JP4571109B2 - Production process of radioisotope thallium-201 - Google Patents

Production process of radioisotope thallium-201 Download PDF

Info

Publication number
JP4571109B2
JP4571109B2 JP2006246361A JP2006246361A JP4571109B2 JP 4571109 B2 JP4571109 B2 JP 4571109B2 JP 2006246361 A JP2006246361 A JP 2006246361A JP 2006246361 A JP2006246361 A JP 2006246361A JP 4571109 B2 JP4571109 B2 JP 4571109B2
Authority
JP
Japan
Prior art keywords
thallium
liquid
lead
target material
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006246361A
Other languages
Japanese (ja)
Other versions
JP2008070126A (en
Inventor
林武智
杜定賢
蔡英敏
黄森榮
呂建興
張茂雄
陳振宗
Original Assignee
行政院原子能委員会核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員会核能研究所 filed Critical 行政院原子能委員会核能研究所
Priority to JP2006246361A priority Critical patent/JP4571109B2/en
Publication of JP2008070126A publication Critical patent/JP2008070126A/en
Application granted granted Critical
Publication of JP4571109B2 publication Critical patent/JP4571109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Radiation-Therapy Devices (AREA)

Description

本発明は、放射性同位元素タリウム−201の製造工程に関し、特に、急速に純度が比較的に高いタリウム−201液を分離できるものに関する。 The present invention relates to a process for producing the radioisotope thallium-201, and particularly relates to a process capable of rapidly separating a thallium-201 liquid having a relatively high purity.

タリウム−201塩化第一タリウム(201TlCl)が心筋に急速的に吸収されて心筋に集中されるため、心臓病気を診断するための心筋造影に利用され、また、腫瘤造影等の他の医療診断にも利用され、そのため、タリウム−201は海内外の核医学に利用される量がもっとも多い放射性同位元素の一つである。 Since thallium -201 thallous chloride (201 TlCl 2) is concentrated are rapidly absorbed into the myocardium myocardium is used to myocardial imaging for the diagnosis of cardiac disease, also mass other medical imaging such as It is also used for diagnosis, so thallium-201 is one of the most radioactive isotopes used in nuclear medicine in and out of the sea.

一般のタリウム−201の製造は、例えば、文献「Qaim S.M.、Weinreich R. and Ollig H.、Production of Tl−201 and Pb203 via Proton Induced Nuclear Reaction on Natural Thallium、 International Journal of Applied Radiation and Isotopes、30(1979)pp.85−95.」に掲示されているように、直接に清洗方式によりタリウム−201を洗出するものがある。しかしながら、清洗方式によりタリウム−201を洗出する時、タリウム−201に不純物が存在するため、製造したタリウム−201の純度が比較的に低く、実用的とは言えない。 Production of general thallium-201 is described in, for example, the literature “Qaim SM, Weinreich R. and Olig H., Production of Tl-201 and Pb203 via Protonal Induced Natural Reaction on Natural Tal. , 30 (1979) pp. 85-95., There are those that directly wash thallium-201 by a cleaning method . However, when thallium-201 is washed out by the cleansing method, impurities are present in thallium-201, so that the purity of the manufactured thallium-201 is relatively low, which is not practical.

本発明の主な目的は、タリウム−203をメッキ過程を介してタリウム−203固体ターゲット材料に形成して、陽子線を照射した後、第1、2の階段の化学分離ステップを介して、急速に純度が比較的に高いタリウム−201液体を分離できる放射性同位元素タリウム−201の製造工程を提供するにある。 The main purpose of the present invention, a thallium -203 forming the thallium -203 solid target material through a plating process, after irradiation with proton beam, through chemical separation step of the first and second stairs rapidly The present invention provides a process for producing the radioisotope thallium-201 capable of separating a thallium-201 liquid having a relatively high purity.

本発明は、上記の目的を達成するために、タリウム−203をメッキ過程を介してメッキターゲット材料に形成して、タリウム−203固体ターゲット材料とし、また、タリウム−203固体ターゲット材料に対してサイクロトロンで陽子線を照射し、そして、タリウム−203固体ターゲット材料を、硝酸と第二鉄の溶液(HNO /Fe /H O)から成る強酸液体で鉛−201とタリウム−203の溶液に溶解してから、アンモニア(NH)と水を添加してタリウム−201と鉛−201の液体に共沈分離し、そして、塩酸(HCl)を添加して樹脂でイオン交換を行い、鉛−201液体から不純物を濾過分離する第1段階の化学分離を行い、また、鉛−201液体を取り出してタリウム−201液体に変換させ、最後に、第2段階の化学分離を行うため、タリウム−201液体に二酸化硫黄を含有する塩酸HCl(SO)を添加し、樹脂で2次イオン交換を行い、純度が比較的に高いタリウム−201液を分離できる放射性同位元素タリウム−201の製造工程である。 In order to achieve the above object, the present invention forms thallium-203 on a plating target material through a plating process to form a thallium-203 solid target material, and a cyclotron for the thallium-203 solid target material. And the thallium-203 solid target material is made into a solution of lead-201 and thallium-203 with a strong acid liquid composed of nitric acid and ferric solution (HNO 3 / Fe 3 / H 2 O). After dissolution, ammonia (NH 3 ) and water are added to coprecipitate and separate into a liquid of thallium-201 and lead-201, and hydrochloric acid (HCl) is added to perform ion exchange with a resin. impurities from 201 liquid subjected to chemical separation of the first stage of filtration separation, also be converted is taken out of lead -201 liquid thallium -201 liquid, finally, To perform chemical separation of the two phases, addition of hydrochloric acid HCl (SO 2) to sulfur dioxide in the Thallium -201 Liquid performs secondary ion exchange resin, separating the purity is relatively high thallium -201 solution It is a manufacturing process of radioisotope thallium-201 that can be produced.

図1は、本発明の基本流れのフロー概念図である。図のように、本発明は、放射性同位元素タリウム−201の製造工程であり、少なくとも、メッキステップ1と照射ステップ2、第1の階段の化学分離ステップ3、変換ステップ4及び第2の階段の化学分離ステップ5等が含有され、当該第1段階の化学分離ステップ3は、溶解ステップ31と共沈ステップ32及び1次イオン交換ステップ33等のステップが含有され、当該第2段階の化学分離ステップ5は2次イオン交換ステップ51であり、上記のステップにより、新規な放射性同位元素タリウム−201の製造工程が構成され、急速に純度が比較的に高いタリウム−201液体を濾過できる。 FIG. 1 is a conceptual flow diagram of the basic flow of the present invention. As shown in the figure, the present invention is a manufacturing process of the radioisotope thallium-201. At least the plating step 1 and the irradiation step 2, the chemical separation step 3 of the first step, the conversion step 4 and the second step. Chemical separation step 5 and the like are included, and the first stage chemical separation step 3 includes steps such as a dissolution step 31, a coprecipitation step 32, and a primary ion exchange step 33, and the second stage chemical separation step. Reference numeral 5 denotes a secondary ion exchange step 51. By the above steps, a manufacturing process of a novel radioisotope thallium-201 is configured, and a thallium-201 liquid having a relatively high purity can be rapidly filtered.

図2は、本発明に係わる製造形態の流れのフロー概念図である。図のように、本発明は、次の製造ステップが含有される。 FIG. 2 is a conceptual flow diagram of a manufacturing mode according to the present invention. As shown, the present invention includes the following manufacturing steps.

メッキステップ1は、タリウム−203(11)をメッキ過程を介してメッキターゲット材料に形成して、タリウム−203固体ターゲット材料12とする。 In the plating step 1, thallium-203 (11) is formed on a plating target material through a plating process to obtain a thallium-203 solid target material 12.

照射ステップ2は、タリウム−203固体ターゲット材料12に対して、サイクロトロン21で陽子線を照射し、また、当該サイクロトロン21の照射エネルギーが、15MeV〜40MeVの間である。 In the irradiation step 2, the thallium-203 solid target material 12 is irradiated with a proton beam by the cyclotron 21, and the irradiation energy of the cyclotron 21 is between 15 MeV and 40 MeV.

第1段階の化学分離ステップ3は、溶解ステップ31と共沈ステップ32及び1次イオン交換ステップ33等のステップが含有される。 Chemical separation step 3 of the first stage, steps such as dissolution step 31 and coprecipitated step 32 and the primary ion exchange step 33 is contained.

溶解ステップ31は、照射した後、強酸液体34で当該タリウム−203固体ターゲット材料12を溶解し、当該タリウム−203固体ターゲット材料12を鉛−201溶液35とタリウム−203溶液36に形成し、当該強酸液体34が硝酸と第二鉄の水溶液(HNO/Fe/HO)である。 In the dissolving step 31, after irradiation, the thallium-203 solid target material 12 is dissolved with a strong acid liquid 34 to form the thallium-203 solid target material 12 into a lead-201 solution 35 and a thallium-203 solution 36. The strong acid liquid 34 is an aqueous solution of nitric acid and ferric iron (HNO 3 / Fe 3 / H 2 O).

共沈ステップ32は、更に、鉛−201溶液35とタリウム−203溶液36にアンモニア(NH)と水321を添加して共沈させ、当該鉛−201溶液35とタリウム−203溶液36がタリウム−203液体37と鉛−201液体38に分離される。 In the coprecipitation step 32, ammonia (NH 3 ) and water 321 are further added to the lead-201 solution 35 and thallium-203 solution 36 for coprecipitation, and the lead-201 solution 35 and thallium-203 solution 36 are added to thallium. -Separated into 203 liquid 37 and lead-201 liquid 38.

1次イオン交換ステップ33は、タリウム−203液体37と鉛−201液体38に塩酸(HCl)331を添加し、樹脂332でイオン交換を行い、鉛−201液体38から不純物を濾過分離する。 In the primary ion exchange step 33, hydrochloric acid (HCl) 331 is added to the thallium- 203 liquid 37 and the lead-201 liquid 38, ion exchange is performed with the resin 332, and impurities are separated from the lead-201 liquid 38 by filtration.

変換ステップ4は、更に、鉛−201液体38を取り出して減衰させ、鉛−201液体38をタリウム−201液体41に変換させる。 In the conversion step 4, the lead-201 liquid 38 is further taken out and attenuated to convert the lead-201 liquid 38 into the thallium-201 liquid 41.

第2段階の化学分離ステップ5は、2次イオン交換ステップ51であり、当該2次イオン交換ステップ51は、更に、タリウム−201液体41に二酸化硫黄を含有する塩酸HCl(SO)511を添加し、樹脂512でイオン交換を行い、純度が比較的に高いタリウム−201液体52を濾過できる。 The second- stage chemical separation step 5 is a secondary ion exchange step 51, and the secondary ion exchange step 51 further adds hydrochloric acid HCl (SO 2 ) 511 containing sulfur dioxide to the thallium-201 liquid 41. Then, ion exchange is performed with the resin 512, and the thallium-201 liquid 52 having a relatively high purity can be filtered.

以上のように、本発明に係わる放射性同位元素タリウム−201の製造工程によれば、有効的に従来の各欠点を改善でき、タリウム−203をメッキ過程を介してタリウム−203固体ターゲット材料に形成し、陽子線を照射してから、第1、2段階の化学分離ステップを介して、急速に純度が比較的に高いタリウム−201液体を濾過できるため、本発明は、より進歩的且つ実用的であるため、法に従って特許出願する。 As described above, according to the manufacturing process of the radioisotope thallium-201 according to the present invention, the conventional defects can be effectively improved, and thallium-203 is formed on the thallium-203 solid target material through the plating process. and, after irradiation with proton beam, through chemical separation step of the first and second stage, rapidly since purity filterable high thallium -201 liquid relatively, the present invention is more advanced and practical Therefore, a patent application is filed according to the law.

以上は、ただ、本発明のより良い実施例であり、本発明に係わる特許請求の範囲は、それによって制限されず、また、本発明に係わる特許請求の範囲や明細書の内容に従って行う等価の変更や修正は、全てが、本発明に係わる特許請求の範囲内に含まれる。 The above are merely preferred embodiments of the present invention, and the scope of the claims related to the present invention is not limited thereby, and equivalent claims made according to the scope of the claims and the description of the present invention. All changes and modifications are included in the scope of the claims of the present invention.

本発明の基本流れのフロー概念図Conceptual flow diagram of the basic flow of the present invention 本発明に係わる製造形態の流れのフロー概念図Flow conceptual diagram of the flow of manufacturing according to the present invention

1 メッキステップ
11 タリウム−203
12 タリウム−203固体ターゲット材料
2 照射ステップ
21 サイクロトロン
3 第1の階段の化学分離ステップ
31 溶解ステップ
32 共沈ステップ
321 アンモニア(NH)と水
33 1次イオン交換ステップ
331 塩酸
332 樹脂
34 強酸液体
35 鉛−201溶液
36 タリウム−203溶液
37 タリウム−203液体
38 鉛−201液体
変換ステップ
41 タリウム−201液体
5 第2の階段の化学分離ステップ
51 2次イオン交換ステップ
511 二酸化硫黄を有する塩酸HCl(SO
512 樹脂
52 タリウム−201液体
1 plating step 11 thallium-203
12 Thallium-203 solid target material 2 Irradiation step 21 Cyclotron 3 First step chemical separation step 31 Dissolution step 32 Coprecipitation step 321 Ammonia (NH 3 ) and water 33 Primary ion exchange step 331 Hydrochloric acid 332 Resin 34 Strong acid liquid 35 Lead-201 solution 36 thallium-203 solution 37 thallium- 203 liquid 38 lead-201 liquid 4 conversion step 41 thallium-201 liquid 5 second step chemical separation step 51 secondary ion exchange step 511 HCl HCl with sulfur dioxide ( SO 2)
512 resin 52 thallium-201 liquid

Claims (4)

少なくとも、
タリウム−203をメッキ過程を介してメッキターゲット材料に形成して、タリウム−203固体ターゲット材料とするメッキステップと、
タリウム−203固体ターゲット材料に対してサイクロトロンで陽子線を照射する照射ステップと、
タリウム−203固体ターゲット材料を、硝酸と第二鉄の溶液(HNO /Fe /H O)から成る強酸液体で鉛−201とタリウム−203の溶液に溶解してから、アンモニア(NH)と水を添加してタリウム−203と鉛−201の液体に共沈分離し、そして、塩酸(HCl)を添加して樹脂でイオン交換を行い、鉛−201液体から不純物を濾過分離する第1段階の化学分離ステップと、
鉛−201液体を取り出して減衰させ、鉛−201液体をタリウム−201液体に変換させる変換ステップと、
タリウム−201液体に二酸化硫黄を含有する塩酸HCl(SO)を添加し、樹脂で2次イオン交換を行って、純度が比較的に高いタリウム−201液体を濾過する第2段階の化学分離ステップと、
が含有される、
ことを特徴とする放射性同位元素タリウム−201の製造工程。
at least,
Forming a thallium-203 on a plating target material through a plating process to form a thallium-203 solid target material;
An irradiation step of irradiating a thallium- 203 solid target material with a proton beam with a cyclotron;
A thallium-203 solid target material is dissolved in a solution of lead-201 and thallium-203 with a strong acid liquid consisting of a solution of nitric acid and ferric iron (HNO 3 / Fe 3 / H 2 O) , and then ammonia (NH 3 ) And water are added to coprecipitate and separate into thallium- 203 and lead-201 liquids, and hydrochloric acid (HCl) is added to perform ion exchange with the resin, and impurities are filtered and separated from the lead-201 liquid. A one- step chemical separation step;
A conversion step of removing the lead-201 liquid and attenuating it to convert the lead-201 liquid into a thallium-201 liquid;
Hydrochloric acid was added HCl (SO 2) to sulfur dioxide in the Thallium -201 liquid by performing secondary ion exchange resin, chemical separation step of the second stage of filtering the purity is relatively high thallium -201 Liquid When,
Contains,
The manufacturing process of the radioisotope thallium-201 characterized by the above-mentioned.
当該照射ステップにおいて、サイクロトロンの照射エネルギーは15MeV〜40MeVの間であることを特徴とする請求項1に記載の放射性同位元素タリウム−201の製造工程。 2. The process for producing radioisotope thallium-201 according to claim 1, wherein in the irradiation step, the irradiation energy of the cyclotron is between 15 MeV and 40 MeV. 少なくとも、
タリウム−203をメッキ過程を介してメッキターゲット材料に形成して、タリウム−203固体ターゲット材料とするメッキステップと、
タリウム−203固体ターゲット材料に対して、サイクロトロンで陽子線を照射する照射ステップと、
照射した後、硝酸と第二鉄の溶液(HNO /Fe /H O)から成る強酸液体で当該タリウム−203固体ターゲット材料を溶解し、当該タリウム−203固体ターゲット材料を鉛−201とタリウム−203の溶液に形成する溶解ステップと、
鉛−201とタリウム−203の溶液にアンモニア(NH)と水を添加して共沈し、当該鉛−201とタリウム−203の溶液がタリウム−203と鉛−201の液体に分離される共沈ステップと、
タリウム−203と鉛−201の液体に塩酸(HCl)を添加して樹脂でイオン交換を行い、鉛−201液体から不純物を濾過分離する1次イオン交換ステップと、
鉛−201液体を取り出して減衰させ、鉛−201液体をタリウム−201液体に変換させる変換ステップと、
タリウム−201液体に二酸化硫黄を含有する塩酸HCl(SO)を添加し、樹脂でイオン交換を行い、純度が比較的に高いタリウム−201液体を分離する2次イオン交換ステップと、
が含有される、
ことを特徴とする放射性同位元素タリウム−201の製造工程。
at least,
Forming a thallium-203 on a plating target material through a plating process to form a thallium-203 solid target material;
An irradiation step of irradiating the thallium-203 solid target material with a proton beam with a cyclotron;
After irradiation, the thallium-203 solid target material is dissolved with a strong acid liquid composed of a solution of nitric acid and ferric iron (HNO 3 / Fe 3 / H 2 O) , and the thallium-203 solid target material is converted to lead-201. A dissolution step to form a solution of thallium-203;
Co-precipitation is performed by adding ammonia (NH 3 ) and water to a solution of lead-201 and thallium-203, and the solution of lead-201 and thallium-203 is separated into a liquid of thallium- 203 and lead-201. Settling step,
A primary ion exchange step of adding hydrochloric acid (HCl) to the thallium- 203 and lead-201 liquid, performing ion exchange with the resin, and filtering and separating impurities from the lead-201 liquid;
A conversion step of removing the lead-201 liquid and attenuating it to convert the lead-201 liquid into a thallium-201 liquid;
Hydrochloric acid was added HCl (SO 2) to sulfur dioxide in the Thallium -201 liquid, ion exchange resin, and secondary ion exchange step of separating the purity is relatively high thallium -201 liquid,
Contains,
The manufacturing process of the radioisotope thallium-201 characterized by the above-mentioned.
当該照射ステップにおいて、当該サイクロトロンの照射エネルギーは15MeV〜40MeVの間であることを特徴とする請求項3に記載の放射性同位元素タリウム−201の製造工程。 The process for producing radioisotope thallium-201 according to claim 3 , wherein the irradiation energy of the cyclotron is between 15 MeV and 40 MeV in the irradiation step.
JP2006246361A 2006-09-12 2006-09-12 Production process of radioisotope thallium-201 Expired - Fee Related JP4571109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246361A JP4571109B2 (en) 2006-09-12 2006-09-12 Production process of radioisotope thallium-201

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246361A JP4571109B2 (en) 2006-09-12 2006-09-12 Production process of radioisotope thallium-201

Publications (2)

Publication Number Publication Date
JP2008070126A JP2008070126A (en) 2008-03-27
JP4571109B2 true JP4571109B2 (en) 2010-10-27

Family

ID=39291848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246361A Expired - Fee Related JP4571109B2 (en) 2006-09-12 2006-09-12 Production process of radioisotope thallium-201

Country Status (1)

Country Link
JP (1) JP4571109B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993538A (en) * 1976-01-27 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Production of high purity radiothallium
JPH01102397A (en) * 1987-10-16 1989-04-20 Nippon Telegr & Teleph Corp <Ntt> Manufacture of carrier free radioactive isotope yttrium-88
JP2004535288A (en) * 2001-06-05 2004-11-25 メジ − フィジックス、インコーポレイテッド Target processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993538A (en) * 1976-01-27 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Production of high purity radiothallium
JPH01102397A (en) * 1987-10-16 1989-04-20 Nippon Telegr & Teleph Corp <Ntt> Manufacture of carrier free radioactive isotope yttrium-88
JP2004535288A (en) * 2001-06-05 2004-11-25 メジ − フィジックス、インコーポレイテッド Target processing

Also Published As

Publication number Publication date
JP2008070126A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
US6337055B1 (en) Inorganic sorbent for molybdenum-99 extraction from irradiated uranium solutions and its method of use
JP5427483B2 (en) Concentration, elution recovery method, and system of radiotechnetium as a raw material for radiopharmaceuticals and their labeled compounds
US10767243B2 (en) Purification process
US3468808A (en) Production of high purity radioactive technetium-99m
JP4571109B2 (en) Production process of radioisotope thallium-201
US9102997B2 (en) Method of purification for recycling of gallium-69 isotope
JPS60161598A (en) Method of treating radioactive waste liquor containing radioactive ruthenium
TW200800372A (en) Process for producing radioisotope Tl-201
EP1892728A1 (en) Process of producing the radioisotope TL-201
JP4674727B2 (en) Separation apparatus for radioisotope thallium-201
US7578982B1 (en) Radioisotope TI-201 production process
JP4792431B2 (en) Cadmium-112 isotope recovery method
US20140234186A1 (en) Extraction Process
JPWO2019203342A1 (en) Separator, Separation Method, RI Separation and Purification System and RI Separation and Purification Method
TW200808979A (en) Separation device of radioactive isotope Tl-201
Hu et al. An Overview of the REFINE Project---The Sustainable Reduction of Spent Fuel Vital in a Closed Loop Nuclear Energy Cycle
TW202235092A (en) Ra-226 recovery method, Ra-226 solution production method, and Ac-225 solution production method
Youker et al. Progress Related to Mo-99 Separation, Precipitation Prevention, and Clean-Up for SHINE System
Brown Anodic Dissolution of Uranium under Slightly Alkaline Conditions
JP2007146229A (en) Recovery method for recovering thallium-203 isotope from thallium-201 radioisotope residual liquid
JP2000211925A (en) Separation of americium from curium
JPS58199727A (en) Method for recovering plutonium and americium from solution containing them and decontaminating said solution
JP2012251780A (en) Method of treating water contaminated by radioactive substance
UA54183A (en) METHOD FOR PRODUCING TECHNETIUM-99m

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090629

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090728

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4571109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees