JP4567139B2 - Method for producing alternating copolymer polyester - Google Patents

Method for producing alternating copolymer polyester Download PDF

Info

Publication number
JP4567139B2
JP4567139B2 JP2000100488A JP2000100488A JP4567139B2 JP 4567139 B2 JP4567139 B2 JP 4567139B2 JP 2000100488 A JP2000100488 A JP 2000100488A JP 2000100488 A JP2000100488 A JP 2000100488A JP 4567139 B2 JP4567139 B2 JP 4567139B2
Authority
JP
Japan
Prior art keywords
polyester
represented
ppm
producing
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000100488A
Other languages
Japanese (ja)
Other versions
JP2001288260A (en
Inventor
愼太郎 嶋田
広明 桑原
伊藤  隆
治朗 定延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2000100488A priority Critical patent/JP4567139B2/en
Publication of JP2001288260A publication Critical patent/JP2001288260A/en
Application granted granted Critical
Publication of JP4567139B2 publication Critical patent/JP4567139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、交互共重合ポリエステルの一次構造を維持しつつ極限粘度[η]が0.4〜2.0である高分子量の交互共重合ポリエステルを製造する方法に関するものである。
【0002】
【従来の技術】
PET(ポリエチレンテレフタレート)、PEN(ポリエチレン−2,6−ナフタレート)に代表されるポリエステルは、その機械的、物理的、化学的特性が優れているため衣料用・産業用繊維をはじめとするその他成型物等に広く利用されている。
【0003】
しかしながら、機械特性、耐熱性に優れるPENの成型品は耐衝撃性が低く、デラミ性を有する、また、Tgが70℃のPETは耐熱性が低いという問題がある。
【0004】
これを改良する手法として、従来からPEN、PETなどのポリエステルを溶融重合により共重合する方法が知られている。しかし、一般にこの方法では共重合体はエステル交換反応を伴った重縮合であるので、ポリエステル共重合体の一次構造はランダム化することが知られている。したがって、PET、PEN本来の結晶性、融点を著しく低下させ、その結果、成型体の耐熱性、機械特性が不十分なものとなる。
【0005】
このため、本発明者らは、先に、新規な交互共重合体および溶液重合により該共重合体を製造する方法を提案した(特願2000−90776号)。しかし、溶液重合のみでは交互共重合ポリエステルの一次構造を維持しつつ成型材料として十分な重合度を有する交互共重合体を得ることが困難である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、エステル交換反応によるポリエステル共重合体のランダム共重合化を起こすことなく、交互共重合ポリエステルの一次構造を維持しつつ成型材料として十分な重合度を有する結晶性の交互共重合ポリエステルを製造するに適した方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、上記式(1)で表されるポリエステルのプレポリマーを製造し、これを固相重合せしめることによって、エステル交換反応によるポリエステル共重合体のランダム共重合化を起こすことなく、上記式(1)で表されるポリエステルの一次構造を維持しつつ成型材料として十分な重合度を有するポリエステルを製造可能であることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、
ポリマー繰り返し単位の少なくとも90モル%が、下記式(1)
【0009】
【化3】

Figure 0004567139
【0010】
好ましくは、下記式(2)
【0011】
【化4】
Figure 0004567139
【0012】
で表される単位からなり、かつ、フェノール/1,1,2,2−テトラクロロエタン混合溶媒(重量比6/4)を用いて35℃で測定した極限粘度[η]が0.1〜0.5であるポリエステル(プレポリマー)を結晶化させた後、これを固相重合せしめることにより、極限粘度[η]が0.4〜2.0に高められた交互共重合ポリエステルを得ることを特徴とするポリエステルの製造方法である。
【0013】
そして、上記の方法において、
a)上記式(1)または(2)で表される繰り返し単位から実質的になるポリエステルのプレポリマーを、不活性ガス気流下常圧もしくは1mmHg以下の高真空下にて加熱固相重合することを特徴とする方法、ならびに、
b)固相重合後の上記式(2)で表される繰り返し単位から実質的になる交互共重合ポリエステルの1H−NMR測定(23℃、重水素化クロロホルム/重水素化トリフルオロ酢酸=3/1(v/v)中)において、上記式(1)で表されるポリエステルのメチレンプロトンに由来するシグナルが4.85ppmから4.87ppmの化学シフトに観測され、このシグナルの積分に対する4.8ppm、4.9ppm付近の積分の比がそれぞれ0.1以下であることを特徴とする方法、
も、本発明に包含される。
【0014】
【発明の実施の形態】
本発明方法で用られる比較的低分子量のポリエステル(以下、プレポリマーということがある)は、ポリマー繰り返し単位の少なくとも90モル%、好ましくは95モル%以上、より好ましくは98〜100モル%が、下記式(1)
【0015】
【化5】
Figure 0004567139
【0016】
好ましくは、下記式(2)
【0017】
【化6】
Figure 0004567139
【0018】
で表わされるポリエステルであって、ポリマーシークエンスにおいてエチレン−2,6−ナフタレート単位とエチレンテレフタレート単位とが交互に規則正しく配置している線状の共重合体である。
【0019】
本発明方法で用いられる上記の交互共重合ポリエステルは、テレフタル酸クロライドと2,6−ビス(2'−ヒドロキシエチル)ナフタレートで代表されるヒドロキシアルキル基の炭素数が2〜4の2,6−ビス(2'−ヒドロキアルキル)ナフタレートとを反応させるか、および/または、2,6−ナフタレンジカルボニルクロライドとビス(2−ヒドロキシエチル)テレフタレートで代表されるヒドロキシアルキル基の炭素数が2〜4のビス(2−ヒドロキシアルキル)テレフタレートとを反応させる方法により製造することができる。このような反応は、例えば、N−メチル−2−ピロリドン等の極性有機溶媒中で上記両成分を反応させる溶液重合法により実施することができる。
【0020】
上記ポリエステルのプレポリマーの分子量は、フェノール/1,1,2,2−テトラクロロエタン混合溶媒(重量比6/4)を用いて35℃で測定した極限粘度[η]にして0.1〜0.5であり、好ましくは[η]=0.2〜0.4である。
【0021】
このプレポリマーの極限粘度[η]が0.1より低い場合は、後述する結晶化処理を行っても固相重合に供し得る結晶化度のポリマーが得られず、また、極限粘度が[η]が0.5を超えるものは、溶液重合では良好な生産性で製造するのが難しい。
【0022】
本発明方法では、上述のようにして得られたプレポリマーを平均粒径5mm以下に粉砕し、これを例えば120℃、真空下にて一晩乾燥後、不活性ガス気流下常圧または1mmHg以下の高真空状態でポリマーの結晶化温度(Tc)以上かつ融点(Tm)以下の温度にて0.5〜1.0時間かけて加熱することにより結晶化して固相重合用プレポリマーとする。プレポリマーの結晶化手段としては上記の加熱結晶化が好ましいが、必要に応じ、溶媒で処理する方法も採用することができる。
【0023】
本発明方法では、この結晶化プレポリマーを固相重合槽に供給し、該固相重合槽内で、不活性ガス気流下常圧または1mmHg以下の高真空状態でポリマーのガラス転移温度(Tg)以上でかつ融点(Tm)より5〜40℃低い温度、好適には150〜200℃に加熱して、固相重合せしめることによりポリマーの重合度を高め、最終的には極限粘度[η]が0.4〜2.0、好ましくは0.5〜1.8の高分子量交互共重合ポリエステルとする。この固相重合においては連続的または段階的に温度を上昇させながら加熱するのが好ましい。
【0024】
固相重合後の上記式(2)で表される繰り返し単位らなる交互共重合ポリエステルの一次構造は、23℃、重水素化クロロホルム/重水素化トリフルオロ酢酸=3/1(v/v)中での1H−NMR測定により明らかにすることができる。例えば、J.Poly.Sci(Part A),34,2841(1996)には、PETとPENのランダム共重合及びブレンドの1H−NMR測定による知見が示されており、PETとPENのランダム共重合ではメチレンプロトンに由来するシグナルが3種存在し、それぞれ低磁場側より、2つのテレフタル酸残基とエステル結合したエチレン、一方がテレフタル酸で他方がナフタレンジカルボン酸残基とエステル結合したエチレン、2つのナフタレンジカルボン酸残基とエステル結合したエチレンと帰属されることが報告されている。本発明方法により製造される交互共重合ポリエステルでは、一方がテレフタル酸残基で他方がナフタレンジカルボン酸残基とエステル結合したエチレンのシグナルが主に観測され、固相重合前後においてもこの主なシグナルとランダム共重合に由来する他の2種のシグナルとの面積比が0.1以下、好ましくは0.05以下、より好ましくは0.03以下であり、これによって、上記手法を用いた固相重合により交互共重合ポリエステルの一次構造を維持しつつ上記式(1)で表されるポリエステルを高重合度化できる。
【0025】
【発明の効果】
以上のような本発明の方法により、エステル交換反応によるランダム共重合化を抑制し、かつ、ポリエステルの一次構造を維持しつつ該ポリエステルのプレポリマーより高重合度の交互共重合ポリエステルを安定的に製造することが可能となる。
【0026】
そして、本発明方法により得られる交互共重合ポリエステルは、PETとPENの利点を併せ持ち、結晶性でかつTm200℃以上、Tg90℃以上の優れた耐熱性を有する素材であり、溶融成型により、機械的性質の良好な繊維・フィルム・成型品などとすることができ、特にボトル用として好適である。そして、これらの成型品においてはPENの成型品に見られるようなデラミなどの問題は発生しない。
【0027】
また、このポリエステルは、安定剤、着色剤、紫外線吸収剤、離型剤などの各種添加剤、ガラス繊維などの強化材、さらには無機粒子、有機粒子などの充填材などを添加し樹脂組成物として使用することもできる。
【0028】
また、この交互共重合ポリエステルは、安定剤、着色剤、紫外線吸収剤、離型剤、難燃剤などの各種添加剤、ガラス繊維や炭素繊維などの強化材、さらには無機微粒子、有機微粒子、他の熱可塑性重合体などの充填材などを添加して樹脂組成物としても有効に使用することができる。
【0029】
【実施例】
以下、実施例をあげて本発明を説明するが、実施例は説明のためのものであって、本発明はこれに限定されるものではない。なお、例中「部」は特にことわらない限り「重量部」を意味するものとする。
【0030】
なお、例中に記載した各種の評価項目は次のようにして求めた。
(1)極限粘度[η]の測定
極限粘度[η]はフェノール/1,1,2,2−テトラクロロエタン混合溶液(重量比6/4)中、35℃にて測定した。
(2)融点、ガラス転移温度の測定
ガラス転移温度(Tg)、結晶化温度(Tc)および融点(Tm)の測定は、セイコーDSC220示差走査熱量計を用い、窒素ガス気流下、10℃/minの速度で昇温して測定を行った。
(3)1H−NMR測定
1H−NMR測定は日本電子JNR−EX270を用い、重水素化クロロホルム/重水素化トリフルオロ酢酸=3/1(v/v)混合溶媒中23℃にて測定を行った。
【0031】
[参考例1]
室温、窒素気流下にてビス(2−ヒドロキシエチル)テレフタレート5.01部を乾燥ピリジン3.4mlと乾燥N−メチル−2−ピロリドン50mlとの混合物に溶解し、これに2,6−ナフタレンジカルボニルクロライド4.99部の乾燥N−メチル−2−ピロリドン60mlに溶解した溶液を滴下し、室温で0.5時間攪拌した。40℃で0.5時間、80℃で1.5時間、100℃で1.5時間加熱攪拌したのちに反応溶液を室温まで冷却し、これを水3Lに注いで析出した白色固体を濾別した。これを水500ml、アセトン300mlで洗浄したのちに120℃で真空乾燥してポリマー8.0部(収率94%)を得た。
このポリマーは[η]=0.21、Tg=104℃、Tc=150℃、Tm=221℃であり、X線回折および1H−NMR測定により上記式(2)の繰り返し単位からなるポリエステルであることを確認した。
った。
【0032】
[参考例2]
室温、窒素気流下にて2,6−ビス(2'−ヒドロキシエチル)ナフタレート35.98部を乾燥ピリジン20.0ml、乾燥N−メチル−2−ピロリドン80mlに溶解し、これにテレフタル酸クロライド24.02部の乾燥N−メチル−2−ピロリドン260mlに溶解した溶液を滴下し、室温で1.0時間攪拌した。60℃で1.5時間加熱攪拌したのちに反応溶液を室温まで冷却し、これを水5Lに注いで析出した白色固体を濾別した。水1L、アセトン500mlで洗浄後、120℃で真空乾燥してポリマー49.3部(収率96%)を得た。
このポリマーは[η]=0.24、Tg=104℃、Tc=156℃、Tm=225℃であり、X線回折および1H−NMR測定により上記式(2)の繰り返し単位からなるポリエステルであることを確認した。
【0033】
[実施例1]
参考例1で得られた[η]=0.21のポリエステル(プレポリマー)を粒径5mm以下に粉砕後、170℃で高真空下にて1時間加熱結晶化させて、固相重合用プレポリマーとした。この結晶化プレポリマー6.5部を固相重合釜に入れ、高真空下にて、190℃で3時間、次いで195℃で7時間、さらに200℃で12時間加熱して固相重合を行った。固相重合後のポリマーは[η]=0.50、Tg=104℃、Tm=213℃であった。この実施例1の固相重合におけるポリマーの[η]の経時変化を図1に実線で示す。
【0034】
[実施例2]
参考例2で得られた[η]=0.24のポリエステル(プレポリマー)を粒径5mm以下に粉砕後、170℃で高真空下にて1時間加熱結晶化させて、固相重合用プレポリマーとした。この結晶化プレポリマー45.0部を固相重合釜に入れ、高真空下にて190℃で39時間加熱して固相重合を行った。固相重合後のポリマーは[η]=0.46、Tg=103℃、Tc=190℃、Tm=217℃であった。この実施例2の固相重合におけるポリマー[η]の経時変化を図1に破線で示す。
【0035】
[実施例3]
実施例1および実施例2で得られた各ポリマーを、重水素化クロロホルム/重水素化トリフルオロ酢酸=3/1(v/v)混合溶媒中23℃にて1H−NMR測定を行い、4.7〜4.9ppmに観測されるメチレンプロトンに由来するシグナルについて固相重合前後の変化を追跡した。
【0036】
ランダム共重合では低磁場側より2つのテレフタル酸残基とエステル結合したエチレン、一方がテレフタル酸で他方がナフタレンジカルボン酸残基とエステル結合したエチレン、2つのナフタレンジカルボン酸残基とエステル結合したエチレンと3種のシグナルが帰属されるが、それぞれの積分比をx、y、zとしてx/y、z/yの値を算出したところ、実施例1,2ともに固相重合後のx/y、z/yの値は0.05以下であり、固相重合反応においてポリエステルの一次構造が維持されていることが明らかとなった。算出したx/y、z/yの値を次の表1に示す。
【0037】
【表1】
Figure 0004567139

【図面の簡単な説明】
【図1】図1は、固相重合(実施例1,2)における上記交互共重合ポリエステルの極限粘度[η]の経時変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-molecular-weight alternating copolymer polyester having an intrinsic viscosity [η] of 0.4 to 2.0 while maintaining the primary structure of the alternating copolymer polyester.
[0002]
[Prior art]
Polyesters represented by PET (polyethylene terephthalate) and PEN (polyethylene-2,6-naphthalate) have excellent mechanical, physical, and chemical properties, so other moldings such as clothing and industrial fibers are used. Widely used for things.
[0003]
However, a molded article of PEN having excellent mechanical properties and heat resistance has low impact resistance and delamination, and PET having a Tg of 70 ° C. has low heat resistance.
[0004]
As a technique for improving this, a method of copolymerizing polyesters such as PEN and PET by melt polymerization is conventionally known. However, it is generally known that in this method, the primary structure of the polyester copolymer is randomized because the copolymer is a polycondensation accompanied by a transesterification reaction. Therefore, the crystallinity and melting point inherent to PET and PEN are remarkably lowered, and as a result, the heat resistance and mechanical properties of the molded product become insufficient.
[0005]
For this reason, the present inventors have previously proposed a novel alternating copolymer and a method for producing the copolymer by solution polymerization (Japanese Patent Application No. 2000-90776). However, it is difficult to obtain an alternating copolymer having a sufficient degree of polymerization as a molding material while maintaining the primary structure of the alternating copolymer polyester only by solution polymerization.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a crystalline alternating copolymer having a sufficient degree of polymerization as a molding material while maintaining the primary structure of the alternating copolymer polyester without causing random copolymerization of the polyester copolymer by transesterification. The object is to provide a method suitable for producing polyester.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in order to solve the above problems, the present inventors have produced a polyester prepolymer represented by the above formula (1) and solid-phase polymerized it, thereby transesterification reaction. It has been found that it is possible to produce a polyester having a sufficient degree of polymerization as a molding material while maintaining the primary structure of the polyester represented by the above formula (1) without causing random copolymerization of the polyester copolymer. The present invention has been completed.
[0008]
That is, the present invention
At least 90 mol% of the polymer repeating unit is represented by the following formula (1)
[0009]
[Chemical 3]
Figure 0004567139
[0010]
Preferably, the following formula (2)
[0011]
[Formula 4]
Figure 0004567139
[0012]
The intrinsic viscosity [η] measured at 35 ° C. using a phenol / 1,1,2,2-tetrachloroethane mixed solvent (weight ratio 6/4) is 0.1-0. The polyester (prepolymer) of .5 is crystallized and then solid-phase polymerized to obtain an alternating copolymer polyester having an intrinsic viscosity [η] increased to 0.4 to 2.0. It is the manufacturing method of the polyester characterized.
[0013]
And in the above method,
a) Solid phase polymerization of a polyester prepolymer substantially consisting of the repeating unit represented by the above formula (1) or (2) under normal pressure under an inert gas stream or under a high vacuum of 1 mmHg or less. And a method characterized by
b) 1 H-NMR measurement (23 ° C., deuterated chloroform / deuterated trifluoroacetic acid = 3) of the alternating copolymerized polyester substantially consisting of the repeating unit represented by the above formula (2) after solid phase polymerization / 1 (in v / v)), a signal derived from the methylene proton of the polyester represented by the above formula (1) was observed at a chemical shift of 4.85 ppm to 4.87 ppm. A method in which the ratios of integrals in the vicinity of 8 ppm and 4.9 ppm are each 0.1 or less,
Are also encompassed by the present invention.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The relatively low molecular weight polyester (hereinafter sometimes referred to as prepolymer) used in the method of the present invention is at least 90 mol%, preferably 95 mol% or more, more preferably 98 to 100 mol% of the polymer repeating unit. Following formula (1)
[0015]
[Chemical formula 5]
Figure 0004567139
[0016]
Preferably, the following formula (2)
[0017]
[Chemical 6]
Figure 0004567139
[0018]
Is a linear copolymer in which ethylene-2,6-naphthalate units and ethylene terephthalate units are regularly and alternately arranged in a polymer sequence.
[0019]
The above alternating copolymerized polyester used in the method of the present invention is a 2,6-carbon compound having a hydroxyalkyl group represented by terephthalic acid chloride and 2,6-bis (2′-hydroxyethyl) naphthalate having 2 to 4 carbon atoms. Bis (2′-hydroxyalkyl) naphthalate is reacted and / or the hydroxyalkyl group represented by 2,6-naphthalenedicarbonyl chloride and bis (2-hydroxyethyl) terephthalate has 2 to 4 carbon atoms. The bis (2-hydroxyalkyl) terephthalate can be produced by a reaction method. Such a reaction can be carried out, for example, by a solution polymerization method in which the two components are reacted in a polar organic solvent such as N-methyl-2-pyrrolidone.
[0020]
The molecular weight of the polyester prepolymer is 0.1 to 0 in terms of intrinsic viscosity [η] measured at 35 ° C. using a phenol / 1,1,2,2-tetrachloroethane mixed solvent (weight ratio 6/4). 0.5, and preferably [η] = 0.2 to 0.4.
[0021]
When the intrinsic viscosity [η] of this prepolymer is lower than 0.1, a polymer having a degree of crystallinity that can be used for solid phase polymerization cannot be obtained even if the crystallization treatment described later is performed, and the intrinsic viscosity is [η ] Exceeding 0.5 is difficult to produce with good productivity in solution polymerization.
[0022]
In the method of the present invention, the prepolymer obtained as described above is pulverized to an average particle size of 5 mm or less, and this is dried at 120 ° C. under vacuum overnight, for example, at atmospheric pressure under an inert gas stream or 1 mmHg or less. In a high vacuum state, the polymer is crystallized by heating at a temperature not lower than the crystallization temperature (Tc) of the polymer and not higher than the melting point (Tm) for 0.5 to 1.0 hour to obtain a prepolymer for solid phase polymerization. As the prepolymer crystallization means, the above-mentioned heat crystallization is preferable, but a method of treating with a solvent can also be adopted if necessary.
[0023]
In the method of the present invention, this crystallized prepolymer is supplied to a solid phase polymerization vessel, and the glass transition temperature (Tg) of the polymer in the solid phase polymerization vessel at normal pressure under an inert gas stream or in a high vacuum state of 1 mmHg or less. The polymerization degree of the polymer is increased by heating to a temperature lower than the melting point (Tm) by 5 to 40 ° C., preferably 150 to 200 ° C., and solid-phase polymerization, and finally the intrinsic viscosity [η] is A high molecular weight alternating copolymer polyester of 0.4 to 2.0, preferably 0.5 to 1.8 is used. In this solid-state polymerization, it is preferable to heat while increasing the temperature continuously or stepwise.
[0024]
The primary structure of the alternating copolymer polyester comprising the repeating unit represented by the above formula (2) after the solid phase polymerization is 23 ° C., deuterated chloroform / deuterated trifluoroacetic acid = 3/1 (v / v). It can be clarified by 1 H-NMR measurement in the medium. For example, J. et al. Poly. Sci (Part A), 34 , 2841 (1996) shows the knowledge of random copolymerization of PET and PEN and 1 H-NMR measurement of the blend. In random copolymerization of PET and PEN, it is derived from methylene protons. There are three kinds of signals, each from low magnetic field side, ethylene that is ester-linked with two terephthalic acid residues, one that is terephthalic acid and the other is ester-linked with naphthalenedicarboxylic acid residues, and two naphthalenedicarboxylic acid residues It is reported to be attributed to ethylene ester-linked to the group. In the alternating copolymer polyester produced by the method of the present invention, the ethylene signal in which one is a terephthalic acid residue and the other is an ester bond with a naphthalenedicarboxylic acid residue is mainly observed. And the area ratio of the other two signals derived from random copolymerization is 0.1 or less, preferably 0.05 or less, more preferably 0.03 or less. The degree of polymerization of the polyester represented by the above formula (1) can be increased while maintaining the primary structure of the alternating copolymer polyester by polymerization.
[0025]
【The invention's effect】
By the method of the present invention as described above, random copolymerization by transesterification reaction is suppressed, and an alternating copolymer polyester having a higher degree of polymerization than a prepolymer of the polyester can be stably stabilized while maintaining the primary structure of the polyester. It can be manufactured.
[0026]
The alternating copolymer polyester obtained by the method of the present invention has the advantages of PET and PEN, is a crystalline material with excellent heat resistance of Tm 200 ° C. or higher, Tg 90 ° C. or higher, and is mechanically melt-molded. It can be made into a fiber, a film, a molded product, etc. with good properties, and is particularly suitable for bottles. In these molded products, problems such as delamination as seen in PEN molded products do not occur.
[0027]
In addition, this polyester is added with various additives such as stabilizers, colorants, ultraviolet absorbers, release agents, reinforcing materials such as glass fibers, and fillers such as inorganic particles and organic particles. It can also be used as
[0028]
In addition, this alternating copolymer polyester can be used for various additives such as stabilizers, colorants, UV absorbers, mold release agents, flame retardants, reinforcing materials such as glass fibers and carbon fibers, inorganic fine particles, organic fine particles, etc. It can be used effectively as a resin composition by adding a filler such as a thermoplastic polymer.
[0029]
【Example】
Hereinafter, the present invention will be described with reference to examples. However, the examples are for illustrative purposes and the present invention is not limited thereto. In the examples, “parts” means “parts by weight” unless otherwise specified.
[0030]
Various evaluation items described in the examples were obtained as follows.
(1) Measurement of intrinsic viscosity [η] The intrinsic viscosity [η] was measured at 35 ° C. in a phenol / 1,1,2,2-tetrachloroethane mixed solution (weight ratio 6/4).
(2) Measurement of melting point and glass transition temperature Glass transition temperature (Tg), crystallization temperature (Tc) and melting point (Tm) were measured using a Seiko DSC220 differential scanning calorimeter at 10 ° C./min under a nitrogen gas stream. The temperature was increased at a rate of
(3) 1 H-NMR measurement
1 H-NMR measurement was performed using JEOL JNR-EX270 at 23 ° C. in a deuterated chloroform / deuterated trifluoroacetic acid = 3/1 (v / v) mixed solvent.
[0031]
[Reference Example 1]
Under a nitrogen stream at room temperature, 5.01 parts of bis (2-hydroxyethyl) terephthalate was dissolved in a mixture of 3.4 ml of dry pyridine and 50 ml of dry N-methyl-2-pyrrolidone, and 2,6-naphthalene was added thereto. A solution dissolved in 4.99 parts of carbonyl chloride in 60 ml of dry N-methyl-2-pyrrolidone was added dropwise and stirred at room temperature for 0.5 hour. After stirring with heating at 40 ° C. for 0.5 hours, at 80 ° C. for 1.5 hours, and at 100 ° C. for 1.5 hours, the reaction solution was cooled to room temperature, poured into 3 L of water, and the precipitated white solid was filtered off. did. This was washed with 500 ml of water and 300 ml of acetone and then vacuum-dried at 120 ° C. to obtain 8.0 parts of polymer (yield 94%).
This polymer has [η] = 0.21, Tg = 104 ° C., Tc = 150 ° C., Tm = 221 ° C., and is a polyester comprising repeating units of the above formula (2) by X-ray diffraction and 1 H-NMR measurement. I confirmed that there was.
It was.
[0032]
[Reference Example 2]
Under a nitrogen stream at room temperature, 35.98 parts of 2,6-bis (2′-hydroxyethyl) naphthalate was dissolved in 20.0 ml of dry pyridine and 80 ml of dry N-methyl-2-pyrrolidone. A solution dissolved in .02 parts of dry N-methyl-2-pyrrolidone (260 ml) was added dropwise and stirred at room temperature for 1.0 hour. After stirring with heating at 60 ° C. for 1.5 hours, the reaction solution was cooled to room temperature, poured into 5 L of water, and the precipitated white solid was filtered off. After washing with 1 L of water and 500 ml of acetone, it was vacuum dried at 120 ° C. to obtain 49.3 parts of polymer (yield 96%).
This polymer is [η] = 0.24, Tg = 104 ° C., Tc = 156 ° C., Tm = 225 ° C., and is a polyester comprising repeating units of the above formula (2) by X-ray diffraction and 1 H-NMR measurement. I confirmed that there was.
[0033]
[Example 1]
After the polyester (prepolymer) of [η] = 0.21 obtained in Reference Example 1 was pulverized to a particle size of 5 mm or less, it was heated and crystallized at 170 ° C. under a high vacuum for 1 hour to obtain a solid phase polymerization pre A polymer was obtained. 6.5 parts of this crystallized prepolymer is placed in a solid phase polymerization kettle and heated under high vacuum at 190 ° C. for 3 hours, then at 195 ° C. for 7 hours, and further at 200 ° C. for 12 hours for solid phase polymerization It was. The polymer after the solid phase polymerization had [η] = 0.50, Tg = 104 ° C., and Tm = 213 ° C. The time-dependent change in [η] of the polymer in the solid phase polymerization of Example 1 is shown by a solid line in FIG.
[0034]
[Example 2]
After the polyester (prepolymer) of [η] = 0.24 obtained in Reference Example 2 is pulverized to a particle size of 5 mm or less, it is heated and crystallized at 170 ° C. under a high vacuum for 1 hour to obtain a solid phase polymerization pre-polymer. A polymer was obtained. 45.0 parts of this crystallized prepolymer was placed in a solid phase polymerization kettle and heated at 190 ° C. for 39 hours under high vacuum to carry out solid phase polymerization. The polymer after the solid phase polymerization had [η] = 0.46, Tg = 103 ° C., Tc = 190 ° C., Tm = 217 ° C. The time-dependent change of the polymer [η] in the solid phase polymerization of Example 2 is shown by a broken line in FIG.
[0035]
[Example 3]
Each polymer obtained in Example 1 and Example 2 was subjected to 1 H-NMR measurement at 23 ° C. in a deuterated chloroform / deuterated trifluoroacetic acid = 3/1 (v / v) mixed solvent, Changes before and after solid-state polymerization were followed for signals derived from methylene protons observed at 4.7 to 4.9 ppm.
[0036]
In random copolymerization, ethylene is ester-linked with two terephthalic acid residues from the low magnetic field side, one is terephthalic acid and the other is ester-linked ethylene with naphthalenedicarboxylic acid residue, and two is naphthalenedicarboxylic acid residue is ester-linked ethylene And three types of signals are assigned, and the values of x / y and z / y were calculated with x, y and z as their integral ratios. Z / y was 0.05 or less, and it was revealed that the primary structure of the polyester was maintained in the solid phase polymerization reaction. The calculated values of x / y and z / y are shown in Table 1 below.
[0037]
[Table 1]
Figure 0004567139

[Brief description of the drawings]
FIG. 1 is a graph showing the change over time in the intrinsic viscosity [η] of the alternating copolymer polyester in solid phase polymerization (Examples 1 and 2).

Claims (4)

ポリマー繰り返し単位の少なくとも90モル%が、下記式(1)
Figure 0004567139
で表される単位からなり、かつ、フェノール/1,1,2,2−テトラクロロエタン混合溶媒(重量比6/4)を用いて35℃で測定した極限粘度[η]が0.1〜0.5であるポリエステルを、結晶化させた後、これを固相重合せしめることにより、極限粘度[η]が0.4〜2.0に高められた交互共重合ポリエステルを得ることを特徴とするポリエステルの製造方法。
At least 90 mol% of the polymer repeating unit is represented by the following formula (1)
Figure 0004567139
And an intrinsic viscosity [η] measured at 35 ° C. using a phenol / 1,1,2,2-tetrachloroethane mixed solvent (weight ratio 6/4) is 0.1 to 0. .5 polyester is crystallized and then solid-phase polymerized to obtain an alternating copolymer polyester having an intrinsic viscosity [η] increased to 0.4 to 2.0. A method for producing polyester.
上記ポリエステルが、ポリマー繰り返し単位の少なくとも90モル%が下記式(2)
Figure 0004567139
で表される単位からなるポリマーであることを特徴とする請求項1に記載のポリエステルの製造方法。
In the polyester, at least 90 mol% of the polymer repeating unit is represented by the following formula (2).
Figure 0004567139
The method for producing a polyester according to claim 1, wherein the polymer comprises a unit represented by:
上記ポリエステルを不活性ガス気流下常圧もしくは1mmHg以下の高真空下にて加熱固相重合することを特徴とする請求項1または請求項2に記載のポリエステルの製造方法。The method for producing a polyester according to claim 1 or 2, wherein the polyester is heated and solid-phase polymerized at normal pressure under an inert gas stream or under a high vacuum of 1 mmHg or less. 固相重合後の交互共重合ポリエステルの1H−NMR測定(23℃、重水素化クロロホルム/重水素化トリフルオロ酢酸=3/1(v/v)中)において、上記式()で表されるポリエステルのメチレンプロトンに由来するシグナルが4.85ppmから4.87ppmの化学シフトに観測され、かつ、このシグナルの積分に対する4.8ppm、4.9ppm付近の積分の比がそれぞれ0.1以下であることを特徴とする請求項2に記載のポリエステルの製造方法。In the 1 H-NMR measurement (at 23 ° C. in deuterated chloroform / deuterated trifluoroacetic acid = 3/1 (v / v)) of the alternating copolymerized polyester after solid-phase polymerization, it is represented by the above formula ( 2 ). A signal derived from the methylene protons of the obtained polyester is observed at a chemical shift of 4.85 ppm to 4.87 ppm, and the ratio of the integrals around 4.8 ppm and 4.9 ppm to the integral of this signal is 0.1 or less, respectively. The method for producing a polyester according to claim 2, wherein:
JP2000100488A 2000-04-03 2000-04-03 Method for producing alternating copolymer polyester Expired - Fee Related JP4567139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000100488A JP4567139B2 (en) 2000-04-03 2000-04-03 Method for producing alternating copolymer polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000100488A JP4567139B2 (en) 2000-04-03 2000-04-03 Method for producing alternating copolymer polyester

Publications (2)

Publication Number Publication Date
JP2001288260A JP2001288260A (en) 2001-10-16
JP4567139B2 true JP4567139B2 (en) 2010-10-20

Family

ID=18614683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100488A Expired - Fee Related JP4567139B2 (en) 2000-04-03 2000-04-03 Method for producing alternating copolymer polyester

Country Status (1)

Country Link
JP (1) JP4567139B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196886A (en) * 1975-01-20 1976-08-25
JPH0339325A (en) * 1989-07-07 1991-02-20 Mitsubishi Gas Chem Co Inc Alternately copolymerized polyester
JPH069763A (en) * 1992-06-24 1994-01-18 Mitsubishi Kasei Corp Production of polyester and production of hollow container from the same
JPH1053644A (en) * 1996-05-30 1998-02-24 Sinco Eng Spa Improved production of polyester resin
JPH11310629A (en) * 1998-02-27 1999-11-09 Mitsui Chem Inc New polyester and production of polyester
JP2001278965A (en) * 2000-03-29 2001-10-10 Teijin Ltd New type polyester and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196886A (en) * 1975-01-20 1976-08-25
JPH0339325A (en) * 1989-07-07 1991-02-20 Mitsubishi Gas Chem Co Inc Alternately copolymerized polyester
JPH069763A (en) * 1992-06-24 1994-01-18 Mitsubishi Kasei Corp Production of polyester and production of hollow container from the same
JPH1053644A (en) * 1996-05-30 1998-02-24 Sinco Eng Spa Improved production of polyester resin
JPH11310629A (en) * 1998-02-27 1999-11-09 Mitsui Chem Inc New polyester and production of polyester
JP2001278965A (en) * 2000-03-29 2001-10-10 Teijin Ltd New type polyester and its production method

Also Published As

Publication number Publication date
JP2001288260A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
KR102001704B1 (en) Copolyesterimides of poly(alkylene terephthalate)s having high glass transition temperature and film made therefrom
WO2014204296A1 (en) Semi-crystalline polyester
JP3749601B2 (en) Block copolymer polyester and method for producing the same
JP4567139B2 (en) Method for producing alternating copolymer polyester
KR950009483B1 (en) Moldable polyester resin having high heat stability in melting and molded article thereof
JP2010031175A (en) Copolyester and production method thereof
TWI703171B (en) Bibenzoate copolyesters and methods to produce them
KR101831878B1 (en) Polyester fiber using binder Having Advanced Adhesive Strength
JP4323079B2 (en) Alternating copolymer polyester and process for producing the same
KR101941123B1 (en) Biodegradable resin composition and biodegradable film prepared therefrom
JP3365450B2 (en) Method for producing high polymerization degree polyester
JP4347494B2 (en) Novel polyester and its production method
JP3749600B2 (en) Block copolymer polyester and method for producing the same
KR100680378B1 (en) Highly viscous and amorphous polyester copolymer having improved impact resistance
JPH11323658A (en) Polyester fiber and its production
KR100323611B1 (en) Manufacturing method of high shrinkage polyester bland
JPH0848758A (en) Polyethylene naphthalate resin
JP3704218B2 (en) Polyester elastic body with improved wet heat durability and method for producing the same
JP4354623B2 (en) Alternating copolymer polyester fiber and process for producing the same
JP2647511B2 (en) Molding polyester
JP5763362B2 (en) Copolyester and biaxially oriented film
KR20220086807A (en) Novel Polyester rejin for binder
JP2614999B2 (en) Thermotropic liquid crystalline polyester
JPH11116665A (en) Polyalkylene naphthalate copolymer
JP2001527144A (en) Copolyester goods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees