JP4564930B2 - Image stabilizer - Google Patents

Image stabilizer Download PDF

Info

Publication number
JP4564930B2
JP4564930B2 JP2006053714A JP2006053714A JP4564930B2 JP 4564930 B2 JP4564930 B2 JP 4564930B2 JP 2006053714 A JP2006053714 A JP 2006053714A JP 2006053714 A JP2006053714 A JP 2006053714A JP 4564930 B2 JP4564930 B2 JP 4564930B2
Authority
JP
Japan
Prior art keywords
movable
camera shake
amount
yoke
movable portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006053714A
Other languages
Japanese (ja)
Other versions
JP2007232980A (en
Inventor
光宏 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2006053714A priority Critical patent/JP4564930B2/en
Priority to KR1020060049991A priority patent/KR100823268B1/en
Publication of JP2007232980A publication Critical patent/JP2007232980A/en
Application granted granted Critical
Publication of JP4564930B2 publication Critical patent/JP4564930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Description

本発明は手振れ補正装置に係り、撮像素子が設けられた可動部を固定部に対してXY方向に移動自在なXY可動ステージを有する手振れ補正装置に関する。 The present invention relates to a camera shake correction apparatus, and more particularly to a camera shake correction apparatus having an XY movable stage in which a movable part provided with an image sensor is movable in an XY direction with respect to a fixed part.

ビデオカメラ,デジタルスチルカメラ等の撮像装置では,ユーザの手振れによる画像のぶれを,その画像における物理的な光軸の補正または論理的な画像処理によって取り除くことが検討されている。   In an imaging apparatus such as a video camera or a digital still camera, it has been studied to remove image blur due to a user's camera shake by correcting a physical optical axis or logical image processing in the image.

このような手振れ補正のうち,物理的な光軸の補正としては,光軸に垂直なXY平面上を移動自在な可動ステージの可動部に撮像素子を設置し,可動部を手振れにより発生する像面移動を補正する量だけ移動して,撮像素子の絶対的位置を安定化させる技術がある。ここで,可動部を完全に移動自在にした場合,光軸回りの回転も生じてしまうため,かかる回転を抑制するコイルばねを設けて手振れ補正を行う技術が知られている(例えば,特許文献1)。   Among such camera shake corrections, the physical optical axis correction includes an image sensor installed on a movable part of a movable stage movable on an XY plane perpendicular to the optical axis, and an image generated by camera shake. There is a technique for stabilizing the absolute position of the image sensor by moving the surface movement by an amount to be corrected. Here, when the movable part is made completely movable, rotation around the optical axis also occurs. Therefore, a technique for correcting camera shake by providing a coil spring that suppresses such rotation is known (for example, Patent Documents). 1).

また,回転を抑制する他の技術として,XYそれぞれの方向にシャフトを設け,それに沿って可動部を移動する技術も知られている(例えば,特許文献2)。しかし,かかる技術では,可動部の回転は抑制されるものの,X方向に移動するステージと,さらにそのステージ上をY方向に移動するステージの2段階の構成をとるため,構造が複雑になり,高コスト化および信頼性の低減を招く。   As another technique for suppressing rotation, a technique is also known in which a shaft is provided in each of XY directions and a movable portion is moved along the shaft (for example, Patent Document 2). However, in such a technique, although the rotation of the movable part is suppressed, the structure is complicated because it takes a two-stage configuration of a stage moving in the X direction and a stage moving in the Y direction on the stage. Increases cost and reduces reliability.

また,ボイスコイルモータを用いて光軸回りの回転を制御する技術も知られているが(例えば,特許文献3),固定部に対して可動部が引張りばねで機械的に固定されているため,メンテナンスが必要となり,また,そのばねの弾性により可動部の直線および回転駆動が妨げられ,消費電力の低減を図れないといった問題がある。   A technique for controlling rotation around the optical axis using a voice coil motor is also known (for example, Patent Document 3), but the movable part is mechanically fixed to the fixed part by a tension spring. , Maintenance is required, and the elasticity of the springs hinders the linear and rotational driving of the movable part, resulting in a problem that power consumption cannot be reduced.

特開平10−254019号公報JP-A-10-254019 特開2003−111449号公報JP 2003-111449 A 特開2005−184122号公報JP 2005-184122 A

本発明は、従来の可動ステージが有する上記問題点に鑑みてなされたものであって、本発明の目的は、機械的な、回転防止構造や固定部への吸着構造を有さず、磁力のみで可動ステージを制御することが可能な、新規かつ改良されたXY可動ステージを有する手振れ補正装置を提供することである。 The present invention has been made in view of the above-described problems of the conventional movable stage, and the object of the present invention is to provide only a magnetic force without a mechanical anti-rotation structure or an adsorption structure to a fixed portion. It is an object of the present invention to provide a camera shake correction apparatus having a new and improved XY movable stage capable of controlling the movable stage.

上記課題を解決するためになされた本発明のある観点による手振れ補正装置は、手振れ量を検出する手振れ検出部、撮像素子が設けられた可動部と、前記可動部を支持する固定部と、磁力により前記可動部を前記固定部に吸着する吸着部と、光軸に対して垂直なXY平面内のX方向とY方向との少なくとも一方向において、前記可動部の重心から前記一方向に延びる直線上にはない、可動部上の相違する2点の同一方向への移動量をそれぞれ検出する複数のセンサと、前記一方向において前記可動部の重心から前記一方向に延びる直線上にはない、前記可動部上の相違する2点をそれぞれ直線制御する複数の電磁アクチュエータと、を備えるXY可動ステージ、及び、前記手振れ検出部の手振れ量から前記手振れ量を補償するために前記可動部が回転するべき角度を前記可動部の直線移動量に換算した値である回転操作量と前記手振れ量を補償するために前記可動部が直線移動するべき値である直線操作量とを求め、前記回転操作量と前記複数のセンサで検出された移動量との差から算出される回転量に基づき、前記複数の電磁アクチュエータを用いて前記可動部を前記XY平面上で回転制御し、前記直線操作量と前記複数のセンサの少なくとも一方で検出された移動量とに基づき、前記複数の電磁アクチュエータの少なくとも一方を用いて前記可動部を前記一方向に直線制御する制御信号生成部、を備え、前記固定部は前記センサと断面が「コ」の字状に形成された継鉄と前記継鉄に間隙を有して内設された磁石とを含み、前記可動部は吸着プレートと、前記継鉄及び磁石の間隙に移動可能に挿入されたコイルとを含み、前記継鉄と前記磁石と前記コイルとは前記電磁アクチュエータを構成し、前記電磁アクチュエータと前記吸着プレートは前記吸着部を構成し、前記吸着プレートの幅は前記X、Y両方向において前記継鉄の幅より小さく形成される、ことを特徴とする。 Shake correction apparatus according to an aspect of the present invention has been made to solve the above problems, the hand shake detecting unit for detecting the amount of hand-shake, a movable portion imaging element is provided, and a fixing portion supporting the movable portion, In at least one of the X direction and the Y direction in the XY plane perpendicular to the optical axis, the suction portion that attracts the movable portion to the fixed portion by magnetic force extends from the center of gravity of the movable portion in the one direction. A plurality of sensors that detect the movement amounts of two different points on the movable part that are not on a straight line in the same direction, and that are not on a straight line that extends in one direction from the center of gravity of the movable part in the one direction. An XY movable stage including a plurality of electromagnetic actuators that linearly control two different points on the movable part, and the movable to compensate for the camera shake amount from the camera shake amount of the camera shake detection unit. A rotation operation amount that is a value obtained by converting an angle at which the movable portion should be converted into a linear movement amount of the movable portion and a linear operation amount that is a value that the movable portion should linearly move to compensate for the amount of camera shake, Based on the amount of rotation calculated from the difference between the amount of rotation operation and the amount of movement detected by the plurality of sensors, the plurality of electromagnetic actuators are used to control the rotation of the movable part on the XY plane, and the linear operation A control signal generator that linearly controls the movable part in the one direction using at least one of the plurality of electromagnetic actuators based on the amount and the amount of movement detected by at least one of the plurality of sensors, The fixed portion includes the sensor, a yoke having a cross-section of a “U” shape, and a magnet provided with a gap in the yoke, and the movable portion includes an adsorption plate and the yoke. And magnet gap The yoke, the magnet, and the coil constitute the electromagnetic actuator, the electromagnetic actuator and the suction plate constitute the suction portion, and the width of the suction plate is It is characterized by being formed smaller than the width of the yoke in both the X and Y directions.

好ましくは、前記XY可動ステージの複数の電磁アクチュエータは、互いに可動部の重心を挟んで対向配置される Preferably, the plurality of electromagnetic actuators of the XY movable stage are arranged to face each other with the center of gravity of the movable part interposed therebetween .

好ましくは、前記XY可動ステージの複数の電磁アクチュエータは、前記可動部の対角に配置される。  Preferably, the plurality of electromagnetic actuators of the XY movable stage are arranged diagonally with respect to the movable part.

好ましくは、前記XY可動ステージの複数のセンサは、互いに可動部の重心を挟んで対向配置される。  Preferably, the plurality of sensors of the XY movable stage are arranged to face each other with the center of gravity of the movable part interposed therebetween.

好ましくは、前記XY可動ステージの複数のセンサは、前記可動部の対角に配置される。  Preferably, the plurality of sensors of the XY movable stage are arranged diagonally with respect to the movable part.

以上説明したように本発明によれば,磁力のみで可動ステージを制御することができ,機械的な,回転防止構造や固定部への吸着構造が不要なため,簡易な構造で形成でき,また,機械的な吸着構造の吸引力による無駄な消費電力を削減することが可能となる。   As described above, according to the present invention, the movable stage can be controlled only by the magnetic force, and no mechanical anti-rotation structure or adsorption structure to the fixed part is required. , Wasteful power consumption due to the suction force of the mechanical suction structure can be reduced.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

ビデオカメラ,デジタルスチルカメラ等の撮像装置における物理的な光軸の補正としては,光軸に垂直なXY平面上を移動自在な可動ステージの可動部に撮像素子を設置し,可動部を手振れにより発生する像面移動を補正する量だけ移動して,撮像素子の絶対的位置を安定化させる技術がある。   For correction of the physical optical axis in an imaging apparatus such as a video camera or a digital still camera, an image sensor is installed on a movable part of a movable stage movable on an XY plane perpendicular to the optical axis, and the movable part is moved by camera shake. There is a technique for stabilizing the absolute position of the image sensor by moving the generated image plane movement by an amount to be corrected.

可動部を固定部上でXY方向に移動する場合には,(1)可動部が完全に移動自在となると,可動部が光軸回りに回転し,併せて,撮像素子による画像も回転してしまう,(2)可動部と固定部とを固定しないと可動部が固定部から離脱してしまう,という課題がある。   When moving the movable part in the XY direction on the fixed part, (1) When the movable part becomes completely movable, the movable part rotates around the optical axis, and the image by the image sensor also rotates. (2) There is a problem that the movable part is detached from the fixed part unless the movable part and the fixed part are fixed.

上記(1)光軸回りの回転に対しては,回転を抑制するコイルばねを設けたり,XYそれぞれの方向にシャフトを設け,それに沿って可動ステージを移動したりする解決手段がとられる。   For (1) rotation around the optical axis, a solution means is provided in which a coil spring for suppressing the rotation is provided, or a shaft is provided in each of XY directions, and the movable stage is moved along the shaft.

図13は,可動ステージにシャフトを設けた場合の可動部の可動方向を示した説明図である。かかる可動ステージでは,固定部10に対し,X方向のシャフト12によってXステージ14がX方向にのみ移動し,Xステージ14に設けられたY方向のシャフト16によってYステージ18がY方向にのみ移動する。しかし,かかる技術では,可動ステージの回転は抑制されるものの,構造が複雑になり,特に,シャフトに沿う方法では,2段のステージ間のがたや撓みにより不要な振動が発生し,その可動部の制御に支障をきたす。   FIG. 13 is an explanatory diagram showing the movable direction of the movable part when the shaft is provided on the movable stage. In such a movable stage, the X stage 14 is moved only in the X direction with respect to the fixed portion 10 by the X direction shaft 12, and the Y stage 18 is moved only in the Y direction by the Y direction shaft 16 provided on the X stage 14. To do. However, although this technique suppresses the rotation of the movable stage, the structure becomes complicated. In particular, in the method along the shaft, unnecessary vibration is generated due to rattling and bending between the two stages, and the movable stage is moved. This interferes with the control of the department.

また,上記(2)固定部の離脱に対しては,可動ステージが固定部に引張りばねで機械的に固定される技術が知られている。   Also, for the above (2) separation of the fixed part, a technique is known in which the movable stage is mechanically fixed to the fixed part by a tension spring.

図14は,可動ステージに引張りばねを設けた場合の可動方向を示した説明図である。かかる可動ステージでは,固定部50の上に1段の可動部52のみが設けられ,図13を用いて説明したようなシャフトによる動作方向の制限を受けていないので,XY方向に自在に移動可能である。また,引張りばね54による吸引力によって可動部52が固定部50に繋止される。しかし,かかる構成では,引張りばね54周辺のメンテナンスが必要となり,また,そのばねの弾性により可動ステージのX方向もしくはY方向への直線駆動が妨げられ,無駄な電力を消費することとなる。   FIG. 14 is an explanatory view showing the movable direction when a tension spring is provided on the movable stage. In such a movable stage, only one movable part 52 is provided on the fixed part 50, and the movement direction is not restricted by the shaft as described with reference to FIG. 13, so that it can move freely in the XY directions. It is. Further, the movable portion 52 is locked to the fixed portion 50 by the suction force by the tension spring 54. However, in this configuration, maintenance around the tension spring 54 is required, and the elasticity of the spring prevents the movable stage from being linearly driven in the X direction or Y direction, thereby consuming useless power.

例えば,上記機械的なばねにより吸引力fがZ方向に働いている場合,XY平面方向に可動部52が駆動すると,駆動方向と逆方向にf×sin(θ)の力が加わり(ばねのZ軸からの傾きをθとする),可動部の駆動を妨げる。   For example, when the suction force f is acting in the Z direction by the mechanical spring, when the movable portion 52 is driven in the XY plane direction, a force of f × sin (θ) is applied in the direction opposite to the drive direction (the spring force). The inclination from the Z-axis is assumed to be θ), impeding the driving of the movable part.

本発明の実施形態では,(1)少なくとも2つのセンサと2つの電磁アクチュエータを設けることにより光軸回りの回転を抑えもしくは制御し,また,(2)単純な構成に基づく吸着部の磁力により,可動部の離脱を回避する。その上で,2つのセンサと2つの電磁アクチュエータを用いて可動部のXY平面上の直線制御も行う。このような構成の下では,回転防止や固定部への吸着を行う機械的な構造が不要となるので,メンテナンスフリー,低消費電力,低コスト,小型化が図れる。   In the embodiment of the present invention, (1) the rotation around the optical axis is suppressed or controlled by providing at least two sensors and two electromagnetic actuators, and (2) by the magnetic force of the suction portion based on a simple configuration, Avoid moving parts away. In addition, linear control on the XY plane of the movable part is also performed using two sensors and two electromagnetic actuators. Under such a configuration, a mechanical structure for preventing rotation and adsorbing to the fixed portion is not required, so that maintenance-free, low power consumption, low cost, and miniaturization can be achieved.

以下,本発明の実施形態によるXY可動ステージを詳細に説明する。   Hereinafter, an XY movable stage according to an embodiment of the present invention will be described in detail.

(第1の実施形態:XY可動ステージ)
図1は,第1の実施形態におけるXY可動ステージの外観を示した斜視図である。かかるXY可動ステージは,可動部100と,固定部110と,撮像素子120とを含んで構成される。
(First embodiment: XY movable stage)
FIG. 1 is a perspective view showing an appearance of an XY movable stage in the first embodiment. The XY movable stage includes a movable part 100, a fixed part 110, and an image sensor 120.

上記可動部100は,撮像素子120を設置して,光軸(図面Z軸方向)に垂直なXY平面を,機械的に制限された範囲内で自在に移動する。本実施形態では,機械的な固定手段を有していないので,磁力による吸引力がない場合,XYの直線方向のみでなく,Z軸回りの回転も可能である。   The movable unit 100 is provided with an image sensor 120 and freely moves within an mechanically limited range on an XY plane perpendicular to the optical axis (Z-axis direction in the drawing). In this embodiment, since there is no mechanical fixing means, when there is no attractive force due to magnetic force, rotation not only in the XY linear direction but also around the Z axis is possible.

上記固定部110は,当該XY可動ステージが搭載される撮像装置側に固定され,可動部100を支持する。従って,固定部110は,ユーザによる手振れの影響を直接受けることとなる。   The fixed unit 110 is fixed to the imaging device side on which the XY movable stage is mounted, and supports the movable unit 100. Therefore, the fixing unit 110 is directly affected by hand shake by the user.

上記撮像素子120は,CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)から形成され,フェースプレート,LPF(Low Pass Filter)等を含むとしてもよい。かかる撮像素子120により撮像された画像が撮像装置に取り込まれる。   The image sensor 120 is formed of a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and may include a face plate, an LPF (Low Pass Filter), or the like. An image picked up by the image pickup device 120 is taken into the image pickup apparatus.

図2は,上記XY可動ステージの詳細な部分を示した組み立て図である。固定部110には,センサ140と,磁石150と,固定側継鉄(固定側バックヨーク)152と,ボールベアリング154と,が設けられ,可動部100には,コイル160と,可動側継鉄162と,が設けられている。   FIG. 2 is an assembly diagram showing a detailed portion of the XY movable stage. The fixed portion 110 is provided with a sensor 140, a magnet 150, a fixed side yoke (fixed side back yoke) 152, and a ball bearing 154, and the movable portion 100 has a coil 160 and a movable side yoke. 162.

上記センサ140は,2以上の移動量検出センサ,例えば,光の反射を利用したフォトインタラプト等から構成され,可動部100上の相違する2点の同一方向への移動量をそれぞれ検出する。かかる2点は,XY平面上のXYの少なくとも一方向において,可動部100のXY平面上の重心から該一方向に延びる直線上以外の,例えば,可動部100の対角周辺に設けることができる。   The sensor 140 is composed of two or more movement amount detection sensors, such as a photo interrupt using light reflection, and detects the movement amounts of two different points on the movable unit 100 in the same direction. Such two points can be provided in at least one direction of XY on the XY plane other than on a straight line extending in one direction from the center of gravity of the movable unit 100 on the XY plane, for example, around the diagonal of the movable unit 100. .

図3は,センサ140の位置を示したXY可動ステージを抽象的に表した平面図である。ここでXY方向にそれぞれ2つずつ設けられたセンサ140A,140B,140C,140Dは,可動部100のXY平面上の重心180からそれぞれXY方向に延びる直線182,184にはない点190A,190B,190C,190Dのそれぞれ対応した方向における,センサ140A,140B,140C,140Dから点190A,190B,190C,190Dまでの距離を測定することによって,移動量を検出する。   FIG. 3 is a plan view abstractly showing the XY movable stage showing the position of the sensor 140. Here, the two sensors 140A, 140B, 140C, 140D provided in the XY direction are points 190A, 190B, not on the straight lines 182, 184 respectively extending from the center of gravity 180 on the XY plane of the movable unit 100 in the XY direction. The amount of movement is detected by measuring the distances from the sensors 140A, 140B, 140C, 140D to the points 190A, 190B, 190C, 190D in the directions corresponding to 190C, 190D, respectively.

図2に戻って,上記磁石150は,永久磁石や電磁石等からなり,後述する固定側継鉄152および可動側継鉄162を伴って,可動部100と固定部110との間のZ方向の磁力を生成する。かかる磁石150はZ方向に沿って磁力の方向が逆の2体からなるとしても良い。   Returning to FIG. 2, the magnet 150 is made of a permanent magnet, an electromagnet, or the like, and includes a fixed yoke 152 and a movable yoke 162, which will be described later, in the Z direction between the movable portion 100 and the fixed portion 110. Generate magnetic force. The magnet 150 may be composed of two bodies whose magnetic directions are opposite in the Z direction.

上記固定側継鉄152は,磁石150の下部に設けられ,磁石150と一緒に用いることで磁気回路の一部となることができる。   The fixed side yoke 152 is provided below the magnet 150 and can be used as a part of the magnetic circuit when used together with the magnet 150.

上記ボールベアリング154は,球状に形成され,固定部110上に少なくとも3個設けられる。このボールベアリング154のボール頂点の高さは同じになるように調整されているので,可動部100は,ボールベアリング154上でXY方向に自由に動作することができる。また,ボールベアリング154は,可動部100の固定部110への吸着を制限し,可動部100と固定部110との距離を一定に保つことができる。本実施形態においては,XY可動ステージ内に4つのボールベアリング154が設けられる。   The ball bearings 154 are formed in a spherical shape and are provided on the fixed part 110 at least three. Since the height of the ball apex of the ball bearing 154 is adjusted to be the same, the movable unit 100 can freely move in the XY directions on the ball bearing 154. Further, the ball bearing 154 can restrict the adsorption of the movable part 100 to the fixed part 110 and can keep the distance between the movable part 100 and the fixed part 110 constant. In the present embodiment, four ball bearings 154 are provided in the XY movable stage.

図4は,上記ボールベアリング154による可動部100の支持機構を説明する断面図である。ここでは,吸着部としての機能も有する可動側継鉄162と磁石150とが吸引し合い,ボールベアリング154が可動部100と固定部110との間で,その距離を保つ役を担っている。このようなボールベアリング154は,XY平面のあらゆる方向に転がり,ほとんど摩擦を生じない。   FIG. 4 is a cross-sectional view for explaining a support mechanism of the movable part 100 by the ball bearing 154. Here, the movable yoke 162 that also functions as an attracting part and the magnet 150 attract each other, and the ball bearing 154 serves to maintain the distance between the movable part 100 and the fixed part 110. Such a ball bearing 154 rolls in all directions on the XY plane and generates almost no friction.

また,ボールベアリング154は,当該XY可動テーブル駆動開始時に可動部100をX方向の上下リミットおよびY方向の上下リミットに当てて,可動範囲の中心に配置されるように初期化されてもよい。   Further, the ball bearing 154 may be initialized so that the movable unit 100 is placed at the center of the movable range by applying the movable unit 100 to the vertical limit in the X direction and the vertical limit in the Y direction when driving the XY movable table.

上記コイル160は,磁石150による磁束に垂直な平面に形成される。かかるコイル160に電流を流すことによってXもしくはY方向の電磁力が生じ,電流の量に応じた直線駆動力を得ることができる。かかる駆動方式は,HDDのヘッドの位置決めに利用されるVCM(Voice Coil Motor)の原理を利用するとしても良い。   The coil 160 is formed on a plane perpendicular to the magnetic flux generated by the magnet 150. By passing a current through the coil 160, an electromagnetic force in the X or Y direction is generated, and a linear driving force corresponding to the amount of current can be obtained. Such a driving method may use the principle of VCM (Voice Coil Motor) used for positioning the head of the HDD.

上記可動側継鉄162は,コイル160の上部に設けられ,固定側継鉄152および磁石150と一緒に用いることで磁気回路の一部となることができる。   The movable yoke 162 is provided on the top of the coil 160 and can be used as a part of the magnetic circuit when used together with the fixed yoke 152 and the magnet 150.

また,本実施形態では,磁石150と,固定側継鉄152と,コイル160と,可動側継鉄162と,によって電磁アクチュエータが形成され,磁石150と,可動側継鉄162とによって吸着部が形成される。   In this embodiment, an electromagnetic actuator is formed by the magnet 150, the fixed yoke 152, the coil 160, and the movable yoke 162, and the magnet 150 and the movable yoke 162 form an attracting portion. It is formed.

このように形成された電磁アクチュエータは,コイル160と,磁石150,固定側継鉄152,可動側継鉄162による磁気回路とにより,可動部100をX方向(正および負)もしくはY方向(正および負)へ駆動することができる。また,吸着部は,その吸引力により,可動部100を固定部110に吸引し,可動部100の固定部110との距離を維持することが可能となる。   The electromagnetic actuator formed in this way moves the movable part 100 in the X direction (positive and negative) or Y direction (positive) by the coil 160 and the magnetic circuit including the magnet 150, the fixed yoke 152, and the movable yoke 162. And negative). Further, the suction part can suck the movable part 100 to the fixed part 110 by the suction force, and can maintain the distance of the movable part 100 from the fixed part 110.

図5は,電磁アクチュエータ200の外観を説明するための説明図である。ここで,(a)は正面図,(b)は平面図,(c)は側面図を示している。図5において,コイル160の長手方向の2本に分かれた直線部分の長さは,磁石150や固定側継鉄152の幅より,可動部100の可動範囲分,例えば1mmだけ大きく形成され,短手方向の幅は,磁石150の幅より可動部100の可動範囲分だけ小さく形成される。これは,可動範囲内において,磁石150による磁束の関係とコイル160に流れる電流との関係を可能な範囲で等しくし,均一な電磁力を生成するためである。   FIG. 5 is an explanatory diagram for explaining the external appearance of the electromagnetic actuator 200. Here, (a) is a front view, (b) is a plan view, and (c) is a side view. In FIG. 5, the length of the linear portion divided into two in the longitudinal direction of the coil 160 is formed larger than the width of the magnet 150 and the fixed yoke 152 by the movable range of the movable portion 100, for example, 1 mm. The width in the hand direction is formed smaller than the width of the magnet 150 by the movable range of the movable part 100. This is because, within the movable range, the relationship between the magnetic flux by the magnet 150 and the current flowing through the coil 160 are made equal within a possible range to generate a uniform electromagnetic force.

また,可動側継鉄162は,磁石150や固定側継鉄152の幅よりXY両方向において可動範囲分だけ小さく形成される。これは,可動範囲から可動側継鉄162が外れると,Z方向(光軸方向)ではない,X方向またはY方向の吸引力成分が生じ,駆動力の妨げになるからである。かかる可動側継鉄162が可動範囲内にあることによって,可動側継鉄162のX方向やY方向の吸引力を無視することができる。   Further, the movable yoke 162 is formed to be smaller than the width of the magnet 150 and the fixed yoke 152 by the movable range in both XY directions. This is because if the movable yoke 162 is removed from the movable range, a suction force component in the X direction or the Y direction, not the Z direction (optical axis direction), is generated, which hinders the driving force. Since the movable yoke 162 is within the movable range, the suction force in the X direction and the Y direction of the movable yoke 162 can be ignored.

また,上記電磁アクチュエータ200は,XY方向毎に2以上で構成され,可動部100上の相違する2点をそれぞれ同一方向に直線制御する。かかる2点は,センサ140同様,XY平面上のXYの少なくとも一方向において,可動部100のXY平面上の重心から該一方向に延びる直線上以外の,例えば,可動部100の対角周辺に設けることができる。   The electromagnetic actuator 200 is composed of two or more for each XY direction, and linearly controls two different points on the movable part 100 in the same direction. Similar to the sensor 140, these two points are located on at least one direction of XY on the XY plane other than on a straight line extending in one direction from the center of gravity of the movable unit 100 on the XY plane, for example, around the diagonal of the movable unit 100 Can be provided.

再び図3を用いて説明すると,電磁アクチュエータ200A,200B,200C,200Dは,可動部100のXY平面上の重心180からそれぞれXY方向に延びる直線182,184にはなく,かつ,センサ140A,140B,140C,140Dに対してそれぞれ駆動する方向に対応した点210A,210B,210C,210Dを駆動する。即ち,かかる電磁アクチュエータによる力の進行ベクトルは,重心180を通過しない。   Referring again to FIG. 3, the electromagnetic actuators 200A, 200B, 200C, and 200D are not located on the straight lines 182 and 184 extending in the XY direction from the center of gravity 180 on the XY plane of the movable unit 100, and the sensors 140A and 140B. , 140C, 140D, the points 210A, 210B, 210C, 210D corresponding to the driving directions are driven. That is, the force progression vector by the electromagnetic actuator does not pass through the center of gravity 180.

従って,センサ140と電磁アクチュエータ200の1つの対を例に挙げると,可動部100の任意の点190AのY方向の移動量をセンサ140Aで検出し,所望する回転操作量や直線操作量とその検出した移動量に基づき,電磁アクチュエータ200Aのコイル160に流れる電流を制御して,点190Aに対応した点210AをY方向に移動する。   Accordingly, taking one pair of the sensor 140 and the electromagnetic actuator 200 as an example, the movement amount in the Y direction of an arbitrary point 190A of the movable part 100 is detected by the sensor 140A, and a desired rotation operation amount or linear operation amount and its Based on the detected movement amount, the current flowing through the coil 160 of the electromagnetic actuator 200A is controlled to move the point 210A corresponding to the point 190A in the Y direction.

上記ではセンサ140Aと電磁アクチュエータ200Aとの対を挙げたが,Y方向には,センサ140Bと電磁アクチュエータ200Bとの対も設けられ,X方向には,センサ140Cと電磁アクチュエータ200Cおよびセンサ140Dと電磁アクチュエータ200Dとの対が設けられている。但し,XYのいずれか一方向で回転制御を行った場合,他の方向において回転を制御する必要がなくなるので,例えば,センサ140Dと電磁アクチュエータ200Dの構成を省略することもできる。このとき,X方向に残される電磁アクチュエータ200Cの力の進行ベクトルは重心を通過するように配置されてもよい。   In the above description, a pair of the sensor 140A and the electromagnetic actuator 200A has been described. However, a pair of the sensor 140B and the electromagnetic actuator 200B is also provided in the Y direction, and the sensor 140C, the electromagnetic actuator 200C, the sensor 140D, and the electromagnetic wave are provided in the X direction. A pair with the actuator 200D is provided. However, when the rotation control is performed in any one of the XY directions, it is not necessary to control the rotation in the other direction. For example, the configuration of the sensor 140D and the electromagnetic actuator 200D can be omitted. At this time, the force travel vector of the electromagnetic actuator 200C remaining in the X direction may be arranged so as to pass through the center of gravity.

このような電磁アクチュエータ200のXYのいずれか一方向の対,例えば,電磁アクチュエータ200A,200Bを,重心180を挟んだ対称構造とすることにより,可動部の直線駆動と回転駆動とを同時に制御することができる。また,このような電磁アクチュエータ200の磁力を利用した吸着部により,可動部と固定部との吸引力が生成され,可動部100の固定部110からの離脱を防ぐことができる。このような構成の下では,回転防止や固定部への吸着を行う機械的な構造が不要となり,消費電力を抑え,かつ,小型に形成することが可能となる。   Such a pair of electromagnetic actuators 200 in the XY direction, for example, the electromagnetic actuators 200A and 200B, has a symmetrical structure sandwiching the center of gravity 180, thereby simultaneously controlling the linear drive and the rotational drive of the movable part. be able to. In addition, the suction portion using the magnetic force of the electromagnetic actuator 200 generates a suction force between the movable portion and the fixed portion, and can prevent the movable portion 100 from being detached from the fixed portion 110. Under such a configuration, there is no need for a mechanical structure for preventing rotation and attracting to a fixed part, and it is possible to reduce power consumption and to be made compact.

(駆動制御方法)
次に,上記XY可動ステージを用いて,撮像素子が設けられた可動部100を固定部110に対してXY方向に駆動制御する駆動制御方法を説明する。ここで用いられるXY可動ステージは,上述したように,XYの少なくとも一方向において,可動部100の重心から該一方向に延びる直線上にはない,可動部100上の相違する2点に設けられた2つのセンサ140と,該2つのセンサ140とそれぞれ該一方向に対向配置され,可動部100の一部を該一方向に直線制御する複数の電磁アクチュエータ200とが設けられている。
(Drive control method)
Next, a drive control method for driving and controlling the movable unit 100 provided with the image sensor in the XY direction with respect to the fixed unit 110 using the XY movable stage will be described. As described above, the XY movable stage used here is provided at two different points on the movable part 100 that are not on a straight line extending in the one direction from the center of gravity of the movable part 100 in at least one direction of XY. Further, two sensors 140 and a plurality of electromagnetic actuators 200 that are arranged to face each other in the one direction and linearly control a part of the movable part 100 in the one direction are provided.

図6は,第1の実施形態における駆動制御方法の概略的なアルゴリズムを説明したブロック図である。ここでは,図3に示したセンサ140A,140Bと,電磁アクチュエータ200A,200Bとの2つの対を挙げて説明する。   FIG. 6 is a block diagram illustrating a schematic algorithm of the drive control method according to the first embodiment. Here, two pairs of sensors 140A and 140B and electromagnetic actuators 200A and 200B shown in FIG. 3 will be described.

先ず,後述する制御信号生成部において,直線方向(図3におけるY方向)への操作量となる直線操作量yが生成され,各センサ140A,140Bと,電磁アクチュエータ200A,200Bとの対による閉ループ制御系に入力される。上記各制御系では,入力された直線操作量yから,フィードバックされたそれぞれのセンサ140A,140Bの移動量y,yを減算し,アクチュエータ固有のパラメータを乗じて対応するそれぞれの電磁アクチュエータ200A,200Bを該一方向に駆動する。 First, in a control signal generation unit to be described later, a linear operation amount y that is an operation amount in the linear direction (Y direction in FIG. 3) is generated, and a closed loop is formed by a pair of each of the sensors 140A and 140B and the electromagnetic actuators 200A and 200B. Input to the control system. In each of the above control system, the linear operating signal y input, fed back each sensor 140A, 140B moving amount y a of subtracts y b, respectively of the electromagnetic actuator 200A corresponding multiplied by the actuator-specific parameters , 200B is driven in the one direction.

ここで,Ca,Cbは,電磁アクチュエータ200A,200Bの位相補償であり,Ka,Kbは,電磁アクチュエータ200A,200Bのゲインアンプの係数である。また,当該アルゴリズム上の値は,全て一方向(例えばYの正の方向)を正として定義している。   Here, Ca and Cb are phase compensations of the electromagnetic actuators 200A and 200B, and Ka and Kb are coefficients of gain amplifiers of the electromagnetic actuators 200A and 200B. Further, all values on the algorithm define one direction (for example, the positive direction of Y) as positive.

図7は,第1の実施形態における他の駆動制御方法の概略的なアルゴリズムを説明したブロック図である。かかる駆動制御方法では,図6で説明したXY平面での直線制御に加え,Z軸方向を回転中心とした回転制御が実施される。ここでも,図3に示したセンサ140A,140Bと,電磁アクチュエータ200A,200Bとの2つの対を制御している。   FIG. 7 is a block diagram illustrating a schematic algorithm of another drive control method according to the first embodiment. In such a drive control method, in addition to the linear control on the XY plane described with reference to FIG. 6, rotation control with the Z-axis direction as the center of rotation is performed. Also here, the two pairs of the sensors 140A and 140B shown in FIG. 3 and the electromagnetic actuators 200A and 200B are controlled.

上記直線操作量yと共に,制御信号生成部において回転操作量yが生成され,その回転操作量yが,各センサ140A,140Bと,電磁アクチュエータ200A,200Bとの対による閉ループ制御系にそれぞれ符号を異にして入力される。上記各制御系では,入力された回転操作量yから,フィードバックされたそれぞれのセンサ140A,140Bの移動量y,yを減算し,アクチュエータ固有のパラメータを乗じて対応するそれぞれの電磁アクチュエータ200A,200Bと該一方向に駆動する。 Together with the linear operation amount y, control the rotation operation amount y d in the signal generator is generated, the rotational operation amount y d, respectively each sensor 140A, and 140B, the electromagnetic actuator 200A, the closed loop control system by pairs of 200B Input with different signs. In each of the above control system, each of the electromagnetic actuator from the input rotational operation amount y d, fed back each sensor 140A, 140B moving amount y a of the y b is subtracted, corresponding multiplied by the actuator-specific parameters 200A and 200B are driven in the one direction.

各対においては,入力された回転操作量分だけ互いに逆の方向に直線制御するため,結果的に可動部100が回転することとなる。従って,上記回転操作量は,回転すべき角度を直線移動量に換算した値であり,角度と駆動量は非線形の関係となる。かかる角度と直線移動量との変換は,制御信号生成部で実施されるとしてもよい。   In each pair, linear control is performed in the opposite directions by the input rotational operation amount, and as a result, the movable unit 100 rotates. Therefore, the rotation operation amount is a value obtained by converting the angle to be rotated into a linear movement amount, and the angle and the drive amount have a non-linear relationship. The conversion between the angle and the linear movement amount may be performed by the control signal generation unit.

ここで,図7に示したアルゴリズムを利用し,可動部100を直線においてのみ駆動する場合,回転操作量をゼロ(0)に設定する。また,回転においてのみ駆動する場合,直線操作量をゼロ(0)に設定すればよい。   Here, when the algorithm shown in FIG. 7 is used and the movable unit 100 is driven only in a straight line, the rotation operation amount is set to zero (0). Further, when driving only in rotation, the linear operation amount may be set to zero (0).

図8は,図7に示した駆動制御方法の変形例を示したブロック図である。かかる駆動制御方法では,電磁アクチュエータ200Aの制御信号fを,電磁アクチュエータ200Bの制御信号に対してフィードフォワードし,電磁アクチュエータ200A,200Bを同方向に駆動することで,可動部100を直線制御する。さらに,回転操作量yからそれぞれの点の移動量の差y−yを減じて電磁アクチュエータ200Bに回転補償することにより,可動部100を回転制御する。 FIG. 8 is a block diagram showing a modification of the drive control method shown in FIG. In such a drive control method, the control signal f of the electromagnetic actuator 200A is fed forward with respect to the control signal of the electromagnetic actuator 200B, and the movable actuator 100 is linearly controlled by driving the electromagnetic actuators 200A and 200B in the same direction. Further, by rotating the compensation to the electromagnetic actuator 200B subtracts the difference y b -y a moving amount of each point from the rotation operation amount y d, controls the rotation of the movable section 100.

このような制御系では,上記回転操作量がゼロであり,可動部100を直線に移動させるときであっても,各電磁アクチュエータの個々の特徴によって移動量が等しくならない場合がある。従って,図8の制御系においては,センサ140Bとセンサ140Aとの差をフィードバックして回転を補償し,可動部100の不要な回転を制限している。   In such a control system, the amount of rotational operation is zero, and even when moving the movable part 100 in a straight line, the amount of movement may not be equal depending on the individual characteristics of each electromagnetic actuator. Therefore, in the control system of FIG. 8, the difference between the sensor 140B and the sensor 140A is fed back to compensate for the rotation, and the unnecessary rotation of the movable unit 100 is limited.

上述したアルゴリズムにより,可動部100の直線制御はもとより,回転制御も可能となる。尚,駆動制御方法は,上述したアルゴリズムに限られず,制御入力の位置をゲインの前後にシフトするなど等価変換されたアルゴリズムも本実施形態の技術的範囲に含まれる。   With the algorithm described above, not only linear control of the movable part 100 but also rotation control is possible. The drive control method is not limited to the algorithm described above, and an equivalently converted algorithm such as shifting the position of the control input before and after the gain is also included in the technical scope of the present embodiment.

(第2の実施形態:XY可動テーブル)
第1の実施形態においては,磁石150と可動側継鉄162とで吸着部を構成したが,本実施形態においては,吸着プレートを利用した他の構成による吸着部を説明する。
(Second embodiment: XY movable table)
In the first embodiment, the magnet 150 and the movable yoke 162 constitute the attraction unit. In the present embodiment, an attraction unit having another configuration using an attraction plate will be described.

図9は,第2の実施形態におけるXY可動ステージの詳細な部分を示した組み立て図である。ここで,固定部110には,センサ140と,磁石150と,継鉄300と,ボールベアリング154と,が設けられ,可動部100には,コイル160と,吸着プレート310と,が設けられている。   FIG. 9 is an assembly diagram showing a detailed portion of the XY movable stage in the second embodiment. Here, the fixed portion 110 is provided with a sensor 140, a magnet 150, a yoke 300, and a ball bearing 154, and the movable portion 100 is provided with a coil 160 and an adsorption plate 310. Yes.

第1の実施形態における構成要素として既に述べたセンサ140と,磁石150と,ボールベアリング154と,コイル160とは,実質的に機能が同一なので重複説明を省略し,ここでは,構成が相違する継鉄300と,吸着プレート310とを主に説明する。   Since the sensor 140, the magnet 150, the ball bearing 154, and the coil 160, which have already been described as the constituent elements in the first embodiment, have substantially the same functions, redundant description is omitted, and the configurations are different here. The yoke 300 and the suction plate 310 will be mainly described.

上記継鉄300は,コの字上に形成され,内設された磁石150と一緒に用いることで,磁気回路の一部となることができる。こうして,磁石150と継鉄300の可動部側との空間にZ方向の磁力が生成され,その間を可動部100のコイル160が移動する。かかるコイル160に電流を流すことによってXもしくはY方向の電磁力が生じ,電流の量に応じた直線駆動力を得ることができる。   The yoke 300 is formed in a U shape and can be used as a part of a magnetic circuit by being used together with the magnet 150 provided therein. In this way, a magnetic force in the Z direction is generated in the space between the magnet 150 and the movable part side of the yoke 300, and the coil 160 of the movable part 100 moves between them. By passing a current through the coil 160, an electromagnetic force in the X or Y direction is generated, and a linear driving force corresponding to the amount of current can be obtained.

上記吸着プレート310は,鉄等,磁石への吸引力を生じる材料から形成され,電磁アクチュエータの漏れ磁束を受けて可動部100を固定部110に吸着させる。従って,本実施形態における吸着部は,吸着プレート310と電磁アクチュエータとからなる。ここでは,非機械的な,非常に簡単な構成で可動部100の吸着を実施することができる。   The suction plate 310 is made of a material that generates an attractive force to the magnet, such as iron, and receives the leakage magnetic flux of the electromagnetic actuator to cause the movable portion 100 to be attracted to the fixed portion 110. Therefore, the suction part in the present embodiment includes the suction plate 310 and the electromagnetic actuator. Here, the suction of the movable part 100 can be performed with a non-mechanical and very simple configuration.

図10は,第2の実施形態における電磁アクチュエータ400の外観を説明するための説明図である。ここで,(a)は正面図,(b)は平面図,(c)は側面図を示している。かかる電磁アクチュエータ400の場合も,図5の電磁アクチュエータ200同様に,コイル160の長手方向の直線部分の長さは,磁石150や継鉄300の幅より,X方向の可動範囲分だけ大きく形成され,短手方向の幅は,磁石150の幅よりY方向の可動範囲分だけ小さく形成される。これは,上述したように,可動範囲内において,磁石150による磁束の関係とコイル160に流れる電流との関係を可能な限り等しくし,均一な電磁力を得るためである。   FIG. 10 is an explanatory diagram for explaining the external appearance of the electromagnetic actuator 400 according to the second embodiment. Here, (a) is a front view, (b) is a plan view, and (c) is a side view. In the case of the electromagnetic actuator 400 as well, the length of the linear portion in the longitudinal direction of the coil 160 is formed to be larger than the width of the magnet 150 and the yoke 300 by the movable range in the X direction, similarly to the electromagnetic actuator 200 of FIG. The width in the short direction is formed to be smaller than the width of the magnet 150 by the movable range in the Y direction. This is because, as described above, within the movable range, the relationship between the magnetic flux by the magnet 150 and the current flowing through the coil 160 are made as equal as possible to obtain a uniform electromagnetic force.

また,吸着プレート310は,磁石150や継鉄300の幅よりXY両方向において可動範囲分だけ小さく形成される。これは,可動範囲から吸着プレート310が外れると,Z方向ではない,X方向またはY方向の吸引力成分が生じ,駆動力の妨げになるからである。かかる吸着プレート310が可動範囲内にあることによって,吸着プレート310のX方向やY方向の吸引力を無視することができる。   Further, the suction plate 310 is formed smaller than the width of the magnet 150 and the yoke 300 by the movable range in both the XY directions. This is because if the suction plate 310 deviates from the movable range, a suction force component in the X direction or the Y direction, not the Z direction, is generated, which hinders the driving force. When the suction plate 310 is within the movable range, the suction force in the X direction or the Y direction of the suction plate 310 can be ignored.

図11は,上記のようなXY可動ステージの可動部100をY方向にシフトした場合の磁気力の変化を示した説明図である。ここでは,可動部100をY方向に−1.0mm〜+1.0mmまで動かし,そのときの吸着プレート310の各方向への磁気力を示している。図から理解されるように,吸着プレート310にはZ方向下向き約―6.00gfの磁気力Fzが働き,可動部100と固定部110とを吸着する。   FIG. 11 is an explanatory diagram showing changes in magnetic force when the movable unit 100 of the XY movable stage as described above is shifted in the Y direction. Here, the movable portion 100 is moved in the Y direction from −1.0 mm to +1.0 mm, and the magnetic force in each direction of the suction plate 310 at that time is shown. As understood from the figure, a magnetic force Fz of about −6.00 gf downward in the Z direction acts on the adsorption plate 310 to adsorb the movable part 100 and the fixed part 110.

また,吸着プレート310には,Y方向への磁気力Fyも働くが,吸着プレート310の大きさを継鉄300の幅より小さく形成する構成により,その値は無視することができる。   Further, although the magnetic force Fy in the Y direction also acts on the suction plate 310, the value can be ignored by the configuration in which the size of the suction plate 310 is made smaller than the width of the yoke 300.

かかる構成によると,撮像素子を含む可動部100の重量は24.00gf(6.00×4箇所)まで増やすことができる。また,本実施形態において,1.00gf(Fy)程度の反発力は電磁アクチュエータ400の駆動にあまり影響しない。かかる吸着プレート310は,可動部100の重量と電磁アクチュエータ400の電磁力とを踏まえて適切な大きさに形成することができる。   According to such a configuration, the weight of the movable unit 100 including the image sensor can be increased to 24.00 gf (6.00 × 4 locations). In this embodiment, the repulsive force of about 1.00 gf (Fy) does not significantly affect the driving of the electromagnetic actuator 400. Such a suction plate 310 can be formed in an appropriate size based on the weight of the movable part 100 and the electromagnetic force of the electromagnetic actuator 400.

また,吸着プレート310の大きさが制限される場合,可動部100と固定部110との距離を変化させることによって,その磁気力を調整することもできる。   Further, when the size of the suction plate 310 is limited, the magnetic force can be adjusted by changing the distance between the movable unit 100 and the fixed unit 110.

このような吸着プレート310と電磁アクチュエータとによる吸着部によって,可動部100と固定部110とが吸着し,可動部100の固定部110からの離脱を防ぐことができる。   Due to the suction part by the suction plate 310 and the electromagnetic actuator, the movable part 100 and the fixed part 110 are sucked, and the movable part 100 can be prevented from being detached from the fixed part 110.

(第3の実施形態:手振れ補正装置)
続いて,上記XY可動ステージを手振れ補正の駆動対象として用いた手振れ補正装置について説明する。
(Third embodiment: camera shake correction apparatus)
Next, a description will be given of a camera shake correction apparatus that uses the XY movable stage as a target for camera shake correction.

図12は,第3の実施形態における手振れ補正装置500の概略的な機能を示したブロック図である。当該手振れ補正装置500は,手振れ検出部510と,XY可動ステージ520と,制御信号生成部530とを含んで構成される。ここでは理解を容易にするためXYのいずれか一方向のみの系統を挙げて説明しているが,当然にして他の方向の制御も可能である。   FIG. 12 is a block diagram illustrating a schematic function of the camera shake correction apparatus 500 according to the third embodiment. The camera shake correction apparatus 500 includes a camera shake detection unit 510, an XY movable stage 520, and a control signal generation unit 530. Here, in order to facilitate understanding, a system in only one direction of XY has been described, but naturally control in other directions is also possible.

上記手振れ検出部510は,手振れ補正装置500がユーザの手振れ等によってぶれてしまった直線移動量もしくは角度を検出する。かかる手振れ検出部510は,位置センサ,速度センサ,加速度センサ,角度センサ,角速度センサ,角加速度センサ等で形成され得る。   The camera shake detection unit 510 detects a linear movement amount or angle that the camera shake correction apparatus 500 has shaken due to a user's camera shake or the like. The camera shake detection unit 510 can be formed of a position sensor, a speed sensor, an acceleration sensor, an angle sensor, an angular velocity sensor, an angular acceleration sensor, or the like.

上記XY可動ステージ520は,撮像素子120が設けられた可動部100と,該可動部100を支持する固定部110と,磁力により該可動部100を該固定部110に吸着する吸着部と,XYの少なくとも一方向において,該可動部100の重心から該一方向に延びる直線上にはない,可動部上の相違する2点の同一方向への移動量をそれぞれ検出する複数のセンサ140と,該一方向において,該可動部の重心から該一方向に延びる直線上にはない,可動部上の相違する2点をそれぞれ直線制御する複数の電磁アクチュエータ200と,を備え,センサ140で検出した移動量を制御信号生成部530に送信し,制御信号生成部530からの制御入力を受信して可動部100を駆動する。   The XY movable stage 520 includes a movable part 100 provided with an image sensor 120, a fixed part 110 that supports the movable part 100, an adsorption part that attracts the movable part 100 to the fixed part 110 by magnetic force, and XY. A plurality of sensors 140 for detecting movement amounts of two different points on the movable part in the same direction that are not on a straight line extending in the one direction from the center of gravity of the movable part 100 in at least one direction of A plurality of electromagnetic actuators 200 for linearly controlling two different points on the movable part that are not on a straight line extending in one direction from the center of gravity of the movable part in one direction, and the movement detected by the sensor 140 The amount is transmitted to the control signal generation unit 530, and the control input from the control signal generation unit 530 is received to drive the movable unit 100.

上記制御信号生成部530は,マイコン(CPU,DSP)やFPGA(Field Programmable Gate Array)等の半導体集積回路から構成され,手振れ検出部510の手振れ量(直線移動量もしくは角度)から回転操作量と直線操作量を求め,該回転操作量と,上記複数のセンサ140で検出された移動量の差から算出される回転量とに基づき,上記複数の電磁アクチュエータ200を用いて可動部100をXY平面上で回転制御し,該直線操作量と,上記複数のセンサの少なくとも一方で検出された移動量とに基づき,上記複数の電磁アクチュエータの少なくとも一方を用いて可動部を上記一方向に直線制御する。   The control signal generation unit 530 is composed of a semiconductor integrated circuit such as a microcomputer (CPU, DSP) or FPGA (Field Programmable Gate Array), and the amount of rotation operation and the amount of rotation operation are determined from the amount of camera shake (linear movement amount or angle) of the camera shake detection unit 510. A linear operation amount is obtained, and based on the rotation operation amount and the rotation amount calculated from the difference between the movement amounts detected by the plurality of sensors 140, the movable unit 100 is moved to the XY plane using the plurality of electromagnetic actuators 200. Rotation control is performed, and the movable part is linearly controlled in the one direction using at least one of the plurality of electromagnetic actuators based on the linear operation amount and the movement amount detected by at least one of the plurality of sensors. .

図12を用いて,本実施形態における制御信号生成部530のさらに詳細な動作を述べると,手振れ検出部510の角速度センサで検出された手振れ角速度θ’を受信し,その角速度θ’を積分して手振れによる傾き角度θを求める。さらに像面移動量yをd×tan(θ)によって算出する(dは撮像装置の焦点距離)。こうして算出されたyからセンサ140の値を減算して電磁アクチュエータ200に出力する。上記角度θの演算時にpanning処理を行うこともできる。   A more detailed operation of the control signal generation unit 530 in this embodiment will be described with reference to FIG. 12. The camera shake angular velocity θ ′ detected by the angular velocity sensor of the camera shake detection unit 510 is received, and the angular velocity θ ′ is integrated. Thus, the inclination angle θ due to camera shake is obtained. Further, the image plane movement amount y is calculated by d × tan (θ) (d is the focal length of the imaging device). The value of the sensor 140 is subtracted from the y calculated in this way and output to the electromagnetic actuator 200. Panning processing can also be performed when the angle θ is calculated.

ここでは,フィードバックを用いた位置制御を行っているが,かかる場合に限られず,位置制御,速度制御,加速度制御,角速度制御,角加速度制御いずれも適用することが可能である。   Here, position control using feedback is performed. However, the present invention is not limited to this, and any of position control, speed control, acceleration control, angular velocity control, and angular acceleration control can be applied.

上記の構成では,上述したXY可動ステージ同様,吸着部により,可動部100と固定部110との吸引力が生成され,可動部100の固定部110からの離脱を防ぐことができる。また,2つのセンサと2つの電磁アクチュエータのみの構成により,可動部100の直線駆動と回転駆動とを同時に制御することが可能となる。かかる手振れ補正装置500は,回転防止や固定部への吸着を行う機械的な構造が無いため,容易な構造で形成することができ,無駄な消費電力を費やすこともない。   In the above configuration, like the above-described XY movable stage, the suction portion generates a suction force between the movable portion 100 and the fixed portion 110, thereby preventing the movable portion 100 from being detached from the fixed portion 110. In addition, the configuration of only two sensors and two electromagnetic actuators enables simultaneous control of the linear drive and the rotational drive of the movable part 100. Such a camera shake correction apparatus 500 does not have a mechanical structure for preventing rotation and attracting to a fixed portion, and therefore can be formed with an easy structure, and wasteful power consumption is not consumed.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば,上記の実施形態で,センサ140としてフォトインタラプトを挙げているが,かかる場合に限られず,渦電流方式や超音波方式等,当業者であれば容易に考えられる変位センサを本実施形態に適用することができる。   For example, in the above embodiment, a photo interrupt is cited as the sensor 140. However, the present invention is not limited to this, and a displacement sensor that can be easily considered by those skilled in the art, such as an eddy current method or an ultrasonic method, is used in this embodiment. Can be applied.

また,可動部100の支持機構としてボールベアリング154を挙げているが,摩擦を無視できる他の様々な支持機構を適用することができる。   Moreover, although the ball bearing 154 is mentioned as a support mechanism of the movable part 100, other various support mechanisms which can disregard friction are applicable.

また,制御信号生成部としてマイコンやFPGAを挙げているが,非線形補正等が少ないもしくは無視してよい程度であれば,制御信号生成部をアナログ回路によって形成することもできる。   Further, although the microcomputer and FPGA are cited as the control signal generation unit, the control signal generation unit can be formed by an analog circuit as long as the non-linear correction or the like is small or negligible.

なお,本明細書の駆動制御方法における各ブロックは,必ずしもブロック図として記載された順序に沿って時系列に処理する必要はなく,並列的あるいは個別に実行される処理も含むとしても良い。   Note that each block in the drive control method of the present specification does not necessarily have to be processed in time series in the order described as a block diagram, and may include processing executed in parallel or individually.

第1の実施形態におけるXY可動ステージの外観を示した斜視図である。It is the perspective view which showed the external appearance of the XY movable stage in 1st Embodiment. 上記XY可動ステージの詳細な部分を示した組み立て図である。It is an assembly figure showing the detailed portion of the above-mentioned XY movable stage. センサの位置を示したXY可動ステージを抽象的に表した平面図である。It is the top view which represented XY movable stage which showed the position of a sensor abstractly. ボールベアリングによる可動部の支持機構を説明する断面図である。It is sectional drawing explaining the support mechanism of the movable part by a ball bearing. 電磁アクチュエータの外観を説明するための説明図である。It is explanatory drawing for demonstrating the external appearance of an electromagnetic actuator. 第1の実施形態における駆動制御方法の概略的なアルゴリズムを説明したブロック図である。It is a block diagram explaining the schematic algorithm of the drive control method in 1st Embodiment. 第1の実施形態における他の駆動制御方法の概略的なアルゴリズムを説明したブロック図である。It is a block diagram explaining the schematic algorithm of the other drive control method in 1st Embodiment. 図7に示した駆動制御方法の変形例を示したブロック図である。FIG. 8 is a block diagram showing a modified example of the drive control method shown in FIG. 7. 第2の実施形態におけるXY可動ステージの詳細な部分を示した組み立て図である。It is an assembly figure showing the detailed portion of the XY movable stage in a 2nd embodiment. 第2の実施形態における電磁アクチュエータの外観を説明するための説明図である。It is explanatory drawing for demonstrating the external appearance of the electromagnetic actuator in 2nd Embodiment. 上記のようなXY可動ステージの可動部をY方向にシフトした場合の磁気力の変化を示した説明図である。It is explanatory drawing which showed the change of the magnetic force at the time of shifting the movable part of the above XY movable stages to a Y direction. 第3の実施形態における手振れ補正装置の概略的な機能を示したブロック図である。It is the block diagram which showed the schematic function of the camera-shake correction apparatus in 3rd Embodiment. 可動ステージにシャフトを設けた場合の可動部の可動方向を示した説明図である。It is explanatory drawing which showed the movable direction of the movable part at the time of providing a shaft in a movable stage. 可動ステージに引張りばねを設けた場合の可動方向を示した説明図である。It is explanatory drawing which showed the movable direction at the time of providing a tension spring in a movable stage.

符号の説明Explanation of symbols

100 可動部
110 固定部
120 撮像素子
140 センサ
150 磁石
152 固定側継鉄
160 コイル
162 可動側継鉄
200,400 電磁アクチュエータ
300 継鉄
310 吸着プレート
DESCRIPTION OF SYMBOLS 100 Movable part 110 Fixed part 120 Image sensor 140 Sensor 150 Magnet 152 Fixed side yoke 160 Coil 162 Movable side yoke 200,400 Electromagnetic actuator 300 yoke 310 Adsorption plate

Claims (5)

手振れ量を検出する手振れ検出部
撮像素子が設けられた可動部と、前記可動部を支持する固定部と、磁力により前記可動部を前記固定部に吸着する吸着部と、光軸に対して垂直なXY平面内のX方向とY方向との少なくとも一方向において、前記可動部の重心から前記一方向に延びる直線上にはない、可動部上の相違する2点の同一方向への移動量をそれぞれ検出する複数のセンサと、前記一方向において前記可動部の重心から前記一方向に延びる直線上にはない、前記可動部上の相違する2点をそれぞれ直線制御する複数の電磁アクチュエータと、を備えるXY可動ステージ、及び、
前記手振れ検出部の手振れ量から前記手振れ量を補償するために前記可動部が回転するべき角度を前記可動部の直線移動量に換算した値である回転操作量と前記手振れ量を補償するために前記可動部が直線移動するべき値である直線操作量を求め、前記回転操作量と前記複数のセンサで検出された移動量との差から算出される回転量に基づき、前記複数の電磁アクチュエータを用いて前記可動部を前記XY平面上で回転制御し、前記直線操作量と前記複数のセンサの少なくとも一方で検出された移動量とに基づき、前記複数の電磁アクチュエータの少なくとも一方を用いて前記可動部を前記一方向に直線制御する制御信号生成部を備え、
前記固定部は前記センサと断面が「コ」の字状に形成された継鉄と前記継鉄に間隙を有して内設された磁石とを含み前記可動部は吸着プレートと、前記継鉄及び磁石の間隙に移動可能に挿入されたコイルとを含み前記継鉄と前記磁石と前記コイルとは前記電磁アクチュエータを構成し前記電磁アクチュエータと前記吸着プレートは前記吸着部を構成し
前記吸着プレートの幅は前記X、Y両方向において前記継鉄の幅より小さく形成される、ことを特徴とする、手振れ補正装置。
A camera shake detection unit that detects the amount of camera shake ,
A movable portion imaging element is provided, and a fixing portion supporting the movable portion, and a suction unit for sucking the movable portion to the fixed portion by a magnetic force, the X direction in the XY plane perpendicular to the optical axis in at least one direction and the Y direction, and a plurality of sensors for detecting not a straight line extending in the one direction from the center of gravity of the movable portion, the movement amount in the same direction of the two points of difference on the movable portion, respectively, the not on a straight line extending in the one direction from the center of gravity of the movable portion in one direction, XY movable stage and a plurality of electromagnetic actuators for linear control respective different two points a on the movable part and,
In order to compensate for the amount of rotation operation and the amount of camera shake, which is a value obtained by converting the angle at which the movable unit should rotate in order to compensate for the amount of camera shake from the amount of camera shake of the camera shake detection unit. It obtains a linear operation amount the movable portion is a value to be linearly moved, based on the rotation amount calculated from the difference between the rotational operation amount and the movement amount detected by the plurality of sensors, the plurality of electromagnetic actuators and rotation control said movable portion on the XY plane with, on the basis of said linear operation amount and the movement amount detected at least one of said plurality of sensors, the using at least one of the plurality of electromagnetic actuators control signal generating unit for linearly controlling the movable portion in the one direction, Bei give a,
The fixed portion includes the sensor, a yoke having a cross-section of a “U” shape, and a magnet provided with a gap in the yoke, and the movable portion includes an adsorption plate and the yoke. A coil inserted movably in a gap between the iron and the magnet, the yoke, the magnet, and the coil constitute the electromagnetic actuator, and the electromagnetic actuator and the suction plate constitute the suction portion ,
The image stabilization apparatus according to claim 1, wherein a width of the suction plate is smaller than a width of the yoke in both the X and Y directions .
前記XY可動ステージの複数の電磁アクチュエータは、互いに可動部の重心を挟んで対向配置されることを特徴とする、請求項1に記載の手振れ補正装置。   The camera shake correction apparatus according to claim 1, wherein the plurality of electromagnetic actuators of the XY movable stage are arranged to face each other with the center of gravity of the movable part interposed therebetween. 前記XY可動ステージの複数の電磁アクチュエータは、前記可動部の対角に配置されることを特徴とする、請求項2に記載の手振れ補正装置。   The camera shake correction device according to claim 2, wherein the plurality of electromagnetic actuators of the XY movable stage are arranged diagonally with respect to the movable portion. 前記XY可動ステージの複数のセンサは、互いに可動部の重心を挟んで対向配置されることを特徴とする、請求項1乃至3のいずれかに記載の手振れ補正装置。   4. The camera shake correction apparatus according to claim 1, wherein the plurality of sensors of the XY movable stage are arranged to face each other with the center of gravity of the movable part interposed therebetween. 5. 前記XY可動ステージの複数のセンサは、前記可動部の対角に配置されることを特徴とする、請求項4に記載の手振れ補正装置。
The camera shake correction apparatus according to claim 4, wherein the plurality of sensors of the XY movable stage are arranged diagonally to the movable part.
JP2006053714A 2006-02-28 2006-02-28 Image stabilizer Expired - Fee Related JP4564930B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006053714A JP4564930B2 (en) 2006-02-28 2006-02-28 Image stabilizer
KR1020060049991A KR100823268B1 (en) 2006-02-28 2006-06-02 XY moving stage, driving method thereof, and hand-shaking compensation apparatus adopting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053714A JP4564930B2 (en) 2006-02-28 2006-02-28 Image stabilizer

Publications (2)

Publication Number Publication Date
JP2007232980A JP2007232980A (en) 2007-09-13
JP4564930B2 true JP4564930B2 (en) 2010-10-20

Family

ID=38553648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053714A Expired - Fee Related JP4564930B2 (en) 2006-02-28 2006-02-28 Image stabilizer

Country Status (2)

Country Link
JP (1) JP4564930B2 (en)
KR (1) KR100823268B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232141B2 (en) 2012-03-28 2016-01-05 Olympus Corporation Moving member control apparatus and imaging apparatus incorporating the same
KR102186788B1 (en) * 2020-07-31 2020-12-04 주식회사 성지전자 Ois module assembling kit for camera

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5181603B2 (en) * 2007-09-28 2013-04-10 カシオ計算機株式会社 Imaging apparatus and program
KR100980794B1 (en) 2008-02-27 2010-09-10 유창산업기계(주) Image photographing apparatus for integrating function of vibration correction and auto focusing
KR101074034B1 (en) 2009-10-26 2011-10-17 삼성전자주식회사 Image Stabilizer
KR101022938B1 (en) * 2009-11-10 2011-03-16 삼성전기주식회사 Image stabilization mechanism of camera module
JP6057510B2 (en) * 2011-12-16 2017-01-11 キヤノン株式会社 Image shake correction apparatus, optical apparatus including the same, and imaging apparatus
KR20130069406A (en) 2011-12-16 2013-06-26 캐논 가부시끼가이샤 Image stabilization apparatus, optical apparatus, and imaging apparatus
JP2013125228A (en) * 2011-12-16 2013-06-24 Canon Inc Image blur correcting device, optical device including the same, and imaging device
JP2013140252A (en) 2012-01-04 2013-07-18 Nikon Corp Blur correction device, lens barrel, and imaging apparatus
JP5978635B2 (en) * 2012-02-01 2016-08-24 リコーイメージング株式会社 Stage device and camera shake correction device
KR102044694B1 (en) * 2012-06-05 2019-11-14 엘지이노텍 주식회사 Camera Module
KR101533339B1 (en) * 2012-09-11 2015-07-03 삼성테크윈 주식회사 User input device and camera control system with the same
WO2014188902A1 (en) * 2013-05-22 2014-11-27 リコーイメージング株式会社 Photographing device and control method therefor
JP6626725B2 (en) * 2016-01-29 2019-12-25 日本電産サンキョー株式会社 Actuator
KR102135968B1 (en) 2017-12-04 2020-07-20 김진환 Moving stage for female and male connection
KR102381995B1 (en) * 2019-12-10 2022-03-31 삼성전기주식회사 Camera module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168154A (en) * 2003-12-02 2005-06-23 Chiba Seimitsu:Kk Plane motor
JP2005184122A (en) * 2003-12-16 2005-07-07 Nikon Corp Camera having camera shake correction function
JP2006003421A (en) * 2004-06-15 2006-01-05 Sony Corp Lens driving mechanism and imaging apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145663A (en) * 1996-11-02 1998-05-29 Hewlett Packard Co <Hp> Electronic camera
JP2005250284A (en) * 2004-03-05 2005-09-15 Pentax Corp Stage device and camera shake correction unit using stage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168154A (en) * 2003-12-02 2005-06-23 Chiba Seimitsu:Kk Plane motor
JP2005184122A (en) * 2003-12-16 2005-07-07 Nikon Corp Camera having camera shake correction function
JP2006003421A (en) * 2004-06-15 2006-01-05 Sony Corp Lens driving mechanism and imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232141B2 (en) 2012-03-28 2016-01-05 Olympus Corporation Moving member control apparatus and imaging apparatus incorporating the same
US9516232B2 (en) 2012-03-28 2016-12-06 Olympus Corporation Moving member control apparatus and imaging apparatus incorporating the same
KR102186788B1 (en) * 2020-07-31 2020-12-04 주식회사 성지전자 Ois module assembling kit for camera

Also Published As

Publication number Publication date
KR20070089559A (en) 2007-08-31
KR100823268B1 (en) 2008-04-21
JP2007232980A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4564930B2 (en) Image stabilizer
CN101867722B (en) Image stabilization driving assembly
JP5109450B2 (en) Blur correction device and optical apparatus
JP4899712B2 (en) Lens barrel
WO2013183270A1 (en) Position detection device
WO2008012868A1 (en) Image blur correction device and imaging device with the same
WO2013145481A1 (en) Position control device
JP2010078842A (en) Camera shake correction device for camera
JP2009128841A (en) Image blur correction device
JP2011066580A (en) Camera-shake correction device
JP2006149105A (en) Translation device and actuator, lens unit, and camera equipped therewith
JP5266091B2 (en) Optical correction unit, lens barrel and imaging device
JP2006349942A (en) Image blur correcting device and imaging apparatus equipped therewith
JP4503008B2 (en) Actuator, lens unit and camera equipped with the same
JP2010286810A (en) Blur correction device and optical instrument
JP2009204629A (en) Imaging apparatus
JP2012108399A (en) Anti-vibration actuator, and lens unit and camera with the same
JP2011085754A (en) Image stabilizer
KR101638628B1 (en) a Image stabilization device of a camera
JP4742558B2 (en) Blur correction imaging apparatus and camera
JP2011100045A (en) Image blurring-correcting device
KR20230163286A (en) Miniature anti-shake gimbal camera module
JP2010128029A (en) Blur correction device, lens barrel, and optical appliance
US11825198B2 (en) Drive device that drives movable unit by using actuator, image blur correcting device, image pickup apparatus, and lens barrel
CN212029014U (en) Miniature anti-shake cloud platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees