JP2004331649A - Optically active 2-fluoro-1, 3-diol derivative, and method for producing the same - Google Patents

Optically active 2-fluoro-1, 3-diol derivative, and method for producing the same Download PDF

Info

Publication number
JP2004331649A
JP2004331649A JP2004092771A JP2004092771A JP2004331649A JP 2004331649 A JP2004331649 A JP 2004331649A JP 2004092771 A JP2004092771 A JP 2004092771A JP 2004092771 A JP2004092771 A JP 2004092771A JP 2004331649 A JP2004331649 A JP 2004331649A
Authority
JP
Japan
Prior art keywords
optically active
fluoro
group
formula
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004092771A
Other languages
Japanese (ja)
Other versions
JP4568002B2 (en
Inventor
Kimitaka Okubo
公敬 大久保
Seigo Seiji
省悟 政氏
Gen Ko
原 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP2004092771A priority Critical patent/JP4568002B2/en
Publication of JP2004331649A publication Critical patent/JP2004331649A/en
Application granted granted Critical
Publication of JP4568002B2 publication Critical patent/JP4568002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optically active 2-fluoro-1, 3-diol derivative useful as an intermediate for producing functional materials such as medicinal agents, agrochemicals, liquid crystal compounds and the like which are easily synthesized in high yield at a low cost, and provide a method for producing the same. <P>SOLUTION: The optically active 2-fluoro-1, 3-diol derivative is expressed by formula (I) and produced by reacting an optically active epoxy compound expressed by formula (II) with tetrafluorosilicon in the presence of an amine, or an amine and an ammonium salt or water. In the formulae, R<SP>1</SP>expresses a 4-20C alkyl or cycloalkyl which may have a substituent; R<SP>2</SP>expresses an OH-protective group; C<SP>*</SP>expresses an optical activity-induced asymmetric carbon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、医薬、農薬、あるいは液晶化合物などの機能性材料を製造するための中間体として有用な光学活性な2−フルオロ−1,3−ジオール誘導体およびその製造方法に関する。   The present invention relates to an optically active 2-fluoro-1,3-diol derivative useful as an intermediate for producing a functional material such as a medicine, an agricultural chemical, or a liquid crystal compound, and a method for producing the same.

2−フルオロアルカノール類(即ちフルオロヒドリン化合物)の合成方法としては、エポキシ化合物に、アミンとアンモニウム塩もしくは水との存在下に四フッ化ケイ素を反応させる方法が知られている(非特許文献1参照)。
しかし、この合成方法では、得られる化合物はラセミ体であり、光学活性な2−フルオロアルカノール類は得られていない。
As a method for synthesizing 2-fluoroalkanols (i.e., a fluorohydrin compound), a method is known in which an epoxy compound is reacted with silicon tetrafluoride in the presence of an amine and an ammonium salt or water (Non-Patent Document) 1).
However, according to this synthesis method, the obtained compound is a racemic body, and optically active 2-fluoroalkanols have not been obtained.

また、HF、BF3 ・Et2 O、HF−KF系試薬またはHF−アミン系試薬などを用い、エポキシドを開環させ、フルオロヒドリン化合物を合成する方法が古くから知られているが、これらの方法は、一般に、反応温度が高く、転位副反応が起こりやすい、特別な反応容器を必要とするなどの問題があった。 Further, a method of synthesizing a fluorohydrin compound by opening a ring of an epoxide using HF, BF 3 .Et 2 O, HF-KF-based reagent or HF-amine-based reagent has been known for a long time. The method (1) generally has problems that the reaction temperature is high, rearrangement side reactions are likely to occur, and a special reaction vessel is required.

光学活性な2−フルオロアルカノール類としては、次式(1) で表される光学活性な2−フルオロ−2−メチル−1−アルカノール類が知られている(特許文献1参照)。   As optically active 2-fluoroalkanols, optically active 2-fluoro-2-methyl-1-alkanols represented by the following formula (1) are known (see Patent Document 1).

Figure 2004331649
(式中、Rは炭素数2乃至16個のアルキル基を、C* は光学活性が誘起された不斉炭素を表す。)
Figure 2004331649
(In the formula, R represents an alkyl group having 2 to 16 carbon atoms, and C * represents an asymmetric carbon in which optical activity has been induced.)

また、上式(1) で表される光学活性な2−フルオロ−2−メチル−1−アルカノール類の製造方法として、光学活性な2−メチル−1,2−エポキシアルカンにアミン−フッ化水素錯体または四フッ化ケイ素を反応させる方法が、特許文献1に記載されている。
しかし、特許文献1に記載されている上記の光学活性な2−フルオロアルカノール類は、モノアルコール類であり、また上記の製造方法では、収率が低いなどの問題があった。
As a method for producing optically active 2-fluoro-2-methyl-1-alkanols represented by the above formula (1), optically active 2-methyl-1,2-epoxyalkane is reacted with amine-hydrogen fluoride. A method for reacting a complex or silicon tetrafluoride is described in Patent Document 1.
However, the above-mentioned optically active 2-fluoroalkanols described in Patent Document 1 are monoalcohols, and the above-mentioned production method has problems such as low yield.

その他の光学活性な2−フルオロアルカノール類の合成方法としては、N−F系求電子フッ素化剤を用い、マロン酸誘導体にフッ素基を導入した後、あるいはフルオロマロン酸誘導体をアルキル化した後、化学変換およびHPLCによる分離により光学活性な2−フルオロ−1,3−ジオール誘導体を合成する方法が知られている(非特許文献2参照)。しかし、この方法は、高価なフッ素化剤と高価な有機試薬を使用しなければならない、反応工程が多く、収率が低い、特にHPLCを用いて光学活性体を分離するという煩雑な操作を行わなければならないなどの問題があった。   Other methods for synthesizing optically active 2-fluoroalkanols include using an NF-based electrophilic fluorinating agent, introducing a fluorine group into a malonic acid derivative, or alkylating a fluoromalonic acid derivative, A method of synthesizing an optically active 2-fluoro-1,3-diol derivative by chemical conversion and separation by HPLC is known (see Non-Patent Document 2). However, this method requires the use of an expensive fluorinating agent and an expensive organic reagent, involves many reaction steps, and has a low yield. In particular, it involves a complicated operation of separating an optically active substance using HPLC. There was a problem such as having to do.

また、ラセミ体から光学分割などで光学活性体を得る方法が知られている(非特許文献3参照)。しかし、この方法は、2−アリール−2−フルオロ−1−プロパンジオール類の合成に限定されており、しかも収率が低いなどの問題があり、光学活性な2−フルオロ−1,3−ジオール誘導体を効率よく得る手段は未だ確立されていない。
清水真、吉岡宏輔、テトラヘドロンレターズ (Tetrahedron Lett.), 29, 4101(1988) Masataka Ihara, Tatsuo Kawabuchi, Yuuji Tokunaga, Keiichiro Fukumoto, Tetrahedron: Asymmetry, 5, 1041(1994) Giuseppe Guanti, Enrica Narisano, Renara Riva, Tetrahedron: Asymmetry, 9, 1859(1998) 特開平2−235828号公報
Also, a method for obtaining an optically active substance from a racemic body by optical resolution or the like is known (see Non-Patent Document 3). However, this method is limited to the synthesis of 2-aryl-2-fluoro-1-propanediols, and has problems such as a low yield, and has an optically active 2-fluoro-1,3-diol. A means for efficiently obtaining the derivative has not yet been established.
Shin Shimizu, Kosuke Yoshioka, Tetrahedron Lett., 29, 4101 (1988) Masataka Ihara, Tatsuo Kawabuchi, Yuuji Tokunaga, Keiichiro Fukumoto, Tetrahedron: Asymmetry, 5, 1041 (1994) Giuseppe Guanti, Enrica Narisano, Renara Riva, Tetrahedron: Asymmetry, 9, 1859 (1998) JP-A-2-235828

本発明の目的は、高収率で容易に、しかも安価に合成できる、医薬、農薬、あるいは液晶化合物などの機能性材料を製造するための中間体として有用な、光学活性な2−フルオロ−1,3−ジオール誘導体、および、その製造方法を提供することにある。   An object of the present invention is to provide an optically active 2-fluoro-1 useful as an intermediate for producing a functional material such as a medicine, an agricultural chemical, or a liquid crystal compound which can be easily synthesized at a high yield and at a low cost. , 3-diol derivative, and a method for producing the same.

本発明者らは、前記目的を達成すべく鋭意研究した結果、大量にかつ容易に合成できる特定の光学活性なエポキシアルコール誘導体を用いることにより、新規な光学活性な2−フルオロ−1,3−ジオール誘導体を安価で収率良く製造し得ることを知見した。   The present inventors have conducted intensive studies to achieve the above object, and as a result, by using a specific optically active epoxy alcohol derivative that can be easily synthesized in a large amount, a novel optically active 2-fluoro-1,3- is used. It has been found that diol derivatives can be produced inexpensively and with good yield.

本発明は、上記知見に基づいてなされたもので、次式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体を提供するものである。   The present invention has been made based on the above findings, and provides an optically active 2-fluoro-1,3-diol derivative represented by the following formula (I).

Figure 2004331649
(式中、R1 は炭素数4〜20のアルキル基またはシクロアルキル基を示し、これらのアルキル基およびシクロアルキル基は置換基を有していてもよい。R2 は水酸基の保護基を示す。C* は光学活性が誘起された不斉炭素を表す。)
Figure 2004331649
(Wherein, R 1 represents an alkyl group or a cycloalkyl group having 4 to 20 carbon atoms, and these alkyl groups and cycloalkyl groups may have a substituent. R 2 represents a hydroxyl-protecting group. C * represents an asymmetric carbon in which optical activity has been induced.)

また、本発明は、上式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体の製造方法として、次式(II)で表される光学活性なエポキシ化合物と四フッ化ケイ素とを、アミンの存在下、またはアミンとアンモニウム塩もしくは水との存在下で反応させることを特徴とする光学活性な2−フルオロ−1,3−ジオール誘導体の製造方法を提供するものである。   Further, the present invention provides a method for producing an optically active 2-fluoro-1,3-diol derivative represented by the above formula (I), which comprises an optically active epoxy compound represented by the following formula (II) and tetrafluoroepoxide. A method for producing an optically active 2-fluoro-1,3-diol derivative, which comprises reacting silicon halide with an amine or in the presence of an amine and an ammonium salt or water. is there.

Figure 2004331649
(式中、R1 は炭素数4〜20のアルキル基またはシクロアルキル基を示し、これらのアルキル基およびシクロアルキル基は置換基を有していてもよい。R2 は水酸基の保護基を示す。C* は光学活性が誘起された不斉炭素を表す。)
Figure 2004331649
(Wherein, R 1 represents an alkyl group or a cycloalkyl group having 4 to 20 carbon atoms, and these alkyl groups and cycloalkyl groups may have a substituent. R 2 represents a hydroxyl-protecting group. C * represents an asymmetric carbon in which optical activity has been induced.)

本発明によれば、高収率で容易に、しかも安価に合成できる、医薬、農薬、あるいは液晶化合物などの機能性材料を製造するための中間体として有用な、光学活性な2−フルオロ−1,3−ジオール誘導体、および、その製造方法を提供することができる。   According to the present invention, an optically active 2-fluoro-1 useful as an intermediate for producing a functional material such as a medicine, an agricultural chemical, or a liquid crystal compound, which can be easily synthesized at a high yield and at a low cost. , 3-diol derivative and a method for producing the same.

以下、本発明の光学活性な2−フルオロ−1,3−ジオール誘導体およびその製造方法について詳述する。   Hereinafter, the optically active 2-fluoro-1,3-diol derivative of the present invention and the production method thereof will be described in detail.

前記式(I)において、R1 で示されるアルキル基としては、炭素数4〜20の直鎖あるいは分岐アルキル基が挙げられ、シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などが挙げられる。
これらのアルキル基およびシクロアルキル基は置換基を有していてもよく、斯かる置換基としては、オレフィン(例えばビニル、プロペニル、ブテニルなど)、アセチレニル基、水酸基、ハロゲン、アミノ基、カルボキシル基、アルコキシカルボニル基、シアノ基、複素環化合物残基(例えばピラゾリジニル基、ピペリジル基など)、アミド基などを挙げることができる。
In the formula (I), examples of the alkyl group represented by R 1 include a linear or branched alkyl group having 4 to 20 carbon atoms, and examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. Group, cycloheptyl group, cyclooctyl group and the like.
These alkyl groups and cycloalkyl groups may have a substituent, and such substituents include olefins (eg, vinyl, propenyl, butenyl, etc.), acetylenyl groups, hydroxyl groups, halogens, amino groups, carboxyl groups, Examples include an alkoxycarbonyl group, a cyano group, a residue of a heterocyclic compound (eg, a pyrazolidinyl group, a piperidyl group, and the like), an amide group, and the like.

また、前記式(I)において、水酸基の保護基R2 としては、メチル基やアリル基などのようなアルキル基、ベンジル基、p−メトキシベンジル基およびトリフェニルメチル基などのようなベンジル系保護基、アリールメチル系保護基、メトキシエトキシメチル基や−CH2 OCH2 Ar基(Ar:アリール)などのようなアルキルエーテル系保護基などの、従来より水酸基の保護基として慣用的に用いられている保護基を挙げることができる。
アセチル基やベンゾイル基のようなエステル系保護基を用いた場合、本発明の2−フルオロ−1,3−ジオール誘導体は得られるものの、その収率は低く、分子内転位により1,2,3−トリオール誘導体を主生成物として与えるため、あまり好ましくない。
In the formula (I), the protecting group R 2 for the hydroxyl group may be an alkyl group such as a methyl group or an allyl group, or a benzyl-based protecting group such as a benzyl group, a p-methoxybenzyl group, and a triphenylmethyl group. group, arylmethyl type protecting group, methoxyethoxymethyl group or -CH 2 OCH 2 Ar group (Ar: aryl), such as alkyl ether protecting groups such as, conventionally employed as a protecting group for a hydroxyl group conventionally Protecting groups.
When an ester-based protecting group such as an acetyl group or a benzoyl group is used, the 2-fluoro-1,3-diol derivative of the present invention can be obtained, but the yield is low and 1,2,3 Less preferred because it gives the triol derivative as the main product.

従って、本発明の前記式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体の代表的化合物としては、(+)−2−ベンジロキシメチル−2−フルオロ−1−ウンデカノール、(+)−3−ベンジロキシ−2−フルオロ−2−シクロヘキシルプロパノールなど、並びに(−)の上記2−フルオロ−1,3−ジオール誘導体類を挙げることができる。   Therefore, typical examples of the optically active 2-fluoro-1,3-diol derivative represented by the formula (I) of the present invention include (+)-2-benzyloxymethyl-2-fluoro-1- Examples include undecanol, (+)-3-benzyloxy-2-fluoro-2-cyclohexylpropanol, and the above-mentioned 2-fluoro-1,3-diol derivatives of (-).

次に、本発明の前記式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体の製造方法について説明する。
本発明の製造方法で出発原料として使用される前記式(II)で表される光学活性なエポキシ化合物において、R1 で示される炭素数4〜20のアルキル基、シクロアルキル基、並びにこれらの基が有していてもよい置換基としては、前述した前記式(I)におけるR1 で示されるものと同様のものを例示でき、またR2 で示される水酸基の保護基も、前述した前記式(I)におけるR2 で示されるものと同様のものが例示される。
Next, a method for producing the optically active 2-fluoro-1,3-diol derivative represented by the formula (I) of the present invention will be described.
In the optically active epoxy compound represented by the formula (II) used as a starting material in the production method of the present invention, an alkyl group having 4 to 20 carbon atoms, a cycloalkyl group represented by R 1 , and these groups Examples of the substituent which may be possessed are the same as those represented by R 1 in the above formula (I), and the hydroxyl-protecting group represented by R 2 is also the same as the above-mentioned formula (I) Examples are the same as those represented by R 2 in (I).

従って、本発明で使用される前記式(II)で表される光学活性なエポキシ化合物の代表的化合物としては、(+)−2−ベンジロキシメチル−1,2−エポキシウンデカン、(+)−1−ベンジロキシ−2−シクロヘキシル−2,3−エポキシプロパンなど、並びに(−)の上記エポキシド類を挙げることができる。
これらの前記式(II)で表される光学活性なエポキシ化合物は、シャープレス不斉エポキシ化反応(J.A.C.S., 109, 5765 (1987)) 、キラルなケトン触媒による不斉エポキシ化反応(Synthesis, 1979 (2000)) 、キラルサレン触媒による不斉エポキシ化反応(J.A.C.S., 116, 9333 (1994)) などにより、大量にかつ容易に合成することができる。
Therefore, typical compounds of the optically active epoxy compound represented by the formula (II) used in the present invention include (+)-2-benzyloxymethyl-1,2-epoxyundecane and (+)- Examples thereof include 1-benzyloxy-2-cyclohexyl-2,3-epoxypropane and the above-mentioned epoxides of (-).
These optically active epoxy compounds represented by the formula (II) can be prepared by asymmetric Sharpless epoxidation (JACS, 109, 5765 (1987)) or asymmetric epoxidation with a chiral ketone catalyst (Synthesis, 1979). (2000)) and an asymmetric epoxidation reaction using a chiral salen catalyst (JACS, 116, 9333 (1994)).

前記式(II)で表される光学活性なエポキシ化合物を、四フッ化ケイ素と反応させることにより、本発明の前記式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体が得られる。
この前記式(II)で表される光学活性なエポキシ化合物と四フッ化ケイ素との反応は、アミンの存在下、またはアミンとアンモニウム塩もしくは水との存在下で行う。
By reacting the optically active epoxy compound represented by the formula (II) with silicon tetrafluoride, the optically active 2-fluoro-1,3-diol represented by the formula (I) of the present invention is obtained. A derivative is obtained.
The reaction between the optically active epoxy compound represented by the formula (II) and silicon tetrafluoride is carried out in the presence of an amine or in the presence of an amine and an ammonium salt or water.

上記アミンの例としては、プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、トリエチルアミン、N,N,N',N'-テトラメチルエチレンジアミン、ジイソプロピルエチルアミンなどのアミン類が挙げられる。
また、上記アンモニウム塩の例としては、テトラブチルアンモニウムフルオリド、テトラエチルアンモニウムフルオリド、ベンジルトリメチルアンモニウムフルオリドなどのフッ化第四アンモニウムなどが挙げられる。
Examples of the amine include amines such as propylamine, isopropylamine, diisopropylamine, triethylamine, N, N, N ', N'-tetramethylethylenediamine, diisopropylethylamine and the like.
Examples of the ammonium salt include quaternary ammonium fluorides such as tetrabutylammonium fluoride, tetraethylammonium fluoride and benzyltrimethylammonium fluoride.

前記式(II)で表される光学活性なエポキシ化合物と四フッ化ケイ素との反応は、四フッ化ケイ素の使用量を過剰量で行うのが好ましく、一般的には四フッ化ケイ素の常圧または加圧雰囲気下で行うのが好ましい。四フッ化ケイ素の反応圧力は、0.01〜20MPaの範囲が好ましく、0.01〜10MPaの範囲がより好ましい。該反応圧力が0.01MPaより低い場合、反応速度が遅く、また20MPaより高い場合、反応操作が難しくなる。   The reaction between the optically active epoxy compound represented by the formula (II) and silicon tetrafluoride is preferably carried out in an excessive amount of silicon tetrafluoride. It is preferably performed under pressure or a pressurized atmosphere. The reaction pressure of silicon tetrafluoride is preferably in the range of 0.01 to 20 MPa, more preferably in the range of 0.01 to 10 MPa. When the reaction pressure is lower than 0.01 MPa, the reaction rate is low, and when the reaction pressure is higher than 20 MPa, the reaction operation becomes difficult.

上記アミンの添加量は、出発原料の前記式(II)で表される光学活性なエポキシ化合物に対して、好ましくは0.2〜10当量、より好ましくは0.5〜5当量である。該アミンの添加量が0.2当量より少ない場合、反応速度が遅く、副生成物の量が増加し、また10当量より多い場合、反応後の生成物の単離が煩雑である。   The amount of the amine to be added is preferably 0.2 to 10 equivalents, more preferably 0.5 to 5 equivalents, based on the optically active epoxy compound represented by the formula (II) as a starting material. When the amount of the amine is less than 0.2 equivalent, the reaction rate is slow and the amount of by-products is increased. When the amount is more than 10 equivalents, isolation of the product after the reaction is complicated.

上記のアンモニウム塩もしくは水の添加量は、出発原料の前記式(II)で表される光学活性なエポキシ化合物に対して、好ましくは0.2〜6当量、より好ましくは0.5〜4当量である。アンモニウム塩と水を併用する必要はない。水を使用する場合、その添加量が重要である。前述の特許文献1には、光学活性な2−フルオロ−2−メチル−1−アルカノール類の製造において、水を使用する場合、反応混合物がゲル状となり、生成物の分離が煩雑となる旨が記載されているが、本発明においては、正確に水の添加量を上記範囲内に制御することにより、反応混合物がゲル状にならず、生成物の分離が容易である。   The amount of the ammonium salt or water to be added is preferably 0.2 to 6 equivalents, more preferably 0.5 to 4 equivalents, based on the optically active epoxy compound represented by the formula (II) as a starting material. It is. There is no need to use ammonium salt and water together. When water is used, its amount is important. Patent Document 1 mentioned above states that when water is used in the production of optically active 2-fluoro-2-methyl-1-alkanols, the reaction mixture becomes gel-like, and the separation of the product becomes complicated. Although described, in the present invention, by accurately controlling the amount of water to be added within the above range, the reaction mixture does not become a gel, and the product can be easily separated.

前記式(II)で表される光学活性なエポキシ化合物と四フッ化ケイ素との反応に使用される溶媒としては、クロロホルム、ジクロロメタンなどの含ハロゲン非プロトン性溶媒、ジエチルエーテル、tert−ブチルメチルエーテルなどのジアルキルエーテルなどが好ましい。
反応温度は、−20℃〜120℃の範囲で行うことが好ましい。反応温度が−20℃より低い場合、反応速度が非常に遅く、また反応温度が120℃より高い場合、副反応の顕著な増加が見られる。反応時間は、反応温度などにもよるが、通常、凡そ0.2〜5時間である。
Examples of the solvent used for the reaction between the optically active epoxy compound represented by the formula (II) and silicon tetrafluoride include halogen-containing aprotic solvents such as chloroform and dichloromethane, diethyl ether, and tert-butyl methyl ether. And the like.
The reaction temperature is preferably in the range of -20C to 120C. When the reaction temperature is lower than −20 ° C., the reaction rate is very slow, and when the reaction temperature is higher than 120 ° C., a remarkable increase in side reactions is observed. The reaction time is usually about 0.2 to 5 hours, depending on the reaction temperature and the like.

上記の反応終了後、当該生成物について、加水分解、有機層−水層分離、抽出、蒸留、カラムクロマトグラフィーなどの通常の後処理を行うことにより、本発明の前記式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体を得ることができる。   After completion of the above reaction, the product is represented by the above formula (I) of the present invention by performing ordinary post-treatments such as hydrolysis, separation of an organic layer-aqueous layer, extraction, distillation, and column chromatography. An optically active 2-fluoro-1,3-diol derivative can be obtained.

以下に本発明の実施例を挙げるが、本発明は以下の実施例に制限されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

実施例1
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、ジエチルエーテル20ml、ジイソプロピルエチルアミン0.6mlおよび水0.25mlを順次仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、ジエチルエーテル15mlで希釈した1.0g(3.45mmol)の(S)−(+)−2−ベンジロキシメチル−1,2−エポキシウンデカン(94% e.e.)を氷冷下で滴下した後、室温で1時間攪拌した。30mlの飽和KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物である下記の化学式を有する(S)−(+)−2−ベンジロキシメチル−2−フルオロ−1−ウンデカノール0.89gを得た。収率は83%、比旋光度 [α]20 D は+6.22(c=1.39 CHCl3 )であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が94% e.e. であることが分かった。
Example 1
In a 100 ml three-necked flask equipped with a dropping funnel and a condenser, 20 ml of diethyl ether, 0.6 ml of diisopropylethylamine and 0.25 ml of water were sequentially charged. After the atmosphere in the reactor was set to an atmospheric pressure of silicon tetrafluoride, 1.0 g (3.45 mmol) of (S)-(+)-2-benzyloxymethyl-1,2-epoxy diluted with 15 ml of diethyl ether was diluted. After undecane (94% ee) was added dropwise under ice cooling, the mixture was stirred at room temperature for 1 hour. After the reaction was stopped by adding 30 ml of a saturated aqueous KF solution, the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After evaporating the solvent under reduced pressure, the residue is purified by silica gel column chromatography, and the desired product (S)-(+)-2-benzyloxymethyl-2-fluoro-1-undecanol having the following chemical formula is obtained. 0.89 g was obtained. The yield was 83%, and the specific rotation [α] 20 D was +6.22 (c = 1.39 CHCl 3 ). As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 94% ee.

Figure 2004331649
(前記式(I)において、R1 =n−C919、R2 =CH2 Phである化合物。Phはフェニル基を示す。)
Figure 2004331649
(In the formula (I), a compound in which R 1 = nC 9 H 19 and R 2 = CH 2 Ph. Ph represents a phenyl group.)

上記目的生成物の構造は、核磁気共鳴分析などで確認した。核磁気共鳴分析(VARIAN社製、AS500)の結果は、以下の通りである。   The structure of the target product was confirmed by nuclear magnetic resonance analysis or the like. The results of the nuclear magnetic resonance analysis (VARIAN, AS500) are as follows.

1H−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン)
δ 7.37〜7.28ppm(m, 5H)、4.60ppm(d,J=12Hz, 1H) 、4.55ppm(d,J=12Hz, 1H) 、3.75ppm(d,J=6.5Hz, 1H)、3.71ppm(d,J=6.5Hz, 1H)、3.65ppm(dd,J1=15Hz, J2=10.2Hz, 1H)、3.59ppm(dd,J1=20Hz, J2=10.2Hz, 1H)、2.04ppm(t,J=6.5Hz, 1H)、1.71〜1.61ppm(m, 2H)、1.35〜1.23ppm(m, 14H) 、0.83ppm(t,J=7Hz, 3H)
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 7.37-7.28ppm (m, 5H), 4.60ppm (d, J = 12Hz, 1H), 4.55ppm (d, J = 12Hz, 1H), 3.75ppm (d, J = 6.5Hz, 1H), 3.71ppm (d, J = 6.5Hz, 1H ), 3.65ppm (dd, J 1 = 15Hz, J 2 = 10.2Hz, 1H), 3.59ppm (dd, J 1 = 20Hz, J 2 = 10.2Hz, 1H), 2.04 ppm (t, J = 6.5Hz, 1H), 1.71-1.61ppm (m, 2H), 1.35-1.23ppm (m, 14H), 0.83ppm (t, J = 7Hz, 3H)

13C−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン、ppm )
δ 14.36, 22.87, 22.93, 29.55, 29.71, 29.75, 30.24, 32.12, 32.97(d,J=21.1Hz) 、65.14(d,J=25.5Hz) 、71.13(d,J=28.4Hz) 、73.68, 97.46(d,J=172.5Hz) 、127.67, 127.83, 128.45, 137.72
13 C-NMR (solvent: CDCl 3 , standard: tetramethylsilane, ppm)
δ 14.36, 22.87, 22.93, 29.55, 29.71, 29.75, 30.24, 32.12, 32.97 (d, J = 21.1 Hz), 65.14 (d, J = 25.5 Hz), 71.13 (d, J = 28.4 Hz), 73.68, 97.46 (d, J = 172.5Hz), 127.67, 127.83, 128.45, 137.72

19F−NMR(溶媒:CDCl3 、標準物質:CFCl3
δ -169.76〜-169.99ppm(m, 1F)
19 F-NMR (solvent: CDCl 3 , standard: CFCl 3 )
δ -169.76〜-169.99ppm (m, 1F)

実施例2
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、t−ブチルメチルエーテル20ml、ジイソプロピルエチルアミン0.7mlおよび水0.29mlを順次仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、t−ブチルメチルエーテル15mlで希釈した1.0g(4.1mmol)の(S)−(+)−1−ベンジロキシ−2−シクロヘキシル−2,3−エポキシプロパン(94% e.e.)を氷冷下で滴下した後、室温で1時間攪拌した。30mlの飽和KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物である下記の化学式を有する(S)−(+)−3−ベンジロキシ−2−シクロヘキシル−2−フルオロ−1−プロパノール0.77gを得た。収率は72%、比旋光度 [α]20 D は+6.97(c=0.93 CHCl3 )であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が94% e.e. であることが分かった。
Example 2
In a 100 ml three-necked flask equipped with a dropping funnel and a condenser, 20 ml of t-butyl methyl ether, 0.7 ml of diisopropylethylamine and 0.29 ml of water were sequentially charged. After the inside of the reactor was set to an atmospheric pressure atmosphere of silicon tetrafluoride, 1.0 g (4.1 mmol) of (S)-(+)-1-benzyloxy-2-cyclohexyl-diluted with 15 ml of t-butyl methyl ether was used. After 2,3-epoxypropane (94% ee) was added dropwise under ice cooling, the mixture was stirred at room temperature for 1 hour. After the reaction was stopped by adding 30 ml of a saturated aqueous KF solution, the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After evaporating the solvent under reduced pressure, the residue is purified by silica gel column chromatography, and the desired product (S)-(+)-3-benzyloxy-2-cyclohexyl-2-fluoro-1 having the following chemical formula is obtained. 0.77 g of propanol was obtained. The yield was 72% and the specific rotation [α] 20 D was +6.97 (c = 0.93 CHCl 3 ). As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 94% ee.

Figure 2004331649
(前記式(I)において、R1 =c−C611、R2 =CH2 Phである化合物。Phはフェニル基を示す。)
Figure 2004331649
(In the formula (I), a compound in which R 1 = c—C 6 H 11 and R 2 = CH 2 Ph. Ph represents a phenyl group.)

上記目的生成物の構造は、核磁気共鳴分析などで確認した。核磁気共鳴分析(BRUKER社製、AV300M) の結果は、以下の通りである。   The structure of the target product was confirmed by nuclear magnetic resonance analysis or the like. The results of nuclear magnetic resonance analysis (BR300, AV300M) are as follows.

1H−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン)
δ 7.39〜7.27ppm(m, 5H)、4.59ppm(d,J=12Hz, 1H) 、4.54ppm(d,J=12Hz, 1H) 、3.86〜3.67ppm(m, 2H)、3.72〜3.66ppm(m, 2H)、2.13ppm(t,J=6.0Hz, 1H)、1.88〜1.65ppm(m, 6H)、1.31〜1.00ppm(m, 5H)
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 7.39 to 7.27 ppm (m, 5H), 4.59 ppm (d, J = 12 Hz, 1H), 4.54 ppm (d, J = 12 Hz, 1H), 3.86 to 3.67 ppm (m, 2H), 3.72 to 3.66 ppm ( m, 2H), 2.13 ppm (t, J = 6.0 Hz, 1H), 1.88-1.65 ppm (m, 6H), 1.31-1.00 ppm (m, 5H)

13C−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン、ppm )
δ 26.26, 26.40, 26.61(d,J=5.5Hz)、41.02(d,J=20.7Hz) 、63.76(d,J=25.3Hz) 、70.49(d,J=27.7Hz) 、73.70, 98.82(d,J=173.9Hz) 、127.64, 127.81, 128.44, 137.68
13 C-NMR (solvent: CDCl 3 , standard: tetramethylsilane, ppm)
δ 26.26, 26.40, 26.61 (d, J = 5.5 Hz), 41.02 (d, J = 20.7 Hz), 63.76 (d, J = 25.3 Hz), 70.49 (d, J = 27.7 Hz), 73.70, 98.82 (d , J = 173.9Hz), 127.64, 127.81, 128.44, 137.68

19F−NMR(溶媒:CDCl3 、標準物質:CFCl3
δ -172.82〜-173.14ppm(m, 1F)
19 F-NMR (solvent: CDCl 3 , standard: CFCl 3 )
δ -172.82〜-173.14ppm (m, 1F)

実施例3
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、ジエチルエーテル20ml、ジイソプロピルエチルアミン0.8mlおよび水0.35mlを順次仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、ジエチルエーテル15mlで希釈した1.0g(4.9mmol)の(S)−(+)−1−ベンジロキシ−2−アリル−2,3−エポキシプロパン(92% e.e.)を氷冷下で滴下した後、室温で2時間攪拌した。30mlの飽和KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物である下記の化学式を有する(S)−(−)−2−ベンジロキシメチル−2−フルオロ−4−ペンテン−1−オール0.62gを得た。収率は70%、比旋光度 [α]20 D は−2.01(c=1.06 CHCl3 )であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が92% e.e. であることが分かった。
Example 3
In a 100 ml three-necked flask equipped with a dropping funnel and a condenser, 20 ml of diethyl ether, 0.8 ml of diisopropylethylamine and 0.35 ml of water were sequentially charged. After the atmosphere in the reactor was set to an atmospheric pressure of silicon tetrafluoride, 1.0 g (4.9 mmol) of (S)-(+)-1-benzyloxy-2-allyl-2,3 diluted with 15 ml of diethyl ether was used. -Epoxypropane (92% ee) was added dropwise under ice cooling, and the mixture was stirred at room temperature for 2 hours. After the reaction was stopped by adding 30 ml of a saturated aqueous KF solution, the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After evaporating the solvent under reduced pressure, the residue is purified by silica gel column chromatography, and the desired product (S)-(−)-2-benzyloxymethyl-2-fluoro-4-pentene having the following chemical formula is obtained. 0.62 g of -1-ol was obtained. The yield was 70%, and the specific rotation [α] 20 D was −2.01 (c = 1.06 CHCl 3 ). As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 92% ee.

Figure 2004331649
(前記式(I)において、R1 =CH2 CHCH2 、R2 =CH2 Phである化合物。Phはフェニル基を示す。)
Figure 2004331649
(In the formula (I), a compound .Ph is R 1 = CH 2 CHCH 2, R 2 = CH 2 Ph represents a phenyl group.)

上記目的生成物の構造は、核磁気共鳴分析などで確認した。核磁気共鳴分析(BRUKER社製、AV300M) の結果は、以下の通りである。   The structure of the target product was confirmed by nuclear magnetic resonance analysis or the like. The results of nuclear magnetic resonance analysis (BR300, AV300M) are as follows.

1H−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン)
δ 7.39〜7.27ppm(m, 5H)、5.73〜5.87ppm(m, 1H)、5.12〜5.17ppm(m, 2H)、4.59ppm(d,J=12Hz, 1H) 、4.54ppm(d,J=12Hz, 1H) 、3.77ppm(d,J=6.6Hz, 1H)、3.71ppm(d,J=6.5Hz, 1H)、3.65ppm(dd,J1=13Hz,J2=10.4Hz, 1H) 、3.59ppm(dd,J1=15Hz,J2=10.4Hz, 1H) 、2.44〜2.55ppm(m, 2H)、1.97ppm(t,J=6.6Hz, 1H)
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 7.39 to 7.27 ppm (m, 5H), 5.73 to 5.87 ppm (m, 1H), 5.12 to 5.17 ppm (m, 2H), 4.59 ppm (d, J = 12 Hz, 1H), 4.54 ppm (d, J = 12 Hz, 1H), 3.77 ppm (d, J = 6.6 Hz, 1H), 3.71 ppm (d, J = 6.5 Hz, 1H), 3.65 ppm (dd, J 1 = 13 Hz, J 2 = 10.4 Hz, 1H), 3.59ppm (dd, J 1 = 15Hz , J 2 = 10.4Hz, 1H), 2.44~2.55ppm (m, 2H), 1.97ppm (t, J = 6.6Hz, 1H)

13C−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン、ppm )
δ 37.23(d,J=21.8Hz) 、64.8(d,J=24.5Hz)、70.93(d,J=27.3Hz) 、73.68, 96.82(d,J=174.4Hz) 、119.28, 127.66, 127.83, 128.53, 131.46(d,J=6.6Hz) 、137.63
13 C-NMR (solvent: CDCl 3 , standard: tetramethylsilane, ppm)
δ 37.23 (d, J = 21.8Hz), 64.8 (d, J = 24.5Hz), 70.93 (d, J = 27.3Hz), 73.68,96.82 (d, J = 174.4Hz), 119.28,127.66,127.83,128.53 , 131.46 (d, J = 6.6Hz), 137.63

19F−NMR(溶媒:CDCl3 、標準物質:CFCl3
δ -169.21〜-169.60ppm(m, 1F)
19 F-NMR (solvent: CDCl 3 , standard: CFCl 3 )
δ -169.21〜-169.60ppm (m, 1F)

実施例4
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、ジエチルエーテル20ml、ジイソプロピルエチルアミン0.6mlおよび水0.25mlを順次仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、ジエチルエーテル15mlで希釈した1.0g(3.47mmol)の(R)−(+)−2−(2−メトキシエトキシ)メトキシメチル−1,2−エポキシウンデカン(96% e.e.)を氷冷下で滴下した後、室温で1時間攪拌した。30mlの飽和KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物である下記の化学式を有する(S)−(+)−2−(2−メトキシエトキシ)メトキシメチル−2−フルオロ−1−ウンデカノール0.73gを得た。収率は68%、比旋光度 [α]20 D は+11.49(c=0.92 CHCl3 )であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が96% e.e. であることが分かった。
Example 4
In a 100 ml three-necked flask equipped with a dropping funnel and a condenser, 20 ml of diethyl ether, 0.6 ml of diisopropylethylamine and 0.25 ml of water were sequentially charged. After the inside of the reactor was set to an atmospheric pressure atmosphere of silicon tetrafluoride, 1.0 g (3.47 mmol) of (R)-(+)-2- (2-methoxyethoxy) methoxymethyl-diluted with 15 ml of diethyl ether was diluted. After dropping 1,2-epoxyundecane (96% ee) under ice-cooling, the mixture was stirred at room temperature for 1 hour. After the reaction was stopped by adding 30 ml of a saturated aqueous KF solution, the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After evaporating the solvent under reduced pressure, the residue is purified by silica gel column chromatography, and the desired product (S)-(+)-2- (2-methoxyethoxy) methoxymethyl-2- having the following chemical formula is obtained. 0.73 g of fluoro-1-undecanol was obtained. The yield was 68%, and the specific rotation [α] 20 D was +11.49 (c = 0.92 CHCl 3 ). As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 96% ee.

Figure 2004331649
(前記式(I)において、R1 =n−C919、R2 =CH2 OCH3 である化合物。)
Figure 2004331649
(In the above formula (I), a compound wherein R 1 = nC 9 H 19 and R 2 = CH 2 OCH 3. )

上記目的生成物の構造は、核磁気共鳴分析などで確認した。核磁気共鳴分析(BRUKER社製、AV300M) の結果は、以下の通りである。   The structure of the target product was confirmed by nuclear magnetic resonance analysis or the like. The results of nuclear magnetic resonance analysis (BR300, AV300M) are as follows.

1H−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン)
δ 4.74ppm(s, 2H)、3.82〜3.60ppm(m, 6H)、3.58ppm(t,J=4.4Hz, 2H)、3.40ppm(s, 3H)、2.52ppm(t,J=6.9Hz, 1H)、1.71〜1.58ppm(m, 2H)、1.40〜1.26ppm(m, 14H) 、0.88ppm(t,J=6.8Hz, 3H)
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 4.74ppm (s, 2H), 3.82 ~ 3.60ppm (m, 6H), 3.58ppm (t, J = 4.4Hz, 2H), 3.40ppm (s, 3H), 2.52ppm (t, J = 6.9Hz, 1H), 1.71 ~ 1.58ppm (m, 2H), 1.40 ~ 1.26ppm (m, 14H), 0.88ppm (t, J = 6.8Hz, 3H)

13C−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン、ppm )
δ 14.08, 22.51(d,J=4.8Hz) 、22.64, 29.27, 29.46, 29.48, 29.97, 31.84, 32.65(d,J=19.1Hz) 、58.98, 63.88(d,J=27.2Hz)、67.02, 68.08(d,J=27.5Hz)、71.71, 95.41, 97.27(d,J=172.2Hz)
13 C-NMR (solvent: CDCl 3 , standard: tetramethylsilane, ppm)
δ 14.08, 22.51 (d, J = 4.8 Hz), 22.64, 29.27, 29.46, 29.48, 29.97, 31.84, 32.65 (d, J = 19.1 Hz), 58.98, 63.88 (d, J = 27.2 Hz), 67.02, 68.08 (d, J = 27.5Hz), 71.71, 95.41, 97.27 (d, J = 172.2Hz)

19F−NMR(溶媒:CDCl3 、標準物質:CFCl3
δ -170.91〜-171.30ppm(m, 1F)
19 F-NMR (solvent: CDCl 3 , standard: CFCl 3 )
δ -170.91〜-171.30ppm (m, 1F)

実施例5
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、t−ブチルメチルエーテル25ml、ジイソプロピルエチルアミン0.7mlおよび水0.3mlを順次仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、t−ブチルメチルエーテル15mlで希釈した1.0g(4.1mmol)の(R)−(+)−2−メトキシエトキシメチル−1,2−エポキシウンデカン(96% e.e.)を氷冷下で滴下した後、室温で1時間攪拌した。30mlの飽和KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物である下記の化学式を有する(S)−(+)−2−メトキシエトキシメチル−2−フルオロ−1−ウンデカノール0.91gを得た。収率は84%、比旋光度 [α]20 D は+6.33(c=0.92 CHCl3 )であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が96% e.e. であることが分かった。
Example 5
In a 100 ml three-necked flask equipped with a dropping funnel and a condenser, 25 ml of t-butyl methyl ether, 0.7 ml of diisopropylethylamine and 0.3 ml of water were sequentially charged. After the inside of the reactor was set to an atmospheric pressure atmosphere of silicon tetrafluoride, 1.0 g (4.1 mmol) of (R)-(+)-2-methoxyethoxymethyl-1, diluted with 15 ml of t-butyl methyl ether. After 2-epoxyundecane (96% ee) was added dropwise under ice-cooling, the mixture was stirred at room temperature for 1 hour. After the reaction was stopped by adding 30 ml of a saturated aqueous KF solution, the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After evaporating the solvent under reduced pressure, the residue is purified by silica gel column chromatography, and the desired product (S)-(+)-2-methoxyethoxymethyl-2-fluoro-1-undecanol having the following chemical formula is obtained. 0.91 g was obtained. The yield was 84%, and the specific rotation [α] 20 D was +6.33 (c = 0.92 CHCl 3 ). As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 96% ee.

Figure 2004331649
(前記式(I)において、R1 =n−C919、R2 =CH2 O(CH22 OCH3 である化合物。)
Figure 2004331649
(In the above formula (I), a compound in which R 1 = nC 9 H 19 and R 2 = CH 2 O (CH 2 ) 2 OCH 3 )

上記目的生成物の構造は、核磁気共鳴分析などで確認した。核磁気共鳴分析(BRUKER社製、AV300M) の結果は、以下の通りである。   The structure of the target product was confirmed by nuclear magnetic resonance analysis or the like. The results of nuclear magnetic resonance analysis (BR300, AV300M) are as follows.

1H−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン)
δ 4.66ppm(s, 2H)、3.77ppm(d, 6.7Hz, 1H) 、3.73ppm(d, 6.7Hz, 1H) 、3.73〜3.62ppm(m, 2H)、3.39ppm(s, 3H)、2.03ppm(t,J=6.6Hz, 1H)、1.75〜1.63ppm(m, 2H)、1.40〜1.26ppm(m, 14H) 、0.88ppm(t,J=6.6Hz, 3H)
1 H-NMR (solvent: CDCl 3 , standard substance: tetramethylsilane)
δ 4.66ppm (s, 2H), 3.77ppm (d, 6.7Hz, 1H), 3.73ppm (d, 6.7Hz, 1H), 3.73-3.62ppm (m, 2H), 3.39ppm (s, 3H), 2.03 ppm (t, J = 6.6Hz, 1H), 1.75 ~ 1.63ppm (m, 2H), 1.40 ~ 1.26ppm (m, 14H), 0.88ppm (t, J = 6.6Hz, 3H)

13C−NMR(溶媒:CDCl3 、標準物質:テトラメチルシラン、ppm )
δ 14.09, 22.65, 22.69, 29.27, 29.45, 29.47, 29.98, 31.84, 32.59(d,J=21.4Hz) 、55.43, 64.71(d,J=24.9Hz)、68.37(d,J=27.9Hz) 、96.77, 97.36(d,172.1Hz)
13 C-NMR (solvent: CDCl 3 , standard: tetramethylsilane, ppm)
δ 14.09, 22.65, 22.69, 29.27, 29.45, 29.47, 29.98, 31.84, 32.59 (d, J = 21.4 Hz), 55.43, 64.71 (d, J = 24.9 Hz), 68.37 (d, J = 27.9 Hz), 96.77 , 97.36 (d, 172.1Hz)

19F−NMR(溶媒:CDCl3 、標準物質:CFCl3
δ -170.05〜-170.44ppm(m, 1F)
19 F-NMR (solvent: CDCl 3 , standard: CFCl 3 )
δ -170.05〜-170.44ppm (m, 1F)

比較例1
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、ジエチルエーテル20mlおよび水0.25mlを仕込んだ。反応器内を四フッ化ケイ素の常圧雰囲気にした後、ジエチルエーテル15mlで希釈した1.0g(3.45mmol)の(R)−2−ベンゾイロキシメチル−1,2−エポキシウンデカン(96% e.e.)を氷冷下で滴下した後、室温で1時間攪拌した。KF水溶液を添加し、反応を停止した後、有機層を分液した。有機層を飽和重曹水で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物の(S)−2−ベンゾイロキシメチル−2−フルオロ−1−ウンデカノール0.62gを得た。収率は58%であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が60% e.e. であることが分かった。
Comparative Example 1
A 100 ml three-necked flask equipped with a dropping funnel and a condenser was charged with 20 ml of diethyl ether and 0.25 ml of water. After the atmosphere in the reactor was set to an atmospheric pressure of silicon tetrafluoride, 1.0 g (3.45 mmol) of (R) -2-benzoyloxymethyl-1,2-epoxyundecane (96 g) diluted with 15 ml of diethyl ether was used. % Ee) was added dropwise under ice-cooling, and the mixture was stirred at room temperature for 1 hour. After an aqueous KF solution was added to stop the reaction, the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and dried over sodium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography to obtain 0.62 g of the desired product (S) -2-benzoyloxymethyl-2-fluoro-1-undecanol. The yield was 58%. As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 60% ee.

比較例2
滴下ロートおよびコンデンサーを付した100ml三口フラスコに、ジエチルエーテル70mlおよび440mg(1.52mmol)の(S)−(+)−2−ベンジロキシメチル−1,2−エポキシウンデカン(96% e.e.)を仕込んだ。氷冷下で480mg(3.34mmol)のBF3 ・Et2 Oを滴下した後、室温で24時間攪拌した。5%重曹水を添加した後、有機層を分液した。有機層を水洗し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィーにより精製を行い、目的生成物の(S)−(+)−2−ベンジロキシメチル−2−フルオロ−1−ウンデカノール150mgを得た。収率は31%であった。上記目的生成物の光学純度をMosher法で測定した結果、光学純度が56% e.e. であることが分かった。
Comparative Example 2
A 100 ml three-necked flask equipped with a dropping funnel and a condenser was charged with 70 ml of diethyl ether and 440 mg (1.52 mmol) of (S)-(+)-2-benzyloxymethyl-1,2-epoxyundecane (96% ee). It is. After 480 mg (3.34 mmol) of BF 3 .Et 2 O was added dropwise under ice cooling, the mixture was stirred at room temperature for 24 hours. After adding 5% aqueous sodium bicarbonate, the organic layer was separated. The organic layer was washed with water and dried over sodium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography to obtain 150 mg of the desired product (S)-(+)-2-benzyloxymethyl-2-fluoro-1-undecanol. The yield was 31%. As a result of measuring the optical purity of the target product by the Mosher method, it was found that the optical purity was 56% ee.

Claims (2)

次式(I)で表される光学活性な2−フルオロ−1,3−ジオール誘導体。
Figure 2004331649
(式中、R1 は炭素数4〜20のアルキル基またはシクロアルキル基を示し、これらのアルキル基およびシクロアルキル基は置換基を有していてもよい。R2 は水酸基の保護基を示す。C* は光学活性が誘起された不斉炭素を表す。)
An optically active 2-fluoro-1,3-diol derivative represented by the following formula (I).
Figure 2004331649
(Wherein, R 1 represents an alkyl group or a cycloalkyl group having 4 to 20 carbon atoms, and these alkyl groups and cycloalkyl groups may have a substituent. R 2 represents a hydroxyl-protecting group. C * represents an asymmetric carbon in which optical activity has been induced.)
次式(II)で表される光学活性なエポキシ化合物と四フッ化ケイ素とを、アミンの存在下、またはアミンとアンモニウム塩もしくは水との存在下で反応させることを特徴とする請求項1記載の光学活性な2−フルオロ−1,3−ジオール誘導体の製造方法。
Figure 2004331649
(式中、R1 は炭素数4〜20のアルキル基またはシクロアルキル基を示し、これらのアルキル基およびシクロアルキル基は置換基を有していてもよい。R2 は水酸基の保護基を示す。C* は光学活性が誘起された不斉炭素を表す。)
The optically active epoxy compound represented by the following formula (II) is reacted with silicon tetrafluoride in the presence of an amine or in the presence of an amine and an ammonium salt or water. A method for producing an optically active 2-fluoro-1,3-diol derivative of the above.
Figure 2004331649
(Wherein, R 1 represents an alkyl group or a cycloalkyl group having 4 to 20 carbon atoms, and these alkyl groups and cycloalkyl groups may have a substituent. R 2 represents a hydroxyl-protecting group. C * represents an asymmetric carbon in which optical activity has been induced.)
JP2004092771A 2003-04-17 2004-03-26 Optically active 2-fluoro-1,3-diol derivative and method for producing the same Expired - Lifetime JP4568002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092771A JP4568002B2 (en) 2003-04-17 2004-03-26 Optically active 2-fluoro-1,3-diol derivative and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003112750 2003-04-17
JP2004092771A JP4568002B2 (en) 2003-04-17 2004-03-26 Optically active 2-fluoro-1,3-diol derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004331649A true JP2004331649A (en) 2004-11-25
JP4568002B2 JP4568002B2 (en) 2010-10-27

Family

ID=33513246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092771A Expired - Lifetime JP4568002B2 (en) 2003-04-17 2004-03-26 Optically active 2-fluoro-1,3-diol derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP4568002B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235828A (en) * 1989-03-10 1990-09-18 Nippon Mining Co Ltd Optically active 2-fluoro-2-methyl-1-alkanols and preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235828A (en) * 1989-03-10 1990-09-18 Nippon Mining Co Ltd Optically active 2-fluoro-2-methyl-1-alkanols and preparation thereof

Also Published As

Publication number Publication date
JP4568002B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
Bravo et al. New fluorinated chiral synthons
JP6923805B2 (en) Method for producing fluorine-containing cyclopropanecarboxylic acids
JPH08325260A (en) Production of 1,4-benzodioxane derivative
EA015673B1 (en) Process for the stereoselective preparation of (-)-halofenate and intermediates thereof
JP4649645B2 (en) Process for producing optically active alcohol compounds
US7674614B2 (en) Method of optically resolving racemic alcohols with a bicyclooxaoctane or a bicycooxaoctene resolving reagents
JP3253634B2 (en) Method for producing glycidyl sulfonate derivative
KR101379383B1 (en) A process for preparing high purity of ⒮―Metoprolol
JP4568002B2 (en) Optically active 2-fluoro-1,3-diol derivative and method for producing the same
EP0930291B1 (en) Process for the preparation of 3-amino-2-hydroxy-1-propyl ethers
JP3348860B2 (en) Method for producing glycidyl ether
US7582781B2 (en) Optically active halohydrin derivative and process for producing optically active epoxy alcohol derivative from the same
JP2832479B2 (en) Stereochemical inversion method of optically active styrene oxide and preparation of optically active glycol derivative
Wang et al. The Efficient Synthesis of the Optically Active β‐Hydroxyl‐γ‐Butyrolactone Derivatives
JP2002513732A (en) An intermediate for acetogenin in Annelidae
JP3020980B2 (en) Optically active valerolactone derivative
JP4448346B2 (en) Novel optically active fluorine-containing cyclic compound and process for producing the same
JP2000063321A (en) Production of long-chain beta-hydroxycarboxylic acid of high optical purity
JP2903805B2 (en) Preparation of optically active benzyl glycidyl ether
JP2010013370A (en) Zerumbone derivative and method for producing the same
JPH0566940B2 (en)
JPH1077283A (en) 2-azabicyclo(3.3.0)octane derivative, its production and optical resolution of diol or amino alcohol
JP2005281168A (en) Method for producing 3-pyrrolidinol
CN105541695A (en) 2-aryl fluoro piperidine derivate and preparation method thereof
JPS58170725A (en) Glycerol derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R150 Certificate of patent or registration of utility model

Ref document number: 4568002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term