JP4569184B2 - Dielectric coating composition for hot melt coating and method for producing the same - Google Patents

Dielectric coating composition for hot melt coating and method for producing the same Download PDF

Info

Publication number
JP4569184B2
JP4569184B2 JP2004176568A JP2004176568A JP4569184B2 JP 4569184 B2 JP4569184 B2 JP 4569184B2 JP 2004176568 A JP2004176568 A JP 2004176568A JP 2004176568 A JP2004176568 A JP 2004176568A JP 4569184 B2 JP4569184 B2 JP 4569184B2
Authority
JP
Japan
Prior art keywords
dielectric
weight
coating composition
parts
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004176568A
Other languages
Japanese (ja)
Other versions
JP2006001961A (en
Inventor
俊雄 櫻井
佐藤  茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004176568A priority Critical patent/JP4569184B2/en
Publication of JP2006001961A publication Critical patent/JP2006001961A/en
Application granted granted Critical
Publication of JP4569184B2 publication Critical patent/JP4569184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ホットメルトコーティング用誘電体塗料組成物およびその製造方法に関し、詳しくは、積層部品の製造工程におけるセラミックグリーンシート(誘電体シート)の製造に使用されるホットメルトコーティング用誘電体塗料組成物およびその製造方法に関する。なお、誘電体シートは、セラミックグリーンシートから支持体が剥離されたものである。   The present invention relates to a dielectric paint composition for hot melt coating and a method for producing the same, and more particularly, to a dielectric paint composition for hot melt coating used for producing a ceramic green sheet (dielectric sheet) in a production process of a laminated part. The present invention relates to a product and a manufacturing method thereof. The dielectric sheet is obtained by peeling the support from the ceramic green sheet.

積層セラミックコンデンサ、積層インダクタ、多層基板などの積層部品の製造方法の代表としてシート工法が挙げられる。シート工法は、ドクターブレード法などにより、支持体の上に、誘電体粉末、バインダ(アクリル樹脂、ブチラール樹脂など)、溶剤(トルエン、アルコール、メチルエチルケトン等)等から調製された誘電体塗料組成物を塗布した後に乾燥してセラミックグリーンシートを形成し、その後、内部電極が印刷されたグリーンシートをカード式に積層していく工法である。
特開2004−134808号公報
A representative example of a method for manufacturing a multilayer component such as a multilayer ceramic capacitor, a multilayer inductor, or a multilayer substrate is a sheet method. In the sheet method, a dielectric coating composition prepared from a dielectric powder, a binder (acrylic resin, butyral resin, etc.), a solvent (toluene, alcohol, methyl ethyl ketone, etc.), etc. on a support by a doctor blade method or the like. This is a method of forming a ceramic green sheet by coating and drying, and then laminating the green sheets on which the internal electrodes are printed in a card-type manner.
JP 2004-134808 A

ところで、例えば、積層セラミックコンデンサの静電容量は、材料の誘電率、誘電体層間厚さ、積層数によって決定される。近年の電子部品の軽薄短小化により、積層セラミックコンデンサでは、誘電体厚さが1〜2μm程度のものが存在する。このため、誘電体層間厚さを決定するグリーンシート厚さは2μm以下の薄層シートに成形する必要がある。   Incidentally, for example, the capacitance of a multilayer ceramic capacitor is determined by the dielectric constant of the material, the dielectric interlayer thickness, and the number of layers. Due to the recent reduction in size and thickness of electronic components, there are multilayer ceramic capacitors having a dielectric thickness of about 1 to 2 μm. For this reason, the green sheet thickness that determines the dielectric interlayer thickness must be formed into a thin sheet having a thickness of 2 μm or less.

誘電体塗料組成物の設計が薄層シート用として不適切であるとシート強度が弱くなり、グリーンシート成形後に支持体から誘電体シートを剥離する工程において剥離が困難になり、剥離が出来ても、誘電体シートの強度が弱くてシートに穴(欠陥)等が生じ、製品としての特性が取れない等の不具合が発生する。   If the design of the dielectric coating composition is inappropriate for thin-layer sheets, the sheet strength will be weak, and it will be difficult to peel off the dielectric sheet from the support after green sheet molding, Further, the strength of the dielectric sheet is so weak that holes (defects) or the like are generated in the sheet, resulting in problems such as failure to obtain product characteristics.

一般的に、誘電体シートの強度を増加するには、バインダ添加量を増加する、塗料の分散性を改善させる等の手段が採用される。ところが、前者の場合は、バインダ添加量増加によって、シートの表面性が悪くなり製品特性に影響があり、しかも、焼成時の脱バインダー量が多くなるため、焼成時にクラックやワレが発生し易くなり製造歩留まりが低下する問題がある。一方、後者の場合は誘電体シートの強度の向上に限界がある。   Generally, in order to increase the strength of the dielectric sheet, means such as increasing the amount of binder added or improving the dispersibility of the paint are employed. However, in the former case, an increase in the amount of binder added has an adverse effect on product properties due to poor sheet surface properties, and the amount of binder removed during firing increases, so cracks and cracks are likely to occur during firing. There is a problem that the manufacturing yield decreases. On the other hand, in the latter case, there is a limit in improving the strength of the dielectric sheet.

本発明は、上記実情に鑑みなされたものであり、その目的は、高強度なバインダを使用することにより、薄層シートとして実用に耐え得る高い強度の誘電体シートが得られる様に改良されたホットメルトコーティング用誘電体塗料組成物およびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its object has been improved by using a high-strength binder so as to obtain a high-strength dielectric sheet that can withstand practical use as a thin-layer sheet. It is an object to provide a dielectric coating composition for hot melt coating and a method for producing the same.

すなわち、本発明の第1の要旨は、誘電体粉末、ポリオレフィン樹脂、分散剤としてのHLB4〜12の界面活性剤、沸点150〜230℃の炭化水素溶剤を含有して成り、誘電体粉末100重量部に対する各成分の割合が、ポリオレフィン樹脂6〜12重量部、界面活性剤0.5〜1.5重量部、炭化水素溶剤200〜300重量部であり、B型回転粘度計を使用し且つ130℃で測定した粘度が50〜150cpであること特徴とする、ホットメルトコーティング用誘電体塗料組成物に存する。   That is, the first gist of the present invention comprises a dielectric powder, a polyolefin resin, a surfactant having HLB 4 to 12 as a dispersant, and a hydrocarbon solvent having a boiling point of 150 to 230 ° C. The ratio of each component to parts is 6 to 12 parts by weight of polyolefin resin, 0.5 to 1.5 parts by weight of a surfactant, 200 to 300 parts by weight of a hydrocarbon solvent, and a B-type rotational viscometer is used. It exists in the dielectric material coating composition for hot-melt coatings characterized by the viscosity measured at 50 degreeC being 50-150 cp.

そして、本発明の第2の要旨は、請求項1に記載のホットメルトコーティング用誘電体塗料組成物の製造方法であって、原料成分の加熱混練工程(I)と、得られた混練物の破砕工程(II)及び加熱混合希釈工程(III)とを包含し、加熱混練工程(I)においては、誘電体粉末100重量部と、ポリオレフィン樹脂3〜5重量部と、界面活性剤0.5〜1.5重量部と、これらの3成分と炭化水素溶剤との合計量に対する当該3成分の合計量の割合が93〜97重量%となる量の炭化水素溶剤とを使用し、以下の式(1)に規定する温度(T)の範囲で加熱混練処理し、加熱混合希釈工程(III)においては、残余のポリオレフィン樹脂と炭化水素溶剤とから予め調製された溶液を使用して破砕工程(II)で得られた混練物を以下の式(1)に規定する温度(T)の範囲で加熱混合希釈することを特徴とするホットメルトコーティング用誘電体塗料組成物の製造方法に存する。
And the 2nd summary of this invention is a manufacturing method of the dielectric material coating composition for hot-melt coatings of Claim 1, Comprising: The heat-kneading process (I) of a raw material component, and the obtained kneaded material of Including a crushing step (II) and a heating and mixing dilution step (III). use a 1.5 parts by weight, and a hydrocarbon solvent in an amount ratio of the total amount of the three components is 93 to 97% by weight relative to the total amount of these three components and the hydrocarbon solvent, the following formula In the heating and dilution step (III), a solution prepared in advance from the remaining polyolefin resin and hydrocarbon solvent is used for the crushing step ( The kneaded product obtained in II) is regulated by the following formula (1). The present invention resides in a method for producing a dielectric coating composition for hot melt coating, which comprises heating and diluting within a range of a predetermined temperature (T).

本発明の誘電体塗料組成物によれば、薄層シートとして実用に耐え得る高い強度(6MPa以上の強度)の誘電体シートが得られる。   According to the dielectric coating composition of the present invention, a dielectric sheet having a high strength (strength of 6 MPa or more) that can be practically used as a thin layer sheet can be obtained.

先ず、本発明のホットメルトコーティング用誘電体塗料組成物(以下、単に「組成物」と略記する)について説明する。本発明の組成物は、必須成分として、誘電体粉末、ポリオレフィン樹脂、分散剤としての界面活性剤、炭化水素溶剤を含有して成る。   First, the dielectric coating composition for hot melt coating of the present invention (hereinafter simply referred to as “composition”) will be described. The composition of the present invention comprises, as essential components, a dielectric powder, a polyolefin resin, a surfactant as a dispersant, and a hydrocarbon solvent.

誘電体粉末としては、例えば、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複合酸化物の粉末(平均粒子径0.1〜3.0μmの粉末)が使用される。誘電体粉末には、イットリウム、マグネシウム、マンガン、バナジウム等の酸化物から成る公知の助剤を配合することが出来る。   As the dielectric powder, for example, a powder of a complex oxide such as calcium titanate, strontium titanate or barium titanate (powder having an average particle diameter of 0.1 to 3.0 μm) is used. The dielectric powder may contain a known auxiliary agent made of an oxide such as yttrium, magnesium, manganese, vanadium.

ポリオレフィン樹脂の重量平均分子量は、樹脂の強度の観点から、通常10万以上、好ましくは50万以上、更に好ましくは200万以上であり、その上限は通常500万である。ポリオレフィン樹脂の種類としては、樹脂の強度の観点から、炭素数2以上の大きな分岐基(側鎖基)が存在せず、単結合のみで主鎖が構成されているポリオレフィン樹脂が好ましい。従って、例えば、ポリメチルペンテンやポリブタジエンより、ポリエチレンやポリプロピレンが好ましく、特にポリエチレンが好ましい。ポリエチレンとしては、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレン等が挙げられる。なお、ポリオレフィン樹脂の代わりに、エチレン−酢酸ビニルエステル、ポリアミドを使用した場合は、これらの強度が十分ではなく高強度の誘電体シートが得られない。   From the viewpoint of the strength of the resin, the weight average molecular weight of the polyolefin resin is usually 100,000 or more, preferably 500,000 or more, more preferably 2 million or more, and its upper limit is usually 5 million. As a kind of polyolefin resin, from the viewpoint of the strength of the resin, a polyolefin resin in which a main chain is composed of only a single bond without a large branched group (side chain group) having 2 or more carbon atoms is preferable. Therefore, for example, polyethylene and polypropylene are preferable to polymethylpentene and polybutadiene, and polyethylene is particularly preferable. Examples of polyethylene include low density polyethylene, high density polyethylene, linear low density polyethylene, and ultrahigh molecular weight polyethylene. In addition, when ethylene-vinyl acetate and polyamide are used instead of the polyolefin resin, these strengths are not sufficient and a high-strength dielectric sheet cannot be obtained.

分散剤として使用する界面活性剤はHLB4〜12(好ましくは4〜9、更に好ましくは4〜6)のものでり、好ましくは熱分解温度が150℃以上のものである。HLBが高すぎる界面活性剤は炭化水素溶剤との相溶性が乏しくて分散剤としての効果が発現し難く、HLBが低すぎる界面活性剤は分子量が大きすぎるために分散剤としての効果が乏しい。熱分解温度が低すぎる界面活性剤は、本発明の組成物の製造の際に熱分解して分散効果が低下する恐れがある。上記の条件を満足する界面活性剤は、好適には各種のノニオン界面活性剤から選択される。本発明においては、脂肪酸エステル変性ポリエチレングリコールが推奨され、中でも、脂肪酸エステルから誘導される単位のブロックとエチレングリコールから誘導される単位のブロックから成るブロック型共重合体が好適である。斯かるブロック型分散剤の市販品としては、ユニケマ(株)社製「JP4」(HLB:5.5、熱分解温度:200℃)が挙げられる。   The surfactant used as the dispersant is HLB 4-12 (preferably 4-9, more preferably 4-6), and preferably has a thermal decomposition temperature of 150 ° C. or higher. Surfactants with too high HLB are poorly compatible with hydrocarbon solvents and hardly exhibit the effect as a dispersant, and surfactants with too low HLB have a low molecular weight and thus have a poor effect as a dispersant. A surfactant having a thermal decomposition temperature that is too low may be thermally decomposed during the production of the composition of the present invention to reduce the dispersion effect. The surfactant satisfying the above conditions is preferably selected from various nonionic surfactants. In the present invention, fatty acid ester-modified polyethylene glycol is recommended, and among them, a block copolymer comprising a block of units derived from a fatty acid ester and a block of units derived from ethylene glycol is preferred. As a commercial product of such a block type dispersant, “JP4” (HLB: 5.5, thermal decomposition temperature: 200 ° C.) manufactured by Unikema Co., Ltd. may be mentioned.

炭化水素溶剤としては、沸点150〜230℃のものを使用する。沸点が低すぎる溶剤は、本発明の組成物の製造の際に蒸発し、沸点が高すぎる溶媒は、セラミックグリーンシートの製作の際の乾燥に長時間要し、しかも、炭化水素溶剤が残留し易いために高強度の誘電体シートが得られ難い。   A hydrocarbon solvent having a boiling point of 150 to 230 ° C. is used. Solvents having a boiling point that is too low evaporate during the production of the composition of the present invention, and solvents that have a boiling point that is too high take a long time to dry during the production of the ceramic green sheet, and the hydrocarbon solvent remains. Therefore, it is difficult to obtain a high-strength dielectric sheet.

上記の炭化水素溶剤は、通常、パラフィン炭化水素から選択され、その具体例としては、n−ノナン(151℃)、n−デカン(174℃)、n−ウンデカン(196℃)、n−ドデカン(216℃)、n−トリデカン(230℃)等が挙げられる。炭化水素溶剤としては、溶解度パラメータ(SP)が12〜18のものが好ましく、特にn−ドデカン(SP:15.5)が好ましい。SPが低すぎる炭化水素溶剤は沸点が高すぎる場合が多く、SPが高すぎる炭化水素溶剤はポリオレフィン樹脂の溶解性が乏しい。なお、アルコール、ケトン、エステル、脂肪酸などの他の溶剤ではポリオレフィン樹脂の溶解は極めて困難である。

The hydrocarbon solvent is usually selected from paraffin hydrocarbons, and specific examples thereof include n-nonane (151 ° C.), n-decane (174 ° C.), n-undecane (196 ° C.), n-dodecane ( 216 ° C.) and n-tridecane (230 ° C.). As the hydrocarbon solvent, those having a solubility parameter (SP) of 12 to 18 are preferable, and n-dodecane (SP: 15.5) is particularly preferable. Charcoal hydrocarbon solvent SP is too low often boiling point too high, a hydrocarbon solvent SP is too high is the poor solubility of the polyolefin resin. In addition, it is very difficult to dissolve the polyolefin resin with other solvents such as alcohol, ketone, ester and fatty acid.

本発明の組成物において、上記の各成分の割合は、誘電体粉末100重量部当りの重量部として、次の通りである。すなわち、ポリオレフィン樹脂は6〜12重量部、好ましくは8〜12重量部、更に好ましくは10〜12重量部、分散剤は0.5〜1.5重量部、炭化水素溶剤は200〜300重量部である。   In the composition of the present invention, the proportions of the above components are as follows in terms of parts by weight per 100 parts by weight of the dielectric powder. That is, the polyolefin resin is 6 to 12 parts by weight, preferably 8 to 12 parts by weight, more preferably 10 to 12 parts by weight, the dispersant is 0.5 to 1.5 parts by weight, and the hydrocarbon solvent is 200 to 300 parts by weight. It is.

ポリオレフィン樹脂の割合が少なすぎる場合は誘電体シートの保形性が不十分であり、多すぎる場合は誘電体シートの成形時にクラックが発生する。分散剤の割合が少なすぎる場合は分散効果が不十分であり、多すぎる場合は、分散剤が過剰となって分散剤同士が凝集するため却って分散状態が悪化する。炭化水素溶剤の割合が少なすぎる場合は樹脂の全量溶解が困難であり、多すぎる場合は、セラミックグリーンシートの製作の際の乾燥に長時間要し、しかも、炭化水素溶剤が残留し易いために高強度の誘電体シートが得られ難い。   When the proportion of the polyolefin resin is too small, the shape retention of the dielectric sheet is insufficient, and when it is too large, cracks occur when the dielectric sheet is molded. When the proportion of the dispersant is too small, the dispersion effect is insufficient. When the proportion is too large, the dispersant becomes excessive and the dispersants aggregate together, so that the dispersion state deteriorates. If the proportion of the hydrocarbon solvent is too small, it is difficult to dissolve the entire amount of the resin, and if it is too large, it takes a long time to dry the ceramic green sheet, and the hydrocarbon solvent tends to remain. It is difficult to obtain a high strength dielectric sheet.

本発明の組成物は、例えば、後述の製造方法に従って均一な組成物として得られる。そして、本発明の組成物は、その均一性により、B型回転粘度計を使用し且つ130℃で測定した粘度が50〜150cpである特徴を有する。   The composition of this invention is obtained as a uniform composition according to the manufacturing method mentioned later, for example. And the composition of this invention has the characteristic that the viscosity measured at 130 degreeC using a B-type rotational viscometer is 50-150 cp by the uniformity.

次に、本発明に係る組成物の製造方法について説明する。本発明の製造方法は、原料成分の加熱混練工程(I)と、得られた混練物の破砕工程(II)及び加熱混合希釈工程(III)とを包含する。   Next, the manufacturing method of the composition concerning this invention is demonstrated. The production method of the present invention includes a heating and kneading step (I) of raw material components, a crushing step (II) of the obtained kneaded product, and a heating and mixing dilution step (III).

本発明の製造方法は上記の3つの工程を包含するが、各工程の意義は次の通りである。すなわち、加熱混練工程(I)においては、後述の条件を採用することにより、誘電体粉末とポリオレフィン樹脂とを十分に分散させることが出来る。しかしながら、加熱混練工程(I)で得られた混錬物では塗料としての流動性が無い固形状であるため、加熱混合希釈工程(III)において上記の混錬物の二次分散を図って塗料化する。従って、加熱混練工程(I)及び加熱混合希釈工程(III)により、成分の分散・塗料化が達成される。また、破砕工程(II)は、加熱混練工程(I)で得られた固形状の混錬物を適当な大きさに破砕し、加熱混合希釈工程(III)での処理の効率化に寄与する。   The production method of the present invention includes the above three steps, and the significance of each step is as follows. That is, in the heat-kneading step (I), the dielectric powder and the polyolefin resin can be sufficiently dispersed by adopting the conditions described later. However, since the kneaded product obtained in the heating and kneading step (I) is a solid having no fluidity as a coating material, the coating material is obtained by secondary dispersion of the kneaded product in the heating and mixing dilution step (III). Turn into. Accordingly, the components can be dispersed and made into a paint by the heating and kneading step (I) and the heating and mixing dilution step (III). The crushing step (II) crushes the solid kneaded product obtained in the heating and kneading step (I) to an appropriate size, and contributes to the efficiency of the treatment in the heating and mixing dilution step (III). .

加熱混練工程(I)においては、誘電体粉末100重量部と、ポリオレフィン樹脂3〜5重量部と、ブロック型分散剤0.5〜1.5重量部と、これらの3成分と炭化水素溶剤との合計量に対する当該3成分の合計量の割合が93〜97重量%となる量の炭化水素溶剤とを使用して加熱混練処理する。
In the heating and kneading step (I), 100 parts by weight of dielectric powder, 3 to 5 parts by weight of a polyolefin resin, 0.5 to 1.5 parts by weight of a block type dispersant, these three components and a hydrocarbon solvent, proportion of the total amount of the three components is heat kneaded using the amount of hydrocarbon solvent comprising a 93 to 97% by weight relative to the total amount.

加熱混練工程(I)におけるポリオレフィン樹脂の使用割合が少なすぎる場合は、加熱混練の際に十分なシェア(剪断力)が被混練物に掛からずに十分な分散状態が得られず、多すぎる場合は、得られる混練物が硬くなりすぎで破砕工程(II)での処理が困難となる。炭化水素溶剤の割合が上記で規定する範囲より多すぎる場合は、粘度が低下し十分なシェアが被混練物に掛からず、少な過ぎる場合は、被混練物が空回り状態となり十分なシェアが被混練物に掛からない。   When the proportion of polyolefin resin used in the heat-kneading step (I) is too small, sufficient shear (shearing force) is not applied to the material to be kneaded at the time of heat-kneading, and a sufficient dispersed state cannot be obtained. Is difficult to process in the crushing step (II) because the resulting kneaded product becomes too hard. If the proportion of the hydrocarbon solvent is too much greater than the range specified above, the viscosity will drop and sufficient share will not be applied to the material to be kneaded, and if it is too low, the material to be kneaded will be idle and sufficient share will be kneaded. It doesn't hang on things.

加熱混練工程(I)においては以下の式(1)に規定する温度(T)の範囲で加熱混練処理する必要がある。   In the heat-kneading step (I), it is necessary to perform heat-kneading treatment in the temperature (T) range defined by the following formula (1).

加熱混練処理の温度が上記の範囲より低すぎる場合は、ポリオレフィン樹脂が炭化水素溶剤に溶解せず、誘電体粉末に対するシェアも不十分となり、上記の範囲より高過ぎる場合は、ポリオレフィン樹脂が融液状態になり、被混練物の粘度が低下し十分なシェアが被混練物に掛からない。   If the temperature of the heat-kneading treatment is too lower than the above range, the polyolefin resin will not dissolve in the hydrocarbon solvent, and the share of the dielectric powder will be insufficient, and if it is too high, the polyolefin resin will not melt. As a result, the viscosity of the material to be kneaded is lowered and sufficient share is not applied to the material to be kneaded.

被混練物に掛かるトルクは、良好な分散状態を得る観点から、平均値として2〜5kg・mの範囲が好ましい。トルクの値が高すぎる場合は、ポリオレフィン樹脂の構造が分断されてバインダとしての強度が低下することがある。上記のトルクは、混練設備に具備されたトルクメーターにより容易に測定することが出来る。   The torque applied to the material to be kneaded is preferably in the range of 2 to 5 kg · m as an average value from the viewpoint of obtaining a good dispersion state. When the torque value is too high, the structure of the polyolefin resin may be divided and the strength as a binder may be reduced. The above torque can be easily measured by a torque meter provided in the kneading equipment.

加熱混練工程(I)で使用する設備は、混練処理が可能である限り、その種類は制限されず、所謂ニーダーと称せられる各種の設備を使用することが出来る。例えば、(株)東洋精機製作所製のラボプラストミルは、駆動部の解体が容易であり、トルクメーターを備えており、加熱可能なニーダーとして、好適である。   As long as the kneading process is possible, the kind of equipment used in the heat-kneading step (I) is not limited, and various kinds of equipment called so-called kneaders can be used. For example, Labo Plast Mill manufactured by Toyo Seiki Seisakusho Co., Ltd. is easy to disassemble the drive unit, is equipped with a torque meter, and is suitable as a heatable kneader.

破砕工程(II)においては加熱混練工程(I)で得られた混錬物を破砕する。本発明において、破砕とはブレードを使用し切断も含む概念である。加熱混練工程(I)で使用する設備としては、回転軸、回転スクリュー、回転刃、回転ロータ等によって破砕・切断機構が構成された各種の設備を使用することが出来る。混錬物の破砕の程度は、次工程の加熱混合希釈工程(III)での処理効率を考慮して適宜選択される。   In the crushing step (II), the kneaded product obtained in the heating and kneading step (I) is crushed. In the present invention, crushing is a concept that uses a blade and includes cutting. As equipment used in the heating and kneading step (I), various kinds of equipment in which a crushing / cutting mechanism is configured by a rotating shaft, a rotating screw, a rotating blade, a rotating rotor, or the like can be used. The degree of crushing of the kneaded material is appropriately selected in consideration of the processing efficiency in the heating and dilution step (III) of the next step.

加熱混合希釈工程(III)においては残余のポリオレフィン樹脂と炭化水素溶剤とから予め調製された溶液を使用して破砕工程(II)で得られた混練物を混合希釈する。   In the heating and mixing dilution step (III), the kneaded product obtained in the crushing step (II) is mixed and diluted using a solution prepared in advance from the remaining polyolefin resin and hydrocarbon solvent.

加熱混合希釈工程(III)においては前記の式(1)に規定する温度(T)の範囲で加熱混合処理する必要がある。加熱混合処理の温度が上記の範囲より低すぎる場合は、ポリオレフィン樹脂が炭化水素溶剤に溶解せず、上記の範囲より高過ぎる場合は、ポリオレフィン樹脂が分解して誘電体シートの強度が低下する。   In the heating and mixing dilution step (III), it is necessary to perform the heating and mixing treatment within the range of the temperature (T) defined in the above formula (1). When the temperature of the heating and mixing treatment is too lower than the above range, the polyolefin resin is not dissolved in the hydrocarbon solvent, and when it is higher than the above range, the polyolefin resin is decomposed and the strength of the dielectric sheet is lowered.

加熱混合希釈工程(III)で使用する設備は、混合・分散処理が可能である限り、その種類は制限されないが、ホモジナイザー、ヘンシェルミキサー、プラネタリーミキサーの何れかを使用するのが好ましく、中でもプラネタリーミキサーが好ましい。プラネタリーミキサーは、2本の枠型ブレードが自転・公転(プラネタリー運動)することにより、ブレード相互間およびブレードとタンク内面に強力な剪断力を有し、中・高粘度向きのニーディング効果を持つミキサーである。   The equipment used in the heating and mixing dilution step (III) is not limited as long as mixing and dispersion treatment is possible, but it is preferable to use any one of a homogenizer, a Henschel mixer, and a planetary mixer. Lee mixer is preferred. The planetary mixer has a strong shearing force between the blades and the inner surface of the tank and the tank due to the rotation and revolution (planetary movement) of the two frame-type blades. It is a mixer with.

本発明の組成物は、積層セラミックコンデンサ等の積層セラミック電子部品の製造工程で必要なセラミックグリーンシートの製造の際の誘電体塗料組成物として好適に使用される。具体的には、支持体表面に誘電体塗料組成物をホットメルトコーティングした後に乾燥することによりセラミックグリーンシートを製造することが出来る。ホットメルトコーティングは、例えば、溶融押出機を使用し、本発明の組成物を加熱し、Tダイより支持体上に所定厚さに流延させて固化させることによって行なうことが出来る。この際、本発明の組成物の加熱温度としては、通常、前記の式(1)に規定する温度(T)の範囲が選択される。ホットメルトコーティングの際の組成物の加熱温度が低すぎる場合はポリオレフィン樹脂が析出して均一な誘電体層が得られず、高すぎる場合は、ポリオレフィン樹脂が熱分解して劣化する。本発明の組成物の使用により、薄層シートとして実用に耐え得る高い強度(6MPa以上の強度)の誘電体シートが得られる。   The composition of the present invention is suitably used as a dielectric coating composition in the production of a ceramic green sheet required in the production process of a multilayer ceramic electronic component such as a multilayer ceramic capacitor. Specifically, a ceramic green sheet can be produced by hot melt coating the dielectric coating composition on the surface of the support and then drying. Hot melt coating can be performed, for example, by using a melt extruder, heating the composition of the present invention, casting it to a predetermined thickness from a T-die on a support, and solidifying it. Under the present circumstances, as the heating temperature of the composition of this invention, the range of the temperature (T) prescribed | regulated to said Formula (1) is selected normally. When the heating temperature of the composition at the time of hot melt coating is too low, the polyolefin resin is precipitated and a uniform dielectric layer cannot be obtained, and when it is too high, the polyolefin resin is thermally decomposed and deteriorated. By using the composition of the present invention, a dielectric sheet having high strength (strength of 6 MPa or more) that can be practically used as a thin layer sheet can be obtained.

以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。なお、以下の諸例においては、次の材料、設備、評価方法を使用した。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded. In the following examples, the following materials, equipment, and evaluation methods were used.

<材料> <Material>

(1)誘電体粉末:
次の方法で調製した誘電体粉末を使用した。すなわち、誘電体原料の主成分としてBaTiO(平均粒径0.2μm/堺化学工業社製「BT02粉」)を使用し、副成分として、主成分100モルに対し、Y:2モル、MgO:2モル、MnO:0.4モル、V:0.1モル、(Ba0.6Ca0.4)SiO:3モルを使用した。先ず、上記の誘電体原料100重量部と高分子分散剤(サンノプコ社製「SN5468」)1重量部とエタノール100重量部をジルコニアボール(2mmφ)と共にポリエチレン容器に投入し、16時間混合して誘電体混合溶液を得た。次いで、誘電体混合溶液を乾燥温度120℃で12時間乾燥して誘電体粉末を得た。
(1) Dielectric powder:
A dielectric powder prepared by the following method was used. That is, BaTiO 3 (average particle size 0.2 μm / “BT02 powder” manufactured by Sakai Chemical Industry Co., Ltd.) is used as the main component of the dielectric material, and Y 2 O 3 : 2 with respect to 100 mol of the main component as a subcomponent. mol, MgO: 2 mol, MnO: 0.4 moles, V 2 O 5: 0.1 mole, (Ba 0.6 Ca 0.4) SiO 3: using 3 mol. First, 100 parts by weight of the above dielectric material, 1 part by weight of a polymer dispersant (“SN5468” manufactured by San Nopco) and 100 parts by weight of ethanol are put together with zirconia balls (2 mmφ) into a polyethylene container and mixed for 16 hours to form a dielectric. A body mixture solution was obtained. Next, the dielectric mixed solution was dried at a drying temperature of 120 ° C. for 12 hours to obtain a dielectric powder.

(2)ポリエチレン樹脂(PE):
以下の表1に記載の樹脂を使用した(表1中の「樹脂融点」は後述の測定方法による実測値である)。
(2) Polyethylene resin (PE):
The resins listed in Table 1 below were used (the “resin melting point” in Table 1 is an actual measurement value by a measurement method described later).

(3)ブロック型分散剤:
脂肪酸エステル変性ポリエチレングリコール(ユニケマ(株)社製「JP4」、HLB:5.5、熱分解温度:200℃)
(3) Block type dispersant:
Fatty acid ester-modified polyethylene glycol ("JP4" manufactured by Unikema Co., Ltd., HLB: 5.5, thermal decomposition temperature: 200 ° C)

<使用設備> <Equipment used>

(1)加熱ニーダー:
(株)東洋精機製作所製ラボプラストミル「ローラミキサR60型」を使用した。仕様は表2に示す通りである。
(1) Heating kneader:
A lab plast mill "Roller mixer R60 type" manufactured by Toyo Seiki Seisakusho was used. The specifications are as shown in Table 2.

(2)カッタ:
底部に回転切断刃を備えた家庭用ミキサーを使用した。
(2) Cutter:
A home mixer with a rotating cutting blade at the bottom was used.

(3)プラネタリーミキサー:
(株)三英製作所製プラネタリーミキサー「DALTON」(型番:5DMV−01−R)を使用した。
(3) Planetary mixer:
A planetary mixer “DALTON” (model number: 5DMV-01-R) manufactured by Sanei Seisakusho was used.

<物性測定方法> <Method for measuring physical properties>

(1)樹脂の融点:
TG−DTA測定(MAC-SCIENCE製「TG−DTA2000」)を使用し、次の要領で樹脂の融点を測定した。Pt容器に樹脂30mgを測り採り、基準物質として酸化アルミニウムを使用し、大気中、200℃/時間の速度で昇温し、室温ないし400℃の測定温度範囲の吸熱反応のピークを読み取り、樹脂の融点を算出する。
(1) Melting point of resin:
Using TG-DTA measurement (“TG-DTA2000” manufactured by MAC-SCIENCE), the melting point of the resin was measured as follows. Weigh 30 mg of resin in a Pt container, use aluminum oxide as a reference material, raise the temperature in the atmosphere at a rate of 200 ° C./hour, read the endothermic reaction peak in the measurement temperature range from room temperature to 400 ° C. Calculate the melting point.

(2)誘電体組成物の粘度:
東京計器社製のB型回転粘度計(ロータ番号:S21)を使用し130℃で測定した。
(2) Viscosity of dielectric composition:
Measurement was performed at 130 ° C. using a B-type rotational viscometer (rotor number: S21) manufactured by Tokyo Keiki Co., Ltd.

(3)誘電体シートの強度:
引張試験器(インストロン社製「INSTRON製5543」)を使用し、引張速度8mm/min、治具ギャップ5mmの条件で測定し、破断応力が最大の値を誘電体シートの強度とした。そして、強度の評価判定は次の様に行なった。すなわち、従来の誘電体シートの強度(バインダとしてブチラール樹脂を使用した製品)は通常4MPaであるが、薄層シートとして実用上に耐え得るかという観点からシートの強度を判定し、シート強度が6MPa未満のものは使用が困難と判断し、シート強度が6MPa以上のものは使用が可能と判断した。6MPa未満のものは(×)、6MPa以上のものは(○)として表した。
(3) Strength of dielectric sheet:
Using a tensile tester (“INSTRON 5543” manufactured by Instron), measurement was performed under the conditions of a tensile speed of 8 mm / min and a jig gap of 5 mm, and the value with the maximum breaking stress was defined as the strength of the dielectric sheet. And the evaluation evaluation of intensity | strength was performed as follows. In other words, the strength of a conventional dielectric sheet (products using a butyral resin as a binder) is usually 4 MPa, determined the strength of the sheet in terms of whether withstand practical use as a thin layer sheet, the sheet strength 6MPa Less than that was judged to be difficult to use, and those having a sheet strength of 6 MPa or more were judged to be usable. Those of less than 6 MPa are represented as (×), and those of 6 MPa or more are represented as (◯).

実施例1〜6:
先ず、加熱ニーダーに、誘電体粉末100重量部と、表3に記載のポリオレフィン樹脂4重量部と、界面活性剤(ブロック型分散剤)1重量部とを入れて15分間予備混練した後、n−ドデカン7.5重量部を添加し、130℃で1時間加熱混練した。この際、誘電体粉末とポリオレフィン樹脂と界面活性剤と、これらの3成分とn−ドデカンとの合計量に対する当該3成分の合計量の割合は、93重量%であった。また、被混練物に掛かるトルクは4kg・mであった。加熱混練後、ブレードを取り外し、混練物の実質的全量を回収した。但し、低密度ポリエチレンを使用した場合は加熱温度は110℃とした。
Examples 1-6:
First, 100 parts by weight of dielectric powder, 4 parts by weight of a polyolefin resin listed in Table 3, and 1 part by weight of a surfactant (block type dispersant) are put in a heating kneader and pre-kneaded for 15 minutes, and then n -7.5 parts by weight of dodecane was added and kneaded by heating at 130 ° C for 1 hour. At this time, the ratio of the total amount of the three components to the total amount of the dielectric powder, the polyolefin resin, the surfactant, and the three components and n-dodecane was 93% by weight. The torque applied to the material to be kneaded was 4 kg · m. After heating and kneading, the blade was removed, and a substantial amount of the kneaded material was recovered. However, when low density polyethylene was used, the heating temperature was 110 ° C.

次いで、カッタを使用し、上記の混練物を切断した。切断された混練物(A)は、平均的には、断面が略1mm角で長さが5〜10mmの塊状物であった。   Next, the kneaded product was cut using a cutter. The cut kneaded material (A) was, on average, a lump having a cross section of approximately 1 mm square and a length of 5 to 10 mm.

一方、プラネタリーミキサーにn−ドデカン200重量部にポリオレフィン樹脂2重量部を入れて130℃に加熱混合して溶液(B)を調製した。次いで、引き続き、130℃の温度で溶液(B)中に上記の混合物(A)を少量ずつ全量添加して加熱混合し、混合物(A)を希釈し、誘電体塗料組成物を得た。但し、低密度ポリエチレンを使用した場合は加熱温度は110℃とした。得られた誘電体塗料組成物の130℃における粘度は、表3に示す通りであった。   On the other hand, 2 parts by weight of polyolefin resin was added to 200 parts by weight of n-dodecane in a planetary mixer and heated and mixed at 130 ° C. to prepare a solution (B). Subsequently, the mixture (A) was added in small portions to the solution (B) at a temperature of 130 ° C. and mixed by heating to dilute the mixture (A) to obtain a dielectric coating composition. However, when low density polyethylene was used, the heating temperature was 110 ° C. The viscosity at 130 ° C. of the obtained dielectric coating composition was as shown in Table 3.

次いで、二軸溶融押出成形機(東洋精機社製「2D20S」)を使用し、Tダイ(東洋精機社製「T60F」)から、130℃の温度で誘電体塗料組成物を支持体(厚さ75μmの二軸延伸ポリエステルフィルム)上に流延して誘電体層を形成し、更に、自家製炉を使用し、130℃で20分乾燥してセラミックグリーンシートを得た。誘電体層の厚さは、乾燥後の厚さが8μmとなる様にTダイのギャップを調節した。但し、低密度ポリエチレンを使用した場合は、上記の流延温度および乾燥温度は共に110℃とした。次いで、支持体から剥離した誘電体シートについて強度測定を行なった。結果を表3に示す。
Next, using a biaxial melt extrusion molding machine (“2D20S” manufactured by Toyo Seiki Co., Ltd.), a dielectric coating composition is supported from a T die (“T60F” manufactured by Toyo Seiki Co., Ltd.) at a temperature of 130 ° C. (thickness). A dielectric layer was formed by casting on a 75 μm biaxially stretched polyester film), and further dried using a homemade oven at 130 ° C. for 20 minutes to obtain a ceramic green sheet. As for the thickness of the dielectric layer, the gap of the T die was adjusted so that the thickness after drying was 8 μm. However, when low density polyethylene was used, both the casting temperature and the drying temperature were 110 ° C. Next, the strength of the dielectric sheet peeled from the support was measured. The results are shown in Table 3.

比較例1〜4(溶剤の種類による影響):
加熱ニーダーに、誘電体粉末100重量部と、超高分子量PE(3)4重量部と、界面活性剤(ブロック型分散剤)1重量部とを入れて15分間予備混練した後、表4に記載の溶剤7.5重量部を添加し、130℃で1時間加熱混練した。何れの場合も、超高分子量PE(3)の分散が不可能であり、次工程以降の処理は中断せざるを得なかった。また、粘度の測定も出来なかった。
Comparative Examples 1 to 4 (Influence by the type of solvent):
In a heating kneader, 100 parts by weight of dielectric powder, 4 parts by weight of ultra high molecular weight PE (3) and 1 part by weight of a surfactant (block type dispersant) were pre-kneaded for 15 minutes. 7.5 parts by weight of the solvent described above was added and kneaded by heating at 130 ° C. for 1 hour. In any case, it was impossible to disperse the ultra-high molecular weight PE (3), and the processing after the next step had to be interrupted. Also, the viscosity could not be measured.

比較例5(加熱混練工程の有無による影響):
プラネタリーミキサーに、n−ドデカン207.5重量部を入れ、誘電体粉末100重量部と、超高分子量PE(3)6重量部と、界面活性剤(ブロック型分散剤)1重量部とを順次に少量づつ加えた後、130℃で1時間混合し、実施例6と同一組成の誘電体塗料組成物を得た(誘電体塗料組成物の130℃における粘度は200cpであった)。次いで、実施例1と同一条件でセラミックグリーンシートを得た後、支持体から剥離して回収した誘電体シートの強度を測定した。シートの強度は5.0MPaであり、薄層シートとして実用上に耐え得るレベルではなかった。
Comparative Example 5 (Effect of presence or absence of heating kneading step):
In a planetary mixer, 207.5 parts by weight of n-dodecane is added, 100 parts by weight of dielectric powder, 6 parts by weight of ultra high molecular weight PE (3), and 1 part by weight of a surfactant (block type dispersant). After adding in small portions sequentially, mixing was performed at 130 ° C. for 1 hour to obtain a dielectric coating composition having the same composition as in Example 6 (the viscosity at 130 ° C. of the dielectric coating composition was 200 cp). Next, after obtaining a ceramic green sheet under the same conditions as in Example 1, the strength of the dielectric sheet peeled off and recovered from the support was measured. The strength of the sheet was 5.0 MPa, and it was not at a level that could practically endure as a thin layer sheet.

比較例6(加熱混錬工程における組成の影響):
先ず、加熱ニーダーに、誘電体粉末100重量部と、超高分子量PE(3)4重量部と、界面活性剤(ブロック型分散剤)1重量部とを入れて15分間予備混練した後、n−ドデカン3.0重量部を添加し、130℃で1時間加熱混練した。この際、誘電体粉末、ポリオレフィン樹脂、界面活性剤の3成分とn−ドデカンとの合計量に対する当該3成分の合計量の割合は97重量%であった。また、被混練物に掛かるトルクは1.5kg・mであった。加熱混練後、ブレードを取り外し、混練物の実質的全量を回収した。
Comparative Example 6 (effect of composition in heating kneading process):
First, 100 parts by weight of dielectric powder, 4 parts by weight of ultra-high molecular weight PE (3), and 1 part by weight of a surfactant (block type dispersant) are pre-kneaded for 15 minutes in a heating kneader, and then n -Add 3.0 parts by weight of dodecane and heat knead at 130 ° C for 1 hour. At this time, the ratio of the total amount of the three components to the total amount of the three components of the dielectric powder, the polyolefin resin, and the surfactant and n-dodecane was 97% by weight. Further, the torque applied to the material to be kneaded was 1.5 kg · m. After heating and kneading, the blade was removed, and a substantial amount of the kneaded material was recovered.

次いで、カッタを使用し、上記の混練物を切断した。切断された混練物(A)は、平均的には、断面が略1mm角で長さが5〜10mmの塊状物であった。   Next, the kneaded product was cut using a cutter. The cut kneaded material (A) was, on average, a lump having a cross section of approximately 1 mm square and a length of 5 to 10 mm.

一方、プラネタリーミキサーにn−ドデカン204.5重量部にポリオレフィン樹脂2重量部を入れて130℃に加熱混合して溶液(B)を調製した。次いで、引き続き、130℃の温度で溶液(B)中に上記の混合物(A)を少量ずつ全量添加して加熱混合し、混合物(A)を希釈し、実施例6と同一組成の誘電体塗料組成物を得た。得られた誘電体塗料組成物の130℃における粘度は180cpであった)。   On the other hand, 2 parts by weight of polyolefin resin was added to 204.5 parts by weight of n-dodecane in a planetary mixer and heated and mixed at 130 ° C. to prepare a solution (B). Subsequently, the mixture (A) is added in small portions to the solution (B) at a temperature of 130 ° C. and mixed by heating to dilute the mixture (A). A composition was obtained. The viscosity of the obtained dielectric coating composition at 130 ° C. was 180 cp).

次いで、実施例1と同一条件でセラミックグリーンシートを得た後、支持体から剥離して回収した誘電体シートの強度を測定した。シートの強度は3.2MPaであり、薄層シートとして実用上に耐え得るレベルではなかった。
Next, after obtaining a ceramic green sheet under the same conditions as in Example 1, the strength of the dielectric sheet peeled off and recovered from the support was measured. The strength of the sheet was 3.2 MPa, and it was not at a level that could practically endure as a thin layer sheet.

比較例7及び8(加熱混練工程における温度の影響):
実施例6において、加熱ニーダにおける加熱混練処理の際の温度を100℃(比較例7)又は160℃(比較例8)に変更した以外は、実施例6と同様に操作し、誘電体塗料組成物の調製、セラミックグリーンシートの作成、誘電体シートの強度の測定を行なった。比較例7の場合の強度は3.8MPa、比較例8の場合の強度は3.1MPaであり、薄層シートとして実用上に耐え得るレベルではなかった。因みに、誘電体塗料組成物の130℃における粘度は、比較例7の場合200cp、比較例8の場合40cpであった。
Comparative Examples 7 and 8 (Influence of temperature in the heating and kneading step):
In Example 6, the same procedure as in Example 6 was followed except that the temperature during the heat-kneading process in the heating kneader was changed to 100 ° C. (Comparative Example 7) or 160 ° C. (Comparative Example 8). Preparation, ceramic green sheet preparation, and dielectric sheet strength measurement. The strength in the case of Comparative Example 7 was 3.8 MPa, and the strength in the case of Comparative Example 8 was 3.1 MPa, which was not a level that could be practically used as a thin layer sheet. Incidentally, the viscosity at 130 ° C. of the dielectric coating composition was 200 cp for Comparative Example 7 and 40 cp for Comparative Example 8.

比較例9(加熱希釈混合工程有無の影響):
加熱ニーダーに、誘電体粉末100重量部と、超高分子量PE(3)4重量部と、界面活性剤(ブロック型分散剤)1重量部とを入れて15分間予備混練した後、n−ドデカン7.5重量部を添加し、130℃で1時間加熱混練した。得られた混練物をそのまま誘電体塗料組成物として使用し、実施例1と同一条件でセラミックグリーンシートの製作を試みた。その結果、誘電体塗料組成物の流動性が乏し過ぎ、Tダイから均一に流延させることが出来なかった。因みに、誘電体塗料組成物の130℃における粘度は測定不能であった。
Comparative Example 9 (Influence of presence or absence of heating dilution mixing step):
In a heating kneader, 100 parts by weight of dielectric powder, 4 parts by weight of ultra high molecular weight PE (3) and 1 part by weight of a surfactant (block type dispersant) were pre-kneaded for 15 minutes, and then n-dodecane. 7.5 parts by weight were added and kneaded by heating at 130 ° C. for 1 hour. The obtained kneaded material was directly used as a dielectric coating composition, and an attempt was made to produce a ceramic green sheet under the same conditions as in Example 1. As a result, the fluidity of the dielectric coating composition was so poor that it could not be cast uniformly from the T die. Incidentally, the viscosity at 130 ° C. of the dielectric coating composition was not measurable.

比較例10及び11(加熱混合希釈工程における温度の影響):
実施例6において、プラネタリーミキサーにおける加熱混合希釈処理の際の温度を100℃(比較例10)又は160℃(比較例11)に変更した以外は、実施例6と同様に操作し、誘電体塗料組成物の調製、セラミックグリーンシートの作成、誘電体シートの強度の測定を行なった。比較例10の場合の強度は3.2MPa、比較例11の場合の強度は2.7MPaであり、薄層シートとして実用上に耐え得るレベルではなかった。因みに、誘電体塗料組成物の130℃における粘度は、比較例10の場合200cp、比較例11の場合40cpであった。

Comparative Examples 10 and 11 (Influence of temperature in the heating and mixing dilution process):
In Example 6, the same operation as in Example 6 was performed except that the temperature at the time of the heating and mixing dilution process in the planetary mixer was changed to 100 ° C. (Comparative Example 10) or 160 ° C. (Comparative Example 11). Preparation of the coating composition, preparation of a ceramic green sheet, and measurement of the strength of the dielectric sheet were performed. Strength in Comparative Example 10 is 3.2 MPa, the strength of the case of Comparative Example 11 is 2.7 MPa, was not a level able to withstand practical use as a thin layer sheet. Incidentally, the viscosity at 130 ° C. of the dielectric coating composition was 200 cp for Comparative Example 10 and 40 cp for Comparative Example 11.

Claims (11)

誘電体粉末、ポリオレフィン樹脂、分散剤としてのHLB4〜12の界面活性剤、沸点150〜230℃の炭化水素溶剤を含有して成り、誘電体粉末100重量部に対する各成分の割合が、ポリオレフィン樹脂6〜12重量部、界面活性剤0.5〜1.5重量部、炭化水素溶剤200〜300重量部であり、B型回転粘度計を使用し且つ130℃で測定した粘度が50〜150cpであること特徴とする、ホットメルトコーティング用誘電体塗料組成物。   Dielectric powder, polyolefin resin, HLB 4-12 surfactant as dispersant, hydrocarbon solvent having a boiling point of 150-230 ° C. The ratio of each component to 100 parts by weight of dielectric powder is polyolefin resin 6 ~ 12 parts by weight, surfactant 0.5-1.5 parts by weight, hydrocarbon solvent 200-300 parts by weight, viscosity measured at 130 ° C using a B-type rotational viscometer is 50-150 cp A dielectric paint composition for hot-melt coating, characterized in that: ポリオレフィン樹脂の重量平均分子量が10万以上500万以下である請求項1に記載の誘電体塗料組成物。   The dielectric coating composition according to claim 1, wherein the polyolefin resin has a weight average molecular weight of 100,000 to 5,000,000. ポリオレフィン樹脂がポリエチレンである請求項1又は2に記載の誘電体塗料組成物。   The dielectric coating composition according to claim 1 or 2, wherein the polyolefin resin is polyethylene. 界面活性剤の熱分解温度が150℃以上である請求項1〜3の何れかに記載の誘電体塗料組成物。 The dielectric coating composition according to any one of claims 1 to 3, wherein the thermal decomposition temperature of the surfactant is 150 ° C or higher. 界面活性剤がノニオン界面活性剤である請求項1〜4の何れかに記載の誘電体塗料組成物。 The dielectric coating composition according to any one of claims 1 to 4 the surfactant is a nonionic surfactant. ノニオン界面活性剤が脂肪酸エステル変性ポリエチレングリコールである請求項5に記載の誘電体塗料組成物。   The dielectric coating composition according to claim 5, wherein the nonionic surfactant is a fatty acid ester-modified polyethylene glycol. 脂肪酸エステル変性ポリエチレングリコールが脂肪酸エステルから誘導される単位のブロックとエチレングリコールから誘導される単位のブロックから成るブロック型共重合体である請求項6に記載の誘電体塗料組成物。   7. The dielectric coating composition according to claim 6, wherein the fatty acid ester-modified polyethylene glycol is a block copolymer comprising a block of units derived from a fatty acid ester and a block of units derived from ethylene glycol. 炭化水素溶剤の溶解度パラメーター(SP)が12〜18である請求項1〜7の何れかに記載の誘電体塗料組成物。   The dielectric constant coating composition according to any one of claims 1 to 7, wherein the solubility parameter (SP) of the hydrocarbon solvent is 12 to 18. 請求項1に記載のホットメルトコーティング用誘電体塗料組成物の製造方法であって、原料成分の加熱混練工程(I)と、得られた混練物の破砕工程(II)及び加熱混合希釈工程(III)とを包含し、加熱混練工程(I)においては、誘電体粉末100重量部と、ポリオレフィン樹脂3〜5重量部と、界面活性剤0.5〜1.5重量部と、これらの3成分と炭化水素溶剤との合計量に対する当該3成分の合計量の割合が93〜97重量%となる量の炭化水素溶剤とを使用し、以下の式(1)に規定する温度(T)の範囲で加熱混練処理し、加熱混合希釈工程(III)においては、残余のポリオレフィン樹脂と炭化水素溶剤とから予め調製された溶液を使用して破砕工程(II)で得られた混練物を以下の式(1)に規定する温度(T)の範囲で加熱混合希釈することを特徴とするホットメルトコーティング用誘電体塗料組成物の製造方法。
It is a manufacturing method of the dielectric-coating composition for hot-melt coatings of Claim 1, Comprising: The heat-kneading process (I) of a raw material component, the crushing process (II) of the obtained kneaded material, and a heating mixing dilution process ( In the heating and kneading step (I), the dielectric powder is 100 parts by weight, the polyolefin resin is 3 to 5 parts by weight, the surfactant is 0.5 to 1.5 parts by weight, and these 3 temperature ratio of the total amount of the three components to the total amount of the component and the hydrocarbon solvent used and the amount of hydrocarbon solvent comprising a 93 to 97% by weight, defined by the following equation (1) (T) In the heating and mixing dilution step (III), the kneaded product obtained in the crushing step (II) using a solution prepared in advance from the remaining polyolefin resin and hydrocarbon solvent is used as follows. Heat mixing in the temperature (T) range specified in equation (1). A method for producing a dielectric coating composition for hot melt coating, characterized by comprising diluting together.
加熱混練工程(I)における被混練物に掛かる平均トルクが2〜5kg・mである請求項9に記載の製造方法。 The production method according to claim 9 , wherein an average torque applied to the material to be kneaded in the heat-kneading step (I) is 2 to 5 kg · m. 加熱混合希釈工程(III)において、ホモジナイザー、ヘンシェルミキサー、プラネタリーミキサーの何れかを使用する請求項9または10に記載の製造方法。 The production method according to claim 9 or 10 , wherein any one of a homogenizer, a Henschel mixer, and a planetary mixer is used in the heating and mixing dilution step (III).
JP2004176568A 2004-06-15 2004-06-15 Dielectric coating composition for hot melt coating and method for producing the same Expired - Fee Related JP4569184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176568A JP4569184B2 (en) 2004-06-15 2004-06-15 Dielectric coating composition for hot melt coating and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176568A JP4569184B2 (en) 2004-06-15 2004-06-15 Dielectric coating composition for hot melt coating and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006001961A JP2006001961A (en) 2006-01-05
JP4569184B2 true JP4569184B2 (en) 2010-10-27

Family

ID=35770631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176568A Expired - Fee Related JP4569184B2 (en) 2004-06-15 2004-06-15 Dielectric coating composition for hot melt coating and method for producing the same

Country Status (1)

Country Link
JP (1) JP4569184B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11102928B2 (en) 2017-07-13 2021-08-31 Kubota Corporation Electric work vehicle and mower unit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069881A (en) * 1991-10-08 1994-01-18 Ntn Corp High dielectric resin composition
JPH06231992A (en) * 1993-01-28 1994-08-19 Mitsubishi Materials Corp Method of manufacturing green body for lamination ceramic capacitor
JPH06262858A (en) * 1993-03-16 1994-09-20 Toshiba Corp Thermal transfer type ceramic forming material and formation of ceramic pattern
JPH11238646A (en) * 1997-12-03 1999-08-31 Tdk Corp Laminated ceramic electronic part and manufacture thereof
JP2000173859A (en) * 1998-12-09 2000-06-23 Tdk Corp Manufacture of and device of laminated chip part
JP2000203928A (en) * 1998-12-28 2000-07-25 Tdk Corp Production of ceramic green paste for laminated ceramic electronic part
JP2000286142A (en) * 1999-03-31 2000-10-13 Kyocera Corp Multilayer ceramic capacitor and external electrode paste
JP2003049092A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Filler, resin composition, and application thereof
JP2003073555A (en) * 2001-08-31 2003-03-12 Toray Ind Inc Highly dielectric resin composition
JP2006001020A (en) * 2004-06-15 2006-01-05 Tdk Corp Manufacturing method of ceramic green sheet and laminated ceramic electronic part

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069881A (en) * 1991-10-08 1994-01-18 Ntn Corp High dielectric resin composition
JPH06231992A (en) * 1993-01-28 1994-08-19 Mitsubishi Materials Corp Method of manufacturing green body for lamination ceramic capacitor
JPH06262858A (en) * 1993-03-16 1994-09-20 Toshiba Corp Thermal transfer type ceramic forming material and formation of ceramic pattern
JPH11238646A (en) * 1997-12-03 1999-08-31 Tdk Corp Laminated ceramic electronic part and manufacture thereof
JP2000173859A (en) * 1998-12-09 2000-06-23 Tdk Corp Manufacture of and device of laminated chip part
JP2000203928A (en) * 1998-12-28 2000-07-25 Tdk Corp Production of ceramic green paste for laminated ceramic electronic part
JP2000286142A (en) * 1999-03-31 2000-10-13 Kyocera Corp Multilayer ceramic capacitor and external electrode paste
JP2003049092A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Filler, resin composition, and application thereof
JP2003073555A (en) * 2001-08-31 2003-03-12 Toray Ind Inc Highly dielectric resin composition
JP2006001020A (en) * 2004-06-15 2006-01-05 Tdk Corp Manufacturing method of ceramic green sheet and laminated ceramic electronic part

Also Published As

Publication number Publication date
JP2006001961A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
KR102241054B1 (en) Paste for internal electrode of laminated ceramic capacitor, and laminated ceramic capacitor
Yoon et al. Processing of barium titanate tapes with different binders for MLCC applications—part II: comparison of the properties
CN1205619C (en) Ceramic paste composition and method of making ceramic blank sheet and multilayer electron element
CN1860569A (en) Method for producing conductive paste for internal electrode of multilayer ceramic electronic component
TWI459423B (en) Ceramic embryo film and laminated ceramic electronic parts
JP4569184B2 (en) Dielectric coating composition for hot melt coating and method for producing the same
JP4496853B2 (en) Method for manufacturing ceramic green sheet and multilayer ceramic electronic component
TWI241602B (en) Method for producing ceramic slurry, green sheet and laminated ceramic components
CN1860004A (en) Method for producing dielectric paste for multilayer ceramic electronic component
WO2004101465A1 (en) Ceramic green sheet, laminated ceramic article and process for producing the same
KR20110074486A (en) Method for manufacturing dielectric ceramic material
KR20050063466A (en) A method for dispersed coating additive on ceramic powder
TWI466968B (en) Conductive paste for internal electrode of multilayered ceramic capacitor
CN1255359C (en) Production of oriented material or composite material through centrifugal burning
JP5184333B2 (en) Method for manufacturing dielectric ceramic material
JP2005216797A (en) Water-based nickel electrode ink, and manufacturing method of laminated ceramic capacitor using the same
WO2024095719A1 (en) Binder composition for dielectric layer, slurry composition for dielectric layer, dielectric layer, and capacitor
CN113382977B (en) Method for removing organic component from ceramic molded body
KR100951318B1 (en) Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry
WO2019059641A2 (en) Tape casting slurry composition for preparation of silicon nitride sintered body
TWI248094B (en) Conductive paste for an electrode layer of a multi-layered ceramic electronic component and a method for manufacturing a multi-layered unit for a multi-layered ceramic electronic component
JP2008251699A (en) Manufacturing method of multilayer electronic part
TWI250540B (en) Dielectric paste for a spacer layer of a multi-layered ceramic electronic component
KR100593905B1 (en) A Method for Preparing Metal Inner Electrode Paste Having High Dispersibility for Having Super High Capacity Multi Layer Ceramic Capacitor
KR100593906B1 (en) A Method for Preparing Metal Inner Electrode Paste Having High Dispersibility for Multi Layer Ceramic Capacitor Having Super High Capacity

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees