical) per gram of gallic acid, methyl gallate, ethyl gallate, n-propyl gallate, octyl gallate, dodecyl gallate, or caffeic acid Loaded onto a column packed with Co., Ltd., washed with water, further washed with 5% (w / w) aqueous ethanol solution, and 15 to 50% (w / w) depending on the hydrophobicity of each sample. w) Elution with an aqueous ethanol solution. After these were dried under reduced pressure, redissolved in water, the same operation was repeated with the same column, the eluate was dried under reduced pressure, and the sugar transfer product of gallic acid used for the antimicrobial agent of the present invention, gallic acid A methyl glycosyl transfer product, an ethyl gallate glycosyl transfer product, an n-propyl gallate glycosyl transfer product, an octyl gallate glycosyl transfer product, a dodecyl gallate glycosyl transfer product, and a caffeic acid glycosyl transfer product were obtained. When these were measured for ultraviolet absorption by conventional high performance liquid chromatography (HPLC) analysis and the composition ratio (molar ratio) was determined, all the glycosylated products prepared were monoglucosides, and their purity was All were over 95%.
1U of cyclodextrin glucanotransferase is prepared by adding 0.2 ml of enzyme solution to 5 ml of 0.3% (w / w) soluble starch powder solution dissolved in 20 mM acetate buffer (pH 5.5) containing 1 mM calcium chloride. The mixture was reacted at 40 ° C. for 10 minutes, 0.5 ml of this reaction solution was added to 15 ml of 0.02N sulfuric acid to stop the reaction, 0.2 ml of 0.1N iodine solution was added thereto, and the absorbance at 660 nm was then added. Is defined as the amount of enzyme that reduces the absorbance by 10%. In addition, 1U of glucoamylase is added to 0.2 ml of enzyme solution to 5 ml of 1.0% (w / w) soluble starch powder solution (20 mM acetate buffer, pH 4.5), and reacted at 40 ° C. for 10 minutes. When the amount of produced reducing sugar is measured by the Somogy-Nelson method, it is defined as the amount of enzyme that liberates reducing power corresponding to 1 μmol of glucose per minute at 40 ° C.
[0030]
[Experimental example 2]
<Water-solubility of sugar transfer products of gallic acid, gallic acid ester derivatives and caffeic acid>
The solubility of the glycosylated product obtained in Experimental Example 1 in water at 37 ° C. was measured and compared with each of the unglycosylated products. The results are shown in Table 1.
[0031]
[Table 1]
Figure 0004571783
[0032]
From the results shown in Table 1, gallic acid, gallic acid ester derivatives, and caffeic acid sugar transfer products are superior in water solubility to their respective non-sugar transfer products, and in particular, gallic acid n-, which is relatively poor in water solubility. For propyl, octyl gallate, dodecyl gallate and caffeic acid, the effect of improving water solubility was significant. Separately, a similar experiment was performed on a glycosylated product in which the degree of polymerization of the transferred sugar exceeded 1, and the higher the degree of polymerization of the sugar-transferred saccharide part, the better the water-solubility effect. It was.
[0033]
[Experiment 3]
<Antimicrobial effect of various sugar transfer products>
Antimicrobial effects of various glycosylated products prepared in Experimental Example 1, a glycosylated product of Terminaria berylica extract prepared in Example 5 described later, and a glycosylated product of Tade indigo extract prepared in Example 6 described later The minimum growth inhibitory concentration (MIC) of the microorganisms listed in Table 2 was measured according to a conventional method. Moreover, each non-sugar transfer thing was used as a control. The results are shown in Table 2. In addition, the gram number of methyl gallate, ethyl gallate, n-propyl gallate, octyl gallate, dodecyl gallate and its sugar transfer product in Table 2 indicates the value in terms of gallic acid, and the terminaria berylica extract and Tade indigo extracts and their sugar transfer products are shown in grams of solids.
[0034]
[Table 2]
Figure 0004571783
[0035]
From the results in Table 2, it was found that the minimum growth inhibitory concentration for microorganisms was reduced in the range of equivalent to 1/32 as a result of sugar transfer, but the antimicrobial effect was retained. On the other hand, in the case of Terminaria berylica extract and indigo extract, the antimicrobial effect is unexpectedly considered considering that the content of the glycated product of gallic acid or caffeic acid as an active ingredient is about 1% per solid content of the extract. It was excellent and it was assumed that the effects of other components were added. In addition, when the same test was conducted with a high degree of polymerization of the saccharide portion of the sugar transfer product, a tendency was observed that the antimicrobial activity decreased as the degree of polymerization increased.
[0036]
[Experimental Example 4]
<Durability in vivo>
Various glycosylated products prepared in Experimental Example 1 were prepared in 0.1 mg / ml aqueous solution in terms of gallic acid or caffeic acid, and sterilized by filtration. On the other hand, the glycosyl transfer product of Terminaria berylica extract prepared in Example 5 described later and the glycosyl transfer product of Tade indigo extract prepared in Example 6 described later have 0.1 mg of gallic acid or caffeic acid contained therein. The solution was prepared to be a / ml aqueous solution, and sterilized by filtration. These were each injected 1 ml (0.1 mg) into the femoral vein of a 5-week-old female Wistar rat. After standing for a certain period of time, blood was collected over time from the tail vein of the rat, and the contents of gallic acid and caffeic acid in the serum were measured by a conventional liquid high-performance chromatography method. Moreover, it tested similarly using each non-sugar transfer thing as a control | contrast. As a result, unglycosylated products can no longer be detected in the blood approximately 2 hours after intravenous injection, whereas in the case of glycosylated products, gallic acid, gallate derivatives or cafes from blood until 8 hours after intravenous injection. The acid could be detected. This result shows that the glycosylated product is superior in sustainability in vivo to the unsuccessed product. At the same time, when the same test was performed on a sugar transfer product having a high degree of polymerization of the saccharide moiety, the sustainability of gallic acid, gallic acid ester derivatives and caffeic acid in vivo increased as the degree of polymerization increased. A trend was observed.
[0037]
[Experimental Example 5]
<Acute toxicity test>
The various glycosylated products prepared in Experimental Example 1 were administered percutaneously, orally or intraperitoneally to 10 male mice each 8 weeks old according to a conventional method. As a result, these LDs50Was about 100 mg / kg (mouse body weight) or more for any route of administration. This result shows that the glycosylated product of gallic acid and the glycosylated product of caffeic acid are safe as pharmaceuticals premised on administration to humans.
[0038]
From the above results, the glycated and / or caffeic acid glycosylated product of gallic acid is inferior to the antimicrobial effect of these unglycosylated products, but has an antimicrobial effect exceeding the level useful as an antimicrobial agent. Furthermore, it was excellent in in vivo sustainability and water solubility. The characteristics possessed by these sugar transfer products indicate that the antimicrobial agent of the present invention is advantageous as an antimicrobial agent applied to a living body.
[0039]
Hereinafter, embodiments of the present invention will be described based on examples.
[0040]
[Example 1]
<Preparation of gallic acid sugar transfer product>
[0041]
Example 1-1
1 part by weight of gallic acid (manufactured by Kanto Chemical Co., Ltd.) is added to 200 parts by weight of water together with 10 parts by weight of a partially decomposed starch (DE8, trade name “Paindex # 1”, manufactured by Matsutani Chemical Co., Ltd.) And dissolved by heating. After adjusting the pH to 6.0 by adding an appropriate amount of sodium hydroxide, 200 U cyclodextrin glucanotransferase (produced by Hayashibara Biochemical Laboratories) was added per 1 g of the partially decomposed starch and incubated at 40 ° C. for 24 hours. . Thereafter, the enzyme is inactivated by incubating at 100 ° C. for 20 minutes, followed by filtration with filter paper. Further, it is loaded onto a synthetic adsorbent (trade name “HP10”, manufactured by Mitsubishi Chemical Corporation) and adsorbed, The fractions eluted with 10 to 20% (w / w) ethanol aqueous solution were collected after washing with starch and the gallic saccharide used for the antimicrobial agent of the present invention. A transfer was obtained.
[0042]
When this was subjected to a conventional high performance liquid chromatography (HPLC) analysis, ultraviolet absorption was measured and a composition ratio (molar ratio) was determined, a gallic acid sugar transfer product having a saccharide portion having a glucose polymerization degree of 1 was obtained. 10%, 4% gallic acid glycosyl transfer product having a saccharide moiety having a glucose polymerization degree of 2 and 6% gallic acid glycosyl transfer product having a saccharide having a glucose polymerization degree of 6 or more, remaining unreacted gallic acid The acid acid was 80%.
[0043]
Example 1-2
An appropriate amount of sodium hydroxide was added to the reaction solution after the cyclodextrin glucanotransferase treatment obtained in Example 1-1 to adjust the pH to 4.5, and then 50 U of glucoamylase (product) per gram of the partially degraded starch. The name “Glucoteam” (manufactured by Nagase Seikagaku Corporation) was added and incubated at 40 ° C. for 20 hours. Subsequently, the enzyme was inactivated by incubating at 80 ° C. for 10 minutes, followed by filtration with filter paper as in Example 1-1, and further, a synthetic adsorbent (trade name “HP10”, Mitsubishi Chemical Corporation). The product was washed with water to elute the partially decomposed starch, and the fraction eluted with 20-30% (w / w) ethanol aqueous solution was collected and dried under reduced pressure. A gallic acid sugar transfer product used for the antimicrobial agent of the invention was obtained.
[0044]
When this was subjected to a conventional high performance liquid chromatography (HPLC) analysis, ultraviolet absorption was measured and a composition ratio (molar ratio) was determined, a gallic acid sugar transfer product having a saccharide portion having a glucose polymerization degree of 1 was obtained. 80%, 4% of the gallic acid glycosyl transfer product having a saccharide moiety having a glucose polymerization degree of 2 and 1% of the gallic acid glycosyl transfer product having a saccharide part having a glucose polymerization degree of 3 or more remained unreacted. The gallic acid was 15%.
[0045]
[Example 2]
<Preparation of gallic acid n-propyl sugar transfer product>
[0046]
Example 2-1
In accordance with the method of Example 1-1, 1 part by mass of n-propyl gallate (manufactured by Kanto Chemical Co., Ltd.) was changed to 10 parts by mass of a partially decomposed starch (DE8, trade name “Paindex # 1”, Matsutani). It was added to 200 parts by mass of water together with Chemical Co., Ltd. and dissolved by heating. After adjusting the pH to 6.0 by adding an appropriate amount of sodium hydroxide, 200 U cyclodextrin glucanotransferase (produced by Hayashibara Biochemical Laboratories) was added per 1 g of the partially decomposed starch and incubated at 40 ° C. for 24 hours. .
Thereafter, the enzyme is inactivated by incubating at 100 ° C. for 20 minutes, followed by filtration with filter paper. Further, it is loaded onto a synthetic adsorbent (trade name “HP10”, manufactured by Mitsubishi Chemical Corporation) and adsorbed, The fractions eluted with 35% to 50% (w / w) ethanol aqueous solution were collected by washing with ethanol, and the fraction eluted with ethanol aqueous solution was collected, dried under reduced pressure, and gallic acid n used in the antimicrobial agent of the present invention. A propyl sugar transfer product was obtained.
[0047]
This was subjected to conventional high performance liquid chromatography (HPLC) analysis, ultraviolet absorption was measured to determine the composition ratio (molar ratio), and n-propyl sugar gallate having a saccharide portion having a glucose polymerization degree of 1 N-propyl gallate having a saccharide portion having a sugar moiety having a sugar content of 14% and a glucose polymerization degree of 2%, and 9% of a n-propyl gallate having a sugar having a glucose polymerization degree of 3 or more is 9%. %, N-propyl gallate remaining unreacted was 67%.
[0048]
Example 2-2
In accordance with the method of Example 1-2, the reaction solution after the cyclodextrin glucanotransferase treatment obtained in Example 2-1 was adjusted to pH 4.5 by adding an appropriate amount of sodium hydroxide, and then starch. 50 U of glucoamylase (trade name “Glucoteam”, manufactured by Nagase Seikagaku Corporation) per 1 g of the partially decomposed product was added and incubated at 40 ° C. for 20 hours. Next, after incubating at 80 ° C. for 10 minutes to inactivate the enzyme, it was filtered with a filter paper as in Example 2-1, and further a synthetic adsorbent (trade name “HP10”, Mitsubishi Chemical Corporation). The product was adsorbed by loading and washed with water to elute the partially decomposed starch, and then the fraction eluted with 35-50% (w / w) aqueous ethanol solution was collected and dried under reduced pressure. A gallic acid n-propyl glycosyl transfer product used for the antimicrobial agent of the invention was obtained.
[0049]
This was subjected to conventional high performance liquid chromatography (HPLC) analysis, ultraviolet absorption was measured to determine the composition ratio (molar ratio), and n-propyl sugar gallate having a saccharide portion having a glucose polymerization degree of 1 N-propyl gallate having a saccharide portion having a saccharide moiety having a transfer rate of 76% and a glucose polymerization degree of 2 is 7%, and an n-propyl gallate transfer product having a saccharide portion having a glucose polymerization degree of 3 or more. 2%, n-propyl gallate remaining unreacted was 15%.
[0050]
[Example 3]
<Preparation of octyl gallate transfer product>
[0051]
Example 3-1
In accordance with the method of Example 1-1, 1 part by mass of gallic octyl (manufactured by Kanto Chemical Co., Ltd.) and 10 parts by mass of a partially decomposed starch (DE8, trade name “Paindex # 1”, Matsutani Chemical Co., Ltd.) The product was added to 200 parts by mass of water and dissolved by heating. After adjusting the pH to 6.0 by adding an appropriate amount of sodium hydroxide, 200 U cyclodextrin glucanotransferase (produced by Hayashibara Biochemical Laboratories) was added per 1 g of the partially decomposed starch and incubated at 40 ° C. for 24 hours. . Thereafter, the enzyme is inactivated by incubating at 100 ° C. for 20 minutes, followed by filtration with filter paper. Further, it is loaded onto a synthetic adsorbent (trade name “HP10”, manufactured by Mitsubishi Chemical Corporation) and adsorbed, The fractions eluted with 35 to 50% (w / w) ethanol aqueous solution were collected by washing with ethanol, and the fraction eluted with ethanol aqueous solution was collected, dried under reduced pressure, and octyl gallate used for the antimicrobial agent of the present invention. A glycosylated product was obtained.
[0052]
This was subjected to a conventional high performance liquid chromatography (HPLC) analysis, and ultraviolet absorption was measured to determine a composition ratio (molar ratio). As a result, an octyl gallate transfer product having a saccharide portion having a glucose polymerization degree of 1 was obtained. 14%, octyl gallate glyceryl transfer product having a saccharide portion having a glucose polymerization degree of 2 is 5%, octyl gallate transfer product having a saccharide having a glucose polymerization degree of 3 or more is 7%, and remains unreacted The remaining octyl gallate was 74%.
[0053]
Example 3-2
In accordance with the method of Example 1-2, the reaction liquid after the cyclodextrin glucanotransferase treatment obtained in Example 3-1 was adjusted to pH 4.5 by adding an appropriate amount of sodium hydroxide, and then starch. 50 U of glucoamylase (trade name “Glucoteam”, manufactured by Nagase Seikagaku Corporation) per 1 g of the partially decomposed product was added and incubated at 40 ° C. for 20 hours. Subsequently, after incubating at 80 ° C. for 10 minutes to inactivate the enzyme, it was filtered with a filter paper as in Example 3-1, and further a synthetic adsorbent (trade name “HP10”, Mitsubishi Chemical Corporation). The product was adsorbed by loading and washed with water to elute the partially decomposed starch, and then the fraction eluted with 35-50% (w / w) aqueous ethanol solution was collected and dried under reduced pressure. The octyl gallate transfer product used for the antimicrobial agent of the invention was obtained.
[0054]
This was subjected to a conventional high performance liquid chromatography (HPLC) analysis, and ultraviolet absorption was measured to determine a composition ratio (molar ratio). As a result, an octyl gallate transfer product having a saccharide portion having a glucose polymerization degree of 1 was obtained. Of octyl gallate having a saccharide portion with a glucose polymerization degree of 2 and 2%, 1% of an octyl gallate transferase having a saccharide portion with a glucose polymerization degree of 3 or more, unreacted The remaining octyl gallate was 21%.
[0055]
[Example 4]
<Preparation of caffeic acid sugar transfer product>
[0056]
Example 4-1
In accordance with the method of Example 1-1, 1 part by mass of caffeic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was changed to 10 parts by mass of a partially decomposed starch (DE8, trade name “Paindex # 1”, Matsutani Chemical). The product was added to 200 parts by mass of water together with the product and dissolved by heating. After adjusting the pH to 6.0 by adding an appropriate amount of sodium hydroxide, 200 U cyclodextrin glucanotransferase (produced by Hayashibara Biochemical Laboratories) was added per 1 g of the partially decomposed starch and incubated at 40 ° C. for 24 hours. . Thereafter, the enzyme is inactivated by incubating at 100 ° C. for 20 minutes, followed by filtration with filter paper. Further, it is loaded onto a synthetic adsorbent (trade name “HP10”, manufactured by Mitsubishi Chemical Corporation) and adsorbed, After washing with starch to elute the partially decomposed starch, the fraction eluted with 35-50% (w / w) ethanol aqueous solution was collected, dried under reduced pressure, and caffeic acid sugar used for the antimicrobial agent of the present invention A transfer was obtained.
[0057]
When this was subjected to a conventional high performance liquid chromatography (HPLC) analysis, ultraviolet absorption was measured and a composition ratio (molar ratio) was obtained, a caffeic acid sugar transfer product having a saccharide portion having a glucose polymerization degree of 1 was obtained. 19%, 9% caffeic acid glycosyl transfer product having a sugar moiety having a glucose polymerization degree of 2, 9% caffeic acid glycosyl transfer product having a sugar having a glucose polymerization degree of 3 or more, and remaining unreacted cafe The acid was 65%.
[0058]
Example 4-2
In accordance with the method of Example 1-2, after adding the appropriate amount of sodium hydroxide to the reaction solution after the cyclodextrin glucanotransferase treatment obtained in Example 4-1, the starch was adjusted to pH 4.5. 50 U of glucoamylase (trade name “Glucoteam”, manufactured by Nagase Seikagaku Corporation) per 1 g of the partially decomposed product was added and incubated at 40 ° C. for 20 hours. Subsequently, after incubating at 80 ° C. for 10 minutes to inactivate the enzyme, it was filtered with a filter paper as in Example 4-1, and further a synthetic adsorbent (trade name “HP10”, Mitsubishi Chemical Corporation). The product was washed with water to elute the partially decomposed starch, and the fraction eluted with 20-30% (w / w) ethanol aqueous solution was collected and dried under reduced pressure. A caffeic acid sugar transfer product used for the antimicrobial agent of the invention was obtained.
[0059]
When this was subjected to a conventional high performance liquid chromatography (HPLC) analysis, ultraviolet absorption was measured and a composition ratio (molar ratio) was obtained, a caffeic acid sugar transfer product having a saccharide portion having a glucose polymerization degree of 1 was obtained. 78%, 3% caffeic acid glycosyl transfer product having a sugar moiety having a glucose polymerization degree of 2 and 1% caffeic acid glycosyl transfer product having a sugar part having a glucose polymerization degree of 3 or more remained unreacted. Caffeic acid was 18%.
[0060]
[Example 5]
<Preparation of glycosylated product of Terminaria berylica extract>
Momotamana Terminaria Berylica (Terminaria  bellicica) Was pulverized with a blender, 10 parts by mass of 50% (w / w) ethanol aqueous solution was added, and the mixture was stirred at 50 ° C. for 60 minutes. The filtrate was collected by filtration with filter paper, and the supernatant from which the solid components were removed by centrifugation was dried under reduced pressure to obtain a solid content. In accordance with the method of Example 1-1, 1 part by mass of this solid content was 200 parts by mass with 10 parts by mass of a partially decomposed starch (DE8, trade name “Paindex # 1”, manufactured by Matsutani Chemical Co., Ltd.). It was added to water and dissolved by heating. After adjusting the pH to 6.0 by adding an appropriate amount of sodium hydroxide, 200 U cyclodextrin glucanotransferase (produced by Hayashibara Biochemical Laboratories) was added per 1 g of the partially decomposed starch and incubated at 40 ° C. for 24 hours. . Then, after incubating at 100 ° C. for 20 minutes to inactivate the enzyme, according to the method of Example 1-2, an appropriate amount of sodium hydroxide was added to adjust the pH to 4.5, and then the starch partially decomposed product 50 U of glucoamylase (trade name “Glucoteam”, manufactured by Nagase Seikagaku Corporation) per 1 g was added and incubated at 40 ° C. for 20 hours. Next, the enzyme is inactivated by incubating at 80 ° C. for 10 minutes, and then filtered through a filter paper. The filtrate is collected, dried under reduced pressure, and sugar of the terminaria berylica extract used in the antimicrobial agent of the present invention. A transfer was obtained.
[0061]
The filtrate was subjected to a conventional high performance liquid chromatography (HPLC) method, and the content of the gallic acid sugar transfer product was measured. As a result, the gallic acid sugar transfer product as an active ingredient was 8 mg / g, gallic acid per solid content. Was 7 mg / g. In addition, a small amount of pentagalloylglucose sugar transfer product was detected.
[0062]
[Example 6]
<Glucose transfer product of indigo extract>
After crushing 1 part by mass of the above ground part of Polygonum Tincorium with a blender, 1.5 parts by mass of water was added and stirred with a mixer. The filtrate was collected by filtration with filter paper, heated at 121 ° C. for 10 minutes, centrifuged to remove solids, and the supernatant was collected. Next, the supernatant was dried under reduced pressure to obtain a solid content. In accordance with the method of Example 1-1, 200 parts by mass of starch partial decomposition product (DE8, trade name “Paindex # 1”, Matsutani Chemical Co., Ltd.) of 10 parts by mass with respect to 1 part by mass of the indigo extract. It was added to parts by weight of water and dissolved by heating. After adjusting the pH to 6.0 by adding an appropriate amount of sodium hydroxide, 200 U cyclodextrin glucanotransferase (produced by Hayashibara Biochemical Laboratories) was added per 1 g of the partially decomposed starch and incubated at 40 ° C. for 24 hours. . Thereafter, the enzyme is inactivated by incubating at 100 ° C. for 20 minutes, and then filtered through filter paper. The filtrate is collected, dried under reduced pressure, and the sugar of the Tade indigo extract used for the antimicrobial agent of the present invention. A transfer was obtained.
[0063]
The filtrate was subjected to a conventional high performance liquid chromatography (HPLC) method, and the content of caffeic acid glycosylated product was measured. As a result, the caffeic acid glycosylated product as an active ingredient was 5 mg / g, caffeic acid per solid content. Was included at a concentration of 12 mg / g.
[0064]
[Example 7]
<Oral cleaner>
According to a conventional method, a gallic acid sugar transfer product obtained by the method of Example 1-1 and an n-propyl sugar gallate obtained by the method of Example 2-1 with respect to the basic formulation of the oral cleaning agent shown below. Transfer product, octyl gallate transfer product obtained by the method of Example 3-1, caffeic acid transfer product obtained by the method of Example 4-1, sugar of terminaria berylica extract obtained by the method of Example 5 The transferred product or the sugar transfer product of the Tade indigo extract obtained by the method of Example 6 was blended to a concentration of 1% (w / w) to obtain a liquid oral cleanser.
[0065]
40 parts by mass of ethanol
15 parts by mass of glycerin
1 part by weight of polyoxyethylene hydrogenated castor oil
Saccharin appropriate amount
Perfume
Chlorhexidine appropriate amount
44 parts by weight of water
[0066]
The oral cleansing agent of this example exhibits antimicrobial properties against gram-negative bacteria, gram-positive bacteria, fungi, yeast, etc. in the oral cavity by being used in the same manner as normal mouthwashes. For example, Bacillus, Mycobacterium, Pseudomonas, Esseria, Staphylococcus, Streptococcus, Salmonella, Klebsiella, Proteus, Vibrio, Shigella, Helicobacter, Chlamydia, Aspergillus and Candida It is possible to effectively suppress the growth of microorganisms and effectively treat and prevent various diseases that cause their onset.
[0067]
[Example 8]
<Tablets>
In accordance with a conventional method, maltose powder was transferred to a gallic acid transfer product obtained by the method of Example 1-2, a gallic acid n-propyl transfer product obtained by the method of Example 2-2, and Example 3-2. Octyl gallate transfer product obtained by the method, caffeic acid transfer product obtained by the method of Example 4-2, transfer product of Terminaria berylica extract obtained by the method of Example 5, or the method of Example 6 After blending the sugar transfer product of Tade indigo extract obtained in 1 to a concentration of 1% (w / w), each tablet was tableted to a diameter of 1 cm and a thickness of 3.2 mm with a tableting machine. .5 g tablets were obtained.
[0068]
The antimicrobial agent of this example is dissolved in a living body rapidly by being used in the same manner as a normal tablet, suppresses the growth of microorganisms in the living body, and has excellent sustainability in the living body. It exhibits antimicrobial properties against Gram-negative bacteria, Gram-positive bacteria, fungi, yeasts and the like. For example, Bacillus, Mycobacterium, Pseudomonas, Esseria, Staphylococcus, Streptococcus, Salmonella, Klebsiella, Proteus, Vibrio, Shigella, Helicobacter, Chlamydia, Aspergillus, Candida It is possible to effectively treat and prevent diseases caused by other microorganisms.
[0069]
[Example 9]
<Toothpaste>
According to a conventional method, the gallic acid sugar transfer product obtained by the method of Example 1-1 and the n-propyl sugar gallate transfer obtained by the method of Example 2-1 with respect to the basic formulation of the toothpaste shown below. , Octyl gallate glyceryl transfer product obtained by the method of Example 3-1, caffeic acid sugar transfer product obtained by the method of Example 4-1, and sugar transfer of Terminaria berylica extract obtained by the method of Example 5 Or the sugar transfer product of the Tade indigo extract obtained by the method of Example 6 to a concentration of 1% (w / w), respectively, and then filled into an aluminum laminate tube by 100 g. An antimicrobial toothpaste was obtained.
[0070]
42 parts by weight of dibasic calcium phosphate
18 parts by mass of glycerin
Carrageenan 0.9 parts by mass
Sodium lauryl sulfate 1.1 parts by mass
Perfume
Saccharin appropriate amount
38 parts by weight of water
[0071]
The antibacterial toothpaste of the present example exhibits antimicrobial effects on gram-negative bacteria, gram-positive bacteria, fungi, yeast, etc. in the oral cavity by being used in the same manner as normal toothpastes. Therefore, Bacillus, Mycobacterium, Pseudomonas, Esseria, Staphylococcus, Streptococcus, Salmonella, Klebsiella, Proteus, Vibrio, Shigella, Helicobacter, Chlamydia, Aspergillus, Candida It is possible to effectively treat and prevent diseases caused by other microorganisms.
[0072]
[Example 10]
<Troche>
According to a conventional method, a gallic acid sugar transfer product obtained by the method of Example 1-1 and a gallic acid n-propyl sugar transfer obtained by the method of Example 2-1 with respect to the basic formulation of the lozenge shown below. , Octyl gallate glyceryl transfer product obtained by the method of Example 3-1, caffeic acid sugar transfer product obtained by the method of Example 4-1, and glycosylation of Terminaria berylica extract obtained by the method of Example 5 Or a sugar-transferred product of Tade indigo extract obtained by the method of Example 6 so as to have a concentration of 1% (w / w), respectively, and molded into a solid antimicrobial troche agent It was.
[0073]
35 parts by weight of maltose
34 parts by weight of starch
10 parts by mass of crystalline cellulose
Hydroxypropyl methylcellulose 10 parts by mass
Magnesium stearate 1 part by mass
[0074]
The antimicrobial lozenges of this example are dissolved in the oral cavity by regular use in the same way as normal lozenges, and have antimicrobial effects on gram negative bacteria, gram positive bacteria, fungi, yeast, etc. in the oral cavity. Indicates. Therefore, Bacillus, Mycobacterium, Pseudomonas, Esseria, Staphylococcus, Streptococcus, Salmonella, Klebsiella, Proteus, Vibrio, Shigella, Helicobacter, Chlamydia, Aspergillus, Candida It is possible to effectively treat and prevent diseases caused by other microorganisms.
[0075]
Example 11
<Liquid>
According to a conventional method, gallic acid sugar transfer product obtained by the method of Example 1-2 and purified gallic acid n-propyl sugar obtained by the method of Example 2-2 in purified water for injection containing 4% by mass of isoleucine Transfer product, octyl gallate transfer product obtained by the method of Example 3-2, caffeic acid transfer product obtained by the method of Example 4-2, sugar of terminaria berylica extract obtained by the method of Example 5 The transferred product, or the sugar transferred product of the Tade indigo extract obtained by the method of Example 6 is dissolved to a concentration of 1% (w / w) and then microfiltered and filled into a container to form a liquid antimicrobial A liquid having an effect was obtained.
[0076]
The liquid agent having an antimicrobial effect of this example is an injectable agent, a transmucosal agent, a nasal agent, an oral agent, and the like in the respiratory tract, nasal cavity, oral cavity, visual organ, digestive organ, urinary organ, genital organ, etc. Has antimicrobial effects on negative bacteria, gram positive bacteria, fungi, yeast, etc. Therefore, Bacillus, Mycobacterium, Pseudomonas, Esseria, Staphylococcus, Streptococcus, Salmonella, Klebsiella, Proteus, Vibrio, Shigella, Helicobacter, Chlamydia, Aspergillus, Candida It is possible to effectively treat and prevent diseases caused by other microorganisms.
[0077]
Example 12
<Ointment>
According to a conventional method, a gallic acid sugar transfer product obtained by the method of Example 1-1, a gallic acid n-propyl sugar transfer product obtained by the method of Example 2-1, and a method of Example 3-1. Octyl gallate transfer product, caffeic acid transfer product obtained by the method of Example 4-1, Terminaria berylica extract transfer product obtained by the method of Example 5, or the feed obtained by the method of Example 6 The sugar transfer product of indigo extract is dissolved in an appropriate amount of phosphate buffered saline (pH 7.2) so as to have a concentration of 1% (w / w), and 100 parts by mass of the aqueous solution is homogeneous with 49 parts by mass of anhydrous crystalline maltose. Then, the mixture was further kneaded with 450 parts by mass of white petrolatum to obtain an antimicrobial ointment.
[0078]
The antimicrobial ointment of this example exhibits antimicrobial effects on gram-negative bacteria, gram-positive bacteria, fungi, yeast, etc. in the skin, urinary organs, genital organs, etc., as a skin external preparation, transmucosal preparation and the like. Therefore, Bacillus, Mycobacterium, Pseudomonas, Esseria, Staphylococcus, Streptococcus, Salmonella, Klebsiella, Proteus, Vibrio, Shigella, Helicobacter, Chlamydia, Aspergillus, Candida It is possible to effectively treat and prevent diseases caused by other microorganisms.
[0079]
Example 13
<Eye drops>
According to a conventional method, the gallic acid sugar transfer product obtained by the method of Example 1-2 and the n-propyl sugar gallate transfer obtained by the method of Example 2-2 with respect to the basic formulation of the eye drops shown below. , Octyl gallate glyceryl transfer product obtained by the method of Example 3-2, caffeic acid saccharide transfer product obtained by the method of Example 4-2, and glyceryl transfer of Terminaria berylica extract obtained by the method of Example 5 Or a sugar-transfer product of Tade indigo extract obtained by the method of Example 6 was blended to a concentration of 1% (w / w) to obtain a liquid antimicrobial eye drop.
[0080]
20 parts by mass of trehalose (2 hydrates)
Sodium chloride 0.04 parts by mass
0.02 parts by mass of potassium chloride
Sodium dihydrogen phosphate 0.03 parts by mass
0.04 parts by mass of borax
Benzalkonium chloride 0.004 parts by mass
80 parts by mass of purified water
[0081]
The antimicrobial ophthalmic solution of this example exhibits antimicrobial effects on Gram-negative bacteria, Gram-positive bacteria, fungi, yeast, etc. in the visual instrument by being used in the same manner as ordinary eye drops. Therefore, Bacillus, Mycobacterium, Pseudomonas, Esseria, Staphylococcus, Streptococcus, Salmonella, Klebsiella, Proteus, Vibrio, Shigella, Helicobacter, Chlamydia, Aspergillus, Candida It is possible to effectively treat and prevent diseases caused by other microorganisms.
[0082]
【The invention's effect】
As described above, the antimicrobial agent of the present invention has low toxicity to the living body and is excellent in water solubility and excellent sustainability in the living body, so that it can be applied to living bodies such as injection or transdermal, transmucosal, nasal cavity or oral route. By applying it, it is possible to markedly suppress the growth of microorganisms that are undesirable for the living body. Therefore, microorganisms that have invaded the nasal cavity, oral cavity, esophagus, respiratory tract, visual organs, digestive organs, urinary organs, genital organs, etc. cause respiratory diseases such as pneumonia, arteriosclerosis, ischemic heart disease. Cardiovascular diseases such as conjunctivitis, digestive system diseases such as proctitis, urinary system diseases such as urethritis, accessory testicularitis, fallopian tubeitis, cervicitis, imminent premature birth, fallopian tube It is effective for the treatment and prevention of genital diseases such as inflammation, adhesion and obstruction, and food poisoning.
In particular, the oral preparation for antimicrobial use of the present invention, unlike oral preparations containing antibiotics as an active ingredient, causes the appearance of resistant bacteria, or produces a useful bacterial flora in the large intestine even after prolonged use. Since there is little risk of destruction, there is little risk of causing anorexia, vomiting, diarrhea, constipation, bloating, and causing side effects such as malaise and moisture.

Claims (1)

カフェ酸にグルコース重合度が1乃至5の糖質がα−グルコシド結合で付加した糖転移物を有効成分として含有してなる、バチラス属、エッセリシア属、スタフィロコッカス属、ヘリコバクター属、及びカンディダ属に属する微生物を適用対象とする抗微生物剤。 Bacillus genus, Esseria genus, Staphylococcus genus, Helicobacter genus, and Candida genus, comprising as an active ingredient a sugar transfer product in which a sugar having a glucose polymerization degree of 1 to 5 is added to caffeic acid through an α-glucoside bond anti-microbial agents that want to apply a microorganism belonging to the.
JP2003108690A 2003-04-14 2003-04-14 Antimicrobial agent Expired - Fee Related JP4571783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108690A JP4571783B2 (en) 2003-04-14 2003-04-14 Antimicrobial agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108690A JP4571783B2 (en) 2003-04-14 2003-04-14 Antimicrobial agent

Publications (3)

Publication Number Publication Date
JP2004315386A JP2004315386A (en) 2004-11-11
JP2004315386A5 JP2004315386A5 (en) 2006-05-11
JP4571783B2 true JP4571783B2 (en) 2010-10-27

Family

ID=33470081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108690A Expired - Fee Related JP4571783B2 (en) 2003-04-14 2003-04-14 Antimicrobial agent

Country Status (1)

Country Link
JP (1) JP4571783B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083541B2 (en) * 2005-08-12 2012-11-28 ライオン株式会社 Gallic acid derivative and composition for external use containing the same
CN101209254B (en) * 2006-12-29 2011-04-20 江苏正大天晴药业股份有限公司 New use of polyhydroxy galloyl-beta-D-glucose derivatives
GB0819959D0 (en) 2008-10-31 2008-12-10 Provexis Natural Products Ltd Fruit extracts
GB0819958D0 (en) * 2008-10-31 2008-12-10 Provexis Natural Products Ltd Therapeutic compositions
ITTO20110428A1 (en) * 2011-05-13 2012-11-14 Rottapharm Spa ESTERS OF HYALURONIC ACID, THEIR PREPARATION AND USE IN DERMATOLOGY
AU2013252637B2 (en) 2012-04-23 2016-12-22 Provexis Natural Products Limited Use of tomato extract as antihypertensive agent and process for making water soluble sugar free tomato extract
CN103044500B (en) * 2012-12-14 2016-07-06 乐山师范学院 A kind of organic acid preparation and antibacterial applications
GB201223365D0 (en) 2012-12-24 2013-02-06 Provexis Natural Products Ltd Compositions
JP6336424B2 (en) * 2015-10-09 2018-06-06 日清食品ホールディングス株式会社 Antibacterial agents and methods for controlling diseases caused by infection with Vibrio parahaemolyticus in marine organisms
CA3042720A1 (en) 2016-11-02 2018-05-11 Provexis Natural Products Limited Water soluble tomato extract protects against adverse effects of air pollution
US20190076335A1 (en) * 2017-09-12 2019-03-14 IntraMont Technologies, Inc. Oral-surface administered preparation for the prevention of illnesses acquired via the oral cavity and the pharynx
CN108653338A (en) * 2018-07-12 2018-10-16 石河子大学 Inhibit the active component production method and purposes of pathogenic entero becteria in nutgall
CN108904541A (en) * 2018-07-12 2018-11-30 石河子大学 Inhibit the production method and purposes of periodontal disease pathogenic bacteria active component in galla turcica

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076580A1 (en) * 2000-04-11 2001-10-18 Takara Bio Inc. Remedies
WO2002022138A1 (en) * 2000-09-15 2002-03-21 Cubist Pharmaceuticals, Inc. Antibacterial agents and methods of identification

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997358B2 (en) * 1992-01-30 2000-01-11 ポーラ化成工業株式会社 External preparation for skin
JPH08217674A (en) * 1995-02-16 1996-08-27 Noda Sangyo Kagaku Kenkyusho Inhibitor of histidine decarboxylase
JP3571111B2 (en) * 1995-05-23 2004-09-29 株式会社ポッカコーポレーション Antimicrobial agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076580A1 (en) * 2000-04-11 2001-10-18 Takara Bio Inc. Remedies
WO2002022138A1 (en) * 2000-09-15 2002-03-21 Cubist Pharmaceuticals, Inc. Antibacterial agents and methods of identification

Also Published As

Publication number Publication date
JP2004315386A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4571783B2 (en) Antimicrobial agent
JP5654731B2 (en) Cyanobacteria extract powder, method for producing the same, and use of Cyanobacteria extract powder
JP5283173B2 (en) Non-cariogenic materials and anti-cariogenic agents containing rare sugars
KR101338546B1 (en) Agent for external application to the skin
JP6106879B2 (en) Use of alkyl glycosides or mixtures of at least two alkyl glycosides as agents for inhibiting the growth of microorganisms and compositions comprising alkyl glycosides
EP2775838B1 (en) Aqueous antimicrobial composition containing coniferous resin acids
JPH037593A (en) Alpha-glycosyl hesperidin, production and use thereof
EP2303300B1 (en) Compositions that aim to promote the development and growth of a beneficial vaginal microflora
JPS6326083B2 (en)
WO2004020552A1 (en) Radical reaction inhibitors, method for inhibition of radical reactions, and use thereof
JP2594787B2 (en) Caries prevention agent
JP4571829B2 (en) Anti-Chlamydia composition
JPH08253503A (en) Partly n-acylated chitooligosaccharide and its salt
JP2003226641A (en) Antibiotic containing levulinic acid and its derivative, functional cosmetic and functional food containing the antibiotic
WO2017018336A1 (en) Antiinflammatory agent
JP3552235B2 (en) Transparent skin external preparation
JP4181829B2 (en) Aroma retention method and use thereof
KR102133638B1 (en) Compositions for the prevention or treatment of oral diseases, including extracts of acer tegmentosum maxim and cinnamon
JP4446678B2 (en) Antibacterial agent
JP2019214538A (en) Agent for inhibiting entry of periodontal disease bacteria into gingival tissue cell
JPS5835484B2 (en) Oral composition
KR101787247B1 (en) A antibacterial composition comprising chitosan and caffeic acid
EP2470175B1 (en) Fulvic acid compositions and their use
JPH0627067B2 (en) Oral composition
EP3492071A1 (en) Pharmaceutical composition comprising benzocaine with enhanced stability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees