JP4570720B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4570720B2
JP4570720B2 JP2000036108A JP2000036108A JP4570720B2 JP 4570720 B2 JP4570720 B2 JP 4570720B2 JP 2000036108 A JP2000036108 A JP 2000036108A JP 2000036108 A JP2000036108 A JP 2000036108A JP 4570720 B2 JP4570720 B2 JP 4570720B2
Authority
JP
Japan
Prior art keywords
trench
insulating film
hole
film
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000036108A
Other languages
Japanese (ja)
Other versions
JP2001230251A (en
Inventor
匡 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Oki Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Semiconductor Co Ltd filed Critical Oki Semiconductor Co Ltd
Priority to JP2000036108A priority Critical patent/JP4570720B2/en
Publication of JP2001230251A publication Critical patent/JP2001230251A/en
Application granted granted Critical
Publication of JP4570720B2 publication Critical patent/JP4570720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子の製造方法に係り、特に、CMPの平坦化方法に関するものである。
【0002】
【従来の技術】
従来、このような分野の技術としては、以下に示すようなものがあった。
図5はかかる従来の半導体素子の製造方法を示す図である。
まず、図5(a)に示すように、下層配線101を有する絶縁膜102にホール/トレンチ103を形成する。
【0003】
次に、図5(b)に示すように、W,Al,Cu等の金属膜104を全面的に堆積させる。
次に、図5(c)に示すように、CMPによりホール/トレンチ103内部にのみ金属を残し、他は除去する。
このような金属の埋め込み方法は、微細なホールを埋め込む際や、ダマシン配線を形成する場合に広く用いられている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した従来の方法では、以下のような問題点があった。
まず、図6(a)に示すように、CMP法により金属の研磨を行う場合には、ホール/トレンチの密度が高い領域Aにおいて、絶縁膜が薄膜化するエロージョンという現象が発生することが知られている。これはホール/トレンチ密度により、絶縁膜102の研磨速度が異なるためと考えられている(高密度領域の方が絶縁膜の研磨速度が大きい)。
【0005】
このエロージョンが顕著になり絶縁膜102が極端に薄膜化すると、下層の基板、下層配線101との絶縁性が破壊されて層間リークが生じる。
また、図6(b)に示すように、エロージョンを抑制するために金属の研磨量を極端に少なくすると、絶縁膜102上に金属の研磨残り105が生じて隣接する配線と層内ショートが発生する。
【0006】
本発明は、上記問題点を除去し、金属膜CMP後の絶縁膜の膜厚を均一に維持することができる半導体素子の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕金属膜CMPに使用するスラリーに対する対研磨耐性が上側絶縁膜(3)>下側絶縁膜(2)>前記金属膜になっている前記上側絶縁膜(3)を前記下側絶縁膜(2)上に積層で堆積した後、ホール/トレンチが低い密度で形成される領域(B)の前記上側絶縁膜(3)をホトリソ/エッチングにより除去し、さらにホール/トレンチ(4)を開口した後、前記金属膜(5)を全面に堆積し、さらにCMPによりホール/トレンチ内部を除いて、前記上側絶縁膜(3)をストッパーとして前記金属膜(5)を除去することにより、ホール/トレンチ密度が高い領域(A)に顕著なエロージョンの発生を防止することを特徴とする。
【0008】
〕ウエハ全面に、トータル膜厚が最終的に所望するホール/トレンチ深さより厚くなるように、膜質が異なる絶縁膜(33)を含んだ複数の絶縁膜(32〜34)を堆積させ、ホール/トレンチ(35)をパターニングした後、ホール/トレンチの密度が低い領域(B)に、下側絶縁膜(32)には達するが下層配線(31)までは達しない、浅いホール/トレンチ(36)をパターニングして、ホール/トレンチ密度がウエハ全面で均一になるようにした後に、全面に堆積した金属膜(37)をCMPする際にホールの無いフラット部の金属膜(37)が完全に除去された後も、研磨残りを防止するために研磨を続け、ウエハ全面で膜質が異なる絶縁膜(33)が露出した時点で研磨を終了することを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について図を参照しながら詳細に説明する。
図1は本発明の第1実施例を示す半導体素子の製造工程断面図である。
(1)まず、下層配線1を有する下側絶縁膜2と上側絶縁膜3を積層で堆積する。この時、金属膜CMPに使用するスラリーに対する研磨耐性(CMPされ難さ)は、以下の通りになっている必要がある。
【0010】
上側絶縁膜3>下側絶縁膜2>金属膜
その後、図1(a)に示すように、ホール/トレンチが低い密度で形成される領域Bの上側絶縁膜3をホトリソ/エッチングにより除去する。
(2)次に、図1(b)に示すように、ホール/トレンチ4を開口する。
(3)その後、図1(c)に示すように、金属膜5を全面に堆積し、さらにCMPによりホール/トレンチ内部を除いて、金属膜5を除去する。この時、上側絶縁膜3がシリコン窒化膜の場合には、この後にドライ/ウェットエッチングにより上側絶縁膜3を除去しても良い。あるいは、ウエハ全面で下側絶縁膜2が露出する時点まで研磨を継続して、上側絶縁膜3を除去しても良い。
【0011】
このように、第1実施例によれば、上側絶縁膜3が金属膜CMPの際にストッパー膜となり、ホール/トレンチ密度の高い領域Aにおけるエロージョンを抑制する。これにより、局所的なエロージョンの発生が防止される。
次に、本発明の第1参考例について説明する。
図2は本発明の第1参考例を示す半導体素子の製造工程断面図である。
【0012】
(1)まず、図2(a)に示すように、ホール/トレンチが低い密度で形成される領域Bの絶縁膜12の上部をホトリソ/エッチングにより除去し、薄くする。なお、ここで、11は下層配線である。
(2)次に、図2(b)に示すように、ホール/トレンチ13を開口する。
(3)その後、図2(c)に示すように、金属膜14を全面に堆積し、さらにCMPによりホール/トレンチ内部を除いて、金属膜14を除去する。
【0013】
このように、第1参考例によれば、ホール/トレンチ密度の低い領域Bの絶縁膜12の膜厚を予め薄くすることにより、ホール/トレンチ密度の高い領域Aで生じるエロージョンと相殺されて、金属膜CMP後の絶縁膜の膜厚を均一に維持できる。
これにより、上側絶縁膜3を積層することなく、第1実施例と同様の効果を得ることができ、より経済的なプロセスが構築可能になる。
【0014】
次に、本発明の第2参考例について説明する。
図3は本発明の第2参考例を示す半導体素子の製造工程断面図である。
(1)まず、図3(a)に示すように、下層配線21を有する絶縁膜22が形成されており、そこにホール/トレンチ23を形成する。その際に、最終的に、所望するホール/トレンチ23の深さより、厚めに絶縁膜22を堆積させた後に、ホール/トレンチ23をパターニングする。
【0015】
(2)次に、図3(b)に示すように、ホール/トレンチ23の密度が低い領域Bに、下層配線21(又は基板)まで達しない浅いホール/トレンチ24をパターニングして、ホール/トレンチ密度がウエハ全面で均一になるようにする。 (3)そこで、図3(c)に示すように、全面に金属膜25を堆積する。
(4)その後、図3(d)に示すように、金属膜25をCMPするが、その際にホール/トレンチ23,24の無いフラット部の金属膜25が完全に除去される。
【0016】
(5)次いで、図3(e)に示すように、研磨残りを防止するために、さらに研磨を続け、浅いホール/トレンチ24が消失する前に研磨を終了する。
このように、第2参考例によれば、絶縁膜22のホール/トレンチ23の密度が低い領域Bに形成した浅いホール/トレンチ24により、ウエハ面内のホール/トレンチ密度が均一になる。これにより、局所的なエロージョンの発生が防止される。
【0017】
さらに、絶縁膜22を金属膜25を堆積させた時点よりも削りこむことにより、フラット部に研磨残りが発生しないという利点がある。これにより第1実施例第1参考例より、確実に隣接する配線とのショートを防止できる。
次に、本発明の第実施例について説明する。
図4は本発明の第実施例を示す半導体素子の製造工程断面図である。
【0018】
(1)まず、図4(a)に示すように、ウエハ全面に、トータル膜厚が最終的に所望するホール/トレンチ深さより厚くなるように、絶縁膜32〜34を堆積させ、ホール/トレンチ35をパターニングする。この場合に絶縁膜33のみは、絶縁膜32,34と膜質(反射率、硬度、対薬液エッチング耐性等)が異なる膜を用いる。一例として、絶縁膜32,34、にシリコン酸化物(SiO2 )を用いる場合には、絶縁膜33にはシリコン窒化物(Si3 4 )を用いる。また、パターニングの際には絶縁膜32〜34を堆積後に一括で下層配線までホール/トレンチを開口しても良い。
【0019】
また、絶縁膜32〜34を堆積後、及び絶縁膜34にホール/トレンチ開口後に、このパターンをマスクにして絶縁膜33、32に一括でホール/トレンチ開口しても良い。
または、絶縁膜32〜34を堆積後、及び絶縁膜34にホール/トレンチ開口後に、このパターンをマスクにして絶縁膜33に開口し、さらに絶縁膜33に形成したパターンをマスクに絶縁膜32に開口しても良い。
【0020】
(2)その後、図4(b)に示すように、ホール/トレンチ35の密度が低い領域Bに、絶縁膜32には達するが下層配線31までには達しない浅いホール/トレンチ36をパターニングしてホール/トレンチ密度がウエハ全面で均一になるようにする。ホール/トレンチ36の開口方法は、先述したホール/トレンチ35を開口する場合と同様に行う。
【0021】
(3)その後に、図4(c)に示すように、全面に堆積した金属膜37をCMPするが、その際にホール/トレンチ35,36の無いフラット部の金属膜が完全に除去された後も研磨残りを防止するために研磨を続け、ウエハ全面で絶縁膜33が露出した時点で研磨を終了する。
(4)さらに、図4(d)に示すように、絶縁膜33がシリコン窒化物の場合には寄生容量低減のために、この後にドライ/ウエットエッチングにより絶縁膜33を除去しても良い。あるいは、ウエハ全面で絶縁膜32が露出する時点まで研磨を継続して、絶縁膜33を除去しても良い。
【0022】
このように、第実施例によれば、絶縁膜32〜34に形成した浅いホール/トレンチ36により、ウエハ面内のホール/トレンチ密度が均一になる。これにより、局所的なエロージョンの発生が防止される。
さらに、絶縁膜32〜34を金属膜37を堆積させた時点よりも削りこむことにより、絶縁膜フラット部に研磨残りが発生しない。これにより、隣接する配線とのショートを防止できる。さらに膜質の異なる絶縁膜33を、絶縁膜32と34の間に挟むことにより、研磨時におけるトルク電流や反射光を信号として検出しながら金属膜37をCMPする際に、第2参考例よりも所望する時点で再現性良く研磨を止めることが容易になる。
【0023】
すなわち、研磨を進めていくうち、ウエハ全面で最初に絶縁膜34が消失して膜質の異なる絶縁膜33が露出した時点で信号が大きく変化する。つまり、CMPの終点として検出が容易になる。
同様に、ウエハ全面で絶縁膜33が消失して膜質の異なる絶縁膜32が露出した時点においても、信号検出が容易になる。これらの時点をCMP研磨終了点とすれば、異なるウエハ間においても深さバラツキの少ない、ホール/トレンチ形成が可能となる。
【0024】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0025】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
(1)請求項1記載の発明によれば、上側絶縁膜が金属膜CMPの際にストッパー膜となり、ホール/トレンチ密度の高い領域におけるエロージョンを抑制する。これにより、局所的なエロージョンの発生が防止される。
【0026】
(2)請求項記載の発明によれば、ホール/トレンチ密度の低い領域の絶縁膜に形成した浅いホール/トレンチにより、ウエハ面内のホール/トレンチ密度が均一になる。これにより、局所的なエロージョンの発生が防止される。
また、複数の絶縁膜を金属膜を堆積させた時点よりも削りこむことにより、絶縁膜フラット部に研磨残りが発生しない。これにより、隣接する配線とのショートを防止できる。
【0027】
さらに、膜質の異なる絶縁膜を、上下の絶縁膜の間に挟むことにより、研磨時におけるトルク電流や反射光を信号として検出しながら金属膜をCMPする際に、所望する時点で再現性良く研磨を止めることが容易になる。
【図面の簡単な説明】
【図1】 本発明の第1実施例を示す半導体素子の製造工程断面図である。
【図2】 本発明の第1参考例を示す半導体素子の製造工程断面図である。
【図3】 本発明の第2参考例を示す半導体素子の製造工程断面図である。
【図4】 本発明の第実施例を示す半導体素子の製造工程断面図である。
【図5】 従来の半導体素子の製造方法を示す図である。
【図6】 従来技術の問題点の説明図である。
【符号の説明】
1,11,21 下層配線
2 下側絶縁膜
3 上側絶縁膜
4,13,23,35 ホール/トレンチ
5,14,25,37 金属膜
12,22,32,34 絶縁膜
24,36 浅いホール/トレンチ
33 膜質が異なる絶縁膜
A ホール/トレンチ密度の高い領域
B ホール/トレンチが低い密度で形成される領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a planarization method for CMP.
[0002]
[Prior art]
Conventionally, there have been the following technologies in such fields.
FIG. 5 is a view showing a method for manufacturing such a conventional semiconductor device.
First, as shown in FIG. 5A, a hole / trench 103 is formed in the insulating film 102 having the lower layer wiring 101.
[0003]
Next, as shown in FIG. 5B, a metal film 104 of W, Al, Cu or the like is deposited over the entire surface.
Next, as shown in FIG. 5C, the metal is left only in the hole / trench 103 by CMP and the others are removed.
Such a metal embedding method is widely used when embedding fine holes or forming damascene wiring.
[0004]
[Problems to be solved by the invention]
However, the conventional method described above has the following problems.
First, as shown in FIG. 6A, when metal polishing is performed by CMP, it is known that a phenomenon called erosion in which the insulating film is thinned occurs in the region A where the hole / trench density is high. It has been. This is presumably because the polishing rate of the insulating film 102 differs depending on the hole / trench density (the polishing rate of the insulating film is higher in the high-density region).
[0005]
When this erosion becomes prominent and the insulating film 102 becomes extremely thin, the insulation between the lower substrate and the lower wiring 101 is destroyed, and interlayer leakage occurs.
Further, as shown in FIG. 6B, if the amount of metal polishing is extremely reduced to suppress erosion, a metal polishing residue 105 is generated on the insulating film 102, and an adjacent wiring and an in-layer short circuit occur. To do.
[0006]
An object of the present invention is to provide a method for manufacturing a semiconductor device that can eliminate the above-described problems and maintain a uniform film thickness of an insulating film after the metal film CMP.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1] The upper insulating film (3)> the lower insulating film (2)> the upper insulating film (3), which has the resistance to polishing against the slurry used for the metal film CMP, is the lower insulating film. (2) After depositing in a stacked manner, the upper insulating film (3) in the region (B) where holes / trench is formed at a low density is removed by photolithography / etching, and the hole / trench (4) is opened. Then, the metal film (5) is deposited on the entire surface, and further, the inside of the hole / trench is removed by CMP, and the metal film (5) is removed using the upper insulating film (3) as a stopper. It is characterized by preventing the occurrence of significant erosion in the region (A) having a high trench density.
[0008]
[ 2 ] A plurality of insulating films (32 to 34) including insulating films (33) having different film qualities are deposited on the entire surface of the wafer so that the total film thickness is finally greater than the desired hole / trench depth. after patterning the hole / trench (35), the hole / density of trench lower region (B), but does not reach the lower-layer wiring (31) or reaches the lower insulating film (32), a shallow hole / trench ( 36) is patterned so that the hole / trench density is uniform over the entire surface of the wafer, and when the metal film (37) deposited on the entire surface is subjected to CMP, the flat metal film (37) without holes is completely formed. After the removal, the polishing is continued to prevent the polishing residue, and the polishing is terminated when the insulating film (33) having a different film quality is exposed on the entire surface of the wafer.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view of a semiconductor device manufacturing process showing a first embodiment of the present invention.
(1) First, the lower insulating film 2 and the upper insulating film 3 having the lower layer wiring 1 are deposited in a stacked manner. At this time, the polishing resistance (difficulty of CMP) to the slurry used for the metal film CMP needs to be as follows.
[0010]
Upper insulating film 3> Lower insulating film 2> Metal film Thereafter, as shown in FIG. 1A, the upper insulating film 3 in the region B where holes / trench is formed at a low density is removed by photolithography / etching.
(2) Next, as shown in FIG. 1B, the hole / trench 4 is opened.
(3) Thereafter, as shown in FIG. 1C, a metal film 5 is deposited on the entire surface, and the metal film 5 is removed by CMP except the inside of the hole / trench. At this time, when the upper insulating film 3 is a silicon nitride film, the upper insulating film 3 may be removed thereafter by dry / wet etching. Alternatively, polishing may be continued until the lower insulating film 2 is exposed on the entire surface of the wafer, and the upper insulating film 3 may be removed.
[0011]
Thus, according to the first embodiment, the upper insulating film 3 becomes a stopper film during the metal film CMP, and erosion in the region A having a high hole / trench density is suppressed. This prevents the occurrence of local erosion.
Next, a first reference example of the present invention will be described.
FIG. 2 is a cross-sectional view of a manufacturing process of a semiconductor device showing a first reference example of the present invention.
[0012]
(1) First, as shown in FIG. 2A, the upper portion of the insulating film 12 in the region B where holes / trench is formed at a low density is removed by photolithography / etching to make it thin. Here, 11 is a lower layer wiring.
(2) Next, as shown in FIG. 2B, a hole / trench 13 is opened.
(3) Thereafter, as shown in FIG. 2C, a metal film 14 is deposited on the entire surface, and the metal film 14 is removed by CMP except the inside of the hole / trench.
[0013]
As described above, according to the first reference example, by previously reducing the film thickness of the insulating film 12 in the region B with a low hole / trench density, the erosion generated in the region A with a high hole / trench density is offset. The film thickness of the insulating film after the metal film CMP can be kept uniform.
As a result, the same effect as in the first embodiment can be obtained without laminating the upper insulating film 3, and a more economical process can be constructed.
[0014]
Next, a second reference example of the present invention will be described.
FIG. 3 is a cross-sectional view of a manufacturing process of a semiconductor device showing a second reference example of the present invention.
(1) First, as shown in FIG. 3A, an insulating film 22 having a lower layer wiring 21 is formed, and a hole / trench 23 is formed there. At that time, after finally depositing the insulating film 22 thicker than the desired depth of the hole / trench 23, the hole / trench 23 is patterned.
[0015]
(2) Next, as shown in FIG. 3B, a shallow hole / trench 24 that does not reach the lower layer wiring 21 (or the substrate) is patterned in the region B where the density of the holes / trench 23 is low. The trench density should be uniform over the entire wafer surface. (3) Therefore, a metal film 25 is deposited on the entire surface as shown in FIG.
(4) Thereafter, as shown in FIG. 3D, the metal film 25 is subjected to CMP. At this time, the metal film 25 in the flat portion without the holes / trench 23, 24 is completely removed.
[0016]
(5) Next, as shown in FIG. 3E, the polishing is further continued to prevent the polishing residue, and the polishing is finished before the shallow hole / trench 24 disappears.
As described above, according to the second reference example, the shallow hole / trench 24 formed in the region B where the hole / trench 23 density of the insulating film 22 is low makes the hole / trench density in the wafer surface uniform. This prevents the occurrence of local erosion.
[0017]
Further, by scraping the insulating film 22 from the time when the metal film 25 is deposited, there is an advantage that no polishing residue is generated in the flat portion. Thereby, the short circuit with the adjacent wiring can be surely prevented from the first embodiment and the first reference example.
Next, a second embodiment of the present invention will be described.
FIG. 4 is a cross-sectional view of a semiconductor device manufacturing process showing a second embodiment of the present invention.
[0018]
(1) First, as shown in FIG. 4A, insulating films 32 to 34 are deposited on the entire surface of the wafer so that the total film thickness is finally thicker than the desired hole / trench depth. 35 is patterned. In this case, only the insulating film 33 is a film having a different film quality (reflectance, hardness, resistance to chemical etching, etc.) from the insulating films 32 and 34. As an example, when silicon oxide (SiO 2 ) is used for the insulating films 32 and 34, silicon nitride (Si 3 N 4 ) is used for the insulating film 33. Further, in patterning, holes / trench may be opened to the lower layer wiring after the insulating films 32 to 34 are deposited.
[0019]
Alternatively, after depositing the insulating films 32 to 34 and opening the holes / trench in the insulating film 34, the holes / trench openings may be collectively opened in the insulating films 33, 32 using this pattern as a mask.
Alternatively, after the insulating films 32 to 34 are deposited and the hole / trench is opened in the insulating film 34, the pattern is opened in the insulating film 33 as a mask, and the pattern formed in the insulating film 33 is used as the mask in the insulating film 32. You may open it.
[0020]
(2) Thereafter, as shown in FIG. 4 (b), the density is low area B of the hole / trench 35, a shallow hole / trench 36 is reaching the insulating film 32 does not reach the in the lower layer wiring 3 1 or Patterning is performed so that the hole / trench density is uniform over the entire wafer surface. The hole / trench 36 is opened in the same manner as the hole / trench 35 is opened.
[0021]
(3) Thereafter, as shown in FIG. 4C, the metal film 37 deposited on the entire surface is subjected to CMP. At this time, the metal film in the flat portion without the holes / trenches 35 and 36 is completely removed. Thereafter, the polishing is continued to prevent the polishing residue, and the polishing is finished when the insulating film 33 is exposed on the entire surface of the wafer.
(4) Further, as shown in FIG. 4D, when the insulating film 33 is silicon nitride, the insulating film 33 may be removed thereafter by dry / wet etching to reduce parasitic capacitance. Alternatively, the insulating film 33 may be removed by continuing polishing until the insulating film 32 is exposed on the entire surface of the wafer.
[0022]
Thus, according to the second embodiment, the shallow hole / trench 36 formed in the insulating films 32 to 34 makes the hole / trench density in the wafer surface uniform. This prevents the occurrence of local erosion.
Further, by polishing the insulating films 32 to 34 from the time when the metal film 37 is deposited, no polishing residue is generated in the insulating film flat portion. Thereby, a short circuit with the adjacent wiring can be prevented. Further, by sandwiching an insulating film 33 of different film quality between the insulating films 32 and 34, when the metal film 37 is CMPed while detecting torque current and reflected light at the time of polishing as a signal, it is more than that of the second reference example. It becomes easy to stop polishing at a desired time with good reproducibility.
[0023]
That is, as the polishing proceeds, the signal changes greatly when the insulating film 34 disappears first on the entire wafer surface and the insulating film 33 having a different film quality is exposed. That is, it becomes easy to detect the end point of CMP.
Similarly, signal detection is facilitated even when the insulating film 33 disappears on the entire surface of the wafer and the insulating film 32 having a different film quality is exposed. If these points are used as CMP polishing end points, hole / trench formation with little variation in depth between different wafers can be achieved.
[0024]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0025]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
(1) According to the invention described in claim 1, the upper insulating film serves as a stopper film during the metal film CMP, and suppresses erosion in a region having a high hole / trench density. This prevents the occurrence of local erosion.
[0026]
(2) According to the invention described in claim 2 , the hole / trench density in the wafer surface is made uniform by the shallow hole / trench formed in the insulating film in the region having a low hole / trench density. This prevents the occurrence of local erosion.
In addition, since the plurality of insulating films are cut away from the time when the metal film is deposited, no polishing residue is generated in the insulating film flat portion. Thereby, a short circuit with the adjacent wiring can be prevented.
[0027]
In addition, by sandwiching insulating films with different film quality between the upper and lower insulating films, polishing is performed with good reproducibility at the desired time when CMP is performed while detecting torque current and reflected light during polishing as signals. It becomes easy to stop.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a manufacturing step of a semiconductor element showing a first embodiment of the invention.
FIG. 2 is a cross-sectional view of a manufacturing process of a semiconductor device showing a first reference example of the invention.
FIG. 3 is a cross-sectional view of a manufacturing process of a semiconductor device showing a second reference example of the invention.
FIG. 4 is a cross-sectional view of a manufacturing process of a semiconductor device showing a second embodiment of the invention.
FIG. 5 is a diagram showing a conventional method for manufacturing a semiconductor element.
FIG. 6 is an explanatory diagram of problems in the conventional technology.
[Explanation of symbols]
1,11,21 Lower layer wiring 2 Lower insulating film 3 Upper insulating film 4, 13, 23, 35 Hole / trench 5, 14, 25, 37 Metal film 12, 22, 32, 34 Insulating film 24, 36 Shallow hole / Trench 33 Insulating film with different film quality A Region with high hole / trench density B Region with low hole / trench density

Claims (2)

金属膜CMPに使用するスラリーに対する対研磨耐性が上側絶縁膜>下側絶縁膜>前記金属膜になっている前記上側絶縁膜を前記下側絶縁膜上に積層で堆積した後、ホール/トレンチが低い密度で形成される領域の前記上側絶縁膜をホトリソ/エッチングにより除去し、さらにホール/トレンチを開口した後、前記金属膜を全面に堆積し、さらにCMPによりホール/トレンチ内部を除いて、前記上側絶縁膜をストッパーとして前記金属膜を除去することにより、ホール/トレンチ密度が高い領域に顕著なエロージョンの発生を防止することを特徴とする半導体素子の製造方法。The resistance against polishing against the slurry used for the metal film CMP is such that the upper insulating film> the lower insulating film> the upper insulating film, which is the metal film, is deposited on the lower insulating film, and then the hole / trench is formed. The upper insulating film in a region formed at a low density is removed by photolithography / etching, and after further opening a hole / trench, the metal film is deposited on the entire surface, and the inside of the hole / trench is further removed by CMP. by removing the metal film upper insulating film as a strike wrapper, a method of manufacturing a semiconductor device characterized by preventing the occurrence of significant erosion in the hole / trench density regions of high. ウエハ全面に、トータル膜厚が最終的に所望するホール/トレンチ深さより厚くなるように、膜質が異なる絶縁膜を含んだ複数の絶縁膜を堆積させ、ホール/トレンチをパターニングした後、ホール/トレンチの密度が低い領域に、下側絶縁膜には達するが下層配線までは達しない、浅いホール/トレンチをパターニングして、ホール/トレンチ密度がウエハ全面で均一になるようにした後に、全面に堆積した金属膜をCMPする際にホールの無いフラット部の金属膜が完全に除去された後も、研磨残りを防止するために研磨を続け、ウエハ全面で膜質が異なる絶縁膜が露出した時点で研磨を終了することを特徴とする半導体素子の製造方法。A plurality of insulating films including insulating films having different film qualities are deposited on the entire surface of the wafer so that the total film thickness is finally thicker than the desired hole / trench depth, and the holes / trench is patterned. the density is low region of, the reach to the lower insulating film does not reach the lower distribution Senma, by patterning a shallow hole / trench, after such hole / trench density becomes uniform in the entire wafer surface, the entire surface Even after the metal film in the flat part without holes is completely removed when CMP is performed on the deposited metal film, polishing is continued to prevent polishing residue, and when an insulating film having a different film quality is exposed on the entire wafer surface. A method of manufacturing a semiconductor device, characterized by terminating polishing.
JP2000036108A 2000-02-15 2000-02-15 Manufacturing method of semiconductor device Expired - Fee Related JP4570720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036108A JP4570720B2 (en) 2000-02-15 2000-02-15 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036108A JP4570720B2 (en) 2000-02-15 2000-02-15 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2001230251A JP2001230251A (en) 2001-08-24
JP4570720B2 true JP4570720B2 (en) 2010-10-27

Family

ID=18560192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036108A Expired - Fee Related JP4570720B2 (en) 2000-02-15 2000-02-15 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4570720B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077920A (en) * 2001-09-04 2003-03-14 Nec Corp Method for forming metal wiring
US7524758B2 (en) * 2006-02-17 2009-04-28 Toshiba America Electronic Components, Inc. Interconnect structure and method for semiconductor device
JP2012015268A (en) * 2010-06-30 2012-01-19 Fujitsu Semiconductor Ltd Manufacturing method of semiconductor device and semiconductor device
JP2014022694A (en) * 2012-07-23 2014-02-03 Fujitsu Ltd Semiconductor device and manufacturing method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222632A (en) * 1995-02-13 1996-08-30 Sony Corp Multilayer interconnection forming method and structure thereof
JP2000138220A (en) * 1998-11-02 2000-05-16 Nec Corp Method for forming groove-wiring of semiconductor device
JP2001118845A (en) * 1999-10-20 2001-04-27 Nec Corp Formation of damascene interconnection and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222632A (en) * 1995-02-13 1996-08-30 Sony Corp Multilayer interconnection forming method and structure thereof
JP2000138220A (en) * 1998-11-02 2000-05-16 Nec Corp Method for forming groove-wiring of semiconductor device
JP2001118845A (en) * 1999-10-20 2001-04-27 Nec Corp Formation of damascene interconnection and semiconductor device

Also Published As

Publication number Publication date
JP2001230251A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
US5470793A (en) Method of via formation for the multilevel interconnect integrated circuits
US6420257B2 (en) Process for forming trenches and contacts during the formation of a semiconductor memory device
US5854140A (en) Method of making an aluminum contact
KR100383504B1 (en) Semiconductor device and method of producing the same
JPH08204014A (en) Semiconductor device and its production
EP0534631B1 (en) Method of forming vias structure obtained
US6383910B2 (en) Method of manufacturing a semiconductor device, and a semiconductor device manufactured thereby
US5554560A (en) Method for forming a planar field oxide (fox) on substrates for integrated circuit
JP3214475B2 (en) Method of forming dual damascene wiring
JP3312604B2 (en) Method for manufacturing semiconductor device
JP4570720B2 (en) Manufacturing method of semiconductor device
US6927124B2 (en) Method of manufacturing semiconductor device
US6653202B1 (en) Method of shallow trench isolation (STI) formation using amorphous carbon
JP2003124309A (en) Method of forming via and trench in copper dual damascene process
JP3742243B2 (en) Dry etching method and semiconductor device manufacturing method
KR100619394B1 (en) Method for preventing dishing of semiconductor device
US20020072217A1 (en) Method for improving contact reliability in semiconductor devices
JP3367490B2 (en) Method for manufacturing semiconductor device
KR20000076893A (en) Semiconductor apparatus and method for manufacturing the semiconductor apparatus
JPH0969495A (en) Manufacture of semiconductor device
JP3803516B2 (en) Dry etching method and semiconductor device manufacturing method
JPH07240466A (en) Fabrication of semiconductor device
KR100807026B1 (en) Method of fabricating semicondcucor device
KR100197994B1 (en) Method for forming a contact hole in semiconductor device
KR100214536B1 (en) Method of forming a device isolation structure of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees