JP4567894B2 - Glass panel - Google Patents

Glass panel Download PDF

Info

Publication number
JP4567894B2
JP4567894B2 JP2001019703A JP2001019703A JP4567894B2 JP 4567894 B2 JP4567894 B2 JP 4567894B2 JP 2001019703 A JP2001019703 A JP 2001019703A JP 2001019703 A JP2001019703 A JP 2001019703A JP 4567894 B2 JP4567894 B2 JP 4567894B2
Authority
JP
Japan
Prior art keywords
glass
plate
spacer
glass panel
friction reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001019703A
Other languages
Japanese (ja)
Other versions
JP2002226238A (en
Inventor
健治 坂本
修 浅野
雅郎 御園生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2001019703A priority Critical patent/JP4567894B2/en
Publication of JP2002226238A publication Critical patent/JP2002226238A/en
Application granted granted Critical
Publication of JP4567894B2 publication Critical patent/JP4567894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Description

【0001】
【発明の属する技術分野】
本発明は、一対の板ガラス間に多数の間隔保持用のスペーサを介在させ、かつ、その両板ガラスの外周部間を外周密閉部で密閉して両板ガラス間に空隙部を形成し、前記空隙部を減圧状態に保持してあるガラスパネルに関する。
【0002】
【従来の技術】
空隙部の減圧に基づいて両板ガラスの外表面から大気圧が作用するが、その大気圧による圧縮応力に対抗するために、従来、この種のガラスパネルには、高い圧縮強度を有した硬質材料からなるスペーサが空隙部形成材料として使用されていた。
【0003】
【発明が解決しようとする課題】
上述した従来のガラスパネルによれば、スペーサに高い圧縮強度を有した硬質材料を使用しているため、大気圧等によるスペーサを圧縮する方向に働く圧縮応力に対抗して空隙部の間隔を保持することは容易となる反面、板ガラスとの摩擦抵抗が大きくなる。そのため、外部からかかる風圧や衝撃等の局所的かつ衝撃的に加わる負荷により、ガラスパネルが湾曲してスペーサと板ガラスとが急激な相対移動を生じようとした場合、板ガラスとスペーサ間の摩擦抵抗により剪断応力が増大し、板ガラスに破断損傷を生じ易いものとなっていた。
そこで、板ガラスに生じる破断損傷を防止するために、図6(イ)(ロ)に示すように、スペーサ本体2Aに硬質材料を使用すると共に、スペーサ2における板ガラス1と接触する接触部2Bに軟質層Nを設け、この軟質層Nの塑性変形によってスペーサ2と板ガラス1との相対移動に伴う剪断応力を吸収する技術が提案されている。
しかし、前記相対移動がゆっくりと全面にわたって生じるときは、前記軟質層Nがその相対移動に追従することでスペーサ2と板ガラス1との間に作用する剪断応力を緩和吸収することが可能であるが(図6(ロ)参照)、局所的かつ衝撃的に加わる外力による急激な相対移動に対しては、前記軟質層Nが追従できないためにスペーサ2と板ガラス1との間に作用する剪断応力を緩和吸収することができず、板ガラス1に破断損傷を生じ易くなるといった問題があった。
そこで、前記急激な相対移動に対する追従性を上げようとした場合、前記軟質層に使用する材料をさらに軟質な材料を使用する必要性を生じるが、そうすると、今度は圧縮強度が低下してしまうため軟質層の圧縮変形量が著しくなり、大気圧等による圧縮応力に対して空隙部の間隔を所定間隔に保持することが困難となる。
また、このとき、前記軟質層の圧縮変形量によっては、ガラス板の外周辺部に破損を生じることがある。これは、両板ガラスの外周部間を外周密閉部で密閉して剛接合してあるのに対し、板ガラスにおける外周部以外の板面箇所が空隙部側に向けた変形を起こすことにより、外周辺部に引張り応力が発生することに起因する。
【0004】
従って、本発明の目的は、上記問題点を解消し、高い圧縮強度を有すると共に、相対移動がゆっくりと全面にわたって生じる場合はもちろん、局所的かつ衝撃的に加わる外力によるスペーサと板ガラスの急激な相対移動により発生する剪断応力をも緩和吸収して、破断損傷の生じ難いガラスパネルを提供するところにある。
【0005】
【課題を解決するための手段】
〔構成〕
請求項1の発明の特徴構成は図1〜4に例示するごとく、一対の板ガラス1A,1B間に多数の間隔保持用のスペーサ2を介在させ、かつ、その両板ガラス1A,1Bの外周部間を外周密閉部4で密閉して両板ガラス1A,1B間に空隙部Vを形成し、前記空隙部Vを減圧状態に保持してあるガラスパネルであって、前記スペーサ2における前記板ガラス1と接触する接触部2Bに、層状の結晶構造を有した無機材料Mにより形成された摩擦低減手段Tを設けてあるところにある。
【0006】
請求項の発明の特徴構成は、前記無機材料が、窒化硼素、グラファイト、二硫化モリブデン、二硫化タングステンのうち少なくとも何れか1種からなる微粒子の集合体により形成されているところにある。
【0007】
請求項の発明の特徴構成は図5に例示するごとく、前記接触部2Bに設ける前記摩擦低減手段Tの厚み寸法hを、3μm以上に設定してあるところにある。
【0008】
尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。
【0009】
〔作用及び効果〕
請求項1の発明により、前記スペーサにおける前記板ガラスと接触する接触部に、層状の結晶構造を有した無機材料により形成された摩擦低減手段を設けてあるから、相対移動によるスペーサと板ガラスとの間に発生し易い剪断応力を低減することができる。
つまり、相対移動に伴うスペーサと板ガラスとの摩擦抵抗を、スペーサの接触部に設けた前記摩擦低減手段によって低減することができるから、ゆっくりと全面にわたって作用するスペーサと板ガラスとの相対移動はもちろん、局所的かつ衝撃的に加わる外力による相対移動によって発生する剪断応力をも低減することが可能となる。
その結果、板ガラスに生じ易かった剪断応力による破断損傷を抑制できるようになった。
【0010】
さらに、前記摩擦低減手段が、層状の結晶構造を有した無機材料により形成されているから、圧縮応力に対抗することができると共に、スペーサとガラスパネルとの相対移動に対して潤滑機能を発揮することができる。
つまり、接触部に圧縮強度の高い無機材料を使用しているため、大気圧等によるスペーサを圧縮する方向に働く圧縮応力に対抗して空隙部の間隔を保持することができると共に、スペーサと板ガラスとの相対移動に対しては、層状の結晶構造が容易に剥離して互いの層状結晶の相対移動を許容する。
その結果、圧縮応力に対向して空隙部の間隔を保持できると共に、潤滑機能を発揮することができるようになった。
【0011】
請求項の発明によれば、請求項の発明による作用効果を叶えることができるのに加えて、前記無機材料が、窒化硼素、グラファイト、二硫化モリブデン、二硫化タングステンのうち少なくとも何れか1種からなる微粒子の集合体により形成されているから、空隙部内部の減圧状態を長期にわたって維持することができる。
つまり、例えば、不安定でガス化し易い有機材料等で摩擦低減手段を形成していた場合、使用中にガス化してしまってせっかく減圧した空隙部内の減圧度を低
下させてしまうといった問題を生じることがあるが、本願の窒化硼素、グラファイト、二硫化モリブデン、二硫化タングステンのうち少なくとも何れか1種からなる微粒子の集合体は、使用中も長期間にわたってガス化することなく安定しているため、空隙部内部の減圧状態に影響を与える虞がない。
その結果、空隙部内の減圧状態を長期にわたって維持できるから、ガラスパネルの防音性及び断熱性能を長期にわたって維持することができるようになった。
【0012】
請求項の発明によれば、請求項1又は2の発明による作用効果を叶えることができるのに加えて、前記接触部に設ける前記摩擦低減手段の厚み寸法を、3μm以上に設定してあるから、前記摩擦低減手段による摩擦低減機能を十分に発揮させることができる。
つまり、摩擦低減手段の厚み寸法が、3μm以上の方が、図7に示すように摩擦低減機能を発揮し易くなる。
その結果、ガラス板に破断損傷を生じ難くできるようになった。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
【0014】
図1は、本発明のガラスパネルPの一実施形態としての真空複層ガラスSFを示すもので、前記真空複層ガラスSFは、一対の板ガラス1(ガラスパネルPの一例)間に多数のスペーサ2を介在させ、かつ、その第1、第2板ガラス1A,1Bの外周部間を外周密閉部4で密閉して第1、第2板ガラス1A,1B間に空隙部Vを形成し、第1、第2板ガラスのうち、一方の第1板ガラス1Aに空隙部Vの気体を吸引するための吸引孔3を設け、吸引孔3から空隙部Vの気体Aを吸引した後、吸引孔3を封止して形成されている。
【0015】
前記一対の板ガラス1のうち第1板ガラス1A、及び、第2板ガラス1Bは、共にフロート板ガラス(厚み寸法2.65mm〜3.2mm)で構成してあり、両板ガラスのうち、第1板ガラス1Aの方が、第2板ガラス1Bよりも面積が若干小さく、第2板ガラス1Bの外周縁を全周に亘って第1板ガラス1Aの外周縁から突出させてあるので、板ガラス1の外周縁部間を低融点ガラス5(外周密閉部4の一例)で封着する際に、その突出部上にペースト状の低融点ガラス5を載置することで、空隙部Vを作業性良く形成できるように構成されている。
【0016】
前記スペーサ2は、図4,5に示すように、スペーサ本体2Aと、板ガラス1と接触する接触部2Bとで構成されている。
前記スペーサ本体2Aは、大気圧に耐えるほどの耐圧縮性をもち、かつ、焼成やベーキング等の高温のプロセスにも耐え、ガラスパネルP製造後、容易にガス化しない材料によって形成されている。
具体的には、金属材料あるいはセラミックス材料が望ましく、鉄、銅、アルミニウム、タングステン、ニッケル、クロム、チタン、あるいはこれらを含む合金、又は単素鋼、クロム鋼、ニッケル鋼、ステンレス鋼、ニッケルクロム鋼、マンガン鋼、クロムマンガン鋼、クロムモリブデン鋼、珪素鋼、真鍮、ハンダ、ニクロム、ジュラルミン、インコネル718等の金属材料が挙げられ、セラミックス材料としては、コランダム、アルミナ、ムライト、マグネシア、イットリア、窒化アルミニウム、窒化珪素等がある。
【0017】
前記スペーサ本体2Aの成形方法であるが、圧延加工等で作製した板状の金属材料から、放電・のこ引き・加圧水・レーザー等の手段による切断、プレス加工による打抜きまたはエッチング等によって所定の寸法に加工するか、あるいは押出し加工などによって作製された棒状の金属材料を、所定の厚みに切断して作製する。
【0018】
前記接触部2Bには、図4に示すように、二硫化モリブデン(無機材料Mの一例)による摩擦低減手段Tが形成されている。
前記二硫化モリブデンは、層状の結晶構造を有しており、容易に剥離して潤滑機能を発揮することができるだけでなく、使用中も長期間にわたってガス化することなく安定しているため、空隙部V内部の減圧状態に影響を与える虞がなく、
空隙部V内の減圧状態を長期にわたって維持することができるから、ガラスパネルPの防音性及び断熱性能を長期にわたって維持することができる。
【0019】
図5に示すように、スペーサ2のサイズは、スペーサ2に働く圧縮力および美観上決めればよいが、直径が0.1mm〜1.0mm程度で、高さが0.15mm〜1.0mm程度の範囲にあるのが良く、かつ、接触部2Bに設ける摩擦低減手段Tにおける夫々の厚み寸法hを、3μm以上に設定するのが好ましい。
また、スペーサ2の形状は、円柱状の他、角柱状、リング状、線状、鎖状等でも良い。そして、円柱形状に形成してあることによって、両板ガラス1A,1Bに対する接当部分に、応力集中を生じ易い角部を造り難く、板ガラス1に対して優しい状態の支持を叶え、破壊し難くすることができる。
各スペーサ2のガラス面上での配列間隔は、板ガラス1面に発生する引張応力、スペーサ2に働く圧縮応力等から決定するが、板面方向に沿った縦横に、10mm〜40mmの間隔が適当である。このとき、美観上等間隔で整列されているのが望ましいが、上記応力が適正な条件内にあれば、ランダムに配列されていても良い。
二枚の板ガラス1A,1B間に形成される空隙部Vの間隔は、0.1mm〜1.0mm程度が好ましい。
【0020】
真空複層ガラスSFの製造方法について、図1〜4を参照しながら説明する。
図2(イ)に示すように、第1板ガラス1Aを上側にして、両板ガラス1A,1B間にスペーサ2を挟み込み、第1板ガラス1Aの外周縁に沿ってペースト状の低融点ガラス5を塗布するとともに、吸引孔3の周面とガラス管9とに亘って低融点ガラス5を塗布し、加熱炉6内で500℃程度に加熱して、低融点ガラス5を溶融させた後、加熱炉6内の温度を室温程度に低下させて、両板ガラス1A,1Bの外周部間を硬化した低融点ガラス5で封着して空隙部Vを形成すると共に、吸引孔3の周面とガラス管9とを硬化した低融点ガラス5で気密に接着固定してあるガラスパネル本体Fを形成する(図2(ロ)参照)。
【0021】
図3に示すように、加熱炉6内にガラスパネル本体Fを第1板ガラス1Aが上側になるように水平に支持し、その第1板ガラス1Aの板面に吸引封止装置7の吸引カップ8を載置してガラス管9を覆う。
前記吸引封止装置7は、吸引口8aを形成している有底円筒状の吸引カップ8の横側部に、空隙部V内の気体を吸引排出するフレキシブルパイプ10を連通接続し、吸引カップ8の先端には第1板ガラス1Aの板面との間を密閉する弾性Oリング11を備え、吸引カップ8の底部内側にはガラス管9の先端部を加熱溶融させる電気ヒーター12を設けて構成されている。
【0022】
そして、吸引カップ8の先端をOリング11を介して第1板ガラス1Aの板面に密着させ、例えば200℃程度に加熱して空隙部V内を活性化しながら、フレキシブルパイプ10を介して空隙部V内の気体を吸引排出するベーキングを行い、空隙部Vを約1.33Pa(1.0×10-2Torr)以下に減圧する。
次に、電気ヒーター12により、ガラス管9の先端部を局部加熱(約1000℃)することにより溶融させて、図1に示すように、吸引孔3を封止し、この状態で冷却した後、溶融したガラス管9を覆う保護用キャップ15を板ガラスに接着する。
【0023】
上記のようにして製造した真空複層ガラスSFだと、空隙部Vの減圧に基づいて両板ガラス1A,1Bの外表面からかかる大気圧によるスペーサ2を圧縮する方向に働く圧縮応力が作用したとしても、耐圧縮性をもつスペーサ本体2Aと、圧縮強度の高い無機材料Mを使用している接触部2Bとの協働で前記圧縮応力に対抗して空隙部Vの間隔を保持することができる。
また、ゆっくりと全面にわたって作用するスペーサ2と板ガラス1との相対移動はもちろん、図4(イ)(ロ)に示すように、局所的かつ衝撃的に加わる外力による相対移動による剪断応力が発生したとしても、接触部2Bに設けた二硫化モリブデンの層状の結晶構造が剥離して互いの層状結晶の相対移動を許容して、摩擦抵抗を低減する潤滑機能を発揮することができるから、剪断応力を低減することができ、板ガラス1の破断損傷を抑制することができるようになった。
【0024】
〔別実施形態〕
以下に他の実施形態を説明する。
〈1〉先の実施形態で摩擦低減手段が二硫化モリブデンにより形成された例について説明したが、摩擦低減手段は二硫化モリブデンに限らず、窒化硼素、グラファイト、二硫化タングステンのうち少なくとも何れか1種からなる微粒子の集合体により形成されたものであっても良い。
窒化硼素、グラファイト、二硫化タングステンのうち少なくとも何れか1種からなる微粒子の集合体は、層状の結晶構造を有しており、容易に剥離して潤滑機能を発揮することができるだけでなく、使用中も長期間にわたってガス化することなく安定しているため、空隙部内部の減圧状態に影響を与える虞がなく、空隙部内の減圧状態を長期にわたって維持することができる。
【0025】
具体的に前記二硫化モリブデン、窒化硼素、グラファイト、二硫化タングステンのうち少なくとも何れか1種からなる微粒子の集合体をスペーサと板ガラス間に設けるには、上記材料を微粒子の状態(サイズは1μm〜10μm程度)にした後、しかるべき溶媒に分散し、スペーサ、あるいはガラス板の表面に適当量塗布する。塗布方法はスプレー法、刷毛塗り法、ロールコーター法、ディッピング法、グラビアコーター法、ナイフエッジコーター法、スクリーン印刷法等一般的な方法が適応可能である。塗布後に溶媒残滓がガラスパネルの真空安定性に影響を及ぼさないよう十分に乾燥・焼成を行う必要がある。
【0026】
〈2〉摩擦低減手段は、上記実施形態で説明した無機材料に限らず、使用中長期間に亘って材料が安定であり、ガス化して空隙部内部の真空状態に影響を与える虞がなければ、有機材料で同様の機能が発揮できる材料、例えばフッ化エチレン樹脂等であっても良い。
また、有機材料と無機材料を接合させたものを摩擦低減手段として使用する構成のものであっても良い。
【0027】
〈3〉先の実施形態で摩擦低減手段を、スペーサが板ガラスと接触する両面に設けた例について説明したが、特に両面に設ける必要はなく、どちらか一方に設けたものであっても良い。
【0028】
〈4〉本発明のガラスパネルは、空隙部を減圧状態に保持して多種にわたる用途に使用することが可能で、例えば、建築用・乗物用(自動車の窓ガラス、鉄道車両の窓ガラス、船舶の窓ガラス)・機器要素用(プラズマディスプレイの表面ガラスや、冷蔵庫の開閉扉や壁部、保温装置の開閉扉や壁部)等に用いることが可能である。
【0029】
〈5〉本発明のガラスパネルに使用する板ガラスは、先の実施形態で説明したフロートガラスに限るものではなく、その種別は任意に選定することが可能であり、板ガラス表面に光学的、熱的特性向上等の目的で酸化物被膜、金属被膜等が形成されていても構わない。例えば、型板ガラス、すりガラス(表面処理により光りを拡散させる機能を付与したガラス)、網入りガラス又は強化ガラスや熱線吸収、紫外線吸収、熱線反射、低放射等の機能を付与した板ガラスや、それらとの組み合わせであってもよい。低放射率ガラスの具体例として、酸化スズを主成分とする被膜を板ガラス成形ラインの途中で化学蒸着法(CVD法)により形成した板ガラスがある。あるいは別個に、真空容器中でスパッタ法等により、銀層を中心とし、これを誘電体層で上下に挟んだ構造を基本とする膜を形成したガラスも考えられる。
【0030】
〈6〉ガラスの組成については、先の実施形態に限定されるものではなく、ソーダ珪酸ガラス(ソーダ石灰シリカガラス)や、ホウ珪酸ガラスや、アルミノ珪酸ガラス(アミノシリケートガラス)や、各種結晶化ガラス等、いずれのものでも適用可能である。また、板ガラスの製法についても、フロート法の他、ロールアウト法、ダウンドロー法、プレス法等、特に限定されるものではない。
【0031】
〈7〉本発明のガラスパネルに使用する板ガラスは、一方の板ガラスと他方の板
ガラスとが、長さや巾寸法が異なるものに限定されるものではなく、同寸法に形成してあるものを使用するものであってもよい。そして、両板ガラスの重ね方は、端縁部どうしが揃う状態に重ね合わせてあってもよい。
【0032】
〈8〉本発明のガラスパネルは、板ガラスの外周部間を封止用材料としてのインジウム、鉛、錫または亜鉛などの主成分とする金属はんだで封着してあってもよい。
【0033】
【実施例】
300×300mm角と290×290mm角の大きさに切断形成した一対の3mm厚の板ガラス間に、直径0.5mm、高さ0.2mmの円柱形状のインコネル製のスペーサを、20mm間隔で格子状に配置して空隙部を形成し、その両板ガラスの外周縁部を低融点ガラスで密閉した後、前記空隙部を真空に減圧して減圧状態を保持したガラスパネルにおいて、二硫化モリブデンの微粒子をイソプロピルアルコールに懸濁させた液を前記スペーサの両面に刷毛塗りによって塗布する際に、前記液濃度および刷毛塗り回数を変え、250℃の処理温度で1時間焼成して層厚の異なる摩擦低減手段を形成した複数の試験体と、前記スペーサに摩擦低減手段を設けない比較試験体に対し、1.04kgの鋼球を前記各試験体の上方から落下させて衝撃時の強度を調べた。具体的には鋼球の落球高さを次第に上昇させ、ガラスが破壊した時点での落球の高さを求めた実験結果を図7に示してある。(図7(イ)は各試験体の実験データであり、図7 (ロ) はその実験データをグラフで示したものである。)
【0034】
図7の結果から明らかなように、摩擦低減手段を設けた試験体の破壊落球高さは、摩擦低減手段を設けない比較試験体に比べて著しく高く、強度が高いことがわかった。また、摩擦低減手段を設けた試験体の中でも、摩擦低減手段の厚み寸法が3μmの時点で著しく強度が高くなっていることからも明らかなように、接触部に設ける摩擦低減手段の厚み寸法を、3μm以上に設定してあるもののほうが高強度になることがわかった。
【図面の簡単な説明】
【図1】ガラスパネルを示す一部切り欠き斜視図
【図2】ガラスパネルの形成方法を示す説明図
【図3】空隙部の減圧方法を示す説明図
【図4】スペーサの作用説明図
【図5】スペーサを示す拡大断面図
【図6】比較例におけるスペーサの作用説明図
【図7】実験結果を示す表及びグラフ図
【符号の説明】
1A 第1板ガラス
1B 第2板ガラス
2 スペーサ
2B 接触部
4 外周密閉部
V 空隙部
T 摩擦低減手段
M 無機材料
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a plurality of spacing spacers are interposed between a pair of plate glasses, and the gap between the outer peripheral portions of the two plate glasses is sealed with an outer peripheral sealing portion to form a gap portion between the two plate glasses. It is related with the glass panel currently hold | maintained in the pressure reduction state.
[0002]
[Prior art]
Atmospheric pressure acts from the outer surface of both glass plates based on the reduced pressure of the gap, but in order to counter the compressive stress due to the atmospheric pressure, this type of glass panel has conventionally been a hard material with high compressive strength. The spacer which consists of was used as a space | gap part formation material.
[0003]
[Problems to be solved by the invention]
According to the conventional glass panel described above, since the hard material having high compressive strength is used for the spacer, the space between the gaps is maintained against the compressive stress acting in the direction of compressing the spacer due to atmospheric pressure or the like. Although it becomes easy to do, the frictional resistance with plate glass becomes large. Therefore, when the glass panel is bent due to a load applied locally and shockingly such as wind pressure or impact applied from the outside and the spacer and the glass sheet try to cause a sudden relative movement, the frictional resistance between the glass sheet and the spacer causes The shear stress was increased, and breakage damage was likely to occur on the plate glass.
Therefore, in order to prevent breakage damage that occurs in the plate glass, a hard material is used for the spacer main body 2A and the contact portion 2B of the spacer 2 that contacts the plate glass 1 is soft as shown in FIGS. There has been proposed a technique in which a layer N is provided and shear stress associated with relative movement between the spacer 2 and the plate glass 1 is absorbed by plastic deformation of the soft layer N.
However, when the relative movement occurs slowly over the entire surface, the soft layer N can relax and absorb the shear stress acting between the spacer 2 and the glass sheet 1 by following the relative movement. (Refer to FIG. 6 (b)), since the soft layer N cannot follow a sudden relative movement due to an external force applied locally and shockfully, a shear stress acting between the spacer 2 and the glass sheet 1 is applied. There was a problem that relaxation and absorption could not be performed and breakage damage was likely to occur in the glass sheet 1.
Therefore, when trying to increase the followability to the abrupt relative movement, there is a need to use a softer material for the soft layer, but this will reduce the compressive strength this time. The amount of compressive deformation of the soft layer becomes significant, and it becomes difficult to keep the gaps at a predetermined interval against the compressive stress caused by atmospheric pressure or the like.
At this time, depending on the amount of compressive deformation of the soft layer, the outer peripheral portion of the glass plate may be damaged. This is because the outer peripheral portion of both glass plates is sealed with an outer peripheral sealing portion and rigidly joined, but the plate surface portion other than the outer peripheral portion in the plate glass causes deformation toward the gap portion side, thereby causing the outer periphery This is because a tensile stress is generated in the part.
[0004]
Accordingly, an object of the present invention is to solve the above-mentioned problems, to have a high compressive strength, and not only to cause a relative movement slowly across the entire surface, but also to abrupt relative between the spacer and the plate glass due to external force applied locally and impactively. The present invention is to provide a glass panel that relaxes and absorbs shear stress generated by movement and hardly breaks.
[0005]
[Means for Solving the Problems]
〔Constitution〕
The characteristic configuration of the invention of claim 1 is, as illustrated in FIGS. 1 to 4, a large number of spacing spacers 2 are interposed between a pair of plate glasses 1 </ b> A and 1 </ b> B, and between the outer peripheral portions of both plate glasses 1 </ b> A and 1 </ b> B. Is sealed with an outer peripheral sealing portion 4 to form a gap portion V between the two glass plates 1A and 1B, and the gap portion V is kept in a reduced pressure state, and is in contact with the plate glass 1 in the spacer 2 The contact portion 2B is provided with friction reducing means T formed of an inorganic material M having a layered crystal structure .
[0006]
The feature of the invention of claim 2 is that the inorganic material M is formed of an aggregate of fine particles made of at least one of boron nitride, graphite, molybdenum disulfide, and tungsten disulfide.
[0007]
The characteristic configuration of the invention of claim 3 is that, as illustrated in FIG. 5, the thickness h of the friction reducing means T provided in the contact portion 2B is set to 3 μm or more.
[0008]
In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry.
[0009]
[Action and effect]
According to the first aspect of the present invention, friction reducing means formed of an inorganic material having a layered crystal structure is provided at the contact portion of the spacer that contacts the plate glass. It is possible to reduce the shear stress that easily occurs.
That is, since the frictional resistance between the spacer and the plate glass due to the relative movement can be reduced by the friction reducing means provided in the contact portion of the spacer, of course, the relative movement between the spacer and the plate glass acting slowly over the entire surface, It is also possible to reduce the shear stress generated by the relative movement caused by the external force applied locally and impactively.
As a result, it became possible to suppress breakage damage due to shear stress that was likely to occur in plate glass.
[0010]
Furthermore, since the friction reducing means is formed of an inorganic material having a layered crystal structure, it can resist compressive stress and exert a lubricating function against relative movement between the spacer and the glass panel. be able to.
In other words, since an inorganic material having a high compressive strength is used for the contact portion, the gap portion can be maintained against the compressive stress acting in the direction of compressing the spacer due to atmospheric pressure or the like, and the spacer and the plate glass With respect to relative movement, the layered crystal structure easily peels to allow relative movement of the layered crystals.
As a result, the space between the gaps can be maintained opposite to the compressive stress, and a lubricating function can be exhibited.
[0011]
According to the second aspect of the present invention, in addition to achieving the function and effect of the first aspect of the invention, the inorganic material is at least one of boron nitride, graphite, molybdenum disulfide, and tungsten disulfide. Since it is formed by an aggregate of fine particles composed of seeds, the reduced pressure state inside the void can be maintained for a long period of time.
In other words, for example, when the friction reducing means is formed of an unstable organic material that is easily gasified, there is a problem that the degree of decompression in the void portion that has been gasified during use and reduced pressure is reduced. However, since the aggregate of fine particles composed of at least one of boron nitride, graphite, molybdenum disulfide, and tungsten disulfide of the present application is stable without being gasified over a long period of time during use, There is no risk of affecting the decompressed state inside the gap.
As a result, the reduced pressure state in the gap can be maintained over a long period of time, so that the soundproofing and heat insulating performance of the glass panel can be maintained over a long period of time.
[0012]
According to the invention of claim 3 , in addition to being able to achieve the function and effect of the invention of claim 1 or 2 , the thickness dimension of the friction reducing means provided at the contact portion is set to 3 μm or more. Thus, the friction reducing function by the friction reducing means can be sufficiently exhibited.
That is, when the thickness dimension of the friction reducing means is 3 μm or more, the friction reducing function is easily exhibited as shown in FIG.
As a result, it became difficult to cause breakage damage to the glass plate.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0014]
FIG. 1 shows a vacuum multilayer glass SF as an embodiment of the glass panel P of the present invention. The vacuum multilayer glass SF has a number of spacers between a pair of plate glasses 1 (an example of a glass panel P). 2 and the space between the outer peripheral portions of the first and second glass plates 1A and 1B is sealed with the outer peripheral sealing portion 4 to form a gap V between the first and second glass plates 1A and 1B. Among the second glass plates, one of the first glass plates 1A is provided with a suction hole 3 for sucking the gas in the gap V, and after sucking the gas A in the gap V from the suction hole 3, the suction hole 3 is sealed. It is formed to stop.
[0015]
Of the pair of plate glasses 1, the first plate glass 1 </ b> A and the second plate glass 1 </ b> B are both made of float plate glass (thickness dimension: 2.65 mm to 3.2 mm). However, the area is slightly smaller than that of the second glass plate 1B, and the outer peripheral edge of the second glass plate 1B is projected from the outer peripheral edge of the first glass plate 1A over the entire circumference. When sealing with the melting point glass 5 (an example of the outer peripheral sealing portion 4), the gap portion V can be formed with good workability by placing the paste-like low melting point glass 5 on the protruding portion. ing.
[0016]
As shown in FIGS. 4 and 5, the spacer 2 is composed of a spacer body 2 </ b> A and a contact portion 2 </ b> B that contacts the plate glass 1.
The spacer body 2A is formed of a material that has compression resistance enough to withstand atmospheric pressure, withstands high-temperature processes such as baking and baking, and does not easily gasify after manufacturing the glass panel P.
Specifically, a metal material or a ceramic material is desirable, and iron, copper, aluminum, tungsten, nickel, chromium, titanium, or an alloy containing these, or elementary steel, chromium steel, nickel steel, stainless steel, nickel chromium steel , Manganese steel, chromium manganese steel, chromium molybdenum steel, silicon steel, brass, solder, nichrome, duralumin, inconel 718, etc., and ceramic materials include corundum, alumina, mullite, magnesia, yttria, aluminum nitride And silicon nitride.
[0017]
The spacer body 2A is formed by a method of forming a predetermined dimension from a plate-like metal material produced by rolling or the like, by means of discharge, sawing, pressurized water, laser, or the like, by punching or by etching. Or a rod-shaped metal material produced by extrusion or the like is cut into a predetermined thickness.
[0018]
As shown in FIG. 4, friction reducing means T made of molybdenum disulfide (an example of the inorganic material M) is formed in the contact portion 2B.
Molybdenum disulfide has a layered crystal structure and not only can be easily peeled and exert a lubricating function, but also is stable without being gasified over a long period of time during use. There is no risk of affecting the decompressed state inside the part V,
Since the pressure-reduced state in the space V can be maintained over a long period, the soundproofing and heat insulating performance of the glass panel P can be maintained over a long period.
[0019]
As shown in FIG. 5, the size of the spacer 2 may be determined in view of the compressive force acting on the spacer 2 and aesthetics, but the diameter is about 0.1 mm to 1.0 mm and the height is about 0.15 mm to 1.0 mm. It is preferable that the thickness dimension h of the friction reducing means T provided in the contact portion 2B is set to 3 μm or more.
In addition to the cylindrical shape, the spacer 2 may have a prismatic shape, a ring shape, a linear shape, a chain shape, or the like. And it is difficult to make the corner | angular part which is easy to produce stress concentration in the contact part with respect to both plate glass 1A, 1B by forming in a column shape, grants the support of a gentle state with respect to the plate glass 1, and makes it difficult to destroy. be able to.
The arrangement interval on the glass surface of each spacer 2 is determined from the tensile stress generated on the surface of the plate glass 1, the compressive stress acting on the spacer 2, etc., but the interval of 10 mm to 40 mm is appropriate in the vertical and horizontal directions along the plate surface direction. It is. At this time, it is desirable that they are arranged at equal intervals in terms of aesthetics, but they may be arranged at random if the stress is within appropriate conditions.
The distance between the gaps V formed between the two glass sheets 1A and 1B is preferably about 0.1 mm to 1.0 mm.
[0020]
The manufacturing method of the vacuum multilayer glass SF will be described with reference to FIGS.
As shown in FIG. 2 (a), with the first glass plate 1A facing upward, the spacer 2 is sandwiched between the two glass plates 1A and 1B, and the paste-like low-melting glass 5 is applied along the outer peripheral edge of the first glass plate 1A. In addition, the low melting point glass 5 is applied over the peripheral surface of the suction hole 3 and the glass tube 9 and heated to about 500 ° C. in the heating furnace 6 to melt the low melting point glass 5. The temperature inside 6 is lowered to about room temperature, and the space between the outer peripheral portions of both glass plates 1A and 1B is sealed with a cured low melting point glass 5 to form a void V, and the peripheral surface of the suction hole 3 and the glass tube A glass panel main body F is formed which is hermetically bonded and fixed with the low melting point glass 5 cured with 9 (see FIG. 2B).
[0021]
As shown in FIG. 3, the glass panel main body F is horizontally supported in the heating furnace 6 so that the first glass plate 1A is on the upper side, and the suction cup 8 of the suction sealing device 7 is placed on the plate surface of the first glass plate 1A. To cover the glass tube 9.
The suction sealing device 7 communicates and connects a flexible pipe 10 that sucks and discharges gas in the gap V to the lateral side of a bottomed cylindrical suction cup 8 that forms a suction port 8a. 8 is provided with an elastic O-ring 11 that seals between the plate surface of the first plate glass 1A, and an electric heater 12 that heats and melts the tip of the glass tube 9 is provided inside the bottom of the suction cup 8. Has been.
[0022]
And the front-end | tip of the suction cup 8 is closely_contact | adhered to the plate | board surface of the 1st glass plate 1A through the O-ring 11, and it heats to about 200 degreeC, for example, activates the inside of the space | gap part V, and opens a space | gap part via the flexible pipe 10. Baking is performed to suck and discharge the gas in V, and the gap V is depressurized to about 1.33 Pa (1.0 × 10 −2 Torr) or less.
Next, after melting the tip of the glass tube 9 by locally heating (about 1000 ° C.) with the electric heater 12, the suction hole 3 is sealed and cooled in this state as shown in FIG. Then, a protective cap 15 covering the molten glass tube 9 is adhered to the plate glass.
[0023]
In the case of the vacuum multi-layer glass SF manufactured as described above, the compressive stress acting in the direction of compressing the spacer 2 due to the atmospheric pressure applied from the outer surfaces of the two glass plates 1A and 1B based on the reduced pressure of the gap portion V was applied. However, the gap V can be maintained against the compressive stress by the cooperation of the spacer body 2A having compression resistance and the contact portion 2B using the inorganic material M having high compressive strength. .
In addition to the relative movement of the spacer 2 and the glass sheet 1 acting slowly over the entire surface, as shown in FIGS. 4 (a) and (b), shear stress is generated due to the relative movement due to the external force applied locally and impactively. However, since the layered crystal structure of molybdenum disulfide provided in the contact portion 2B is peeled off, allowing the relative movement of the layered crystals of each other and exhibiting a lubricating function of reducing frictional resistance, shear stress Can be reduced, and breakage damage of the glass sheet 1 can be suppressed.
[0024]
[Another embodiment]
Other embodiments will be described below.
<1> The example in which the friction reducing means is formed of molybdenum disulfide in the previous embodiment has been described. However, the friction reducing means is not limited to molybdenum disulfide, and at least one of boron nitride, graphite, and tungsten disulfide. It may be formed by an aggregate of fine particles composed of seeds.
Aggregates of fine particles composed of at least one of boron nitride, graphite, and tungsten disulfide have a layered crystal structure and can be easily peeled off to exhibit a lubricating function. Since the inside is stable without being gasified for a long period of time, there is no possibility of affecting the reduced pressure state inside the gap, and the reduced pressure inside the gap can be maintained for a long time.
[0025]
Specifically, in order to provide an aggregate of fine particles made of at least one of molybdenum disulfide, boron nitride, graphite, and tungsten disulfide between a spacer and a plate glass, the material is in a fine particle state (size: 1 μm to After that, it is dispersed in an appropriate solvent and applied to the surface of the spacer or glass plate. As a coating method, general methods such as a spray method, a brush coating method, a roll coater method, a dipping method, a gravure coater method, a knife edge coater method, and a screen printing method can be applied. It is necessary to sufficiently dry and bake so that the solvent residue does not affect the vacuum stability of the glass panel after coating.
[0026]
<2> The friction reducing means is not limited to the inorganic material described in the above embodiment, and the material is stable for a long time during use, and there is no risk of gasifying and affecting the vacuum state inside the gap. A material capable of exhibiting the same function as an organic material, such as a fluorinated ethylene resin, may be used.
Moreover, the thing of the structure which uses what joined the organic material and the inorganic material as a friction reduction means may be used.
[0027]
<3> In the previous embodiment, the example in which the friction reducing means is provided on both surfaces where the spacer contacts the plate glass has been described. However, it is not particularly necessary to provide the friction reducing means on both surfaces, and the friction reducing means may be provided on either one.
[0028]
<4> The glass panel of the present invention can be used for a wide variety of applications while maintaining the gap in a reduced pressure state. For example, for architectural and vehicle use (window glass for automobiles, window glass for railway vehicles, ships) Window glass) / device elements (plasma display surface glass, doors and walls of refrigerators, doors and walls of heat insulation devices), and the like.
[0029]
<5> The plate glass used for the glass panel of the present invention is not limited to the float glass described in the previous embodiment, and the type can be arbitrarily selected, and the surface of the plate glass is optically and thermally. An oxide film, a metal film, or the like may be formed for the purpose of improving characteristics. For example, template glass, ground glass (glass that has been given the function of diffusing light by surface treatment), meshed glass or tempered glass, plate glass that has been provided with functions such as heat ray absorption, ultraviolet absorption, heat ray reflection, and low radiation, and A combination of these may be used. As a specific example of the low emissivity glass, there is a plate glass in which a film mainly composed of tin oxide is formed by a chemical vapor deposition method (CVD method) in the middle of a plate glass forming line. Alternatively, a glass in which a film based on a structure in which a silver layer is centered and sandwiched vertically between dielectric layers by sputtering or the like in a vacuum vessel is also conceivable.
[0030]
<6> The composition of the glass is not limited to the previous embodiment, soda silicate glass (soda lime silica glass), borosilicate glass, aluminosilicate glass (aminosilicate glass), and various crystallizations. Any material such as glass is applicable. Further, the production method of the plate glass is not particularly limited, such as a roll-out method, a downdraw method, a press method, etc. in addition to the float method.
[0031]
<7> The plate glass used for the glass panel of the present invention is not limited to one in which one plate glass and the other plate glass have different lengths or width dimensions, but uses ones formed in the same dimensions. It may be a thing. And how to laminate | stack both plate glass may be piled up in the state which edge parts align.
[0032]
<8> The glass panel of the present invention may be sealed between the outer peripheral portions of the plate glass with a metal solder having a main component such as indium, lead, tin or zinc as a sealing material.
[0033]
【Example】
A cylindrical Inconel spacer with a diameter of 0.5 mm and a height of 0.2 mm is arranged in a lattice pattern at intervals of 20 mm between a pair of 3 mm thick plate glasses cut and formed to a size of 300 × 300 mm square and 290 × 290 mm square. In a glass panel in which the voids are formed and the outer peripheral edges of the two glass plates are sealed with a low-melting glass, and the voids are vacuumed to maintain a reduced pressure state, the molybdenum disulfide fine particles are dispersed. When the liquid suspended in isopropyl alcohol is applied to both surfaces of the spacer by brush coating, the liquid concentration and the number of brush coatings are changed, and the friction reducing means having different layer thicknesses is baked at a processing temperature of 250 ° C. for 1 hour. A 1.04 kg steel ball is dropped from above each test body against a plurality of test bodies formed with a comparative test body provided with no friction reducing means on the spacer. The strength at the time of shooting was examined. Specifically, FIG. 7 shows the experimental results of determining the height of the falling ball when the falling height of the steel ball is gradually increased and the glass breaks. (FIG. 7 (a) shows the experimental data of each specimen, and FIG. 7 (b) shows the experimental data in a graph.)
[0034]
As is apparent from the results of FIG. 7, it was found that the breaking ball height of the test body provided with the friction reducing means was significantly higher than that of the comparative test body not provided with the friction reducing means, and the strength was high. Further, among the test specimens provided with the friction reducing means, the thickness dimension of the friction reducing means provided at the contact portion is clearly shown from the fact that the strength is remarkably increased when the thickness dimension of the friction reducing means is 3 μm. It was found that the one set to 3 μm or more has higher strength.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a glass panel. FIG. 2 is an explanatory view showing a method for forming a glass panel. FIG. 3 is an explanatory view showing a method for depressurizing a gap. FIG. 5 is an enlarged cross-sectional view showing a spacer. FIG. 6 is a diagram for explaining the operation of a spacer in a comparative example. FIG. 7 is a table and graph showing experimental results.
DESCRIPTION OF SYMBOLS 1A 1st glass plate 1B 2nd glass plate 2 Spacer 2B Contact part 4 Outer periphery sealing part V Cavity part T Friction reduction means M Inorganic material

Claims (3)

一対の板ガラス間に多数の間隔保持用のスペーサを介在させ、かつ、その両板ガラスの外周部間を外周密閉部で密閉して両板ガラス間に空隙部を形成し、前記空隙部を減圧状態に保持してあるガラスパネルであって、
前記スペーサにおける前記板ガラスと接触する接触部に、層状の結晶構造を有した無機材料により形成された摩擦低減手段を設けてあるガラスパネル。
A plurality of spacing spacers are interposed between a pair of plate glasses, and the outer peripheral portions of the two glass plates are sealed with an outer peripheral sealing portion to form a void portion between the two glass plates, and the void portion is in a reduced pressure state. A held glass panel,
The glass panel which provided the friction reduction means formed with the inorganic material which has a layered crystal structure in the contact part which contacts the said plate glass in the said spacer.
前記無機材料が、窒化硼素、グラファイト、二硫化モリブデン、二硫化タングステンのうち少なくとも何れか1種からなる微粒子の集合体により形成されている請求項に記載のガラスパネル。The glass panel according to claim 1 , wherein the inorganic material is formed of an aggregate of fine particles made of at least one of boron nitride, graphite, molybdenum disulfide, and tungsten disulfide. 前記接触部に設ける前記摩擦低減手段の厚み寸法を、3μm以上に設定してある請求項1又は2に記載のガラスパネル。The glass panel according to claim 1 or 2 , wherein a thickness dimension of the friction reducing means provided in the contact portion is set to 3 µm or more.
JP2001019703A 2001-01-29 2001-01-29 Glass panel Expired - Lifetime JP4567894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001019703A JP4567894B2 (en) 2001-01-29 2001-01-29 Glass panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001019703A JP4567894B2 (en) 2001-01-29 2001-01-29 Glass panel

Publications (2)

Publication Number Publication Date
JP2002226238A JP2002226238A (en) 2002-08-14
JP4567894B2 true JP4567894B2 (en) 2010-10-20

Family

ID=18885540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019703A Expired - Lifetime JP4567894B2 (en) 2001-01-29 2001-01-29 Glass panel

Country Status (1)

Country Link
JP (1) JP4567894B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679598B2 (en) * 2010-10-08 2014-03-25 Guardian Industries Corp. Vacuum insulated glass (VIG) unit including nano-composite pillars, and/or methods of making the same
DE102011102843B4 (en) 2011-05-30 2022-05-25 Grenzebach Maschinenbau Gmbh +Vacuum - Insulating glass with increased stability and method for its production
JP6305042B2 (en) 2013-12-06 2018-04-04 日本板硝子株式会社 Spacing member for glass panel and manufacturing method thereof
WO2016084383A1 (en) * 2014-11-27 2016-06-02 パナソニックIpマネジメント株式会社 Glass panel unit
JP6425180B2 (en) * 2014-11-27 2018-11-21 パナソニックIpマネジメント株式会社 Glass panel unit
WO2018159423A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Glass panel unit, and method for manufacturing glass window and glass panel unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349358A (en) * 1998-06-08 1999-12-21 Nippon Sheet Glass Co Ltd Interval-retaining part for glass panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349358A (en) * 1998-06-08 1999-12-21 Nippon Sheet Glass Co Ltd Interval-retaining part for glass panel

Also Published As

Publication number Publication date
JP2002226238A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
US7244480B2 (en) Glass panel
JP4251609B2 (en) Glass panel
EP1506945B1 (en) Translucent glass panel
JP5733600B2 (en) Device sealing body manufacturing method and element sealing body
JP2003137612A (en) Glass panel and method of manufacturing the same
JPH11315668A (en) Glass panel
JP2003306354A (en) Method for manufacturing glass panel and glass panel manufactured by the method
WO2005077855A1 (en) Method for manufacturing glass panel, and glass panel manufactured by the method
JP4567894B2 (en) Glass panel
US6733850B1 (en) Glass panel and production method therefor
JP2002114540A (en) Glass panel
JP4510296B2 (en) Sealed vacuum double glass window and method of manufacturing the same
JP3312159B2 (en) Glass panel
JP4439907B2 (en) Manufacturing method of glass panel
WO2000041980A1 (en) Glass panel
JP7041163B2 (en) Glass panel
WO2023138044A1 (en) Flexible micro support pillar for vacuum insulating glass and vacuum insulating glass
JP2002241149A (en) Glass panel
JP2000054744A (en) Clearance holding member for glass panel
JP2002187745A (en) Method of manufacturing glass panel
WO2019093322A1 (en) Glass panel and glass window
JP2001335346A (en) Glass panel
CN116981646A (en) Pressure-reducing multi-layer glass panel
JP2000248846A (en) Glass panel
JPH11310436A (en) Glass panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R151 Written notification of patent or utility model registration

Ref document number: 4567894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term