JP4566313B2 - Conductive ink composition and planar heating element using the same - Google Patents
Conductive ink composition and planar heating element using the same Download PDFInfo
- Publication number
- JP4566313B2 JP4566313B2 JP2000016330A JP2000016330A JP4566313B2 JP 4566313 B2 JP4566313 B2 JP 4566313B2 JP 2000016330 A JP2000016330 A JP 2000016330A JP 2000016330 A JP2000016330 A JP 2000016330A JP 4566313 B2 JP4566313 B2 JP 4566313B2
- Authority
- JP
- Japan
- Prior art keywords
- ink composition
- heating element
- polymer
- conductive ink
- planar heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Conductive Materials (AREA)
- Resistance Heating (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Thermistors And Varistors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、PTC特性を持つ導電性インキ組成物およびそれを用いた面状発熱体に関し、詳しくは、非結晶性高分子、結晶性高分子、導電性物質からなる導電性インキ組成物に結晶造核剤を添加して、優れたPTC特性が長期安定に持続し、かつ、塗膜にした際の劣化が少ない導電性インキ組成物およびそれを用いた面状発熱体を提供するものである。
【0002】
【従来の技術】
面状発熱体は、基板上に導電性インキ組成物を印刷あるいは塗布し、任意の厚さおよび形状の塗膜を形成することによって得られるものであり、従来から、特殊な形状や小型の発熱体として使用されている。
この面状発熱体に使用される導電性インキ組成物は、導電性複合体を溶媒に溶解、または分散させてインキ状としたものであり、導電性複合体としては一般に、結晶性高分子や非結晶性高分子等からなるベースポリマーに、金属粉末、カーボンブラック、グラファイト等の導電性物質を分散させたものが用いられる。
【0003】
導電性複合体のPTC特性、すなわち、電気抵抗が温度上昇とともに増加する特性は、温度上昇によってベースポリマーが熱膨張し、そのために、ベースポリマーに分散した導電性物質のつながりが切断され、電気抵抗が大きくなることによって発現する。
ベースポリマーとして非結晶性物質を用いた導電性インキ組成物は、温度上昇にともなう電気抵抗(以後、PTC抵抗とする)の増加はゆるやかであり、PTC特性としては劣ったものとなる。
一方、結晶性高分子を用いた導電性インキ組成物は、結晶性高分子がその融点付近の温度で急激に熱膨張するために、温度上昇に対するPTC抵抗の変化は大きくなり、急峻なPTC特性を有するものとなる。したがって、ベースポリマーが結晶性高分子である導電性インキ組成物を塗布して得られた面状発熱体は、周囲の温度が上昇した場合にPTC抵抗が急激に増加して、自己温度を制御する機能が働くので、温度暴走を起こさない、すなわち優れたPTC特性を有している。
【0004】
【発明が解決しようとする課題】
しかしながら、ベースポリマーに結晶性高分子を用いた場合には、優れたPTC特性を有する面状発熱体が得られるが、結晶性高分子は溶媒への溶解性が低いため導電性インキ組成物の加工性が劣り、また乾燥後の塗膜の機械的強度や柔軟性が悪い。また、インキを低温で貯蔵している間にゲル化しやすいという問題もある。一方、ベースポリマーに非結晶性高分子を用いた導電性インキ組成物は、非結晶性高分子の溶媒への溶解性が高いため、基板上に塗布しやすく、また、溶媒を乾燥させる際にもインキの収縮が小さく、加工性に優れたものとなるが、得られた面状発熱体のPTC特性は劣ったものとなる。
【0005】
ベースポリマーに非結晶性高分子と結晶性高分子を混合して用いる方法(特開平8ー120182号公報)も提案されているが、非結晶性高分子と結晶性高分子の間に相溶性がないため、インキ状にして基板上に塗布した後の溶媒乾燥時に、結晶性高分子の結晶が大きくなり、非結晶性高分子と相分離してしまうことが懸念される。このような系は、結晶構造が微細でないためにPTC抵抗の変化が小さく、周囲の温度が上昇した場合に温度暴走を起こす可能性があり、満足なPTC特性が得られない。また、結晶系としての安定性が悪いために、発熱体として使用する間にPTC抵抗が変化して発熱温度が変わり、長期安定性に欠けるという問題もあるし、塗膜とした際にも劣化の大きいものとなる。
【0006】
本発明は前記事情に鑑みてなされたもので、安定な微細構造を持ち、優れたPTC特性が長期安定に持続し、塗膜としての劣化が少ない導電性インキ組成物およびそれを用いた面状発熱体を得ることを課題とする。
【0007】
【課題を解決するための手段】
かかる課題を解決するため、
請求項1の発明は、導電性物質と、非結晶性高分子と結晶性高分子とからなるベースポリマーと、結晶造核剤を含み、
前記ベースポリマー100重量部に対して前記結晶造核剤が1〜10重量部であり、
前記結晶性高分子と非結晶性高分子との比率が重量比で20:80〜95:5であり、
前記非結晶性高分子がフェノール樹脂であることを特徴とする導電性インキ組成物である。
請求項2の発明は、前記請求項1に記載の導電性インキ組成物を用いた面状発熱体である。
【0008】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明の導電性インキ組成物は、結晶性高分子と非結晶性高分子からなるベースポリマーと、導電性物質、結晶造核剤からなる。
本発明の導電性インキ組成物に用いられる結晶性高分子としては、通常、ポリアミド、結晶性ポリエステル、低分子量ポリエチレン、ポリプロピレン、トランス−ポリブタジエン、ポリオキシメチレン、ポリオキシエチレン、ポリオキシプロピレン等が用いられる。好ましくは結晶性ポリアミド(商品名:ポリアミドSー1962、三洋化成製)、結晶性ポリエステル(商品名:アロンメルトPES−110、東亜合成化学製)、低分子量ポリエチレン(分子量1000〜10000)が用いられる。
これらの結晶性高分子は粒子状のものが用いられ、平均粒径が通常、0.2〜100μm、好ましくは1〜50μmのものが用いられる。これは平均粒径が0.2μm未満の粒子を用いると、インキの粘度が上昇して塗布あるいは印刷に適さないものとなり、これを用いた面状発熱体を製造する際の生産性が悪化するためである。一方、平均粒径が100μmより大きい粒子を用いると、これを用いたインキからなる塗膜にピンホール等の不具合を生じやすく好ましくない。
【0009】
本発明の導電性インキ組成物に用いられる非結晶性高分子としては、フェノール樹脂が用いられる。
【0010】
導電性物質としては通常、導電性カーボンブラック、グラファイト、金属粉末等が用いられる。導電性カーボンブラックとしては、(ストラクチャーが小さく、)粒径が約30〜150nm程度と比較的大きいものが用いられる。
グラファイトとしては、天然黒鉛や人造黒鉛のリン片状のもの、土塊状のものなどが用いられる。
このような導電性物質は結晶性高分子と非結晶高分子からなるベースポリマー100重量部に対して、通常10〜100重量部、好ましくは10〜50重量部添加される。
【0011】
結晶造核剤は、導電性インキ組成物に添加されることによって、結晶性高分子が結晶化を開始する際の1次結晶核となり、結晶化の開始を促進するとともに、結晶化開始部位を増加させ、結晶性高分子の結晶を微細化するものである。このような結晶造核剤としては、結晶性高分子が融解状態から再結晶化する際の核にになるものであれば特に制限はないが、通常、ポリプロピレンの透明性向上に用いられるリン酸ナトリウムや安息香酸ナトリウム等の金属塩、タルク、クレー等の珪酸塩、ソルビトール、ジベンジリデンソルビトール等の糖アルコールが用いられる。好ましくはソルビトール系または金属塩系が用いられる。
これらは粒子状のものが用いられ、通常0.1〜50μm、好ましくは0.1〜5μmのものが用いられる。
【0012】
このような結晶造核剤は、結晶性高分子と非結晶高分子からなるベースポリマー100重量部に対して、通常、0.1〜10重量部、好ましくは0.3〜5重量部添加される。これは、0.1重量部未満では、結晶造核剤の添加効果が発現せず、結晶性高分子の結晶が微細化しないためで、一方、10重量部を越えると、導電性インキ組成物のPTC抵抗が大きくなりすぎるだけでなく、ベースポリマーの熱膨張を阻害してPTC抵抗の変化を小さくしてしまうためである。
【0013】
本発明の導電性インキ組成物は、溶媒中に結晶性高分子粒子、非結晶性高分子、導電性物質、結晶造核剤を添加し、分散させることによって得られる。
用いられる溶媒は、非結晶性高分子を良く溶解し、かつ、結晶性高分子粒子を安定して分散させることのできるものであれば特に制限はないが、通常、トルエン、キシレン、ミネラルスピリット、ソルベントナフサ、テトラリン等の炭化水素系溶媒、ブチルセロソルブ、酢酸セロソルブ、ブチルカルビトール、酢酸カルビトール多価アルコール誘導体系溶剤、酢酸nーブチル、酢酸メトキシブチル、γーブチロラクトン等のエステル系溶媒等が用いられる。
【0014】
分散は、ダイノーミルや3本ロール等の湿式分散装置を用いて行われる。また、導電性物質の分散度合いは粒ゲージ等によって確認される。
使用される溶媒の量は特に制限はないが、結晶性高分子粒子と非結晶高分子からなるベースポリマー100重量部に対して、通常、50〜500重量部である。
【0015】
導電性インキ組成物におけるベースポリマー中の結晶性高分子粒子と非結晶高分子の重量比は通常20:80〜95:5が好ましい。20:80未満では、PTC抵抗の変化が小さく、PTC特性が劣ったものとなり好ましくない。また、95:5を越えると、導電性インキ組成物を基板上に塗布または印刷する際の加工性が劣り、乾燥後の塗膜の機械的強度や柔軟性が悪いものとなる。
【0016】
以上のようにして得られた導電性インキ組成物は、非結晶性高分子と結晶性高分子とからなるベースポリマー100重量部に対し、結晶造核剤を0.1〜10重量部含むものであるので、結晶性高分子の結晶が微細化した安定な構造を有するものとなる。そのため、優れたPTC特性が長期安定に持続し、塗膜の劣化も小さい。また、非結晶性高分子と結晶性高分子の相分離が起こりにくいため製造条件にかかわらず、微細な結晶構造を持つ塗膜を安定に得ることができる。
【0017】
次に、面状発熱体の製造方法について説明する。
本発明の面状発熱体は電極を設けた基板上に、上記導電性インキ組成物を印刷あるいは塗布してなるものである。
ここで用いられる基板としては、発熱体として使用することから、耐熱性に優れたものであることが望ましく、通常、ポリエチレンテレフタラート、ポリイミド、ポリ塩化ビニル等の樹脂が用いられる。これらは通常、厚さ10〜100μmのフィルムとして用いられる。
基板上に設けられる電極は、特に制限はないが、銅、銀、カーボン等の導電性粒子を含むインキ状組成物を基板上に印刷して形成したものや、銅、アルミニウム、銀などの金属箔を基板上に接着したものが用いられる。インキ状組成物を基板状に印刷する場合は、スクリーン印刷等により行われる。金属箔が用いられる場合には、銀箔を貼りあわせた上にエッチング加工を施し、くし状あるいはジグザグ状等の微細なパターンを形成したものが好ましい。
【0018】
導電性インキ組成物を基板上に印刷あるいは塗布する場合には、形成される塗膜が均一な厚さになるような方法が望ましく、通常、スクリーン印刷やナイフコータ、グラビアコータを用いる方法等が用いられる。導電性インキ組成物は、印刷あるいは塗布後、ヒーターや炉等によって、通常、80〜150℃の温度で、1〜30分間乾燥され、厚さ10〜50μmの塗膜となる。
【0019】
このようにして得られた面状発熱体は、上記導電性インキ組成物を用いたものであるので、優れたPTC特性が長期安定に持続するものとなる。また、製造条件にかかわらず、結晶構造が微細で劣化が少ない塗膜からなる面状発熱体を得ることができる。
【0020】
【実施例】
以下、本発明を実施例をあげて具体的に説明する。
実施例1
平均粒径7μmの低分子量ポリエチレン(融点114℃、分子量3000)60重量部、フェノール樹脂40重量部、結晶造核剤としてジベンジリデンソルビトール(商品名:EC−1、イーシー化学製)0.5重量部、導電性物質のカーボンブラック(商品名:デンカブラック、電気化学工業製)25重量部をソルベッソ200重量部に添加し、3本ロールミルで混練し、インキ状組成物を得た。
この組成物を、50mm間隔の銀の電極パターンを設けたポリエチレンテレフタレート基板上に、10×60mm2 の面積、20±3μmの厚さで塗布した後、150℃で30分間保持して乾燥した。このようにして塗膜を形成し、面状発熱体を作製した。なお、カーボンブラック添加量は面状発熱体の体積抵抗率が100Ωcm前後になるように決定した。
この面状発熱体のPTC抵抗の変化の大きさを調べるため、20〜150℃の範囲で体積抵抗率を測定し、その最大値を求めた。そして、20℃における値に対する最大値の比をPTC抵抗変化倍率として算出した。
また、PTC特性の長期安定性を評価するために、面状発熱体の温度が20℃、120℃、20℃と連続的に変化するように、電極への荷電圧を変化させるヒートサイクル試験を行った。そして、試験前の体積抵抗率に対する500サイクル後の体積抵抗率の比をヒートサイクル倍率として求めた。結果を表1に示す。
【0021】
参考例
フェノール樹脂の代わりに非結晶性ポリエステルを用い、カーボンブラックを20重量部とした以外は実施例1と同様にして面状発熱体を作製し、そのPTC抵抗変化倍率とヒートサイクル倍率を求めた。結果を表1に示す。
【0022】
比較例1
ジベンジリデンソルビトールを添加しない以外は実施例1と同様にして面状発熱体を作製し、そのPTC抵抗変化倍率とヒートサイクル倍率を求めた。結果を表1に示す。
【0023】
比較例2
ジベンジリデンソルビトールを添加しない以外は実施例2と同様にして面状発熱体を作製し、そのPTC抵抗変化倍率とヒートサイクル倍率を求めた。結果を表1に示す。
【0024】
比較例3
ジベンジリデンソルビトールを0.01重量部とした以外は実施例1と同様にして面状発熱体を作製し、そのPTC抵抗変化倍率とヒートサイクル倍率を求めた。結果を表1に示す。
【0025】
比較例4
ジベンジリデンソルビトールを30重量部とし、カーボンブラックを35重量部とした以外は実施例1と同様にして面状発熱体を作製し、そのPTC抵抗変化倍率とヒートサイクル倍率を求めた。結果を表1に示す。
【0026】
【表1】
【0027】
表1に示したように実施例1の面状発熱体は、PTC抵抗変化倍率とヒートサイクル倍率がともに大きく、安定で優れたPTC特性を有するものであった。
【0028】
【発明の効果】
以上説明したように、請求項1の導電性インキ組成物は結晶造核剤を含むものであるので、結晶性高分子の結晶が微細化した安定な構造を有するものとなる。
また、結晶造核剤は、非結晶性高分子と結晶性高分子とからなるベースポリマー100重量部に対し、0.1〜10重量部添加されることが望ましい。また、請求項3の面状発熱体は上記の導電性インキ組成物を用いるので、優れたPTC特性が長期安定に持続するものとなる。また、製造条件にかかわらず、結晶構造が微細で、劣化が少ない塗膜からなる面状発熱体を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive ink composition having PTC characteristics and a planar heating element using the same, and more particularly, to a conductive ink composition comprising an amorphous polymer, a crystalline polymer, and a conductive substance. To provide a conductive ink composition having excellent PTC characteristics stably maintained for a long period of time by adding a nucleating agent and having little deterioration when formed into a coating film, and a planar heating element using the same. .
[0002]
[Prior art]
A planar heating element is obtained by printing or coating a conductive ink composition on a substrate to form a coating film having an arbitrary thickness and shape. Used as a body.
The conductive ink composition used for the planar heating element is an ink-like composition obtained by dissolving or dispersing the conductive composite in a solvent. Generally, the conductive composite is a crystalline polymer or A base polymer made of an amorphous polymer or the like is used in which a conductive material such as metal powder, carbon black, or graphite is dispersed.
[0003]
The PTC characteristic of the conductive composite, that is, the characteristic that the electrical resistance increases as the temperature rises, is that the base polymer thermally expands due to the rise in temperature, so that the connection of the conductive material dispersed in the base polymer is broken, and the electrical resistance It is expressed by increasing.
In a conductive ink composition using an amorphous substance as a base polymer, an increase in electrical resistance (hereinafter referred to as PTC resistance) with a rise in temperature is gradual, and PTC characteristics are inferior.
On the other hand, in the conductive ink composition using a crystalline polymer, since the crystalline polymer rapidly expands at a temperature near its melting point, the change in the PTC resistance with respect to the temperature increase is large, and the PTC characteristics are steep. It will have. Therefore, the planar heating element obtained by applying a conductive ink composition whose base polymer is a crystalline polymer has a PTC resistance that increases rapidly when the ambient temperature rises, and controls its own temperature. Therefore, temperature runaway does not occur, that is, it has excellent PTC characteristics.
[0004]
[Problems to be solved by the invention]
However, when a crystalline polymer is used as the base polymer, a planar heating element having excellent PTC characteristics can be obtained. However, since the crystalline polymer has low solubility in a solvent, the conductive ink composition has a low solubility. The processability is inferior, and the mechanical strength and flexibility of the coated film after drying are poor. There is also a problem that the ink is easily gelled while the ink is stored at a low temperature. On the other hand, a conductive ink composition using an amorphous polymer as the base polymer has a high solubility in the solvent of the amorphous polymer, so that it is easy to apply on the substrate and when the solvent is dried. However, the shrinkage of the ink is small and the processability is excellent, but the obtained PTC characteristic of the planar heating element is inferior.
[0005]
A method of using a mixture of an amorphous polymer and a crystalline polymer in a base polymer (Japanese Patent Laid-Open No. 8-120182) has also been proposed, but compatibility between the amorphous polymer and the crystalline polymer is proposed. Therefore, there is a concern that the crystalline polymer crystal becomes large and phase-separates from the amorphous polymer when the solvent is dried after being applied in ink form on the substrate. In such a system, since the crystal structure is not fine, the change in the PTC resistance is small, and when the ambient temperature rises, there is a possibility of causing a temperature runaway, and a satisfactory PTC characteristic cannot be obtained. In addition, since the stability as a crystal system is poor, there is a problem that the PTC resistance changes during use as a heating element, the heating temperature changes, and the long-term stability is lacking. It will be a big thing.
[0006]
The present invention has been made in view of the above circumstances, and has a stable fine structure, excellent PTC characteristics lasting stably for a long period of time, and a conductive ink composition having little deterioration as a coating film, and a planar shape using the same An object is to obtain a heating element.
[0007]
[Means for Solving the Problems]
To solve this problem,
The invention of claim 1 includes a conductive material, a base polymer composed of an amorphous polymer and a crystalline polymer, and a crystal nucleating agent,
The crystal nucleating agent is 1 to 10 parts by weight with respect to 100 parts by weight of the base polymer,
The ratio of the crystalline polymer to the amorphous polymer is 20:80 to 95: 5 by weight ratio,
The conductive ink composition is characterized in that the amorphous polymer is a phenol resin.
The invention according to claim 2 is a planar heating element using the conductive ink composition according to claim 1.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
The conductive ink composition of the present invention comprises a base polymer composed of a crystalline polymer and an amorphous polymer, a conductive substance, and a crystal nucleating agent.
As the crystalline polymer used in the conductive ink composition of the present invention, polyamide, crystalline polyester, low molecular weight polyethylene, polypropylene, trans-polybutadiene, polyoxymethylene, polyoxyethylene, polyoxypropylene, etc. are usually used. It is done. Preferably, crystalline polyamide (trade name: polyamide S-1962, manufactured by Sanyo Kasei), crystalline polyester (trade name: Aronmelt PES-110, manufactured by Toagosei), and low molecular weight polyethylene (molecular weight 1000-10000) are used.
These crystalline polymers are used in the form of particles, and those having an average particle size of usually 0.2 to 100 μm, preferably 1 to 50 μm. If particles having an average particle size of less than 0.2 μm are used, the viscosity of the ink increases, making it unsuitable for coating or printing, and the productivity in producing a planar heating element using the ink deteriorates. Because. On the other hand, use of particles having an average particle size of more than 100 μm is not preferable because defects such as pinholes are likely to occur in a coating film made of ink using the same.
[0009]
A phenolic resin is used as the amorphous polymer used in the conductive ink composition of the present invention.
[0010]
As the conductive substance, conductive carbon black, graphite, metal powder or the like is usually used. As the conductive carbon black, those having a relatively large particle size (with a small structure) of about 30 to 150 nm are used.
As the graphite, flakes of natural graphite or artificial graphite, or those in the form of a lump are used.
Such a conductive substance is usually added in an amount of 10 to 100 parts by weight, preferably 10 to 50 parts by weight, based on 100 parts by weight of a base polymer composed of a crystalline polymer and an amorphous polymer.
[0011]
When added to the conductive ink composition, the crystal nucleating agent becomes a primary crystal nucleus when the crystalline polymer starts to crystallize, promotes the start of crystallization, and sets the crystallization start site. This is to increase the crystal size of the crystalline polymer. Such a crystal nucleating agent is not particularly limited as long as it becomes a nucleus when the crystalline polymer is recrystallized from a molten state, but is usually phosphoric acid used for improving the transparency of polypropylene. Metal salts such as sodium and sodium benzoate, silicates such as talc and clay, and sugar alcohols such as sorbitol and dibenzylidene sorbitol are used. Preferably, a sorbitol system or a metal salt system is used.
These are in the form of particles, usually 0.1 to 50 μm, preferably 0.1 to 5 μm.
[0012]
Such a crystal nucleating agent is usually added in an amount of 0.1 to 10 parts by weight, preferably 0.3 to 5 parts by weight, based on 100 parts by weight of a base polymer composed of a crystalline polymer and an amorphous polymer. The This is because if the amount is less than 0.1 part by weight, the effect of adding a crystal nucleating agent does not appear, and the crystal of the crystalline polymer does not become finer. On the other hand, if the amount exceeds 10 parts by weight, the conductive ink composition This is because not only the PTC resistance of the resin becomes too large, but also the thermal expansion of the base polymer is hindered to reduce the change in the PTC resistance.
[0013]
The conductive ink composition of the present invention can be obtained by adding and dispersing crystalline polymer particles, an amorphous polymer, a conductive substance, and a crystal nucleating agent in a solvent.
The solvent used is not particularly limited as long as it can dissolve the amorphous polymer well and can stably disperse the crystalline polymer particles, but usually toluene, xylene, mineral spirit, Hydrocarbon solvents such as solvent naphtha and tetralin, butyl cellosolve, cellosolve acetate, butyl carbitol, carbitol acetate polyhydric alcohol derivative solvents, ester solvents such as n-butyl acetate, methoxybutyl acetate, and γ-butyrolactone are used. .
[0014]
Dispersion is performed using a wet disperser such as a dyno mill or a three roll. Further, the degree of dispersion of the conductive material is confirmed by a particle gauge or the like.
The amount of the solvent used is not particularly limited, but is usually 50 to 500 parts by weight with respect to 100 parts by weight of the base polymer composed of crystalline polymer particles and amorphous polymer.
[0015]
The weight ratio of the crystalline polymer particles to the amorphous polymer in the base polymer in the conductive ink composition is usually preferably 20:80 to 95: 5. If it is less than 20:80, the change of the PTC resistance is small and the PTC characteristics are inferior, which is not preferable. On the other hand, if it exceeds 95: 5, the processability when the conductive ink composition is applied or printed on the substrate is inferior, and the mechanical strength and flexibility of the coated film after drying are poor.
[0016]
The conductive ink composition obtained as described above contains 0.1 to 10 parts by weight of a crystal nucleating agent with respect to 100 parts by weight of a base polymer composed of an amorphous polymer and a crystalline polymer. Therefore, the crystalline polymer crystal has a stable structure with a fine structure. Therefore, excellent PTC characteristics are maintained stably for a long time, and the deterioration of the coating film is small. In addition, since the phase separation between the amorphous polymer and the crystalline polymer hardly occurs, a coating film having a fine crystal structure can be stably obtained regardless of the production conditions.
[0017]
Next, a method for manufacturing the planar heating element will be described.
The planar heating element of the present invention is obtained by printing or applying the conductive ink composition on a substrate provided with electrodes.
As the substrate used here, since it is used as a heating element, it is desirable that it is excellent in heat resistance. Usually, a resin such as polyethylene terephthalate, polyimide, polyvinyl chloride or the like is used. These are usually used as a film having a thickness of 10 to 100 μm.
The electrode provided on the substrate is not particularly limited, but is formed by printing an ink-like composition containing conductive particles such as copper, silver and carbon on the substrate, or a metal such as copper, aluminum or silver. What adhered the foil on the board | substrate is used. When the ink composition is printed on the substrate, it is performed by screen printing or the like. When a metal foil is used, it is preferable to form a fine pattern such as a comb shape or a zigzag shape by performing etching after laminating a silver foil.
[0018]
When a conductive ink composition is printed or applied on a substrate, a method is preferable in which the formed coating film has a uniform thickness. Usually, a method using screen printing, a knife coater or a gravure coater is used. It is done. The conductive ink composition is dried for 1 to 30 minutes at a temperature of 80 to 150 ° C. by a heater or a furnace after printing or application, and becomes a coating film having a thickness of 10 to 50 μm.
[0019]
The planar heating element thus obtained uses the above conductive ink composition, so that excellent PTC characteristics are maintained stably for a long period of time. In addition, a planar heating element comprising a coating film having a fine crystal structure and little deterioration can be obtained regardless of manufacturing conditions.
[0020]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
60 parts by weight of low molecular weight polyethylene (melting point 114 ° C., molecular weight 3000) having an average particle size of 7 μm, 40 parts by weight of phenol resin, 0.5 weight of dibenzylidene sorbitol (trade name: EC-1, manufactured by EC Chemical) as a crystal nucleating agent Part, carbon black (trade name: Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) of 25 parts by weight was added to 200 parts by weight of Solvesso and kneaded with a three roll mill to obtain an ink-like composition.
This composition was applied on a polyethylene terephthalate substrate provided with silver electrode patterns at intervals of 50 mm in a 10 × 60 mm 2 area and a thickness of 20 ± 3 μm, and then held at 150 ° C. for 30 minutes to dry. In this way, a coating film was formed to produce a planar heating element. The amount of carbon black added was determined so that the volume resistivity of the planar heating element was about 100 Ωcm.
In order to examine the magnitude of the change in the PTC resistance of the planar heating element, the volume resistivity was measured in the range of 20 to 150 ° C., and the maximum value was obtained. And the ratio of the maximum value with respect to the value in 20 degreeC was computed as PTC resistance change magnification.
In addition, in order to evaluate the long-term stability of the PTC characteristics, a heat cycle test is performed in which the load voltage to the electrode is changed so that the temperature of the planar heating element continuously changes to 20 ° C., 120 ° C., and 20 ° C. went. And the ratio of the volume resistivity after 500 cycles with respect to the volume resistivity before a test was calculated | required as a heat cycle magnification. The results are shown in Table 1.
[0021]
Reference Example A planar heating element was prepared in the same manner as in Example 1 except that amorphous polyester was used in place of phenol resin and carbon black was changed to 20 parts by weight, and the PTC resistance change ratio and heat cycle ratio were obtained. It was. The results are shown in Table 1.
[0022]
Comparative Example 1
A planar heating element was produced in the same manner as in Example 1 except that dibenzylidene sorbitol was not added, and its PTC resistance change ratio and heat cycle ratio were determined. The results are shown in Table 1.
[0023]
Comparative Example 2
A planar heating element was produced in the same manner as in Example 2 except that dibenzylidene sorbitol was not added, and the PTC resistance change rate and the heat cycle rate were determined. The results are shown in Table 1.
[0024]
Comparative Example 3
A planar heating element was produced in the same manner as in Example 1 except that dibenzylidene sorbitol was changed to 0.01 part by weight, and its PTC resistance change ratio and heat cycle ratio were determined. The results are shown in Table 1.
[0025]
Comparative Example 4
A planar heating element was prepared in the same manner as in Example 1 except that 30 parts by weight of dibenzylidene sorbitol and 35 parts by weight of carbon black were used, and the PTC resistance change ratio and heat cycle ratio were determined. The results are shown in Table 1.
[0026]
[Table 1]
[0027]
As shown in Table 1, the planar heating element of Example 1 had a large PTC resistance change ratio and a heat cycle ratio, and had stable and excellent PTC characteristics.
[0028]
【The invention's effect】
As described above, since the conductive ink composition of claim 1 contains a crystal nucleating agent, it has a stable structure in which crystals of the crystalline polymer are refined.
The crystal nucleating agent is preferably added in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of a base polymer composed of an amorphous polymer and a crystalline polymer. In addition, since the planar heating element of claim 3 uses the above conductive ink composition, excellent PTC characteristics can be maintained stably for a long period of time. Moreover, a planar heating element comprising a coating film having a fine crystal structure and little deterioration can be obtained regardless of manufacturing conditions.
Claims (2)
前記ベースポリマー100重量部に対して前記結晶造核剤が1〜10重量部であり、
前記結晶性高分子と非結晶性高分子との比率が重量比で20:80〜95:5であり、
前記非結晶性高分子がフェノール樹脂であることを特徴とする導電性インキ組成物。 Including a conductive substance, a base polymer composed of an amorphous polymer and a crystalline polymer, and a crystal nucleating agent,
The crystal nucleating agent is 1 to 10 parts by weight with respect to 100 parts by weight of the base polymer,
The ratio of the crystalline polymer to the amorphous polymer is 20:80 to 95: 5 by weight ratio,
The conductive ink composition, wherein the non-crystalline polymer is a phenol resin .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000016330A JP4566313B2 (en) | 2000-01-25 | 2000-01-25 | Conductive ink composition and planar heating element using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000016330A JP4566313B2 (en) | 2000-01-25 | 2000-01-25 | Conductive ink composition and planar heating element using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001210140A JP2001210140A (en) | 2001-08-03 |
JP4566313B2 true JP4566313B2 (en) | 2010-10-20 |
Family
ID=18543483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000016330A Expired - Lifetime JP4566313B2 (en) | 2000-01-25 | 2000-01-25 | Conductive ink composition and planar heating element using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4566313B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5033403B2 (en) * | 2006-11-22 | 2012-09-26 | ナミックス株式会社 | Conductive molded body, electronic component and electric device |
EP3021331A1 (en) * | 2014-11-17 | 2016-05-18 | Henkel AG & Co. KGaA | Positive temperature coefficient composition |
JP7545133B2 (en) * | 2020-04-30 | 2024-09-04 | 国立大学法人山形大学 | PTC resistors and sheet heating elements |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61157559A (en) * | 1984-12-28 | 1986-07-17 | Matsushita Electric Ind Co Ltd | Electrically conductive resin composition |
JPH07263127A (en) * | 1994-03-25 | 1995-10-13 | Matsushita Electric Works Ltd | Ptc heating element |
JPH08120182A (en) * | 1994-10-21 | 1996-05-14 | Nok Corp | Ptc composition and panel heating material |
JPH11310739A (en) * | 1998-04-30 | 1999-11-09 | Fujikura Ltd | Conductive ink composition and flat heating element |
JPH11329675A (en) * | 1998-05-19 | 1999-11-30 | Tokin Corp | Ptc composition |
-
2000
- 2000-01-25 JP JP2000016330A patent/JP4566313B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61157559A (en) * | 1984-12-28 | 1986-07-17 | Matsushita Electric Ind Co Ltd | Electrically conductive resin composition |
JPH07263127A (en) * | 1994-03-25 | 1995-10-13 | Matsushita Electric Works Ltd | Ptc heating element |
JPH08120182A (en) * | 1994-10-21 | 1996-05-14 | Nok Corp | Ptc composition and panel heating material |
JPH11310739A (en) * | 1998-04-30 | 1999-11-09 | Fujikura Ltd | Conductive ink composition and flat heating element |
JPH11329675A (en) * | 1998-05-19 | 1999-11-30 | Tokin Corp | Ptc composition |
Also Published As
Publication number | Publication date |
---|---|
JP2001210140A (en) | 2001-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5993698A (en) | Electrical device containing positive temperature coefficient resistor composition and method of manufacturing the device | |
JPH0517835Y2 (en) | ||
US5181006A (en) | Method of making an electrical device comprising a conductive polymer composition | |
CN101136471B (en) | Electrode active material and method for making same and lithium ion secondary battery electrode | |
CN103108906B (en) | Utilize the PTC element conductive polymer composition that the NTC characteristic of carbon nanotube reduces | |
JPH04500694A (en) | polymer thick film ink | |
JPH0816204B2 (en) | Method for forming a conductive layer from polymer thick film ink | |
JP2017535964A (en) | Positive temperature coefficient composition | |
CN103555067B (en) | Electrically conductive ink of a kind of regulating power and its preparation method and application | |
JPH11310739A (en) | Conductive ink composition and flat heating element | |
KR102192097B1 (en) | Self-healing composite material and structural-defect-monitoring/self-healing system including the same | |
JP2947613B2 (en) | Heat-sensitive compound, method for producing the same and method of using the same | |
JP6412106B2 (en) | Polymer thick film positive temperature coefficient carbon composition | |
JP4566313B2 (en) | Conductive ink composition and planar heating element using the same | |
JP3564758B2 (en) | PTC composition | |
JP4491098B2 (en) | Method for forming a conductive polythiophene layer at low temperature | |
JPH0696843A (en) | Temperature self-control conductive composition, temperature self-control surface heating element and temperature self-control pipe heater | |
JPH11310738A (en) | Conductive ink composition and flat heating element prepared by using the same | |
JP2001076850A (en) | Conductive ink composition and planer heating element using it | |
TW200834612A (en) | Polymeric positive temperature coefficient thermistor and process for preparing the same | |
KR101568459B1 (en) | Heating plate for battery module | |
JP2004335738A (en) | Organic ntc composition and organic ntc element using the same | |
US20060043343A1 (en) | Polymer composition and film having positive temperature coefficient | |
JP3814989B2 (en) | Surface flexible heater | |
JP4357684B2 (en) | Conductive ink composition and planar heating element using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090630 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100727 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100804 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4566313 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |