JP4569497B2 - 伝送線路損失の補償手段を有するドライバ回路 - Google Patents

伝送線路損失の補償手段を有するドライバ回路 Download PDF

Info

Publication number
JP4569497B2
JP4569497B2 JP2006058854A JP2006058854A JP4569497B2 JP 4569497 B2 JP4569497 B2 JP 4569497B2 JP 2006058854 A JP2006058854 A JP 2006058854A JP 2006058854 A JP2006058854 A JP 2006058854A JP 4569497 B2 JP4569497 B2 JP 4569497B2
Authority
JP
Japan
Prior art keywords
waveform
transmission line
square wave
output
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006058854A
Other languages
English (en)
Other versions
JP2006211702A (ja
Inventor
徳男 中條
林  良彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006058854A priority Critical patent/JP4569497B2/ja
Publication of JP2006211702A publication Critical patent/JP2006211702A/ja
Application granted granted Critical
Publication of JP4569497B2 publication Critical patent/JP4569497B2/ja
Expired - Lifetime legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

本発明は、伝送線路を用いて信号の伝送を行うドライバ回路を含むシステムに係り、特
に、伝送線路での損失を補償することが可能なドライバ回路に関する。
従来、伝送線路での損失補償は、コイルまたは容量で構成したフィルタ回路を用いて、
増幅回路の周波数特性が伝送線路の損失特性の逆となるように調整して行っていた。例え
ば、実開平5ー87750号公報で開示されているように、ピーキングコイルを用いて高
い周波数での増幅率を上げることにより、伝送線路の損失により減衰する高周波成分の補
償を行っている。
実開平5ー87750号公報
かかる従来の損失補償手段を備えたドライバ回路においては、コイルまたは容量で構成
したフィルタ回路を用いるために、1つの伝送線路の損失に合わせてドライバ回路の周波
数特性を調整すると、そのドライバ回路を別の伝送線路に用いることが困難であった。ま
た、フィルタ回路にコイルを用いる場合には、ドライバ回路の集積回路化が難しいという
課題があった。
本発明の目的は、任意の伝送線路に容易に対応可能なドライバ回路および伝送線路の損
失補償方法を提供することにある。
さらに、本発明は、コイルを備えたフィルタ回路を用いない、集積回路化に適している
ドライバ回路および伝送線路の損失補償方法を提供することを目的とする。
上記目的は、伝送すべき信号を増幅して伝送線路へ出力するドライバ回路において、所
定の波形形状を備えるパルスのパルス幅と振幅とを記憶する記憶手段と、前記記憶手段に
記憶されているパルス幅と振幅とを持つパルスを、前記伝送すべき信号の立ち上り時及び
立ち下り時に発生する、1個以上のパルス発生手段と、前記伝送すべき信号と、前記1個
以上のパルス波発生器から出力されるパルスとを加算する加算手段と、前記加算器の出力
を増幅する増幅手段とを有することを特徴とするドライバ回路により達成できる。
前記ドライバ回路のパルス発生手段で発生する所定の波形形状のパルスとしては、例え
ば方形波パルスまたは三角波パルスを用いる。
本発明のドライバ回路においては、伝送すべき信号の波形のうち、伝送線路での損失に
より高周波成分が減衰する、立ち上がりおよび立ち下がりの部分を補うために、予め定め
られたパルス幅及び振幅を持つ方形波または三角波等の波形形状の1以上のパルスを、前
記信号波形の高レベル(Hi)と低レベル(Low)との切り替えと同期して、前記信号
波形に加算する。
本発明において、記憶手段は、使用する伝送線路の損失特性に応じて予め設定された、
前記信号波形に加算する1以上のパルスのパルス幅及び振幅を記憶する。また、1個以上
のパルス発生手段は、記憶手段に記憶される前記パルス幅及び振幅に応じて、発生するパ
ルスのパルス幅及び振幅を変える。したがって、記憶手段に記憶するデータを変えること
により、任意の伝送線路に対して損失補償を行なうことができる。
さらに、本発明のドライバ回路は、従来の伝送線路の損失補償を行なうドライバ回路の
ように、コイルを備えたフィルタ回路を使用しないため、集積回路化に適している。
本発明によれば、任意の伝送線路において、伝送線路での損失を補償をすることができ
ると共に、集積回路化に適しているドライバ回路及び伝送線路の損失補償方法を提供する
ことができる。
以下、本発明の実施の態様を説明します。
以下、本発明を適用した伝送線路損失の補償手段を有するドライバ回路の実施例を図を
参照して説明する。
本発明による伝送線路損失の補償手段を有するドライバ回路の一実施例を、図1〜図3
を参照して説明する。
本実施例のドライバ回路8は、例えば図1に示すように、伝送線路9を介して伝送すべ
き信号を発生させる信号発生器1と、伝送線路9での損失補償のために用いる方形波パル
スのパルス幅データ及び振幅データを格納するレジスタ2と、レジスタ2に格納したパル
ス幅データ及び振幅データに従い方形波を発生させる方形波発生器3、4、5…とを有す
る。
本実施例は、さらに、信号発生器1の出力1aと、方形波発生器3の出力3aと、方形
波発生器4の出力4aと、方形波発生器5の出力5a…とを加算する加算器6、及び加算
器6の出力6aを増幅する増幅回路7を有する。
本実施例のドライバ回路8により行なわれる、伝送線路損失の補償方法について、図2
、図3の波形図に基づいて説明する。なお、以下では、伝送すべき信号がデジタル信号で
あり、方形波発生器が3個の場合について説明する。
波形10(図2(a))は、信号発生器1で発生される信号の一部の立ち上がり時にお
ける波形を示すものである。伝送線路の損失補償を行なわないドライバ回路の場合には、
このような波形10を備えた信号をそのまま、増幅回路7を介して伝送線路9へ供給する
すると、伝送線路9での表皮効果等の損失のために、立ち上がり部分の高周波成分が減
衰され、伝送線路端9aでは、波形11(図2(b))のように、波形が鈍る。このよう
な伝送線路損失は、伝送する信号の周波数が高ければ高いほど顕著なものとなり、例えば
、100MHz以上の信号では、50cm程度の伝送線路9でも、表皮効果等による損失
が大きくなる。
本実施例では、例えば100MHz以上の周数帯で50cm以上の伝送線路9、または
、より低い周波数帯では、数m以上の伝送線路9での損失を補償するため、図2(c)に
示すように、波形10と波形11との差分の大きさ及び形状に対応する、パルス幅及び振
幅を備えた方形波12、方形波13、及び方形波14を、伝送すべき波形(以下では元の
波形と呼ぶ)10に加算する。
ここで、方形波12、13、14のそれぞれのパルス幅及び振幅は、例えばこれら3つ
の方形波を元の波形10に加算して形成される波形と、波形11との差が、最小あるいは
予め定めたしきい値以下となるように決定する。また、本実施例で扱っている伝送線路で
の損失の特性を考慮すると、図2(c)に示すように、各方形波のパルス幅及び振幅を、
互いに異なるように決定することで、波形11との差をより小さくすることができる。
すなわち、増幅回路7の出力7aの波形を、波形15(図2(d)の太線部分)のよう
に、予め求められている、互いに異なるパルス幅及び振幅をそれぞれ備えた、方形波12
、方形波13および方形波14を、元の波形10に、当該波形の高レベル(Hi)及び低
レベル(Low)への切り替えと同じタイミングで加算した波形とする。
上記のように形成された波形15は、伝送線路9に供給され、伝送線路9で損失を受け
ると、図2(e)に示すような波形16となる。
したがって、本実施例によれば、伝送線路での損失補償がされない場合の、伝送線路端
9aでの波形11と比較して、より元の波形10に近い波形16を得ることができ、伝送
線路損失を補償することが可能となる。
以上では、図2に示すような信号の立ち上がり時の波形について説明したが、図3(a
)〜(e)に示すように、信号の立ち下がり時にも、全く同じような事が言える。ここで
、信号の立ち下がり時における本実施例の作用の説明は、上記の立上り時の場合と同様で
あり、省略する。なお、図3では、図2と同様に、10は元の波形、11は伝送線路9で
の損失を受けた波形、15は本実施例でのドライバ回路8の出力波形、及び16は波形1
5が伝送線路9により損失を受けた場合の波形を、それぞれ示している。
本実施例のドライバ回路8では、上述したように元の波形10と、ある特定の伝送線路
9での損失を受けた波形11との差分に対応するように(図2(c)及び図3(c)参照
)、各方形波のパルス幅及び振幅を予めデータとして求めておき、レジスタ2に格納する
さらに、レジスタ2に格納したパルス幅データや振幅データに従って、方形波発生器3
、方形波発生器4および方形波発生器5により、方形波3a、方形波4aおよび方形波5
aを生成し、加算器6により信号発生器5の出力5aと加算し、加算器の出力6aを増幅
回路7により増幅することで、波形15を得る。
ここで、本実施例における方形波発生器は、発生する方形波のパルス幅と振幅とを可変
とするものである。このため、伝送線路9を変える場合には、新たに使用する伝送線路で
の損失に応じてレジスタ2に格納するデータを変えるか、または、予め複数種類の伝送線
路に対応するデータをレジスタ2に格納しておき、その時点でより適切なデータを選択し
て用いる構成とする。
本実施例によれば、任意の伝送線路に対して損失補償を行うことができる。さらに、本
実施例によれば、コイルを用いたフィルター回路を用いることなく損失補償を実現するこ
とができるため、本実施例のドライバ回路の集積回路化が可能となる。さらに、本実施例
のドライバ回路を集積回路化により、本実施例のドライバ回路の小型化、低価格化を図る
ことが容易に可能となる。
本実施例では、方形波発生器の個数を3としたが、方形波発生器の個数は1個以上の任
意の数をとることができる。方形波発生器の個数を増やすに従い、伝送線路端9aの補償
後の波形16を、元の波形10により近づけることが可能となる。
また、本実施例では、方形波発生器は、レジスタ2に格納されたパルス幅データ及び振
幅データに応じた方形波を発生することが可能な構成としたが、この代わりに、方形波発
生器で可変とできるのはパルス幅及び振幅のうちのどちらか一方だけとし、他方は固定と
する構成としてもよい。例えば、振幅を固定とする場合は、各方形波発生器での振幅値を
同一とする。このような構成によれば、パルス幅データまたは振幅データのうちの固定と
したデータを格納するための記憶領域を、レジスタ2から省略することが可能となる。
また、本実施例では、増幅回路7を用いたが、加算器6が伝送線路9をドライブ可能な
場合には、増幅回路7を省略することができる。
本発明による伝送線路損失の補償手段を有するドライバ回路の他の実施例を、図4、図
5を参照して説明する。本実施例のドライバ回路8は、伝送線路の損失補償に必要な方形
波のパルス幅及び振幅を求める構成を有するものである。
本実施例のドライバ回路8は、図4に示すように、上記図1の実施例と同じ構成として
、信号発生器1と、方形波パルスのパルス幅データ及び振幅データを格納するレジスタ2
と、レジスタ2に格納したパルス幅データ及び振幅データに従い方形波を発生させる方形
波発生器3、4、5…と、信号発生器1の出力1a、方形波発生器3の出力3a、方形波
発生器4の出力4a、及び方形波発生器5の出力5a…を加算する加算器6と、加算器6
の出力6aを増幅する増幅回路7とを有する。
なお、本実施例において、上記図1の実施例と共通する構成については、同じ符号を付
し、その説明を省略する。
本実施例のドライバ回路8は、上記構成に加え、さらに、レジスタ2に格納されるパル
ス幅及び振幅を求める構成として、増幅回路7の出力端7aでの波形をデジタル化するデ
ジタイジング装置17と、デジタイジング装置17により得られた波形に基づいて、方形
波12、方形波13、方形波14…のパルス幅と振幅とを求める演算装置18とを有する
演算装置18は、増幅回路7の出力端7aで検出する、伝送線路9を通り伝送線路端9
aで反射され戻ってくる波形のデジタルデータに基づいて、伝送線路端9aでの波形11
を求め、さらに、伝送線路損失の補償を行う前の増幅回路7の出力波形10と求めた波形
11とを比較して(図2及び図3参照)、両波形10、11の差が最小あるいは予め定め
たしきい値以下となるように、方形波12、方形波13、方形波14…のパルス幅と振幅
とをそれぞれ求める。
本実施例のドライバ回路8での処理動作のうち、損失補償のための各方形波のパルス幅
及び振幅を求める処理手順の一例である、補償値測定処理について、図5のフローチャー
トを用いて説明する。なお、本処理は、本実施例のドライバ回路8に接続する伝送線路9
の伝送線路端9aを短絡、オープンのいずれかの状態で実行するものである。
本処理では、最初、ユーザなどにより入力される、伝送線路端9aが短絡しているか、
オープンしているかの設定を受け入れた後(ステップ501)、伝送線路の損失補償を行
わずに、すなわち信号発生器1からの信号(図2又は図3参照)を、そのまま伝送線路9
に供給するように、ドライバ回路8を動作させる(ステップ502)。より具体的には、
加算器6を制御して、この時点での方形波の加算を禁止するか、または、方形波発生器3
、4、5を制御して、方形波を発生させないようにする。
次に、デジタイジング装置17により、伝送線路損失の補償を行なわない場合の増幅回
路7の出力波形(以下では波形10と呼ぶ)と、当該波形10が伝送線路9を通り、短絡
又はオープンとなっている伝送線路端9aで反射されて戻ってくる反射波をデジタル化す
る(ステップ503)。ここで、波形10と、波形10の反射波が重なっている場合(ス
テップ504でYes)、両波形の分離処理を演算装置18で行う(ステップ505)。
次に、伝送線路端9aが短絡していると設定されている場合には(ステップ506でY
es)、伝送線路端9aでの反射の際に波形10が反転するため、演算装置18で波形1
0の反射波を反転する(ステップ507)。さらに、演算装置18により、波形10と波
形10の反射波との差をとり、それを1/2にして、波形10と伝送線路端9aでの波形
11との差Aを求める(ステップ508)。
次に、この波形10と波形11との差Aの波形と、方形波12、方形波13および方形
波14を加算してできる波形との差が、最小あるいは予め定めたしきい値以下となる、各
方形波のパルス幅と振幅とを演算装置18により求め(ステップ509)、求めた各方形
波のパルス幅及び振幅をレジスタ2に書き込む(ステップ510)。
本実施例によれば、任意の伝送線路に対して、その損失補償に必要な方形波パルスのパ
ルス幅及び振幅を求めることが可能となる。
本実施例では、波形10が伝送線路9を通り損失を受けた場合の波形11を、波形10
の反射波の波形を用いて演算装置18により求めたが、本発明で波形11の求める手段は
これに限定されるものではない。例えば、デジタイジング装置17をもう一つ、伝送線路
端9aに設けて、直接、波形11を検出してデジタル化し、そのデータを演算装置18に
転送する構成としてもかまわない。このような場合には、伝送線路端9aを短絡またはオ
ープンにする必要がなくなる。
本発明による伝送線路損失の補償手段を有するドライバ回路の他の実施例を、図6、図
7を参照して説明する。本実施例のドライバ回路は、上記図1の実施例のドライバ回路に
おいて、方形波の代わりに三角波を用いるものである。
本実施例のドライバ回路8は、例えば図6に示すように、信号発生器1と、伝送線路9
での損失補償のために用いる三角波パルスのパルス幅データ及び振幅データを格納するレ
ジスタ2と、レジスタ2に格納したパルス幅データ及び振幅データに従って三角波を生成
する三角波発生器19、20…と、信号発生器1の出力1a、三角波発生器19の出力1
9a、及び三角波発生器20の出力20a…を加算する加算器6と、加算器6の出力6a
を増幅する増幅回路7とを有する。
本実施例のドライバ回路8による、伝送線路損失の補償方法について、図7の波形図に
基づいて説明する。なお、以下の説明では、三角波発生器が2個の場合について説明する
。なお、図7(c)、(d)は、発生された三角波パルスが加算された結果を示している
波形10(図7(a))は、伝送線路損失の補償を行なわない場合の増幅回路7の出力
である。波形10は、伝送線路9での表皮効果等の損失により、伝送線路端9aで波形1
1(図7(b))のように鈍る。この波形11に、当該信号波形のHi及びLow状態へ
の切り替えと同じタイミングで、異なるパルス幅、振幅をもつ、三角波21および三角波
22を、図7(c)に示すように加算すると、元の波形10に近づくことが分かる。
すなわち、増幅回路7の出力波形を、図7(d)に示すように、波形10に三角波21
および三角波22を加算して形成される波形15とすることにより、伝送線路端9aでも
、波形10に似た波形16(図7(e))を得ることが可能となる。したがって、伝送線
路損失を補償することができる。
本実施例のドライバ回路8では、上述したように元の波形10と、伝送線路9での損失
を受けた波形11との差分の大きさ及び形状に対応するように(図7(c)参照)、各三
角波のパルス幅及び振幅を予めデータとして求めておき、レジスタ2に格納する。
さらに、レジスタ2に格納したパルス幅データ及び振幅データに従って三角波発生器1
9および三角波発生器20により、三角波19aおよび三角波20aを生成し、加算器6
により信号発生器5の出力5aと加算し、加算器の出力6aを増幅回路7により増幅する
ことで波形16を得る。
ここで、本実施例における三角波発生器は、発生する三角波のパルス幅と振幅とを可変
とすることが出きるものである。このため、伝送線路を変える場合には、新たに使用する
伝送線路での損失に応じてレジスタ2に格納するデータを変えるか、または、予め複数種
類の伝送線路に対応するデータをレジスタ2に格納しておき、その時点でより適切なデー
タを選択して用いる構成とする。
本実施例によれば、任意の伝送線路に対して損失補償を行うことができるのに加え、コ
イルを用いたフィルター回路を用いることなく損失補償を実現することができるため、本
実施例のドライバ回路の集積回路化が可能となる。さらに、ドライバ回路の集積回路化に
より、本実施例のドライバ回路の小型化、低価格化を図ることが容易に可能となる。
さらに、本実施例は、三角波パルスを用いるため、方形波パルスを用いる場合に比較し
て、より少ないパルスの個数で、より適切に波形10と波形11との差分を埋めることが
可能となる。このため、本実施例は、上記図1の実施例に示されたドライバ回路に用いら
れる方形波発生器の個数に比べ、より少ない個数の三角波発生器で、同品質の伝送線路損
失補償を行うことができる。
本実施例では、三角波発生器の個数を2としたが、三角波発生器の個数は1個以上の任
意の数をとることができる。三角波発生器の個数を増やすに従い、伝送線路端9aの補償
後の波形16を、波形10により近づけることが可能となる。
また、本実施例では、三角波発生器が、発生する三角波のパルス幅及び振幅を可変とす
る構成としたが、この代わりに、三角波発生器のパルス幅または振幅のどちらか一方を固
定とする構成としてもよい。例えば、振幅を固定する場合は、各三角波発生器の振幅値を
同一とする。このような構成によれば、パルス幅データまたは振幅データのうちの、固定
としたデータを格納するための記憶領域を、レジスタ2から省略することが可能となる。
また、本実施例では、増幅回路7を用いたが、加算器6が伝送線路をドライブ可能な場
合、増幅回路7を省略することができる。
本発明による伝送線路損失の補償手段を有するドライバ回路の他の実施例を、図8を参
照して説明する。本実施例のドライバ回路8は、伝送線路の損失補償に必要な三角波のパ
ルス幅及び振幅を求める構成を有するもので、上記図4の実施例において、方形波の代わ
りに三角波を用いたものである。
本実施例のドライバ回路8は、図8に示すように、信号発生器1と、三角波パルスのパ
ルス幅データ及び振幅データを格納するレジスタ2と、レジスタ2に格納したパルス幅デ
ータ及び振幅データに従って三角波を生成する三角波発生器19、20…と、信号発生器
1の出力1a、三角波発生器19の出力19a、及び三角波発生器20の出力20a…を
加算する加算器6と、加算器6の出力6aを増幅する増幅回路7とを有する。
本実施例のドライバ回路8は、さらに、伝送線路の損失補償に必要な三角波パルスのパ
ルス幅及び振幅を求める構成として、増幅回路7の出力端7aでの波形をデジタル化する
デジタイジング装置17と、デジタル化した増幅回路7の出力端7aでの波形に基づいて
、伝送線路端9aでの波形11を求め、伝送線路損失の補償を行なわない場合増幅回路7
の出力波形10と波形11とを比較して(図7参照)、波形10と波形11との差が最小
あるいは予め定めたしきい値以下となる三角波21、22のパルス幅と振幅とを求める演
算装置18とを有する。
本実施例のドライバ回路8での、損失補償のための三角波パルスのパルス幅及び振幅を
求める処理としては、例えば、上記図4の実施例の補償値測定処理(図5参照)において
、方形波パルスの代わりに三角波パルスを用いる処理を使用するものである。本処理は、
上記補償値測定処理と同様に、伝送線路端9aを短絡またはオープンにしておいた状態で
実行する。
すなわち、本処理では、最初、伝送線路の損失補償を行わずにドライバ回路8を動作さ
せて、デジタイジング装置17により、伝送線路損失の補償を行なわない場合の増幅回路
7の出力波形10と、波形10の伝送線路端9aでの反射波とを検出してデジタル化する
。ここで、波形10と、波形10の反射波とが重なっている場合、その分離処理を演算装
置18で行う。また、伝送線路端9aを短絡している場合は、演算装置18で波形10の
反射波を反転する。
さらに、演算装置18により、波形10と波形10の反射波との差をとり、それを1/
2にして、波形10と伝送線路端9aでの波形11との差を求める。この波形10と波形
11との差の波形と、三角波21および三角波22を加算して形成される波形との差が、
最小あるいは予め定めたしきい値以下となる、各三角波のパルス幅と振幅とを演算装置1
8により求め、求めた各三角波のパルス幅及び振幅をレジスタ2に書き込む。
本実施例によれば、任意の伝送線路に対して、その損失補償に必要な三角波パルスのパ
ルス幅及び振幅を求めることが可能となる。
本実施例では、三角波発生器の個数を2としたが、三角波発生器の個数は1個以上の任
意の数をとることができる。
また、本実施例では、波形11を、波形10の反射波に基づいて、演算装置18により
求めたが、デジタイジング装置をもう一つ伝送線路端9aに設けて、直接、波形11を検
出してデジタル化し、そのデータを演算装置18に転送する構成としてもかまわない。こ
の場合、伝送線路端9aを短絡またはオープンにする必要はない。
本発明による伝送線路損失の補償手段を有するドライバ回路の他の実施例を、図9、図
10を用いて説明する。
本実施例では、上記図1の実施例のような方形波を用いるドライバ回路での方形波発生
器の具体的構成の一例を示す。なお、以下の説明では、信号発生器から発生される信号波
形の立ち下がり時(図3参照)の伝送線路損失を、2個の方形波発生器から発生する方形
波パルスを用いて補償する場合を、例にとって説明する。
本実施例のドライバ回路は、図9に示すように、信号発生器1と、方形波パルスのパル
ス幅データ及び振幅データを格納するレジスタ2と、レジスタ2に格納したパルス幅デー
タ及び振幅データに従って方形波パルスを発生する方形波発生器3、4と、信号発生器1
の出力1a、方形波発生器3の出力3a、及び方形波発生器4の出力4aを加算する加算
器6と、加算器6の出力6aを増幅する増幅回路7とを有する。
加算器6及び方形波発生器3、4は、コレクタに接続する抵抗を共有する差動増幅回路
をそれぞれ有する。
方形波発生器3は、方形波発生器3に含まれる差動増幅回路の一方の入力へ入力する、
信号発生器1の出力1aを、レジスタ2に格納したパルス幅データに従って遅延する可変
遅延回路23と、当該差動増幅器に流れる電流の電流値を、レジスタ2に格納した振幅デ
ータに従って変化する可変電流源25とを有する。
方形波発生器4は、方形波発生器3と同様に、方形波発生器4に含まれる差動増幅回路
の一方の入力へ入力する、信号発生器1の出力1aを、レジスタ2に格納したパルス幅デ
ータに従って遅延する可変遅延回路24と、当該差動増幅器に流れる電流の電流値を、レ
ジスタ2に格納した振幅データに従って変化する可変電流源26とを有する。
本実施例のドライバ回路の動作を、図10に基づいて説明する。なお、図10は、本ド
ライバ回路の信号発生器1の出力1a、1b、方形波発生器3、4の可変遅延回路の出力
23a、24a、及び加算器6の出力6aにおける電圧の時間変化を示すと共に、方形波
発生器3、4の出力3a、4aでの電流の時間変化を示す波形図である。また、図10に
おいて、t1は信号波形の立ち下がりの開始タイミングを示し、t2、t3は、レジスタ
2に格納されている、方形波発生器3、4で発生する方形波のパルス幅のそれぞれに対応
するタイミングである。
時間t1以前では、方形波発生器3の出力3aには電流源25の電流の1/2が流れ、
方形波発生器4の出力4aには電流源26の電流の1/2が流れる。したがって、加算器
6の出力6aは、図中6dでの電圧から、コレクタ抵抗6bを流れる電流源25の電流の
1/2及び電流源26の電流の1/2の和による電圧降下を減じた電圧となる。
時間t1で、信号波形の立ち下がりに対応して、信号発生器1の出力1aが、所定の低
レベル(Low)から高レベル(Hi)に変化すると、方形波発生器3の出力3aには電
流源25の電流が流れ、方形波発生器4の出力4aには電流源26の電流が流れる。した
がって、加算器6の出力6aは、電圧6dから、コレクタ抵抗6bを流れる電流源6cの
電流、電流源25の電流、及び電流源26の電流の和による、電圧降下を減じた電圧とな
る。
時間t2で、損失補償のために発生した2つの方形波パルスのうちの一方である方形波
発生器3で発生する方形波パルスの終了に対応して、遅延回路23の出力23aがLow
からHiに変化すると、方形波発生器3の出力3aには電流源25の電流の1/2が流れ
、方形波発生器4の出力4aには電流源26の電流が流れる。したがって、加算器6の出
力6aは、電圧6dから、コレクタ抵抗6bを流れる電流源6cの電流、電流源25の電
流の1/2、及び電流源26の電流の和による電圧降下を減じた電圧となる。
時間t3で、方形波発生器4で発生する方形波パルスの終了に対応して、遅延回路24
の出力24aがLowからHiに変化すると、方形波発生器3の出力3aには電流源25
の電流の1/2が流れ、方形波発生器4の出力4aには電流源26の1/2の電流が流れ
る。したがって、加算器6の出力6aは、電圧6dから、コレクタ抵抗6cを流れる電流
源6cの電流および電流源21の電流の1/2および電流源21の電流の1/2の和によ
る電圧降下を減じた電圧となる。
よって、加算器6の出力6aでは、方形波発生器3、4の電流源25、26及び可変遅
延回路23、24により制御されたパルス幅及び振幅を持つ方形波パルスを用いて、信号
発生器1から出力される信号波形の立ち下がり部分に対して、伝送線路での損失補償を行
った波形(図3(d)参照)が形成される。
本実施例によれば、方形波のパルス幅は可変遅延回路の遅延量によって、また方形波の
振幅は電流源の電流量によって可変する事ができるので、レジスタ2に格納するデータを
変えることにより、任意の伝送線路に対して損失補償を行うことができる。
本実施例では、信号発生器1から発生される信号波形の立ち下がり部分に対して損失補
償を行なった場合を例にとって説明したが、本実施例の構成によれば、上記と全く同様に
、信号波形の立ち上がり部分(図2参照)に対しても、伝送線路の損失補償を行なうこと
ができる。また、方形波発生器の個数を2としたが、方形波発生器の個数は1個以上の任
意の数をとることができる。
また、本実施例では、方形波発生器の遅延回路及び電流源の両方を可変としたが、どち
らか一方を固定としてもよい。例えば、電流源を固定とする場合には、各方形波発生器の
電流源の電流値を同一とする。このように一方を固定とすると、パルス幅データ及び振幅
データのうち、固定とした方に対応するデータを格納するための記憶領域を、レジスタ2
から省略することが可能となる。
また、本実施例において、加算器6のコレクタ抵抗6bを、伝送線路9の特性インピー
ダンスZoと等しくした場合、増幅回路7を省略することができる。
本発明による伝送線路損失の補償手段を有するドライバ回路の他の実施例を、図11、
図12を用いて説明する。
本実施例では、三角波を用いるドライバ回路での三角波発生器の具体的構成の一例を示
す。なお、以下の説明では、1個の三角波発生器を用いて、信号発生器から発生される信
号波形の立ち下がり時の損失補償を行なう場合を、例にとって説明する。
本実施例のドライバ回路は、図11に示すように、信号発生器1と、三角波のパルス幅
データ及び振幅データを格納するレジスタ2と、三角波パルスを発生する三角波発生器1
9と、信号発生器1の出力1aと三角波発生器19の出力19aとを加算する加算器6と
、加算器6の出力6aを増幅する増幅回路7とを有する。
加算器6及び三角波発生器19は、コレクタに接続する抵抗を共有する差動増幅回路を
それぞれ有する。
三角波発生器19は、三角波発生器19に含まれる差動増幅回路の入力に接続する容量
19e、19iと、信号発生器1の出力1aの立ち上がり時にレジスタ2に格納した振幅
データに従ったパルスを発生して、当該立ち上り時に容量19eを充電するパルス発生器
19bと、信号発生器1の出力1aの立ち下がり時にレジスタ2に格納した振幅データに
従ったパルスを発生して、当該立ち下がり時に容量19iを充電するパルス発生器19g
とを有する。
三角波発生器19は、さらに、充電された容量19eの電荷を徐々に吸い出す可変電流
源19cと、充電された容量19gの電荷を徐々に吸い出す可変電流源19hとを有する
可変電流源19c、19hは、レジスタ2に格納されたパルス幅データに従って電流値
を可変とするもので、この電流値によって容量19e、19iに蓄積された電荷の吸い出
す速さを変えることにより、パルス幅を調整するものである。
本実施例のドライバ回路の動作を、図12に基づいて説明する。なお、図12は、本ド
ライバ回路の信号発生器1の出力1a、1b、三角波発生器19の電圧源19bの出力、
及び加算器6の出力6aにおける電圧の時間変化を示すと共に、三角波発生器19の出力
19aでの電流の時間変化を示す波形図である。また、図12において、t1は信号波形
の立ち下がりの開始タイミングを示し、t2は、三角波発生器19で発生する三角波が終
了するタイミングを示す。
時間t1以前、三角波発生器19の出力19aには、電流源19dにより設定された電
流値I1の1/2の電流が流れる。したがって、加算器6の出力6aは、図中の6dでの
電圧から、コレクタ抵抗6bを流れる電流源19dの電流値I1の1/2による電圧降下
を減じた電圧となる。
時間t1で、信号波形の立ち下がりに対応して、信号発生器1の出力1aがLowから
Hiに変化すると、パルス発生器19bにより発生する、レジスタ2に格納された振幅デ
ータに応じて設定された振幅を持つパルスにより、容量19eが充電され、三角波発生器
19の出力19aには、電流値I2の電流が流れる。
したがって、加算器6の出力6aは、電圧6dから、コレクタ抵抗6bを流れる、電流
源6cの電流と電流値I2の電流との和による、電圧降下を減じた電圧となる。
時間t1〜t2は、損失補償のために発生された三角波パルスの傾斜部分に対応する。
すなわち、三角波発生器19の電流源19cによって、時間t1で充電された容量19e
の電荷が除々に吸い出されて、三角波発生器19の出力19aに流れる電流値は少なくな
っていく。したがって、加算器6の出力6aの電圧は徐々に上がっていく。
時間t2以降、三角波発生器19の出力19aには電流値I1の1/2の電流が流れる
。したがって、加算器6の出力6aは、電圧6dから、コレクタ抵抗6bを流れる、電流
源6cの電流及び電流値I1の1/2の電流の和による、電圧降下を減じた電圧となる。
よって、加算器6の出力6aでは、三角波発生器19の可変電流源19cにより制御さ
れるパルス幅、及びパルス発生器19bにより制御される振幅を備えた三角波パルスを用
いて、信号発生器1から出力される信号波形の立ち下がり部分に対して、伝送線路での損
失補償を行った波形が形成される。
本実施例によれば、三角波のパルス幅は電流源19cによって、また三角波の振幅はパ
ルス発生器19bによって可変する事ができる。このため、レジスタ2に格納するデータ
を変えるだけで、任意の伝送線路に対して損失補償を行うことができる。
本実施例では、信号発生器1から発生される信号波形の立ち下がり部分に対して損失補
償を行なった場合を例にとって説明したが、本実施例の構成において、信号波形の立ち上
がりに対応して、信号発生器1の出力1aの立ち下がりと同時にパルス発生器19gによ
りパルスを発生することにより、上記と同様に、立ち上がり波形に対して損失補償を行う
ことができる。また、三角波発生器の個数を1としたが、三角波発生器の個数は1個以上
の任意の数をとることができる。
また、本実施例では、三角波発生器のパルス幅及び振幅の両方を可変としたが、どちら
かを一方を固定としてもよい。例えば振幅を固定とする場合には、各三角波発生器の振幅
値を同一とする。このように、一方を固定とする場合には、パルス幅データ及び振幅デー
タのうち、固定として方に対応するデータを格納する記憶領域を、レジスタ2から省略す
ることが可能となる。
また、本実施例において、加算器6のコレクタ抵抗6bを、伝送線路9の特性インピー
ダンスZoと等しくした場合、増幅回路7を省略することができる。
本発明による伝送線路損失の補償手段を有するドライバ回路を用いたドライバICの一
実施例を、図13を用いて説明する。本実施例のドライバICに含まれるドライバ回路は
、基本的には、上記図1の実施例のドライバ回路と同じ構成である。上記図1の実施例と
同じ構成については、上記図1の実施例と同じ符号を用い、その説明を省略する。
本実施例のドライバIC27は、図13に示すように、信号発生器1と、信号発生器1
にタイミングやパターン等の情報を与える1個以上の端子27bと、方形波パルスのパル
ス幅データ及び振幅データを格納するレジスタ2と、レジスタ2に格納するパルス幅及び
振幅に関する情報を入力する端子27cと、端子27cに入力されたシリアルデータをパ
ラレルデータに変換してレジスタ2の各記憶領域にパルス幅データ、振幅データを与える
シリアル・パラレル変換器26とを有する。
本実施例は、さらに、レジスタ2に格納したパルス幅データ、振幅データに従って方形
波を生成する方形波発生器3、4、5…と、信号発生器1の出力1a、方形波発生器3の
出力3a、方形波発生器4の出力4a、及び方形波発生器5の出力5a…を加算する加算
器6と、加算器6の出力6aを増幅する増幅回路7と、増幅回路7の出力を伝送線路に与
える端子27aとを有する。
本実施例によれば、コイルを備えたフィルタ回路を用いない、上記図1のドライバ回路
を、1チップ上に集積化することができる。さらに、ドライバ回路を1チップ上に集積化
できるため、当該ドライバ回路あるいは当該ドライバ回路を備える電子機器装置の小型化
及び低価格化が可能となる。
本実施例では、レジスタ2と端子27cとの間にシリアル・パラレル変換器26を設け
たが、端子数を増やし、直接、レジスタ2の各記憶領域に、パルス幅データや振幅データ
を格納させる構成としても良い。
また、本実施例では、ドライバIC27のドライバ回路として、上記図1の実施例のド
ライバ回路の構成を用いたが、代わりに、上述した他の実施例のドライバ回路(図4、図
6、図8、図9、及び図11参照)の構成を用いてもよい。なお、上記図4、図8のドラ
イバ回路は、方形波または三角波のパルス幅及び振幅を求める手段を有しているので、こ
れらの回路構成を用いる場合には、外部からパルス幅や振幅データを受け入れるための端
子27cを省略した構成とすることができる。
本発明による伝送線路損失の補償手段を有するドライバ回路またはドライバICを用い
た半導体試験装置の一実施例を、図14を用いて説明する。
本実施例の半導体試験装置37は、図14に示すように、タイミング発生器29と、パ
ターン発生器30と、波形フォーマッタ31と、ディジタルコンパレータ32と、伝送線
路損失の補償手段を有するドライバ回路8またはドライバIC27と、アナログコンパレ
ータ33と、被試験素子34を当該半導体試験装置37に電気的に接続するための伝送線
9とを有する。
本実施例では、ドライバ回路8としては、上述した実施例のいずれのドライバ回路(図
1、図4、図6、図8、図9、及び図11参照)でも用いることができる。また、ドライ
バIC27としては、上記図13の実施例のドライバIC27を用いることができる。
なお、ドライバ回路8として、上記図4、図8に示すドライバ回路を用いる場合には、
そのドライバ回路8に含まれるデジタイジング装置17として、アナログコンパレータ3
3を用いることができる。
本実施例では、タイミング発生器29で作成されたタイミング信号29aとパターン発
生器30で作成されたテストパターン30aとが、波形フォーマッタ31で合成され、そ
の出力が、ドライバ回路8によって試験波形8aとして伝送線9を通して、被試験素子3
4へ与えられる。
この試験波形8aの応答としての、被試験素子34からの出力信号34aは、アナログ
コンパレータ33で電圧変換され、”0”、”1”のディジタル値に変換される。このデ
ジタル変換後の被試験素子34からの応答信号は、ディジタルコンパレータ32により、
パターン発生器30で作成した良品素子の応答である期待値30bとの間で、タイミング
信号29bの示す時刻に、比較試験が行なわれ、その良否等が判断される。
本実施例によれば、本発明によるドライバ回路8またはドライバIC27を用いている
ため、試験波形8aを伝送線路9を通して被試験素子34へ送る際に、伝送線路9での損
失を補償することが可能となる。
さらに、本実施例によれば、伝送線路9での損失を補償できるため、従来の半導体試験
装置に比べ、使用する伝送線路9の長さが同じであれば、より高周波数の試験波形8aを
被試験素子34に与えることが可能となり、試験波形8aのタイミング精度を向上させる
ことが可能となる。また、従来の半導体試験装置と同じ試験周波数、同じタイミング速度
を使用する場合であれば、伝送線路9の長さを長くすることが可能となり、半導体試験装
置の構成配置の自由度、あるいは操作における自由度を向上させることができる。
本発明による伝送線路損失の補償手段を有するドライバ回路またはドライバICを用い
、伝送線路を通してデータの送信を行う送信装置の一実施例を、図15を用いて説明する
本実施例の送信装置35は、例えば図15に示すように、伝送線路損失の補償手段を有
するドライバ回路8またはドライバIC27を備え、例えば100MHz以上の周波数の
データを50cm以上の伝送線路9を通して、受信装置36に信号を伝達する。
本実施例において、送信装置35、受信装置36とは、伝送線路9を通してデータ等の
信号の送信、受信を行なう装置を指し、より具体的には、伝送装置、コンピュータおよび
コンピュータ周辺機器、ネットワーク機器、計測器等から構成される装置を指す。
本実施例においては、伝送線路損失の補償手段を有する、上述した実施例のいずれかの
ドライバ回路8(図1、図4、図6、図8、図9、及び図11参照)を、ドライバ回路8
として用いることができる。また、ドライバICとしては、上記図10の実施例のドライ
バIC27を用いることができる。
本実施例によれば、伝送線路9の損失を補償することが可能となるため、従来の伝送装
置、コンピュータ、コンピュータ周辺機器、ネットワーク機器、計測器等から構成される
送信装置35に比べ、伝送線路9の長さが同じであれば、より高い周波数の信号波形8a
を受信装置36に伝達することが可能となる。また、同じ送信周波数であれば、伝送線路
9の長さを長くすることが可能となり、伝送装置、コンピュータ、コンピュータ周辺機器
、ネットワーク機器、計測器等から構成される、送信装置35、受信装置36の構成、配
置の自由度を向上させることができる。
本実施例では、データの周波数を100MHz以上、伝送線路9の長さを50cm以上
としたが、これらの条件は単なる一例である。一般的に言って、このような条件では、従
来の装置構成において、伝送線路での表皮効果による損失が顕著となり始めるが、本実施
例によれば、上述の各実施例でも述べたように、伝送線路での損失を補償することが可能
となる。
本発明による伝送線路損失の補償手段を有するドライバ回路の一実施例の構成を示す回路図。 図2(a)は伝送線路の損失補償を行なわない場合のドライバ回路からの出力波形10を示す波形図、図2(b)は波形10が伝送線路を通過した後の波形11を示す波形図、図2(c)は波形10と波形11との差に対応する方形波を示す説明図、図2(d)は図1の実施例によるドライバ回路からの、損失補償が行なわれた場合の出力波形15を示す波形図、図2(e)は波形15が伝送線路を通過した後の波形16を示す波形図である。 図3(a)は伝送線路の損失補償を行なわない場合のドライバ回路からの出力波形10を示す波形図、図3(b)は波形10が伝送線路を通過した後の波形11を示す波形図、図3(c)は波形10と波形11との差に対応する方形波を示す説明図、図3(d)は図1の実施例によるドライバ回路からの損失補償が行なわれた場合の出力波形15を示す波形図、図3(e)は波形15が伝送線路を通過した後の波形16を示す波形図である。 本発明による伝送線路損失の補償手段を有するドライバ回路の他の実施例を示す回路図。 図4の実施例における損失補償値測定処理手順の一例を示すフローチャート。 本発明による伝送線路損失の補償手段を有するドライバ回路の他の実施例を示す回路図。 図7(a):伝送線路の損失補償が行なわれない場合のドライバ回路からの出力波形10を示す波形図。
図7(b):波形10が伝送線路を通過した後の波形11を示す波形図。
図7(c):波形10と波形11との差に対応する方形波を示す説明図。
図7(d):図1の実施例によるドライバ回路からの、損失補償が行なわれた
場合の出力波形15を示す波形図。
図7(e):波形15が伝送線路を通過した後の波形16を示す波形図。
本発明による伝送線路損失の補償手段を有するドライバ回路の他の実施例を示す回路図。 本発明による伝送線路損失の補償手段を有するドライバ回路の他の実施例を示す回路図。 図9の実施例のドライバ回路の作用を説明するための波形図。 本発明による伝送線路損失の補償手段を有するドライバ回路の他の実施例を示す回路図。 図11の実施例のドライバ回路の作用を説明するための波形図。 本発明による伝送線路損失の補償手段を有するドライバ回路を用いたドライバICの一実施例を示す回路図。 本発明による伝送線路損失の補償手段を有するドライバ回路またはドライバICを用いた半導体試験装置の一実施例を示す回路図。 本発明による伝送線路損失の補償手段を有するドライバ回路またはドライバICを用いた、伝送線路を通してデータの送信を行う、伝送装置、コンピュータおよびコンピュータ周辺機器、ネットワーク機器、計測器等から構成される送信装置の一実施例を示す回路図。
符号の説明
1…信号発生器
2…レジスタ
3、4、5…方形波発生器
6…加算器
7…増幅回路
8…ドライバ回路
9…伝送線路
10…損失補償を行わないときのドライバ出力端でのドライバの出力波形
11…損失補償を行わないときの伝送線路端でのドライバの出力波形
12、13、14…方形波
15…損失補償を行ったときのドライバ出力端でのドライバの出力波形
16…損失補償を行ったときの伝送線路端でのドライバの出力波形
17…デジタイジング装置
18…演算装置
19、20…三角波発生器
21、22…三角波
23、24…可変遅延回路
25、26…可変電流源
27…ドライバIC
28…シリアル・パラレル変換器
29…タイミング発生器
30…パターン発生器
31…波形フォーマッタ
32…ディジタルコンパレータ
33…アナログコンパレータ
34…被試験素子
35…送信装置
36…受信装置

Claims (7)

  1. 伝送線路を通して信号の送信を行う送信装置であって、
    伝送線路を通して伝送すべき信号を発生する信号発生器と、
    前記伝送すべき信号の波形のうち、前記伝送線路での損失により減衰する部分に対応して設定された、方形波パルスの少なくともパルス幅または振幅のどちらかを記憶するレジスタと、
    前記レジスタに記憶された方形波パルスを、前記信号発生器の出力波形の立ち上がりおよび立ち下がり時で発生する方形波発生器と、
    前記信号発生器の出力波形と前記方形波発生器の出力波形とを加算する加算器と、
    前記加算器の出力を増幅して、前記伝送線路へ出力する増幅回路と
    を有するドライバ回路を備えており、
    前記方形波パルスは複数個あり、前記複数個の方形波パルスの各々の幅および振幅は互いに異なり、
    前記ドライバ回路は、前記信号発生器の出力波形に対して同じタイミングで前記複数の方形波パルスを加算し、前記伝送線路に送信することを特徴とする送信装置。
  2. 請求項に記載の送信装置であって、
    前記ドライバ回路は、前記信号発生器の出力に前記方形波パルスを加えない状態で得られる前記増幅回路からの出力波形と、当該出力波形が前記伝送線路を通過した後の波形とを取得する波形取得手段と、前記波形取得手段で得られた、前記伝送線路を通過前の波形と通過後の波形とを比較し、両波形の差が最小あるいは所定のしきい値以下となる、前記方形波発生器で発生される各方形波パルスのパルス幅と振幅とを求め、前記求めたパルス幅及び振幅を前記レジスタに記憶させる演算回路とをさらに有することを特徴とする送信装置。
  3. 請求項1または2に記載の送信装置であって、
    前記方形波発生器は、2つの入力の差分を増幅する差動増幅回路と、前記レジスタに記憶されたパルス幅に関する情報に従い、該差動増幅回路の1方の入力を遅延する遅延回路と、
    前記レジスタに記憶された振幅に関する情報に従い、該差動増幅回路の駆動電流の電流値を変化させる電流源回路とを有することを特徴とする送信装置。
  4. 伝送線路を通して信号の送信を行う送信装置であって、
    伝送線路を通して伝送すべき信号を発生する信号発生器と、
    前記伝送すべき信号の波形のうち、前記伝送線路での損失により減衰する部分に対応して設定された、三角波パルスの少なくともパルス幅または振幅のどちらかを記憶するレジスタと、
    前記レジスタに記憶された三角波パルスを、前記信号発生器の出力波形の立上り時および立下り時で発生する三角波発生器と、
    前記信号発生器の出力波形と前記三角波発生器の出力波形とを加算する加算器と、
    前記加算器の出力を増幅して、前記伝送線路へ出力する増幅回路と
    を有するドライバ回路を備えており、
    前記三角波パルスは複数個あり、前記複数個の三角波パルスの各々の幅および振幅は互いに異なり、
    前記ドライバ回路は、前記信号発生器の出力波形に対して同じタイミングで前記複数の三角波パルスを加算し、前記伝送線路に送信することを特徴とする送信装置。
  5. 請求項に記載の送信装置であって、
    前記ドライバ回路は、前記信号発生器の出力に前記三角波パルスを加えない状態で得られる前記増幅回路からの出力波形と、当該出力波形が前記伝送線路を通過した後の波形とを取得する波形取得手段と、前記波形取得手段で得られた、前記伝送線路を通過前の波形と通過後の波形とを比較し、両波形の差が最小あるいは所定のしきい値以下となる、前記三角波発生器で発生される各三角波パルスのパルス幅と振幅とを求め、前記求めたパルス幅及び振幅を前記レジスタに記憶させる演算回路とをさらに有することを特徴とする送信装置。
  6. 請求項4または5に記載の送信装置であって、
    前記三角波発生器は、2つの入力の差分を増幅する差動増幅回路と、前記差動増幅回路の入力の少なくとも一方に接続した容量と、前記レジスタに記憶された振幅に関する情報に従い、前記容量を充電するパルスの振幅を変化させるパルス発生回路と、前記レジスタに記憶されたパルス幅に関する情報に従い、前記容量に充電された電荷を徐々に放出させるための電流を変化させる電流源回路とを有することを特徴とする送信装置。
  7. 請求項1からのいずれかに記載の送信装置であって、
    該送信装置が伝送装置、コンピュータ、コンピュータ周辺機器、ネットワーク機器、計測器のいずれかであることを特徴とする送信装置。
JP2006058854A 2006-03-06 2006-03-06 伝送線路損失の補償手段を有するドライバ回路 Expired - Lifetime JP4569497B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058854A JP4569497B2 (ja) 2006-03-06 2006-03-06 伝送線路損失の補償手段を有するドライバ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058854A JP4569497B2 (ja) 2006-03-06 2006-03-06 伝送線路損失の補償手段を有するドライバ回路

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004195124A Division JP2004350312A (ja) 2004-07-01 2004-07-01 伝送線路損失の補償手段を有するドライバ回路

Publications (2)

Publication Number Publication Date
JP2006211702A JP2006211702A (ja) 2006-08-10
JP4569497B2 true JP4569497B2 (ja) 2010-10-27

Family

ID=36967953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058854A Expired - Lifetime JP4569497B2 (ja) 2006-03-06 2006-03-06 伝送線路損失の補償手段を有するドライバ回路

Country Status (1)

Country Link
JP (1) JP4569497B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633846U (ja) * 1979-08-24 1981-04-02
JPS61220530A (ja) * 1985-03-27 1986-09-30 Nec Corp 波形等化方式
JPH02111126A (ja) * 1988-10-19 1990-04-24 Nec Corp 伝送回路
JPH04115727A (ja) * 1990-09-06 1992-04-16 Toshiba Corp パルス出力回路
JPH04189051A (ja) * 1990-11-22 1992-07-07 Hitachi Ltd 伝送波形補正回路
JP3509258B2 (ja) * 1995-03-03 2004-03-22 株式会社日立製作所 伝送線路損失の補償手段を有するドライバ回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633846U (ja) * 1979-08-24 1981-04-02
JPS61220530A (ja) * 1985-03-27 1986-09-30 Nec Corp 波形等化方式
JPH02111126A (ja) * 1988-10-19 1990-04-24 Nec Corp 伝送回路
JPH04115727A (ja) * 1990-09-06 1992-04-16 Toshiba Corp パルス出力回路
JPH04189051A (ja) * 1990-11-22 1992-07-07 Hitachi Ltd 伝送波形補正回路
JP3509258B2 (ja) * 1995-03-03 2004-03-22 株式会社日立製作所 伝送線路損失の補償手段を有するドライバ回路

Also Published As

Publication number Publication date
JP2006211702A (ja) 2006-08-10

Similar Documents

Publication Publication Date Title
KR101216405B1 (ko) 시험 장치 및 그 시험 장치를 이용한 디바이스의 제조 방법
JP5547768B2 (ja) 電子機器、開回路検出システム及びその検出方法
US7885144B2 (en) Time-dependant gain control for an amplifier used in receiving echoes
TW201322096A (zh) 一種電容觸摸屏的觸摸檢測方法和觸摸檢測裝置
US10025423B2 (en) Driven shield control
JP3509258B2 (ja) 伝送線路損失の補償手段を有するドライバ回路
CN101576537A (zh) 超声相控阵激励装置
US20120197130A1 (en) Receiving circuit, ultrasonic probe, and ultrasonic image displaying apparatus
Carpenter et al. Direct digital demultiplexing of analog TDM signals for cable reduction in ultrasound imaging catheters
KR20110099276A (ko) 출력 장치 및 시험 장치
TW201337699A (zh) 觸控面板的提高感應圖框產生率之掃描方法及其觸控面板裝置
JP3666408B2 (ja) 半導体試験装置
JP4569497B2 (ja) 伝送線路損失の補償手段を有するドライバ回路
Savoia et al. Second-harmonic reduction in CMUTs using unipolar pulsers
JP2002026999A (ja) 伝送線路損失の補償手段を有する送信装置または受信装置
JP2019500148A5 (ja)
JP2004350312A (ja) 伝送線路損失の補償手段を有するドライバ回路
Carpenter et al. Time-division multiplexing for cable reduction in ultrasound imaging catheters
CN108023548B (zh) 一种复合调制信号发生器及复合调制信号发生方法
CN110749340A (zh) 一种阻容式传感器信号测量电路
CN101915864B (zh) 矢量示波装置
JP2006337139A (ja) 波形発生器、波形整形器、及び試験装置
JP2014173939A (ja) 超音波探傷方法及び超音波探傷装置
JP3083033B2 (ja) 測定装置
JP4510349B2 (ja) 計測器の複素伝達関数を決定する構成

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term