JP4568002B2 - Optically active 2-fluoro-1,3-diol derivative and method for producing the same - Google Patents

Optically active 2-fluoro-1,3-diol derivative and method for producing the same Download PDF

Info

Publication number
JP4568002B2
JP4568002B2 JP2004092771A JP2004092771A JP4568002B2 JP 4568002 B2 JP4568002 B2 JP 4568002B2 JP 2004092771 A JP2004092771 A JP 2004092771A JP 2004092771 A JP2004092771 A JP 2004092771A JP 4568002 B2 JP4568002 B2 JP 4568002B2
Authority
JP
Japan
Prior art keywords
optically active
group
fluoro
formula
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004092771A
Other languages
Japanese (ja)
Other versions
JP2004331649A (en
Inventor
公敬 大久保
省悟 政氏
原 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP2004092771A priority Critical patent/JP4568002B2/en
Publication of JP2004331649A publication Critical patent/JP2004331649A/en
Application granted granted Critical
Publication of JP4568002B2 publication Critical patent/JP4568002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、医薬、農薬、あるいは液晶化合物などの機能性材料を製造するための中間体として有用な光学活性な2−フルオロ−1,3−ジオール誘導体およびその製造方法に関する。   The present invention relates to an optically active 2-fluoro-1,3-diol derivative useful as an intermediate for producing functional materials such as pharmaceuticals, agricultural chemicals, and liquid crystal compounds, and a method for producing the same.

2−フルオロアルカノール類(即ちフルオロヒドリン化合物)の合成方法としては、エポキシ化合物に、アミンとアンモニウム塩もしくは水との存在下に四フッ化ケイ素を反応させる方法が知られている(非特許文献1参照)。
しかし、この合成方法では、得られる化合物はラセミ体であり、光学活性な2−フルオロアルカノール類は得られていない。
As a method for synthesizing 2-fluoroalkanols (that is, fluorohydrin compounds), a method is known in which silicon tetrafluoride is reacted with an epoxy compound in the presence of an amine and an ammonium salt or water (non-patent literature). 1).
However, in this synthesis method, the obtained compound is a racemate, and optically active 2-fluoroalkanols are not obtained.

また、HF、BF3 ・Et2 O、HF−KF系試薬またはHF−アミン系試薬などを用い、エポキシドを開環させ、フルオロヒドリン化合物を合成する方法が古くから知られているが、これらの方法は、一般に、反応温度が高く、転位副反応が起こりやすい、特別な反応容器を必要とするなどの問題があった。 In addition, methods for synthesizing fluorohydrin compounds by using HF, BF 3 · Et 2 O, HF-KF reagents or HF-amine reagents to open epoxides and synthesizing fluorohydrin compounds have long been known. This method generally has problems such as a high reaction temperature, a rearrangement side reaction is likely to occur, and a special reaction vessel is required.

光学活性な2−フルオロアルカノール類としては、次式(1) で表される光学活性な2−フルオロ−2−メチル−1−アルカノール類が知られている(特許文献1参照)。   As the optically active 2-fluoroalkanols, optically active 2-fluoro-2-methyl-1-alkanols represented by the following formula (1) are known (see Patent Document 1).

Figure 0004568002
(式中、Rは炭素数2乃至16個のアルキル基を、C* は光学活性が誘起された不斉炭素を表す。)
Figure 0004568002
(In the formula, R represents an alkyl group having 2 to 16 carbon atoms, and C * represents an asymmetric carbon in which optical activity is induced.)

また、上式(1) で表される光学活性な2−フルオロ−2−メチル−1−アルカノール類の製造方法として、光学活性な2−メチル−1,2−エポキシアルカンにアミン−フッ化水素錯体または四フッ化ケイ素を反応させる方法が、特許文献1に記載されている。
しかし、特許文献1に記載されている上記の光学活性な2−フルオロアルカノール類は、モノアルコール類であり、また上記の製造方法では、収率が低いなどの問題があった。
Further, as a method for producing optically active 2-fluoro-2-methyl-1-alkanols represented by the above formula (1), amine-hydrogen fluoride is added to optically active 2-methyl-1,2-epoxyalkane. A method of reacting a complex or silicon tetrafluoride is described in Patent Document 1.
However, the optically active 2-fluoroalkanols described in Patent Document 1 are monoalcohols, and the above production method has problems such as a low yield.

その他の光学活性な2−フルオロアルカノール類の合成方法としては、N−F系求電子フッ素化剤を用い、マロン酸誘導体にフッ素基を導入した後、あるいはフルオロマロン酸誘導体をアルキル化した後、化学変換およびHPLCによる分離により光学活性な2−フルオロ−1,3−ジオール誘導体を合成する方法が知られている(非特許文献2参照)。しかし、この方法は、高価なフッ素化剤と高価な有機試薬を使用しなければならない、反応工程が多く、収率が低い、特にHPLCを用いて光学活性体を分離するという煩雑な操作を行わなければならないなどの問題があった。   As another method for synthesizing optically active 2-fluoroalkanols, after introducing a fluorine group into a malonic acid derivative using an NF-type electrophilic fluorinating agent, or alkylating a fluoromalonic acid derivative, A method of synthesizing an optically active 2-fluoro-1,3-diol derivative by chemical conversion and separation by HPLC is known (see Non-Patent Document 2). However, this method requires the use of an expensive fluorinating agent and an expensive organic reagent, has many reaction steps, and has a low yield. In particular, this method involves complicated operations such as separation of optically active substances using HPLC. There was a problem such as having to.

また、ラセミ体から光学分割などで光学活性体を得る方法が知られている(非特許文献3参照)。しかし、この方法は、2−アリール−2−フルオロ−1−プロパンジオール類の合成に限定されており、しかも収率が低いなどの問題があり、光学活性な2−フルオロ−1,3−ジオール誘導体を効率よく得る手段は未だ確立されていない。
清水真、吉岡宏輔、テトラヘドロンレターズ (Tetrahedron Lett.), 29, 4101(1988) Masataka Ihara, Tatsuo Kawabuchi, Yuuji Tokunaga, Keiichiro Fukumoto, Tetrahedron: Asymmetry, 5, 1041(1994) Giuseppe Guanti, Enrica Narisano, Renara Riva, Tetrahedron: Asymmetry, 9, 1859(1998) 特開平2−235828号公報
Further, a method for obtaining an optically active substance from a racemate by optical resolution or the like is known (see Non-Patent Document 3). However, this method is limited to the synthesis of 2-aryl-2-fluoro-1-propanediols, and there are problems such as low yield, and optically active 2-fluoro-1,3-diol. A means for efficiently obtaining a derivative has not yet been established.
Makoto Shimizu, Kosuke Yoshioka, Tetrahedron Letters (Tetrahedron Lett.), 29, 4101 (1988) Masataka Ihara, Tatsuo Kawabuchi, Yuuji Tokunaga, Keiichiro Fukumoto, Tetrahedron: Asymmetry, 5, 1041 (1994) Giuseppe Guanti, Enrica Narisano, Renara Riva, Tetrahedron: Asymmetry, 9, 1859 (1998) JP-A-2-235828

本発明の目的は、高収率で容易に、しかも安価に合成できる、医薬、農薬、あるいは液晶化合物などの機能性材料を製造するための中間体として有用な、光学活性な2−フルオロ−1,3−ジオール誘導体、および、その製造方法を提供することにある。   An object of the present invention is to provide an optically active 2-fluoro-1 useful as an intermediate for producing a functional material such as a pharmaceutical, agricultural chemical, or liquid crystal compound that can be synthesized easily and inexpensively in a high yield. , 3-diol derivative and a method for producing the same.

本発明者らは、前記目的を達成すべく鋭意研究した結果、大量にかつ容易に合成できる特定の光学活性なエポキシアルコール誘導体を用いることにより、新規な光学活性な2−フルオロ−1,3−ジオール誘導体を安価で収率良く製造し得ることを知見した。   As a result of diligent research to achieve the above object, the present inventors have used a specific optically active epoxy alcohol derivative that can be synthesized in large amounts and easily, thereby producing a novel optically active 2-fluoro-1,3- It has been found that diol derivatives can be produced inexpensively and with good yield.

本発明は、上記知見に基づいてなされたもので、次式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体を提供するものである。   The present invention has been made based on the above findings, and provides an optically active 2-fluoro-1,3-diol derivative represented by the following formula (I).

Figure 0004568002
(式中、R1 は炭素数4〜20のアルキル基またはシクロアルキル基を示し、これらのアルキル基およびシクロアルキル基は置換基を有していてもよい。R2−CH Ph、−CH OCH または−CH O(CH ) OCH を示す。Phはフェニル基を示す。* は光学活性が誘起された不斉炭素を表す。)
Figure 0004568002
(In the formula, R 1 represents an alkyl group or a cycloalkyl group having 4 to 20 carbon atoms, and these alkyl group and cycloalkyl group may have a substituent. R 2 represents —CH 2 Ph, — CH 2 OCH 3 or -CH 2 O (CH 2) 2 OCH 3 Indicates. Ph represents a phenyl group. C * represents an asymmetric carbon in which optical activity is induced. )

また、本発明は、上式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体の製造方法として、反応器内に溶媒、アミンおよび水を順次仕込み、上記溶媒としてジエチルエーテルまたはtert−ブチルメチルエーテルを使用し、次式(II)で表される光学活性なエポキシ化合物と四フッ化ケイ素とを、上記のアミンと水との存在下で反応させることを特徴とする光学活性な2−フルオロ−1,3−ジオール誘導体の製造方法を提供するものである。 Further, the present invention provides a method for producing an optically active 2-fluoro-1,3-diol derivative represented by the above formula (I), in which a solvent, an amine and water are sequentially charged in a reactor, and diethyl is used as the solvent. Using ether or tert-butyl methyl ether, an optically active epoxy compound represented by the following formula (II) and silicon tetrafluoride are reacted in the presence of the above amine and water. A method for producing an optically active 2-fluoro-1,3-diol derivative is provided.

Figure 0004568002
(式中、R1 は炭素数4〜20のアルキル基またはシクロアルキル基を示し、これらのアルキル基およびシクロアルキル基は置換基を有していてもよい。R2−CH Ph、−CH OCH または−CH O(CH ) OCH を示す。Phはフェニル基を示す。* は光学活性が誘起された不斉炭素を表す。)
Figure 0004568002
(In the formula, R 1 represents an alkyl group or a cycloalkyl group having 4 to 20 carbon atoms, and these alkyl group and cycloalkyl group may have a substituent. R 2 represents —CH 2 Ph, — CH 2 OCH 3 or -CH 2 O (CH 2) 2 OCH 3 Indicates. Ph represents a phenyl group. C * represents an asymmetric carbon in which optical activity is induced. )

本発明によれば、高収率で容易に、しかも安価に合成できる、医薬、農薬、あるいは液晶化合物などの機能性材料を製造するための中間体として有用な、光学活性な2−フルオロ−1,3−ジオール誘導体、および、その製造方法を提供することができる。   According to the present invention, an optically active 2-fluoro-1 useful as an intermediate for producing functional materials such as pharmaceuticals, agricultural chemicals, and liquid crystal compounds, which can be easily synthesized at a high yield and at low cost. , 3-diol derivatives and a method for producing the same.

以下、本発明の光学活性な2−フルオロ−1,3−ジオール誘導体およびその製造方法について詳述する。   Hereinafter, the optically active 2-fluoro-1,3-diol derivative of the present invention and the production method thereof will be described in detail.

前記式(I)において、R1 で示されるアルキル基としては、炭素数4〜20の直鎖あるいは分岐アルキル基が挙げられ、シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などが挙げられる。
これらのアルキル基およびシクロアルキル基は置換基を有していてもよく、斯かる置換基としては、オレフィン(例えばビニル、プロペニル、ブテニルなど)、アセチレニル基、水酸基、ハロゲン、アミノ基、カルボキシル基、アルコキシカルボニル基、シアノ基、複素環化合物残基(例えばピラゾリジニル基、ピペリジル基など)、アミド基などを挙げることができる。
In the formula (I), examples of the alkyl group represented by R 1 include a linear or branched alkyl group having 4 to 20 carbon atoms. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and cyclohexyl. Group, cycloheptyl group, cyclooctyl group and the like.
These alkyl groups and cycloalkyl groups may have a substituent, such as an olefin (for example, vinyl, propenyl, butenyl, etc.), an acetylenyl group, a hydroxyl group, a halogen, an amino group, a carboxyl group, An alkoxycarbonyl group, a cyano group, a heterocyclic compound residue (for example, a pyrazolidinyl group, a piperidyl group, etc.), an amide group, etc. can be mentioned.

また、前記式(I)において、水酸基の保護基R2 としては、メチル基やアリル基などのようなアルキル基、ベンジル基、p−メトキシベンジル基およびトリフェニルメチル基などのようなベンジル系保護基、アリールメチル系保護基、メトキシエトキシメチル基や−CH2 OCH2 Ar基(Ar:アリール)などのようなアルキルエーテル系保護基などの、従来より水酸基の保護基として慣用的に用いられている保護基を挙げることができる。
アセチル基やベンゾイル基のようなエステル系保護基を用いた場合、本発明の2−フルオロ−1,3−ジオール誘導体は得られるものの、その収率は低く、分子内転位により1,2,3−トリオール誘導体を主生成物として与えるため、あまり好ましくない。
In the formula (I), the hydroxyl protecting group R 2 is an alkyl group such as a methyl group or an allyl group, a benzyl group protecting group such as a benzyl group, a p-methoxybenzyl group and a triphenylmethyl group. Conventionally used as a protecting group for a hydroxyl group, such as an alkyl ether protecting group such as a group, an arylmethyl protecting group, a methoxyethoxymethyl group or a —CH 2 OCH 2 Ar group (Ar: aryl) The protecting group which can be mentioned can be mentioned.
When an ester protecting group such as an acetyl group or a benzoyl group is used, the 2-fluoro-1,3-diol derivative of the present invention can be obtained, but the yield is low, and 1,2,3 due to intramolecular rearrangement. -It is less preferred because it gives the triol derivative as the main product.

従って、本発明の前記式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体の代表的化合物としては、(+)−2−ベンジロキシメチル−2−フルオロ−1−ウンデカノール、(+)−3−ベンジロキシ−2−フルオロ−2−シクロヘキシルプロパノールなど、並びに(−)の上記2−フルオロ−1,3−ジオール誘導体類を挙げることができる。   Therefore, as a representative compound of the optically active 2-fluoro-1,3-diol derivative represented by the above formula (I) of the present invention, (+)-2-benzyloxymethyl-2-fluoro-1- Examples include undecanol, (+)-3-benzyloxy-2-fluoro-2-cyclohexylpropanol, and the above-mentioned 2-fluoro-1,3-diol derivatives of (−).

次に、本発明の前記式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体の製造方法について説明する。
本発明の製造方法で出発原料として使用される前記式(II)で表される光学活性なエポキシ化合物において、R1 で示される炭素数4〜20のアルキル基、シクロアルキル基、並びにこれらの基が有していてもよい置換基としては、前述した前記式(I)におけるR1 で示されるものと同様のものを例示でき、またR2 で示される水酸基の保護基も、前述した前記式(I)におけるR2 で示されるものと同様のものが例示される。
Next, a method for producing the optically active 2-fluoro-1,3-diol derivative represented by the formula (I) of the present invention will be described.
In the optically active epoxy compound represented by the formula (II) used as a starting material in the production method of the present invention, an alkyl group having 4 to 20 carbon atoms, a cycloalkyl group represented by R 1 , and these groups Examples of the substituent which may have may be the same as those represented by R 1 in the above-mentioned formula (I), and the hydroxyl protecting group represented by R 2 may also be the above-mentioned formula. Examples are the same as those represented by R 2 in (I).

従って、本発明で使用される前記式(II)で表される光学活性なエポキシ化合物の代表的化合物としては、(+)−2−ベンジロキシメチル−1,2−エポキシウンデカン、(+)−1−ベンジロキシ−2−シクロヘキシル−2,3−エポキシプロパンなど、並びに(−)の上記エポキシド類を挙げることができる。
これらの前記式(II)で表される光学活性なエポキシ化合物は、シャープレス不斉エポキシ化反応(J.A.C.S., 109, 5765 (1987)) 、キラルなケトン触媒による不斉エポキシ化反応(Synthesis, 1979 (2000)) 、キラルサレン触媒による不斉エポキシ化反応(J.A.C.S., 116, 9333 (1994)) などにより、大量にかつ容易に合成することができる。
Therefore, as a representative compound of the optically active epoxy compound represented by the formula (II) used in the present invention, (+)-2-benzyloxymethyl-1,2-epoxyundecane, (+)- Examples thereof include 1-benzyloxy-2-cyclohexyl-2,3-epoxypropane, and (-) epoxides.
These optically active epoxy compounds represented by the above formula (II) are sharpened asymmetric epoxidation reaction (JACS, 109, 5765 (1987)), chiral ketone-catalyzed asymmetric epoxidation reaction (Synthesis, 1979 (2000)), asymmetric epoxidation reaction with chiral salen catalyst (JACS, 116, 9333 (1994)), etc., and can be synthesized in large quantities and easily.

前記式(II)で表される光学活性なエポキシ化合物を、四フッ化ケイ素と反応させることにより、本発明の前記式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体が得られる。
この前記式(II)で表される光学活性なエポキシ化合物と四フッ化ケイ素との反応は、アミンの存在下、またはアミンとアンモニウム塩もしくは水との存在下で行う。
By reacting the optically active epoxy compound represented by the formula (II) with silicon tetrafluoride, the optically active 2-fluoro-1,3-diol represented by the formula (I) of the present invention is used. A derivative is obtained.
The reaction between the optically active epoxy compound represented by the formula (II) and silicon tetrafluoride is carried out in the presence of an amine or in the presence of an amine and an ammonium salt or water.

上記アミンの例としては、プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、トリエチルアミン、N,N,N',N'-テトラメチルエチレンジアミン、ジイソプロピルエチルアミンなどのアミン類が挙げられる。
また、上記アンモニウム塩の例としては、テトラブチルアンモニウムフルオリド、テトラエチルアンモニウムフルオリド、ベンジルトリメチルアンモニウムフルオリドなどのフッ化第四アンモニウムなどが挙げられる。
Examples of the amine include amines such as propylamine, isopropylamine, diisopropylamine, triethylamine, N, N, N ′, N′-tetramethylethylenediamine and diisopropylethylamine.
Examples of the ammonium salt include quaternary ammonium fluoride such as tetrabutylammonium fluoride, tetraethylammonium fluoride, and benzyltrimethylammonium fluoride.

前記式(II)で表される光学活性なエポキシ化合物と四フッ化ケイ素との反応は、四フッ化ケイ素の使用量を過剰量で行うのが好ましく、一般的には四フッ化ケイ素の常圧または加圧雰囲気下で行うのが好ましい。四フッ化ケイ素の反応圧力は、0.01〜20MPaの範囲が好ましく、0.01〜10MPaの範囲がより好ましい。該反応圧力が0.01MPaより低い場合、反応速度が遅く、また20MPaより高い場合、反応操作が難しくなる。   The reaction between the optically active epoxy compound represented by the formula (II) and silicon tetrafluoride is preferably carried out in an excessive amount of silicon tetrafluoride. It is preferable to carry out under pressure or a pressurized atmosphere. The reaction pressure of silicon tetrafluoride is preferably in the range of 0.01 to 20 MPa, and more preferably in the range of 0.01 to 10 MPa. When the reaction pressure is lower than 0.01 MPa, the reaction rate is slow, and when it is higher than 20 MPa, the reaction operation becomes difficult.

上記アミンの添加量は、出発原料の前記式(II)で表される光学活性なエポキシ化合物に対して、好ましくは0.2〜10当量、より好ましくは0.5〜5当量である。該アミンの添加量が0.2当量より少ない場合、反応速度が遅く、副生成物の量が増加し、また10当量より多い場合、反応後の生成物の単離が煩雑である。   The addition amount of the amine is preferably 0.2 to 10 equivalents, more preferably 0.5 to 5 equivalents, with respect to the optically active epoxy compound represented by the formula (II) as a starting material. When the addition amount of the amine is less than 0.2 equivalent, the reaction rate is slow and the amount of by-products increases. When the addition amount is more than 10 equivalents, isolation of the product after the reaction is complicated.

上記のアンモニウム塩もしくは水の添加量は、出発原料の前記式(II)で表される光学活性なエポキシ化合物に対して、好ましくは0.2〜6当量、より好ましくは0.5〜4当量である。アンモニウム塩と水を併用する必要はない。水を使用する場合、その添加量が重要である。前述の特許文献1には、光学活性な2−フルオロ−2−メチル−1−アルカノール類の製造において、水を使用する場合、反応混合物がゲル状となり、生成物の分離が煩雑となる旨が記載されているが、本発明においては、正確に水の添加量を上記範囲内に制御することにより、反応混合物がゲル状にならず、生成物の分離が容易である。   The amount of the ammonium salt or water added is preferably 0.2 to 6 equivalents, more preferably 0.5 to 4 equivalents with respect to the optically active epoxy compound represented by the formula (II) as a starting material. It is. It is not necessary to use ammonium salt and water together. When water is used, the amount added is important. In Patent Document 1 described above, when water is used in the production of optically active 2-fluoro-2-methyl-1-alkanols, the reaction mixture becomes a gel and the separation of the product becomes complicated. Although described, in the present invention, by accurately controlling the amount of water added within the above range, the reaction mixture does not become a gel and the product can be easily separated.

前記式(II)で表される光学活性なエポキシ化合物と四フッ化ケイ素との反応に使用される溶媒としては、クロロホルム、ジクロロメタンなどの含ハロゲン非プロトン性溶媒、ジエチルエーテル、tert−ブチルメチルエーテルなどのジアルキルエーテルなどが好ましい。
反応温度は、−20℃〜120℃の範囲で行うことが好ましい。反応温度が−20℃より低い場合、反応速度が非常に遅く、また反応温度が120℃より高い場合、副反応の顕著な増加が見られる。反応時間は、反応温度などにもよるが、通常、凡そ0.2〜5時間である。
Solvents used for the reaction of the optically active epoxy compound represented by the formula (II) with silicon tetrafluoride include halogen-containing aprotic solvents such as chloroform and dichloromethane, diethyl ether, tert-butyl methyl ether Dialkyl ethers such as are preferred.
The reaction temperature is preferably -20 ° C to 120 ° C. When the reaction temperature is lower than −20 ° C., the reaction rate is very slow, and when the reaction temperature is higher than 120 ° C., there is a significant increase in side reactions. Although the reaction time depends on the reaction temperature and the like, it is usually about 0.2 to 5 hours.

上記の反応終了後、当該生成物について、加水分解、有機層−水層分離、抽出、蒸留、カラムクロマトグラフィーなどの通常の後処理を行うことにより、本発明の前記式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体を得ることができる。   After completion of the above reaction, the product is represented by the above formula (I) of the present invention by subjecting the product to usual post-treatment such as hydrolysis, organic layer-aqueous layer separation, extraction, distillation, column chromatography and the like. An optically active 2-fluoro-1,3-diol derivative can be obtained.

以下に本発明の実施例を挙げるが、本発明は以下の実施例に制限されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

実施例1
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、ジエチルエーテル20ml、ジイソプロピルエチルアミン0.6mlおよび水0.25mlを順次仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、ジエチルエーテル15mlで希釈した1.0g(3.45mmol)の(S)−(+)−2−ベンジロキシメチル−1,2−エポキシウンデカン(94% e.e.)を氷冷下で滴下した後、室温で1時間攪拌した。30mlの飽和KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物である下記の化学式を有する(S)−(+)−2−ベンジロキシメチル−2−フルオロ−1−ウンデカノール0.89gを得た。収率は83%、比旋光度 [α]20 D は+6.22(c=1.39 CHCl3 )であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が94% e.e. であることが分かった。
Example 1
A 100 ml three-necked flask equipped with a dropping funnel and a condenser was charged with 20 ml of diethyl ether, 0.6 ml of diisopropylethylamine and 0.25 ml of water in this order. After making the inside of the reactor atmospheric pressure of silicon tetrafluoride, 1.0 g (3.45 mmol) of (S)-(+)-2-benzyloxymethyl-1,2-epoxy diluted with 15 ml of diethyl ether Undecane (94% ee) was added dropwise under ice cooling, followed by stirring at room temperature for 1 hour. 30 ml of saturated aqueous KF solution was added to stop the reaction, and then the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After the solvent was distilled off under reduced pressure, purification was performed by silica gel column chromatography, and (S)-(+)-2-benzyloxymethyl-2-fluoro-1-undecanol having the following chemical formula as the target product 0.89 g was obtained. The yield was 83%, and the specific rotation [α] 20 D was +6.22 (c = 1.39 CHCl 3 ). As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 94% ee.

Figure 0004568002
(前記式(I)において、R1 =n−C919、R2 =CH2 Phである化合物。Phはフェニル基を示す。)
Figure 0004568002
(In the formula (I), R 1 = n-C 9 H 19 and R 2 = CH 2 Ph. Ph represents a phenyl group.)

上記目的生成物の構造は、核磁気共鳴分析などで確認した。核磁気共鳴分析(VARIAN社製、AS500)の結果は、以下の通りである。   The structure of the target product was confirmed by nuclear magnetic resonance analysis or the like. The results of nuclear magnetic resonance analysis (manufactured by VARIAN, AS500) are as follows.

1H−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン)
δ 7.37〜7.28ppm(m, 5H)、4.60ppm(d,J=12Hz, 1H) 、4.55ppm(d,J=12Hz, 1H) 、3.75ppm(d,J=6.5Hz, 1H)、3.71ppm(d,J=6.5Hz, 1H)、3.65ppm(dd,J1=15Hz, J2=10.2Hz, 1H)、3.59ppm(dd,J1=20Hz, J2=10.2Hz, 1H)、2.04ppm(t,J=6.5Hz, 1H)、1.71〜1.61ppm(m, 2H)、1.35〜1.23ppm(m, 14H) 、0.83ppm(t,J=7Hz, 3H)
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 7.37-7.28ppm (m, 5H), 4.60ppm (d, J = 12Hz, 1H), 4.55ppm (d, J = 12Hz, 1H), 3.75ppm (d, J = 6.5Hz, 1H), 3.71ppm (d, J = 6.5Hz, 1H ), 3.65ppm (dd, J 1 = 15Hz, J 2 = 10.2Hz, 1H), 3.59ppm (dd, J 1 = 20Hz, J 2 = 10.2Hz, 1H), 2.04 ppm (t, J = 6.5Hz, 1H), 1.71 to 1.61ppm (m, 2H), 1.35 to 1.23ppm (m, 14H), 0.83ppm (t, J = 7Hz, 3H)

13C−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン、ppm )
δ 14.36, 22.87, 22.93, 29.55, 29.71, 29.75, 30.24, 32.12, 32.97(d,J=21.1Hz) 、65.14(d,J=25.5Hz) 、71.13(d,J=28.4Hz) 、73.68, 97.46(d,J=172.5Hz) 、127.67, 127.83, 128.45, 137.72
13 C-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane, ppm)
δ 14.36, 22.87, 22.93, 29.55, 29.71, 29.75, 30.24, 32.12, 32.97 (d, J = 21.1Hz), 65.14 (d, J = 25.5Hz), 71.13 (d, J = 28.4Hz), 73.68, 97.46 (d, J = 172.5Hz), 127.67, 127.83, 128.45, 137.72

19F−NMR(溶媒:CDCl3 、標準物質:CFCl3
δ -169.76〜-169.99ppm(m, 1F)
19 F-NMR (solvent: CDCl 3 , standard substance: CFCl 3 )
δ -169.76〜-169.99ppm (m, 1F)

実施例2
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、t−ブチルメチルエーテル20ml、ジイソプロピルエチルアミン0.7mlおよび水0.29mlを順次仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、t−ブチルメチルエーテル15mlで希釈した1.0g(4.1mmol)の(S)−(+)−1−ベンジロキシ−2−シクロヘキシル−2,3−エポキシプロパン(94% e.e.)を氷冷下で滴下した後、室温で1時間攪拌した。30mlの飽和KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物である下記の化学式を有する(S)−(+)−3−ベンジロキシ−2−シクロヘキシル−2−フルオロ−1−プロパノール0.77gを得た。収率は72%、比旋光度 [α]20 D は+6.97(c=0.93 CHCl3 )であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が94% e.e. であることが分かった。
Example 2
A 100 ml three-necked flask equipped with a dropping funnel and a condenser was sequentially charged with 20 ml of t-butyl methyl ether, 0.7 ml of diisopropylethylamine and 0.29 ml of water. After making the inside of the reactor atmospheric pressure of silicon tetrafluoride, 1.0 g (4.1 mmol) of (S)-(+)-1-benzyloxy-2-cyclohexyl- diluted with 15 ml of t-butyl methyl ether 2,3-epoxypropane (94% ee) was added dropwise under ice cooling, and the mixture was stirred at room temperature for 1 hour. 30 ml of saturated aqueous KF solution was added to stop the reaction, and then the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the product was purified by silica gel column chromatography, and (S)-(+)-3-benzyloxy-2-cyclohexyl-2-fluoro-1 having the following chemical formula, which was the target product. -0.77 g of propanol was obtained. The yield was 72%, and the specific rotation [α] 20 D was +6.97 (c = 0.93 CHCl 3 ). As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 94% ee.

Figure 0004568002
(前記式(I)において、R1 =c−C611、R2 =CH2 Phである化合物。Phはフェニル基を示す。)
Figure 0004568002
(In the above formula (I), R 1 = c-C 6 H 11 and R 2 = CH 2 Ph. A compound in which Ph represents a phenyl group.)

上記目的生成物の構造は、核磁気共鳴分析などで確認した。核磁気共鳴分析(BRUKER社製、AV300M) の結果は、以下の通りである。   The structure of the target product was confirmed by nuclear magnetic resonance analysis or the like. The results of nuclear magnetic resonance analysis (BRUKER, AV300M) are as follows.

1H−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン)
δ 7.39〜7.27ppm(m, 5H)、4.59ppm(d,J=12Hz, 1H) 、4.54ppm(d,J=12Hz, 1H) 、3.86〜3.67ppm(m, 2H)、3.72〜3.66ppm(m, 2H)、2.13ppm(t,J=6.0Hz, 1H)、1.88〜1.65ppm(m, 6H)、1.31〜1.00ppm(m, 5H)
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 7.39-7.27ppm (m, 5H), 4.59ppm (d, J = 12Hz, 1H), 4.54ppm (d, J = 12Hz, 1H), 3.86-3.67ppm (m, 2H), 3.72-3.66ppm ( m, 2H), 2.13ppm (t, J = 6.0Hz, 1H), 1.88 to 1.65ppm (m, 6H), 1.31 to 1.00ppm (m, 5H)

13C−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン、ppm )
δ 26.26, 26.40, 26.61(d,J=5.5Hz)、41.02(d,J=20.7Hz) 、63.76(d,J=25.3Hz) 、70.49(d,J=27.7Hz) 、73.70, 98.82(d,J=173.9Hz) 、127.64, 127.81, 128.44, 137.68
13 C-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane, ppm)
δ 26.26, 26.40, 26.61 (d, J = 5.5Hz), 41.02 (d, J = 20.7Hz), 63.76 (d, J = 25.3Hz), 70.49 (d, J = 27.7Hz), 73.70, 98.82 (d , J = 173.9Hz), 127.64, 127.81, 128.44, 137.68

19F−NMR(溶媒:CDCl3 、標準物質:CFCl3
δ -172.82〜-173.14ppm(m, 1F)
19 F-NMR (solvent: CDCl 3 , standard substance: CFCl 3 )
δ -172.82〜-173.14ppm (m, 1F)

実施例3
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、ジエチルエーテル20ml、ジイソプロピルエチルアミン0.8mlおよび水0.35mlを順次仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、ジエチルエーテル15mlで希釈した1.0g(4.9mmol)の(S)−(+)−1−ベンジロキシ−2−アリル−2,3−エポキシプロパン(92% e.e.)を氷冷下で滴下した後、室温で2時間攪拌した。30mlの飽和KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物である下記の化学式を有する(S)−(−)−2−ベンジロキシメチル−2−フルオロ−4−ペンテン−1−オール0.62gを得た。収率は70%、比旋光度 [α]20 D は−2.01(c=1.06 CHCl3 )であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が92% e.e. であることが分かった。
Example 3
A 100 ml three-necked flask equipped with a dropping funnel and a condenser was charged with 20 ml of diethyl ether, 0.8 ml of diisopropylethylamine and 0.35 ml of water in this order. After making the inside of the reactor into a normal pressure atmosphere of silicon tetrafluoride, 1.0 g (4.9 mmol) of (S)-(+)-1-benzyloxy-2-allyl-2,3 diluted with 15 ml of diethyl ether. -Epoxypropane (92% ee) was added dropwise under ice cooling, and the mixture was stirred at room temperature for 2 hours. 30 ml of saturated aqueous KF solution was added to stop the reaction, and then the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After the solvent was distilled off under reduced pressure, purification was performed by silica gel column chromatography, and (S)-(−)-2-benzyloxymethyl-2-fluoro-4-pentene having the following chemical formula, which was the target product. 0.62 g of -1-ol was obtained. The yield was 70%, and the specific rotation [α] 20 D was −2.01 (c = 1.06 CHCl 3 ). As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 92% ee.

Figure 0004568002
(前記式(I)において、R1 =CH2 CHCH2 、R2 =CH2 Phである化合物。Phはフェニル基を示す。)
Figure 0004568002
(In the formula (I), R 1 = CH 2 CHCH 2 , R 2 = CH 2 Ph. A compound in which Ph represents a phenyl group.)

上記目的生成物の構造は、核磁気共鳴分析などで確認した。核磁気共鳴分析(BRUKER社製、AV300M) の結果は、以下の通りである。   The structure of the target product was confirmed by nuclear magnetic resonance analysis or the like. The results of nuclear magnetic resonance analysis (BRUKER, AV300M) are as follows.

1H−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン)
δ 7.39〜7.27ppm(m, 5H)、5.73〜5.87ppm(m, 1H)、5.12〜5.17ppm(m, 2H)、4.59ppm(d,J=12Hz, 1H) 、4.54ppm(d,J=12Hz, 1H) 、3.77ppm(d,J=6.6Hz, 1H)、3.71ppm(d,J=6.5Hz, 1H)、3.65ppm(dd,J1=13Hz,J2=10.4Hz, 1H) 、3.59ppm(dd,J1=15Hz,J2=10.4Hz, 1H) 、2.44〜2.55ppm(m, 2H)、1.97ppm(t,J=6.6Hz, 1H)
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 7.39-7.27ppm (m, 5H), 5.73-5.87ppm (m, 1H), 5.12-5.17ppm (m, 2H), 4.59ppm (d, J = 12Hz, 1H), 4.54ppm (d, J = 12Hz, 1H), 3.77ppm (d , J = 6.6Hz, 1H), 3.71ppm (d, J = 6.5Hz, 1H), 3.65ppm (dd, J 1 = 13Hz, J 2 = 10.4Hz, 1H), 3.59ppm (dd, J 1 = 15Hz , J 2 = 10.4Hz, 1H), 2.44~2.55ppm (m, 2H), 1.97ppm (t, J = 6.6Hz, 1H)

13C−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン、ppm )
δ 37.23(d,J=21.8Hz) 、64.8(d,J=24.5Hz)、70.93(d,J=27.3Hz) 、73.68, 96.82(d,J=174.4Hz) 、119.28, 127.66, 127.83, 128.53, 131.46(d,J=6.6Hz) 、137.63
13 C-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane, ppm)
δ 37.23 (d, J = 21.8Hz), 64.8 (d, J = 24.5Hz), 70.93 (d, J = 27.3Hz), 73.68, 96.82 (d, J = 174.4Hz), 119.28, 127.66, 127.83, 128.53 , 131.46 (d, J = 6.6Hz), 137.63

19F−NMR(溶媒:CDCl3 、標準物質:CFCl3
δ -169.21〜-169.60ppm(m, 1F)
19 F-NMR (solvent: CDCl 3 , standard substance: CFCl 3 )
δ -169.21 to -169.60ppm (m, 1F)

実施例4
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、ジエチルエーテル20ml、ジイソプロピルエチルアミン0.6mlおよび水0.25mlを順次仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、ジエチルエーテル15mlで希釈した1.0g(3.47mmol)の(R)−(+)−2−(2−メトキシエトキシ)メトキシメチル−1,2−エポキシウンデカン(96% e.e.)を氷冷下で滴下した後、室温で1時間攪拌した。30mlの飽和KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物である下記の化学式を有する(S)−(+)−2−(2−メトキシエトキシ)メトキシメチル−2−フルオロ−1−ウンデカノール0.73gを得た。収率は68%、比旋光度 [α]20 D は+11.49(c=0.92 CHCl3 )であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が96% e.e. であることが分かった。
Example 4
A 100 ml three-necked flask equipped with a dropping funnel and a condenser was charged with 20 ml of diethyl ether, 0.6 ml of diisopropylethylamine and 0.25 ml of water in this order. After making the inside of the reactor atmospheric pressure of silicon tetrafluoride, 1.0 g (3.47 mmol) of (R)-(+)-2- (2-methoxyethoxy) methoxymethyl- diluted with 15 ml of diethyl ether 1,2-Epoxyundecane (96% ee) was added dropwise under ice cooling, and the mixture was stirred at room temperature for 1 hour. 30 ml of saturated aqueous KF solution was added to stop the reaction, and then the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the product was purified by silica gel column chromatography, and the target product (S)-(+)-2- (2-methoxyethoxy) methoxymethyl-2- having the following chemical formula 0.73 g of fluoro-1-undecanol was obtained. The yield was 68%, and the specific rotation [α] 20 D was +11.49 (c = 0.92 CHCl 3 ). As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 96% ee.

Figure 0004568002
(前記式(I)において、R1 =n−C919、R2 =CH2 OCH3 である化合物。)
Figure 0004568002
(In the formula (I), a compound in which R 1 = n-C 9 H 19 and R 2 = CH 2 OCH 3. )

上記目的生成物の構造は、核磁気共鳴分析などで確認した。核磁気共鳴分析(BRUKER社製、AV300M) の結果は、以下の通りである。   The structure of the target product was confirmed by nuclear magnetic resonance analysis or the like. The results of nuclear magnetic resonance analysis (BRUKER, AV300M) are as follows.

1H−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン)
δ 4.74ppm(s, 2H)、3.82〜3.60ppm(m, 6H)、3.58ppm(t,J=4.4Hz, 2H)、3.40ppm(s, 3H)、2.52ppm(t,J=6.9Hz, 1H)、1.71〜1.58ppm(m, 2H)、1.40〜1.26ppm(m, 14H) 、0.88ppm(t,J=6.8Hz, 3H)
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 4.74ppm (s, 2H), 3.82 to 3.60ppm (m, 6H), 3.58ppm (t, J = 4.4Hz, 2H), 3.40ppm (s, 3H), 2.52ppm (t, J = 6.9Hz, 1H), 1.71-1.58ppm (m, 2H), 1.40-1.26ppm (m, 14H), 0.88ppm (t, J = 6.8Hz, 3H)

13C−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン、ppm )
δ 14.08, 22.51(d,J=4.8Hz) 、22.64, 29.27, 29.46, 29.48, 29.97, 31.84, 32.65(d,J=19.1Hz) 、58.98, 63.88(d,J=27.2Hz)、67.02, 68.08(d,J=27.5Hz)、71.71, 95.41, 97.27(d,J=172.2Hz)
13 C-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane, ppm)
δ 14.08, 22.51 (d, J = 4.8Hz), 22.64, 29.27, 29.46, 29.48, 29.97, 31.84, 32.65 (d, J = 19.1Hz), 58.98, 63.88 (d, J = 27.2Hz), 67.02, 68.08 (d, J = 27.5Hz), 71.71, 95.41, 97.27 (d, J = 172.2Hz)

19F−NMR(溶媒:CDCl3 、標準物質:CFCl3
δ -170.91〜-171.30ppm(m, 1F)
19 F-NMR (solvent: CDCl 3 , standard substance: CFCl 3 )
δ -170.91 to -171.30ppm (m, 1F)

実施例5
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、t−ブチルメチルエーテル25ml、ジイソプロピルエチルアミン0.7mlおよび水0.3mlを順次仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、t−ブチルメチルエーテル15mlで希釈した1.0g(4.1mmol)の(R)−(+)−2−メトキシエトキシメチル−1,2−エポキシウンデカン(96% e.e.)を氷冷下で滴下した後、室温で1時間攪拌した。30mlの飽和KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物である下記の化学式を有する(S)−(+)−2−メトキシエトキシメチル−2−フルオロ−1−ウンデカノール0.91gを得た。収率は84%、比旋光度 [α]20 D は+6.33(c=0.92 CHCl3 )であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が96% e.e. であることが分かった。
Example 5
A 100 ml three-necked flask equipped with a dropping funnel and a condenser was sequentially charged with 25 ml of t-butyl methyl ether, 0.7 ml of diisopropylethylamine and 0.3 ml of water. After making the inside of the reactor atmospheric pressure of silicon tetrafluoride, 1.0 g (4.1 mmol) of (R)-(+)-2-methoxyethoxymethyl-1, diluted with 15 ml of t-butyl methyl ether, 2-Epoxyundecane (96% ee) was added dropwise under ice cooling, and the mixture was stirred at room temperature for 1 hour. 30 ml of saturated aqueous KF solution was added to stop the reaction, and then the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After the solvent was distilled off under reduced pressure, purification was performed by silica gel column chromatography, and (S)-(+)-2-methoxyethoxymethyl-2-fluoro-1-undecanol having the following chemical formula as the target product 0.91 g was obtained. The yield was 84%, and the specific rotation [α] 20 D was +6.33 (c = 0.92 CHCl 3 ). As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 96% ee.

Figure 0004568002
(前記式(I)において、R1 =n−C919、R2 =CH2 O(CH22 OCH3 である化合物。)
Figure 0004568002
(In the formula (I), R 1 = n-C 9 H 19 and R 2 = CH 2 O (CH 2 ) 2 OCH 3. )

上記目的生成物の構造は、核磁気共鳴分析などで確認した。核磁気共鳴分析(BRUKER社製、AV300M) の結果は、以下の通りである。   The structure of the target product was confirmed by nuclear magnetic resonance analysis or the like. The results of nuclear magnetic resonance analysis (BRUKER, AV300M) are as follows.

1H−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン)
δ 4.66ppm(s, 2H)、3.77ppm(d, 6.7Hz, 1H) 、3.73ppm(d, 6.7Hz, 1H) 、3.73〜3.62ppm(m, 2H)、3.39ppm(s, 3H)、2.03ppm(t,J=6.6Hz, 1H)、1.75〜1.63ppm(m, 2H)、1.40〜1.26ppm(m, 14H) 、0.88ppm(t,J=6.6Hz, 3H)
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 4.66ppm (s, 2H), 3.77ppm (d, 6.7Hz, 1H), 3.73ppm (d, 6.7Hz, 1H), 3.73 to 3.62ppm (m, 2H), 3.39ppm (s, 3H), 2.03 ppm (t, J = 6.6Hz, 1H), 1.75 to 1.63ppm (m, 2H), 1.40 to 1.26ppm (m, 14H), 0.88ppm (t, J = 6.6Hz, 3H)

13C−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン、ppm )
δ 14.09, 22.65, 22.69, 29.27, 29.45, 29.47, 29.98, 31.84, 32.59(d,J=21.4Hz) 、55.43, 64.71(d,J=24.9Hz)、68.37(d,J=27.9Hz) 、96.77, 97.36(d,172.1Hz)
13 C-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane, ppm)
δ 14.09, 22.65, 22.69, 29.27, 29.45, 29.47, 29.98, 31.84, 32.59 (d, J = 21.4Hz), 55.43, 64.71 (d, J = 24.9Hz), 68.37 (d, J = 27.9Hz), 96.77 , 97.36 (d, 172.1Hz)

19F−NMR(溶媒:CDCl3 、標準物質:CFCl3
δ -170.05〜-170.44ppm(m, 1F)
19 F-NMR (solvent: CDCl 3 , standard substance: CFCl 3 )
δ -170.05 to -170.44ppm (m, 1F)

比較例1
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、ジエチルエーテル20mlおよび水0.25mlを仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、ジエチルエーテル15mlで希釈した1.0g(3.45mmol)の(R)−2−ベンゾイロキシメチル−1,2−エポキシウンデカン(96% e.e.)を氷冷下で滴下した後、室温で1時間攪拌した。KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物の(S)−2−ベンゾイロキシメチル−2−フルオロ−1−ウンデカノール0.62gを得た。収率は58%であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が60% e.e. であることが分かった。
Comparative Example 1
A 100 ml three-necked flask equipped with a dropping funnel and a condenser was charged with 20 ml of diethyl ether and 0.25 ml of water. After making the inside of the reactor atmospheric pressure of silicon tetrafluoride, 1.0 g (3.45 mmol) of (R) -2-benzoyloxymethyl-1,2-epoxyundecane (96) diluted with 15 ml of diethyl ether. % Ee) was added dropwise under ice cooling, followed by stirring at room temperature for 1 hour. After adding KF aqueous solution and stopping reaction, the organic layer was liquid-separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After the solvent was distilled off under reduced pressure, purification was performed by silica gel column chromatography to obtain 0.62 g of the desired product (S) -2-benzoyloxymethyl-2-fluoro-1-undecanol. The yield was 58%. As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 60% ee.

比較例2
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、ジエチルエーテル70mlおよび440mg(1.52mmol)の(S)−(+)−2−ベンジロキシメチル−1,2−エポキシウンデカン(96% e.e.)を仕込んだ。氷冷下で480mg(3.34mmol)のBF3 ・Et2 Oを滴下した後、室温で24時間攪拌した。5%重曹水を添加した後、有機層を分液した。有機層を水洗し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物の(S)−(+)−2−ベンジロキシメチル−2−フルオロ−1−ウンデカノール150mgを得た。収率は31%であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が56% e.e. であることが分かった。
Comparative Example 2
A 100 ml three-necked flask equipped with a dropping funnel and condenser was charged with 70 ml of diethyl ether and 440 mg (1.52 mmol) of (S)-(+)-2-benzyloxymethyl-1,2-epoxyundecane (96% ee). It is. Under ice cooling, 480 mg (3.34 mmol) of BF 3 .Et 2 O was added dropwise, followed by stirring at room temperature for 24 hours. After adding 5% sodium bicarbonate water, the organic layer was separated. The organic layer was washed with water and dried over sodium sulfate. After the solvent was distilled off under reduced pressure, purification was performed by silica gel column chromatography to obtain 150 mg of the desired product (S)-(+)-2-benzyloxymethyl-2-fluoro-1-undecanol. The yield was 31%. As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 56% ee.

Claims (2)

次式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体。
Figure 0004568002
(式中、R1 は炭素数4〜20のアルキル基またはシクロアルキル基を示し、これらのアルキル基およびシクロアルキル基は置換基を有していてもよい。R2−CH Ph、−CH OCH または−CH O(CH ) OCH を示す。Phはフェニル基を示す。* は光学活性が誘起された不斉炭素を表す。)
An optically active 2-fluoro-1,3-diol derivative represented by the following formula (I):
Figure 0004568002
(In the formula, R 1 represents an alkyl group or a cycloalkyl group having 4 to 20 carbon atoms, and these alkyl group and cycloalkyl group may have a substituent. R 2 represents —CH 2 Ph, — CH 2 OCH 3 or -CH 2 O (CH 2) 2 OCH 3 Indicates. Ph represents a phenyl group. C * represents an asymmetric carbon in which optical activity is induced. )
反応器内に溶媒、アミンおよび水を順次仕込み、上記溶媒としてジエチルエーテルまたはtert−ブチルメチルエーテルを使用し、次式(II)で表される光学活性なエポキシ化合物と四フッ化ケイ素とを、上記のアミンと水との存在下で反応させることを特徴とする請求項1記載の光学活性な2−フルオロ−1,3−ジオール誘導体の製造方法。
Figure 0004568002
(式中、R1 は炭素数4〜20のアルキル基またはシクロアルキル基を示し、これらのアルキル基およびシクロアルキル基は置換基を有していてもよい。R2−CH Ph、−CH OCH または−CH O(CH ) OCH を示す。Phはフェニル基を示す。* は光学活性が誘起された不斉炭素を表す。)
Into the reactor, a solvent, an amine and water are sequentially added, and diethyl ether or tert-butyl methyl ether is used as the solvent, and an optically active epoxy compound represented by the following formula (II) and silicon tetrafluoride are obtained. The method for producing an optically active 2-fluoro-1,3-diol derivative according to claim 1, wherein the reaction is carried out in the presence of the amine and water.
Figure 0004568002
(In the formula, R 1 represents an alkyl group or a cycloalkyl group having 4 to 20 carbon atoms, and these alkyl group and cycloalkyl group may have a substituent. R 2 represents —CH 2 Ph, — CH 2 OCH 3 or -CH 2 O (CH 2) 2 OCH 3 Indicates. Ph represents a phenyl group. C * represents an asymmetric carbon in which optical activity is induced. )
JP2004092771A 2003-04-17 2004-03-26 Optically active 2-fluoro-1,3-diol derivative and method for producing the same Expired - Lifetime JP4568002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092771A JP4568002B2 (en) 2003-04-17 2004-03-26 Optically active 2-fluoro-1,3-diol derivative and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003112750 2003-04-17
JP2004092771A JP4568002B2 (en) 2003-04-17 2004-03-26 Optically active 2-fluoro-1,3-diol derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004331649A JP2004331649A (en) 2004-11-25
JP4568002B2 true JP4568002B2 (en) 2010-10-27

Family

ID=33513246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092771A Expired - Lifetime JP4568002B2 (en) 2003-04-17 2004-03-26 Optically active 2-fluoro-1,3-diol derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP4568002B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235828A (en) * 1989-03-10 1990-09-18 Nippon Mining Co Ltd Optically active 2-fluoro-2-methyl-1-alkanols and preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235828A (en) * 1989-03-10 1990-09-18 Nippon Mining Co Ltd Optically active 2-fluoro-2-methyl-1-alkanols and preparation thereof

Also Published As

Publication number Publication date
JP2004331649A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US9061991B2 (en) Method for producing 1-amino-1-alkoxycarbonyl-2-vinylcyclopropane
JP6923805B2 (en) Method for producing fluorine-containing cyclopropanecarboxylic acids
JPH08325260A (en) Production of 1,4-benzodioxane derivative
RU2702355C1 (en) Method of producing pyrimidinylcyclopentane compounds
KR101130818B1 (en) Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts
JP4649645B2 (en) Process for producing optically active alcohol compounds
US7674614B2 (en) Method of optically resolving racemic alcohols with a bicyclooxaoctane or a bicycooxaoctene resolving reagents
JP4568002B2 (en) Optically active 2-fluoro-1,3-diol derivative and method for producing the same
KR101379383B1 (en) A process for preparing high purity of ⒮―Metoprolol
EP0609025B1 (en) Process for producing optically active epoxy alcohol derivatives
US7582781B2 (en) Optically active halohydrin derivative and process for producing optically active epoxy alcohol derivative from the same
JP2007297330A (en) Method of manufacturing 2-methylglycidyl derivative
JP4308155B2 (en) Process for producing δ-iminomalonic acid derivative and catalyst therefor
KR101127618B1 (en) Preparation method of 4-[4-chlorophenyl2-pyridylmethoxy]piperidine
WO1998012171A1 (en) Process for the preparation of 3-amino-2-hydroxy-1-propyl ethers
US6639095B1 (en) Process for preparing optically active α-hydroxy acids and derivatives thereof
KR20070048741A (en) Method for the production of diarylcycloalkyl derivatives
JP2832479B2 (en) Stereochemical inversion method of optically active styrene oxide and preparation of optically active glycol derivative
JP2974181B2 (en) A new method for producing cyclobutanol
JP3134786B2 (en) 2-Azabicyclo [3.3.0] octane derivatives, their production and optical resolution of diols or amino alcohols
JP4448346B2 (en) Novel optically active fluorine-containing cyclic compound and process for producing the same
WO2013168780A1 (en) Method for producing optically active 2-vinylcyclopropane-1,1-dicarboxylic acid ester
JP2012158523A (en) Novel carbasugar precursor and method for producing the same, and method for producing bioactive carbasugar amine derivative using them
EP3287440A1 (en) Pyrrolidine compound
JP2002293782A (en) Method for producing 1,4-benzodioxane derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R150 Certificate of patent or registration of utility model

Ref document number: 4568002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250