JP4570739B2 - Manufacturing method of chip capacitor - Google Patents

Manufacturing method of chip capacitor Download PDF

Info

Publication number
JP4570739B2
JP4570739B2 JP2000219544A JP2000219544A JP4570739B2 JP 4570739 B2 JP4570739 B2 JP 4570739B2 JP 2000219544 A JP2000219544 A JP 2000219544A JP 2000219544 A JP2000219544 A JP 2000219544A JP 4570739 B2 JP4570739 B2 JP 4570739B2
Authority
JP
Japan
Prior art keywords
layer
anode lead
anode
capacitor
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000219544A
Other languages
Japanese (ja)
Other versions
JP2002043174A (en
Inventor
隆 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2000219544A priority Critical patent/JP4570739B2/en
Publication of JP2002043174A publication Critical patent/JP2002043174A/en
Application granted granted Critical
Publication of JP4570739B2 publication Critical patent/JP4570739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、小形、大容量で、高周波領域でも等価直列抵抗(ESR)の低いチップ状コンデンサの製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の軽薄短小化と、高周波化に伴い、単位体積当たりの収納容量が大きく、高周波領域でもESRの小さいチップ状コンデンサが要求されている。
【0003】
以下に、従来のチップ状焼結型固体電解コンデンサの構造について説明する。
図3は従来のチップ状コンデンサの断面図である。
【0004】
陽極導出線2を備えた弁作用金属粉末を成形焼結したコンデンサ素子1の表面に、陽極酸化法により誘電体酸化皮膜3を形成し、該誘電体酸化皮膜3の上に金属酸化物や、導電性高分子からなる固体電解質層4を形成後、カーボン層と銀層からなる陰極引出層5を順次形成する。
【0005】
該陰極引出層5に、陰極側外部電極となる陰極リードフレーム7を導電性接着剤6を用いて固着し、他方、陽極導出線2に、陽極側外部電極となる陽極リードフレーム8を溶接した後、コンデンサ素子をトランスファーモールドによりモールド樹脂9で外装することによりチップ状コンデンサを構成していた。
【0006】
チップ状コンデンサは弁作用金属にタンタルを用いたタンタル固体電解コンデンサが一般的であるが、アルミニウムを用いたコンデンサも製造されている。また、固体電解質としては二酸化マンガンが一般的であったが、低ESR化の需要拡大により固有抵抗が二酸化マンガンより低いポリピロールや、ポリアニリン等の導電性高分子への移行が急速に進んでいる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記した従来のチップ状コンデンサの構造では、陽極導出線2に板状の陽極リードフレーム8を溶接して陽極電極を外部に引き出すため、モールド樹脂の内部に陽極導出線と陽極リードフレームおよびその接合点に占められる領域が発生し、コンデンサ素子を大きくできない、すなわち大容量化できないという問題があった。
【0008】
また、陽極導出線2に陽極リードフレーム8を溶接して外部に電極を引き出す構造のため、陽極リードフレーム8と陽極導出線2の接合点、陽極導出線2とコンデンサ素子1の接合点および陽極導出線2の電気抵抗により高周波領域でのESRが数mΩから数10mΩ高くなるという問題があった。
【0010】
また、陽極導出線2を備えたコンデンサ素子1に、誘電体酸化皮膜3、固体電解質層4、陰極引出層5を形成し、樹脂外装してなるチップ状コンデンサの製造方法において、上記コンデンサ素子1の陽極導出線2が導出される面と異なる面に弁金属からなる陽極引出層10を形成後、コンデンサ素子1に誘電体酸化皮膜3を形成し、陽極引出層10上の誘電体酸化皮膜3表面に撥水性樹脂層11を形成後、固体電解質層4、陰極引出層5を順次形成し、陽極引出層10上の誘電体酸化皮膜3と撥水性樹脂層11を除去して陽極引出層10を露出させ、該陽極引出層10と陽極リードフレーム8、陰極引出層5と陰極リードフレーム7を接続してなることを特徴とするチップ状コンデンサの製造方法である。
【0011】
さらに、上記陽極引出層10が、真空蒸着法、PVD法、CVD法のいずれかで形成されていることを特徴とするチップ状コンデンサの製造方法である。
【0012】
【発明の実施の形態】
本発明を図面に基づき詳細に説明する。図1は本発明の一実施例である。コンデンサ素子1の陽極導出線2と異なる面に真空蒸着法、PVD法、CVD法の何れかの方法で弁金属からなる陽極引出層10を形成し、該陽極引出層10と陽極リードフレーム8を接続することで、小形、大容量で、高周波領域で低ESRのチップ状コンデンサが得られる。
【0013】
【実施例】
〔実施例1〕
コンデンサの外形寸法が、幅1.6mm×長さ3.2mm×高さ1.6mmとなるように、1グラム当たりの粉末CV値(容量と化成電圧の積)が30000μF・V/gで、幅1.2mm×長さ2.4mm×高さ0.7mmで、1.2mm×0.7mmの面に陽極導出線2(タンタルワイヤー)を植立した直方形タンタル微粉末焼結体をコンデンサ素子1とした。真空容器の上面に陽極引出層形成用金属のターゲットを、下面に被コーティング物設置治具を配置したアークイオンプレーティング装置に、タンタルワイヤー植立面を下にしてコンデンサ素子1を被コーティング物設置治具に設置し、ターゲットにタンタルを設置した。真空容器内をロータリーポンプとターボ分子ポンプを併用して1.2mPa以下に排気した後、ターゲットを陽極、真空容器全体を陰極として真空アーク放電を発生させ、コンデンサ素子1のタンタルワイヤー植立面と反対の面に厚さ100μmのタンタルからなる陽極引出層10を形成した。陽極引出層10を形成したコンデンサ素子1を、0.05%リン酸水溶液中で20V印加して陽極酸化し、誘電体酸化皮膜を形成した後、洗浄乾燥した。陽極引出層10上の誘電体酸化皮膜3表面に水溶性テフロン樹脂を塗布後200℃で硬化し撥水性樹脂層11とした。
次に、
・ピロールモノマー 5wt%
・p−トルエンスルホン酸第2鉄 25wt%
・n−ブタノール 35wt%
・i−プロパノール 35wt%
からなる溶液に浸漬後50℃で1時間化学重合を行った後、未反応のモノマーと過剰の酸化剤を水洗して除去し100℃で5分間乾燥する工程を14回繰り返して固体電解質層4としてポリピロール層を形成した。そして公知の方法でポリピロール層上に、カーボン層、陰極銀層からなる陰極引出層5を形成した。
その後、コンデンサ素子1の陽極引出層10側に10WのYAGレーザーを照射し、陽極引出層10上の誘電体酸化皮膜と撥水性樹脂を除去した。タンタル金属面が露出した陽極引出層10の表面に陽極リードフレーム8を溶接した後、タンタルワイヤーを短く切断し、陰極リードフレーム7と陰極銀層とを導電性接着剤6で接着した。さらに、トランスファーモールドによりモールド樹脂で外装してチップ状タンタルコンデンサを100個作製した。
【0014】
〔実施例2〕
幅1.2mm×長さ2.7mm×高さ0.6mmのコンデンサ素子1で図2のような構造のチップ状タンタルコンデンサを実施例1と同様に100個作製した。なお、陽極引出層10形成部以外をマスキングしてから、アークイオンプレーティング装置に設置し、陽極引出層10を形成した。
【0015】
〔従来例〕
実施例1より長さ方向の寸法が0.8mm短い、幅1.2mm×長さ1.6mm×高さ0.7mmのコンデンサ素子を用いて、実施例1と同様に誘電体酸化皮膜3、固体電解質層4、陰極引出層5を形成し、タンタルワイヤーに陽極リードフレーム8を溶接し、陰極リードフレーム7と陰極銀層とを導電性接着剤6で接着した後、トラスファーモールドによりモールド樹脂で外装して図3のような構造のチップ状タンタルコンデンサを100個作製した。
【0016】
得られたコンデンサの容量、tanδ、ESR、漏れ電流の平均値を表1に示した。
【0017】
【表1】

Figure 0004570739
【0018】
表1より、実施例1,2は従来例より容量が高く、ESRに優れていることが分かる。また、実施例1,2の寸法のコンデンサ素子で、従来例と同様にコンデンサを作製したが、陰極リードフレーム7を基準にすると、陽極導出線2がモールド樹脂よりはみ出し、コンデンサとならなかった。
【0019】
実施例1,2では陽極引出層10の形成方法にPVD法の一種であるアークイオンプレーティング法を用いたが、マグネトロンスパッタリング等のスパッタリング法、EB(電子ビーム)法、HCD(中空陰極放電)法等のPVD法、CVD法、その他一般的な真空蒸着法を用いても本実施例と同等の効果がある。また、陽極引出層厚みは、10〜150μmが望ましい。
【0020】
また、陽極引出層の弁金属は、タンタル、アルミニウム、ニオブ、チタン、ジルコニウム、ハフニウム、マグネシウム等が使用でき、コンデンサ素子と、陽極引出層に使用する弁金属は、同種弁金属だけでなく、異種弁金属であっても実施例と同様の効果が得られる。
【0021】
【発明の効果】
以上のように本発明によれば、コンデンサ素子の陽極導出線の導出された面と異なる面に弁金属からなる陽極引出層を設け、該陽極引出層と陽極リードフレームとを接続することで、コンデンサ素子寸法が拡大でき、さらに固体電解質層と陽極引出層との接触面積の拡大とコンデンサ素子・陽極リードフレーム間の抵抗を低減できるので、コンデンサの大容量化と、tanδ、ESRの低減を図ることができる。また、撥水性樹脂層を形成することで余分な固体電解質層の形成を防止し、陽極リードフレームと固体電解質層間の短絡を防止することができる。
【図面の簡単な説明】
【図1】本発明による一実施例のチップ状コンデンサの断面図である。
【図2】本発明によるその他の実施例のチップ状コンデンサの断面図である。
【図3】従来例のチップ状コンデンサの断面図である。
【符号の説明】
1 コンデンサ素子
2 陽極導出線
3 誘電体酸化皮膜
4 固体電解質層
5 陰極引出層
6 導電性接着剤
7 陰極リードフレーム
8 陽極リードフレーム
9 モールド樹脂
10 陽極引出層
11 撥水性樹脂[0001]
BACKGROUND OF THE INVENTION
The present invention is small, a large capacity, a method of manufacturing a low chip-shaped capacitor of also the equivalent series resistance in high frequency region (ESR).
[0002]
[Prior art]
In recent years, as electronic devices become lighter, thinner, and higher in frequency, chip capacitors having a large storage capacity per unit volume and low ESR are required even in a high frequency region.
[0003]
The structure of a conventional chip-shaped sintered solid electrolytic capacitor will be described below.
FIG. 3 is a cross-sectional view of a conventional chip capacitor.
[0004]
A dielectric oxide film 3 is formed on the surface of the capacitor element 1 obtained by molding and sintering the valve action metal powder provided with the anode lead wire 2 by an anodic oxidation method, and a metal oxide, After the formation of the solid electrolyte layer 4 made of a conductive polymer, a cathode lead layer 5 made of a carbon layer and a silver layer is sequentially formed.
[0005]
A cathode lead frame 7 serving as a cathode-side external electrode was fixed to the cathode lead layer 5 using a conductive adhesive 6, and an anode lead frame 8 serving as an anode-side external electrode was welded to the anode lead-out line 2. Thereafter, the capacitor element was covered with a molding resin 9 by transfer molding to constitute a chip capacitor.
[0006]
A chip capacitor is generally a tantalum solid electrolytic capacitor using tantalum as a valve action metal, but a capacitor using aluminum is also manufactured. In addition, manganese dioxide is generally used as the solid electrolyte, but due to the increasing demand for low ESR, the transition to polypyrrole having a lower specific resistance than manganese dioxide and conductive polymers such as polyaniline is rapidly progressing.
[0007]
[Problems to be solved by the invention]
However, in the structure of the conventional chip-shaped capacitor described above, since the plate-like anode lead frame 8 is welded to the anode lead-out wire 2 and the anode electrode is drawn out to the outside, the anode lead-out wire and the anode lead frame and There is a problem that a region occupied by the junction occurs, and the capacitor element cannot be enlarged, that is, the capacity cannot be increased.
[0008]
Further, since the anode lead frame 8 is welded to the anode lead-out line 2 and the electrode is drawn out to the outside, the junction point between the anode lead frame 8 and the anode lead-out line 2, the junction point between the anode lead-out line 2 and the capacitor element 1, and the anode There is a problem that the ESR in the high frequency region increases from several mΩ to several tens mΩ due to the electrical resistance of the lead-out line 2.
[0010]
Further, in the method of manufacturing a chip capacitor in which the dielectric oxide film 3, the solid electrolyte layer 4, and the cathode lead layer 5 are formed on the capacitor element 1 provided with the anode lead-out line 2 and are covered with resin, the capacitor element 1 After forming the anode lead layer 10 made of a valve metal on a surface different from the surface from which the anode lead-out line 2 is led out, the dielectric oxide film 3 is formed on the capacitor element 1, and the dielectric oxide film 3 on the anode lead layer 10 is formed. After forming the water repellent resin layer 11 on the surface, the solid electrolyte layer 4 and the cathode lead layer 5 are sequentially formed, and the dielectric oxide film 3 and the water repellent resin layer 11 on the anode lead layer 10 are removed to remove the anode lead layer 10. exposing the, anode lead layer 10 and the anode lead frame 8, a chip-shaped capacitor manufacturing method characterized by comprising connecting a cathode lead layer 5 and the cathode lead frame 7.
[0011]
Furthermore, the anode lead-out layer 10, a vacuum deposition method, PVD method, a chip-shaped capacitor manufacturing method which is characterized in that it is formed in one of a CVD method.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention. An anode lead layer 10 made of a valve metal is formed on a surface different from the anode lead-out line 2 of the capacitor element 1 by any one of a vacuum vapor deposition method, a PVD method, and a CVD method, and the anode lead layer 10 and the anode lead frame 8 are formed. By connecting, a chip capacitor having a small size, a large capacity, and a low ESR in a high frequency region can be obtained.
[0013]
【Example】
[Example 1]
The powder CV value (product of capacity and formation voltage) per gram is 30000 μF · V / g so that the external dimensions of the capacitor are 1.6 mm width × 3.2 mm length × 1.6 mm height. A rectangular tantalum fine powder sintered body having a width of 1.2 mm, a length of 2.4 mm, a height of 0.7 mm, and an anode lead wire 2 (tantalum wire) planted on a 1.2 mm × 0.7 mm surface is a capacitor. Element 1 was obtained. Capacitor element 1 is to be coated with the tantalum wire planting surface facing down in an arc ion plating apparatus in which a metal target for forming the anode lead layer is disposed on the upper surface of the vacuum vessel and an object placement jig is disposed on the lower surface. The tantalum was installed on the target. After evacuating the inside of the vacuum vessel to 1.2 mPa or less using a rotary pump and a turbo molecular pump together, a vacuum arc discharge is generated using the target as an anode and the entire vacuum vessel as a cathode, and the tantalum wire planting surface of the capacitor element 1 An anode lead layer 10 made of tantalum having a thickness of 100 μm was formed on the opposite surface. The capacitor element 1 on which the anode lead layer 10 was formed was anodized by applying 20 V in a 0.05% phosphoric acid aqueous solution to form a dielectric oxide film, and then washed and dried. A water-soluble Teflon resin was applied to the surface of the dielectric oxide film 3 on the anode lead layer 10 and then cured at 200 ° C. to obtain a water-repellent resin layer 11.
next,
・ Pyrrole monomer 5wt%
・ P-toluenesulfonic acid ferric iron 25wt%
・ N-Butanol 35wt%
・ I-propanol 35wt%
The solid electrolyte layer 4 is subjected to a chemical polymerization at 50 ° C. for 1 hour after being immersed in the solution consisting of: As a result, a polypyrrole layer was formed. Then, a cathode lead layer 5 composed of a carbon layer and a cathode silver layer was formed on the polypyrrole layer by a known method.
Thereafter, a 10 W YAG laser was irradiated to the anode lead layer 10 side of the capacitor element 1 to remove the dielectric oxide film and the water repellent resin on the anode lead layer 10. After the anode lead frame 8 was welded to the surface of the anode lead layer 10 where the tantalum metal surface was exposed, the tantalum wire was cut short and the cathode lead frame 7 and the cathode silver layer were bonded with the conductive adhesive 6. Furthermore, 100 chip-shaped tantalum capacitors were produced by exterior packaging with a mold resin by transfer molding.
[0014]
[Example 2]
100 chip-shaped tantalum capacitors having the structure shown in FIG. 2 were produced using the capacitor element 1 having a width of 1.2 mm, a length of 2.7 mm, and a height of 0.6 mm. In addition, after masking parts other than the anode extraction layer 10 formation part, it installed in the arc ion plating apparatus and formed the anode extraction layer 10. FIG.
[0015]
[Conventional example]
Dielectric oxide film 3 in the same manner as in Example 1, using a capacitor element having a length dimension of 0.8 mm shorter than that of Example 1 and having a width of 1.2 mm × length of 1.6 mm × height of 0.7 mm. The solid electrolyte layer 4 and the cathode lead layer 5 are formed, the anode lead frame 8 is welded to the tantalum wire, the cathode lead frame 7 and the cathode silver layer are bonded with the conductive adhesive 6, and then molded resin is formed by transfer molding. 100 chip tantalum capacitors having the structure shown in FIG. 3 were produced.
[0016]
Table 1 shows the average value of the capacitance, tan δ, ESR, and leakage current of the obtained capacitor.
[0017]
[Table 1]
Figure 0004570739
[0018]
From Table 1, it can be seen that Examples 1 and 2 have higher capacity and superior ESR than the conventional example. Further, a capacitor was produced in the same manner as in the conventional example with the capacitor elements having the dimensions of Examples 1 and 2, but when the cathode lead frame 7 was used as a reference, the anode lead-out wire 2 protruded from the mold resin and did not become a capacitor.
[0019]
In Examples 1 and 2, arc ion plating, which is a kind of PVD method, was used as the method for forming the anode extraction layer 10, but sputtering methods such as magnetron sputtering, EB (electron beam) method, HCD (hollow cathode discharge) Even if a PVD method such as a method, a CVD method, or other general vacuum deposition methods are used, the same effects as in this embodiment can be obtained. The anode lead layer thickness is preferably 10 to 150 μm.
[0020]
In addition, tantalum, aluminum, niobium, titanium, zirconium, hafnium, magnesium, etc. can be used for the valve metal of the anode lead layer, and the valve metal used for the capacitor element and the anode lead layer is not only the same type of valve metal but also different types. Even if it is a valve metal, the effect similar to an Example is acquired.
[0021]
【The invention's effect】
As described above, according to the present invention, the anode lead layer made of a valve metal is provided on a surface different from the surface from which the anode lead-out line of the capacitor element is led, and by connecting the anode lead layer and the anode lead frame, Capacitor element dimensions can be increased, contact area between the solid electrolyte layer and the anode lead layer can be increased, and resistance between the capacitor element and the anode lead frame can be reduced, thereby increasing the capacity of the capacitor and reducing tan δ and ESR. be able to. Further, by forming the water repellent resin layer, it is possible to prevent the formation of an extra solid electrolyte layer and to prevent a short circuit between the anode lead frame and the solid electrolyte layer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a chip capacitor according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a chip capacitor according to another embodiment of the present invention.
FIG. 3 is a cross-sectional view of a conventional chip capacitor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Anode lead-out line 3 Dielectric oxide film 4 Solid electrolyte layer 5 Cathode extraction layer 6 Conductive adhesive 7 Cathode lead frame 8 Anode lead frame 9 Mold resin 10 Anode extraction layer 11 Water repellent resin

Claims (2)

陽極導出線を備えたコンデンサ素子に、誘電体酸化皮膜、固体電解質層、陰極引出層を形成し、樹脂外装してなるチップ状コンデンサの製造方法において、In a capacitor element having an anode lead wire, a dielectric oxide film, a solid electrolyte layer, a cathode lead layer are formed, and a chip-shaped capacitor manufacturing method in which a resin sheath is provided,
上記コンデンサ素子の陽極導出線が導出される面と異なる面に弁金属からなる陽極引出層を形成後、コンデンサ素子に誘電体酸化皮膜を形成し、陽極引出層上の誘電体酸化皮膜表面に撥水性樹脂層を形成後、固体電解質層、陰極引出層を順次形成し、陽極引出層上の誘電体酸化皮膜と撥水性樹脂層を除去して陽極引出層を露出させ、該陽極引出層と陽極リードフレーム、陰極引出層と陰極リードフレームを接続してなることを特徴とするチップ状コンデンサの製造方法。After forming an anode lead layer made of a valve metal on a surface different from the surface from which the anode lead-out line of the capacitor element is derived, a dielectric oxide film is formed on the capacitor element, and the surface of the dielectric oxide film on the anode lead layer is repelled. After forming the aqueous resin layer, a solid electrolyte layer and a cathode extraction layer are formed in this order, and the dielectric oxide film and the water repellent resin layer on the anode extraction layer are removed to expose the anode extraction layer. A lead frame, a cathode lead layer, and a cathode lead frame are connected.
上記陽極引出層が、真空蒸着法、PVD法、CVD法のいずれかで形成されていることを特徴とする請求項1記載のチップ状コンデンサの製造方法。2. The method of manufacturing a chip capacitor according to claim 1, wherein the anode lead layer is formed by any one of a vacuum deposition method, a PVD method, and a CVD method.
JP2000219544A 2000-07-19 2000-07-19 Manufacturing method of chip capacitor Expired - Fee Related JP4570739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000219544A JP4570739B2 (en) 2000-07-19 2000-07-19 Manufacturing method of chip capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219544A JP4570739B2 (en) 2000-07-19 2000-07-19 Manufacturing method of chip capacitor

Publications (2)

Publication Number Publication Date
JP2002043174A JP2002043174A (en) 2002-02-08
JP4570739B2 true JP4570739B2 (en) 2010-10-27

Family

ID=18714309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219544A Expired - Fee Related JP4570739B2 (en) 2000-07-19 2000-07-19 Manufacturing method of chip capacitor

Country Status (1)

Country Link
JP (1) JP4570739B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499308A (en) * 1990-08-17 1992-03-31 Nec Corp Solid electrolytic capacitor
JPH05275289A (en) * 1992-03-27 1993-10-22 Nippon Steel Corp Chip type solid electrolytic capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897824A (en) * 1981-12-07 1983-06-10 日本電気ホームエレクトロニクス株式会社 Solid electrolytic condenser
JPS61278124A (en) * 1985-05-31 1986-12-09 ニチコン株式会社 Manufacture of solid electrolytic capacitor
JP3378285B2 (en) * 1993-02-26 2003-02-17 ローム株式会社 Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JP3801660B2 (en) * 1994-05-30 2006-07-26 ローム株式会社 Method for manufacturing capacitor element for tantalum solid electrolytic capacitor
JP2682478B2 (en) * 1994-12-12 1997-11-26 日本電気株式会社 Chip-shaped solid electrolytic capacitor and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499308A (en) * 1990-08-17 1992-03-31 Nec Corp Solid electrolytic capacitor
JPH05275289A (en) * 1992-03-27 1993-10-22 Nippon Steel Corp Chip type solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2002043174A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
JP5587047B2 (en) Solid electrolytic capacitor having face-down terminals
JP5884068B2 (en) Manufacturing method of solid electrolytic capacitor
US6733545B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3350846B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
JP4868601B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP0844630B1 (en) Fabrication method of solid electrolytic capacitor
JP2016181692A (en) Tantalum embedded microchip
JP4285523B2 (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
JP2002025860A (en) Chip-shaped capacitor
JP4570739B2 (en) Manufacturing method of chip capacitor
US8882857B2 (en) Solid electrolytic capacitor and method for manufacturing the same
JP2009105171A (en) Solid-state electrolytic capacitor and its method for manufacturing
JP2002299181A (en) Solid electrolyte capacitor
JP5274344B2 (en) Solid electrolytic capacitor
JP3485848B2 (en) Solid electrolytic capacitors
JP4911620B2 (en) Solid electrolytic capacitor and manufacturing method thereof
WO2022091854A1 (en) Electrolytic capacitor
WO2024143172A1 (en) Solid electrolytic capacitor
JPH10335187A (en) Solid electrolytic capacitor and its manufacturing method
JP4114700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4084862B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003297672A (en) Method of manufacturing solid electrolytic capacitor
JP3401447B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2775762B2 (en) Solid electrolytic capacitors
JP4114325B2 (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees