JP4564648B2 - DC power supply for electric resistance ash melting furnace - Google Patents

DC power supply for electric resistance ash melting furnace Download PDF

Info

Publication number
JP4564648B2
JP4564648B2 JP2000369182A JP2000369182A JP4564648B2 JP 4564648 B2 JP4564648 B2 JP 4564648B2 JP 2000369182 A JP2000369182 A JP 2000369182A JP 2000369182 A JP2000369182 A JP 2000369182A JP 4564648 B2 JP4564648 B2 JP 4564648B2
Authority
JP
Japan
Prior art keywords
furnace
electrode
power supply
main electrode
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000369182A
Other languages
Japanese (ja)
Other versions
JP2002171763A (en
Inventor
輝男 小倉
壮史 小野田
淳 平岡
量徳 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
IHI Enviro Corp
Original Assignee
Sansha Electric Manufacturing Co Ltd
IHI Enviro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd, IHI Enviro Corp filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2000369182A priority Critical patent/JP4564648B2/en
Publication of JP2002171763A publication Critical patent/JP2002171763A/en
Application granted granted Critical
Publication of JP4564648B2 publication Critical patent/JP4564648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Furnace Details (AREA)
  • Rectifiers (AREA)
  • Control Of Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は廃棄物の焼却灰や飛灰等の灰を溶融処理するようにした電気抵抗式灰溶融炉用直流電源装置に関するものである。
【0002】
【従来の技術】
廃棄物の焼却灰等を溶融処理するために用いられている電気抵抗式灰溶融炉は、図5にその一例の概略を示す如く、炉蓋2の中心部に主電極3を昇降可能に貫通させて下端部を炉体1内の溶融メタル層5上の溶融スラグ6内に挿入するようにし、該主電極3と炉体1の底部に設けた炉底電極4との間に、直流電源装置7により制御された出力電圧に基づく電流を溶融スラグ6を通して流すことにより、炉体1内に投入された灰8を順次ジュール熱で溶融させるようにしてある。
【0003】
上記灰溶融炉では、主電極3の溶融スラグ6内への挿入量や溶融メタル層5の厚さ等の変化に伴う電極3,4間の負荷抵抗が広範囲となることから、直流電源装置7では、負荷抵抗に応じた広範囲な電圧を出力する必要がある。
【0004】
そのため、従来の直流電源装置7は、図6に一例を示す如く、複数(図では3つ)のタップ9a,9b,9cの切換操作で出力電圧の変圧比を変えることができるようにしてある整流器用変圧器10の一次側を交流電源回路に接続して、該整流器用変圧器10の二次側に、主電極3と炉底電極4に接続し且つ各々サイリスタ整流器12a,12b,12cを有して上記タップ9a,9b,9cにそれぞれ接続した並列配置の整流回路部13a,13b,13cを有する負荷側回路11を接続した構成としてある。14は直流リアクトルを示す。
【0005】
【発明が解決しようとする課題】
ところが、上記直流電源装置7の場合、出力電圧を変更するためには、タップ9a,9b,9cの切換操作が必要となるが、タップ切換時には無負荷状態にしなければならないので、無段階に連続的に電圧調整を行うことができず、安定操業の面で不利であり、又、電源側への高調波電流を削減するための高調波対策として、24パルス又は12パルスの回路11を用いることになるが、タップ数分だけ整流回路部が存在するため、広いスペースが必要となり、全体的に大型となる問題がある。
【0006】
因に、炉体1内に、主電極3とは別に出滓電極を昇降可能に設けて、溶融スラグを連続出滓させるようにしてある双極型の電気抵抗式灰溶融炉においては、上記直流電源装置7とは別に、同様な直流電源装置を出滓電極用に装備させ、主電極と出滓電極のそれぞれに単独に整流器を備えた構成としてあるため、装置全体がより大型となり、設置スペース上に問題があった。
【0007】
そこで、本発明は、電極への出力電圧を負荷抵抗の変動に応じて無段階に連続的に調整することができるようにすると共に、装置全体の小型化を図ることができるようにしようとするものである。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するために、炉体内に下部で連通するようにした第1炉室と第2炉室を区画形成し、第1炉室内に昇降可能に配置した主電極と炉体の底部に設置した炉底電極との間、及び第2炉室内に昇降可能に配置した出滓電極と上記炉底電極との間にそれぞれ電流を流すことにより、第1炉室内に投入された灰を第1炉室と第2炉室で溶融させて第2炉室から出滓させるようにしてある電気抵抗式灰溶融炉に用いる直流電源装置において、交流電源に多相変圧器の一次側を接続し、且つ該多相変圧器の二次側に、上記主電極と炉底電極に接続した主電極用回路を設け、該主電極用回路に、シリコン整流器とサイリスタ整流器とを、シリコン整流器が通電方向上流側となるように直列に組み込み、更に、上記主電極用回路のシリコン整流器の上流部と下流部との間に、出滓電極と炉底電極に接続した出滓電極用回路を並列に接続し、該出滓電極用回路にサイリスタ整流器を組み込み、該出滓電極用回路に上記主電極用回路のシリコン整流器を共用させるようにした構成とする。
【0009】
主電極用回路と出滓電極用回路でシリコン整流器とサイリスタ整流器が直列に接続されているため、主電極への出力電圧と出滓電極への出力電圧各回路ごとの両整流器の出力電圧の和となるが、この際、サイリスタ整流器の出力電圧は位相制御により可変とすることができるので、負荷抵抗の変動に応じて出力電圧を無段階に連続的に調整することができる。多相変圧器はタップ切換操作が不要であることから、回路を簡素化でき、全体を小型化できる。
【0010】
、シリコン整流器は主電極用回路と出滓電極用回路で共用としてあることから、シリコン整流器を別々に用いる場合に比して小型化できる。
【0011】
更に、主電極と出滓電極のトータルの最大出力を制限するためのトータル出力制限器を設けた構成とすることにより、電源側の容量と多相変圧器の容量を低減することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0013】
図1は電気抵抗式灰溶融炉用直流電源装置の一形態を示すもので、図5に示したと同様な構成としてある電気抵抗式灰溶融炉において、タップ切換操作で出力電圧を調整するようにした直流電源装置7に代えて、負荷抵抗に応じた広範囲な電圧を無段階に出力できるようにした直流電源装置15Aを設ける。
【0014】
上記直流電源装置15Aは、交流電源16に、多相変圧器17の一次側を接続し、該多相変圧器17の二次側には、負荷としての主電極3と炉底電極4に接続した主電極用回路18を設け、且つ該主電極用回路18に、順変換型のシリコン整流器19と順変換/逆変換型のサイリスタ整流器20とを、シリコン整流器19が通電方向上流側となるように直列に組み込み、更に、上記サイリスタ整流器20の下流側に直流リアクトル14を組み付けてなる構成としてある。
【0015】
上記構成としてある電気抵抗式灰溶融炉用直流電源装置15Aは、シリコン整流器19とサイリスタ整流器20が直列に接続されているため、負荷としての主電極3に供給する出力電圧は、シリコン整流器19の出力電圧Esとサイリスタ整流器20の出力電圧Etとの和となる。この際、シリコン整流器19は出力調整要素がないので、出力電圧Esは一定であるが、サイリスタ整流器20は位相制御により出力電圧Etを可変とすることができるので、該サイリスタ整流器20の出力電圧Etを位相制御することにより、主電極3へ供給する出力電圧Es+Etの値を変更することができる。したがって、主電極3に供給する出力電圧Es+Etを、電極3,4間の負荷抵抗に応じて広範囲にしかも無段階に連続的に調整することができる。
【0016】
上記において主電極3への出力電圧Es+Etを調整するときに、従来の如き無負荷状態にしてタップの切換操作を行う必要がないので、電極3,4間の負荷抵抗の変動に対し安定した操業を行うことができ、又、タップ切換操作をなくしてタップに接続する整流回路部を不要としているので、従来に比して大幅にサイリスタ素子の数を減らすことができて回路構成が簡素化されるため、装置全体の小型化を図ることができる。
【0017】
次に、図2及び図3は本発明の実施の一形態を示すもので、双極型の電気抵抗式灰溶融炉に無段階調整可能な直流電源装置を適用したものである。すなわち、図5に示したと同様な構成としてある電気抵抗式灰溶融炉の炉体1内を、上端位置から所要深さ位置まで下向きに延びる仕切壁21より仕切って、該仕切壁21の下部で連通する第1炉室1aと第2炉室1bとを区画形成し、第1炉室1a内に主電極3を、又、第2炉室1b内に出滓電極22をそれぞれ昇降可能に配置し、且つ第1炉室1aに灰8を投入できるようにして第1炉室1a内の溶融スラグ6を仕切壁21の下部を通して第2炉室1b内に流入させるようにすると共に、第2炉室1b内の溶融スラグ6を第2炉室1bの側壁に設けた出滓口23からオーバーフローさせて連続出滓させるようにしてある双極型の電気抵抗式灰溶融炉において、負荷抵抗に応じた広範囲な電圧を主電極3と出滓電極22に無段階に連続的に出力できるようにした直流電源装置15Bを設けたものである。
【0018】
上記直流電源装置15Bは、図3に示す如く、図1に示した直流電源装置15Aと同様な構成において、主電極用回路18のシリコン整流器19を上流部と下流部で挟む位置に、出滓電極22と炉底電極4に接続した出滓電極用回路24を並列に接続し、該出滓電極用回路24に、順変換/逆変換型のサイリスタ整流器25と直流リアクトル14を組み込み、該出滓電極用回路24に主電極用回路18のシリコン整流器19を共用させるようにした構成としてある。その他の構成は図1に示したものと同じであり、同一部分には同一符号が付してある。
【0019】
図3に示す直流電源装置15Bの場合、主電極3、炉底電極4間の負荷抵抗の変動に対しては、図1に示した直流電源装置15Aの場合と同様に、直列に接続されているシリコン整流器19とサイリスタ整流器20を用いて、シリコン整流器19−サイリスタ整流器20−直流リアクトル14−主電極3,炉底電極4−シリコン整流器19の順に電流を流し、上記該サイリスタ整流器20の位相制御を行うことにより主電極3へ供給する出力電圧を調整するようにし、一方、出滓電極22、炉底電極4間の負荷変動に対しては、直列に接続されているシリコン整流器19とサイリスタ整流器25を用いて、シリコン整流器19−サイリスタ整流器25−直流リアクトル14−出滓電極22,炉底電極4−シリコン整流器19の順に電流を流し、上記サイリスタ整流器25の位相制御を行うことにより出滓電極22へ供給する出力電圧を調整するようにする。
【0020】
上記主電極3への出力電圧は、シリコン整流器19の一定電圧とサイリスタ整流器20の位相制御による可変電圧の和であり、又、出滓電極22への出力電圧は、シリコン整流器19の一定電圧とサイリスタ整流器25の位相制御による可変電圧の和であるから、たとえば、主電極3と出滓電極22の電圧を0〜240Vに調整できるとした場合に、シリコン整流器19の電圧を120Vとして一定とすると、サイリスタ整流器20,25では、ともに−120V〜+120Vの範囲で可変とすることができ、各負荷としての電極3,22を0〜240Vに別々に広範囲に制御することができる。このように、定電圧のシリコン整流器19を主電極用回路18と出滓電極用回路24で共用させるようにしてあるため、各回路18,24で別々にシリコン整流器を用いる場合に比して全体を小型化することができ、コスト的にも有利となる。
【0021】
次いで、図4は本発明の実施の他の形態を示すもので、図3に示した双極型の電気抵抗式灰溶融炉用直流電源装置15Bにおいて、主電極3と出滓電極22へのトータルの最大出力を制限するための最大出力制限器26を設け、該最大出力制限器26の設定出力値の範囲内で主電極3への出力を優先させ出滓電極22への出力を制限するように、主電極用回路18のサイリスタ整流器20へ制御指令を送る整流器制御器27と、出滓電極用回路24のサイリスタ整流器25へ制御指令を送る整流器制御器28とを備えてなる直流電源装置15Cとしたものである。その他の構成は図3に示したものと同じであり、同一部分には同一符号が付してある。
【0022】
図4に示す直流電源装置15Cの場合、たとえば、主電極3への出力の最大値を2000kWとし、出滓電極22への出力の最大値を1200kWとして運転される場合に、最大出力制限器26でトータル最大出力を2000kWに設定し、たとえば、主電極3への出力が1600kW必要となったようなときには、出滓電極22への出力が400kWに制限されて、トータルで2000kWに抑えられるようにする。
【0023】
このように、トータルの最大出力を制限することにより、電源側の容量を低減することができて、需要設備としての契約電力を下げることができ、これに伴い、施設の運営費、電源側の力率改善用コンデンサーの容量を下げることができ、又、整流器用の多相変圧器17の容量も下げることができるので、装置全体の更なる小型化を図ることができ、設置スペース上より有利となる。
【0024】
【発明の効果】
以上述べた如く、本発明の電気抵抗式灰溶融炉用直流電源装置によれば、炉体内に下部で連通するようにした第1炉室と第2炉室を区画形成し、第1炉室内に昇降可能に配置した主電極と炉体の底部に設置した炉底電極との間、及び第2炉室内に昇降可能に配置した出滓電極と上記炉底電極との間にそれぞれ電流を流すことにより、第1炉室内に投入された灰を第1炉室と第2炉室で溶融させて第2炉室から出滓させるようにしてある電気抵抗式灰溶融炉に用いる直流電源装置において、交流電源に多相変圧器の一次側を接続し、且つ該多相変圧器の二次側に、上記主電極と炉底電極に接続した主電極用回路を設け、該主電極用回路に、シリコン整流器とサイリスタ整流器とを、シリコン整流器が通電方向上流側となるように直列に組み込み、更に、上記主電極用回路のシリコン整流器の上流部と下流部との間に、出滓電極と炉底電極に接続した出滓電極用回路を並列に接続し、該出滓電極用回路にサイリスタ整流器を組み込み、該出滓電極用回路に上記主電極用回路のシリコン整流器を共用させるようにした構成としてあるので、主電極への出力電圧と出滓電極への出力電圧をそれぞれ無段階に調整することができると共に、シリコン整流器の共用化により、コストの低減と装置全体の小型化を図ることができ、更に、主電極と出滓電極のトータルの最大出力を制限するための最大出力制限器を設けた構成とすることにより、電源側の容量を低減できて小型化を図ることができ、且つ多相変圧器の容量も下げることができて設置スペースをより小さくすることができる、等の優れた効果を発揮する。
【図面の簡単な説明】
【図1】 気抵抗式灰溶融炉用直流電源装置の一形態を示す回路図である。
【図2】 本発明の電気抵抗式灰溶融炉用直流電源装置の実施の一形態を示すもので、双極型の電気抵抗式灰溶融炉への採用例を示す概略図である。
【図3】 図2に示す双極型の電気抵抗式灰溶融炉用直流電源装置の回路図である。
【図4】 本発明の実施の他の形態を示す双極型の電気抵抗式灰溶融炉用直流電源装置の回路図である。
【図5】 電気抵抗式灰溶融炉の一例を示す概略図である。
【図6】 従来の直流電源装置の一例を示す回路図である。
【符号の説明】
1 炉体
1a 第1炉室
1b 第2炉室
3 主電極
4 炉底電極
8 灰
15A,15B,15C 直流電源装置
16 交流電源
17 多相変圧器
18 主電極用回路
19 シリコン整流器
20 サイリスタ整流器
22 出滓電極
24 出滓電極用回路
25 サイリスタ整流器
26 最大出力制限器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct current power supply device for an electric resistance type ash melting furnace in which ash such as incineration ash and fly ash of waste is melted.
[0002]
[Prior art]
An electric resistance type ash melting furnace used for melting incineration ash etc. of waste penetrates the main electrode 3 in the center of the furnace lid 2 so that it can be moved up and down as schematically shown in FIG. The lower end is inserted into the molten slag 6 on the molten metal layer 5 in the furnace body 1, and a direct current power source is provided between the main electrode 3 and the furnace bottom electrode 4 provided at the bottom of the furnace body 1. By passing a current based on the output voltage controlled by the device 7 through the molten slag 6, the ash 8 charged into the furnace body 1 is sequentially melted by Joule heat.
[0003]
In the ash melting furnace, since the load resistance between the electrodes 3 and 4 due to changes in the amount of insertion of the main electrode 3 into the molten slag 6 and the thickness of the molten metal layer 5 becomes wide, the DC power supply 7 Then, it is necessary to output a wide range of voltages according to the load resistance.
[0004]
For this reason, the conventional DC power supply device 7 can change the transformation ratio of the output voltage by switching the plurality of (three in the figure) taps 9a, 9b, 9c, as shown in FIG. The primary side of the rectifier transformer 10 is connected to an AC power supply circuit, and the secondary side of the rectifier transformer 10 is connected to the main electrode 3 and the furnace bottom electrode 4 and thyristor rectifiers 12a, 12b, and 12c are respectively connected. The load side circuit 11 having rectifier circuit portions 13a, 13b, and 13c arranged in parallel and connected to the taps 9a, 9b, and 9c, respectively, is connected. Reference numeral 14 denotes a DC reactor.
[0005]
[Problems to be solved by the invention]
However, in the case of the DC power supply device 7, in order to change the output voltage, it is necessary to switch the taps 9a, 9b, 9c. Voltage adjustment cannot be performed automatically, which is disadvantageous in terms of stable operation, and the circuit 11 of 24 pulses or 12 pulses is used as a harmonic countermeasure for reducing the harmonic current to the power supply side. However, since there are rectifier circuit portions corresponding to the number of taps, a large space is required, and there is a problem that the overall size is increased.
[0006]
Incidentally, in the bipolar electric resistance ash melting furnace in which the output electrode is provided in the furnace body 1 separately from the main electrode 3 so as to be movable up and down, and the molten slag is continuously output, Apart from the power supply device 7, a similar DC power supply device is provided for the output electrode, and the rectifier is provided for each of the main electrode and the output electrode. There was a problem above.
[0007]
Therefore, the present invention makes it possible to continuously adjust the output voltage to the electrode in a stepless manner in accordance with the variation of the load resistance, and to reduce the size of the entire apparatus. Is.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has a first furnace chamber and a second furnace chamber which are communicated with each other in the lower part of the furnace body, and a main electrode and a furnace which are arranged to be movable up and down in the first furnace chamber. It is thrown into the first furnace chamber by flowing current between the furnace bottom electrode installed at the bottom of the body and between the tapping electrode arranged in the second furnace chamber so as to be able to move up and down and the furnace bottom electrode. In a DC power supply device used in an electric resistance ash melting furnace in which the ash is melted in the first furnace chamber and the second furnace chamber and discharged from the second furnace chamber , the primary phase of the multiphase transformer is used as the AC power source. A main electrode circuit connected to the main electrode and the furnace bottom electrode is provided on the secondary side of the multiphase transformer, and a silicon rectifier and a thyristor rectifier are connected to the main electrode circuit with silicon. The rectifier is installed in series so that it is on the upstream side of the energizing direction. An output electrode circuit connected to the output electrode and the furnace bottom electrode is connected in parallel between the upstream portion and the downstream portion of the output rectifier, and a thyristor rectifier is incorporated in the output electrode circuit. The main circuit is configured to share the silicon rectifier of the main electrode circuit .
[0009]
Since the silicon rectifier and the thyristor rectifier are connected in series in the main electrode circuit and the output electrode circuit, the output voltage to the main electrode and the output voltage to the output electrode are the output voltage of both rectifiers for each circuit . In this case, since the output voltage of the thyristor rectifier can be made variable by phase control, the output voltage can be continuously adjusted steplessly in accordance with the variation of the load resistance. Since the polyphase transformer does not require a tap switching operation, the circuit can be simplified and the whole can be miniaturized.
[0010]
Further, divorced rectifier since there as a shared main electrode circuit and the tapping electrode circuit can be miniaturized as compared with the case of using silicon rectifier separately.
[0011]
Furthermore, by providing a total output limiter for limiting the total maximum output of the main electrode and the output electrode, it is possible to reduce the power supply side capacity and the capacity of the multiphase transformer.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 shows an embodiment of a DC power supply device for an electric resistance type ash melting furnace. In an electric resistance type ash melting furnace having the same configuration as shown in FIG. 5, the output voltage is adjusted by a tap switching operation. Instead of the direct current power supply device 7, a direct current power supply device 15 </ b> A that can output a wide range of voltages according to the load resistance in a stepless manner is provided.
[0014]
The DC power supply device 15 </ b> A is connected to the AC power supply 16 on the primary side of the multiphase transformer 17, and on the secondary side of the multiphase transformer 17 is connected to the main electrode 3 and the furnace bottom electrode 4 as a load. The main electrode circuit 18 is provided, and a forward conversion type silicon rectifier 19 and a forward conversion / reverse conversion type thyristor rectifier 20 are provided in the main electrode circuit 18 so that the silicon rectifier 19 is upstream in the energization direction. And a DC reactor 14 is assembled on the downstream side of the thyristor rectifier 20.
[0015]
Since the silicon rectifier 19 and the thyristor rectifier 20 are connected in series in the electric resistance type ash melting furnace DC power supply device 15A having the above-described configuration, the output voltage supplied to the main electrode 3 as a load is that of the silicon rectifier 19. This is the sum of the output voltage Es and the output voltage Et of the thyristor rectifier 20. At this time, since the silicon rectifier 19 has no output adjusting element, the output voltage Es is constant. However, since the thyristor rectifier 20 can change the output voltage Et by phase control, the output voltage Et of the thyristor rectifier 20 is variable. By controlling the phase, the value of the output voltage Es + Et supplied to the main electrode 3 can be changed. Therefore, the output voltage Es + Et supplied to the main electrode 3 can be continuously adjusted in a wide range and steplessly according to the load resistance between the electrodes 3 and 4.
[0016]
In the above, when adjusting the output voltage Es + Et to the main electrode 3, it is not necessary to perform the tap switching operation in a no-load state as in the prior art. In addition, since the rectifier circuit section connected to the tap is eliminated by eliminating the tap switching operation, the number of thyristor elements can be greatly reduced as compared with the prior art, and the circuit configuration is simplified. Therefore, the entire apparatus can be reduced in size.
[0017]
Next, FIGS. 2 and 3 show one embodiment of the present invention, is obtained by applying the stepless adjustable DC power supply to the electrical resistance type ash melting furnace bipolar. That is, the inside of the furnace body 1 of the electric resistance type ash melting furnace having the same configuration as shown in FIG. 5 is partitioned by the partition wall 21 extending downward from the upper end position to the required depth position, and below the partition wall 21. The first furnace chamber 1a and the second furnace chamber 1b that communicate with each other are partitioned, and the main electrode 3 is disposed in the first furnace chamber 1a and the output electrode 22 is disposed in the second furnace chamber 1b so as to be movable up and down. In addition, the ash 8 can be charged into the first furnace chamber 1a so that the molten slag 6 in the first furnace chamber 1a flows into the second furnace chamber 1b through the lower part of the partition wall 21, and the second In a bipolar electric resistance ash melting furnace in which the molten slag 6 in the furnace chamber 1b overflows from a tap outlet 23 provided on the side wall of the second furnace chamber 1b and is continuously discharged, according to the load resistance. A wide range of voltages are continuously applied to the main electrode 3 and the output electrode 22 in a stepless manner. It is provided with a DC power supply device 15B that allow the force.
[0018]
As shown in FIG. 3, the DC power supply device 15B has a configuration similar to that of the DC power supply device 15A shown in FIG. 1, and is connected to a position where the silicon rectifier 19 of the main electrode circuit 18 is sandwiched between the upstream portion and the downstream portion. An output electrode circuit 24 connected to the electrode 22 and the furnace bottom electrode 4 is connected in parallel. A forward / reverse conversion type thyristor rectifier 25 and a DC reactor 14 are incorporated in the output electrode circuit 24, and the output In this configuration, the silicon rectifier 19 of the main electrode circuit 18 is shared by the saddle electrode circuit 24. Other configurations are the same as those shown in FIG. 1, and the same parts are denoted by the same reference numerals.
[0019]
In the case of the DC power supply device 15B shown in FIG. 3, the variation in load resistance between the main electrode 3 and the furnace bottom electrode 4 is connected in series as in the case of the DC power supply device 15A shown in FIG. The silicon rectifier 19 and the thyristor rectifier 20 are used to pass a current in the order of the silicon rectifier 19, the thyristor rectifier 20, the DC reactor 14, the main electrode 3, the furnace bottom electrode 4, and the silicon rectifier 19, and the phase control of the thyristor rectifier 20. The output voltage supplied to the main electrode 3 is adjusted by performing the steps described above, while the silicon rectifier 19 and the thyristor rectifier connected in series with respect to the load fluctuation between the output electrode 22 and the furnace bottom electrode 4 are adjusted. 25, current is passed in the order of silicon rectifier 19-thyristor rectifier 25-DC reactor 14-output electrode 22, furnace bottom electrode 4-silicon rectifier 19 in this order. So as to adjust the output voltage to be supplied to the tapping electrode 22 by performing the phase control of the thyristor rectifier 25.
[0020]
The output voltage to the main electrode 3 is the sum of the constant voltage of the silicon rectifier 19 and the variable voltage by the phase control of the thyristor rectifier 20, and the output voltage to the output electrode 22 is the same as the constant voltage of the silicon rectifier 19. Since this is the sum of the variable voltages by the phase control of the thyristor rectifier 25, for example, when the voltage of the main electrode 3 and the output electrode 22 can be adjusted to 0 to 240V, the voltage of the silicon rectifier 19 is fixed to 120V. In the thyristor rectifiers 20 and 25, both can be made variable in the range of −120V to + 120V, and the electrodes 3 and 22 as the respective loads can be separately controlled in a wide range from 0 to 240V. Thus, since the constant voltage silicon rectifier 19 is shared by the main electrode circuit 18 and the output electrode circuit 24, the entire circuit 18 and 24 is compared with the case where the silicon rectifier is used separately. Can be reduced in size, which is advantageous in terms of cost.
[0021]
Next, FIG. 4 shows another embodiment of the present invention. In the bipolar electric resistance type ash melting furnace DC power supply device 15B shown in FIG. 3, the total to the main electrode 3 and the output electrode 22 is shown. A maximum output limiter 26 is provided for limiting the maximum output of the output signal. The output to the main electrode 3 is prioritized within the range of the set output value of the maximum output limiter 26 to limit the output to the output electrode 22 And a rectifier controller 27 for sending a control command to the thyristor rectifier 20 of the main electrode circuit 18 and a rectifier controller 28 for sending a control command to the thyristor rectifier 25 of the output electrode circuit 24. It is what. Other configurations are the same as those shown in FIG. 3, and the same portions are denoted by the same reference numerals.
[0022]
In the case of the DC power supply device 15C shown in FIG. 4, for example, when the maximum output value to the main electrode 3 is set to 2000 kW and the maximum value to the output electrode 22 is set to 1200 kW, the maximum output limiter 26 is operated. The total maximum output is set to 2000 kW. For example, when the output to the main electrode 3 needs 1600 kW, the output to the output electrode 22 is limited to 400 kW so that the total can be suppressed to 2000 kW. To do.
[0023]
In this way, by limiting the total maximum output, the capacity on the power supply side can be reduced, and the contract power as a demand facility can be lowered. Since the capacity of the power factor improving capacitor can be reduced and the capacity of the rectifier multiphase transformer 17 can also be reduced, the entire apparatus can be further reduced in size, which is more advantageous in terms of installation space. It becomes.
[0024]
【The invention's effect】
As described above, according to the electric resistance type ash melting furnace DC power supply device of the present invention, the first furnace chamber and the second furnace chamber which are communicated with each other at the lower part in the furnace body are partitioned, and the first furnace chamber is formed. Current flows between the main electrode arranged on the bottom of the furnace and the bottom electrode installed on the bottom of the furnace body, and between the extraction electrode arranged on the second furnace chamber and the furnace bottom electrode. In the DC power supply apparatus used in the electric resistance ash melting furnace, the ash charged into the first furnace chamber is melted in the first furnace chamber and the second furnace chamber and discharged from the second furnace chamber. The primary side of the multiphase transformer is connected to the AC power source, and the main electrode circuit connected to the main electrode and the furnace bottom electrode is provided on the secondary side of the multiphase transformer. Incorporating a silicon rectifier and a thyristor rectifier in series so that the silicon rectifier is upstream in the energizing direction Further, an output electrode circuit connected to the output electrode and the furnace bottom electrode is connected in parallel between the upstream portion and the downstream portion of the silicon rectifier of the main electrode circuit, and the thyristor is connected to the output electrode circuit. incorporate rectifier, said output grounds since the electrode circuit are a structure which is adapted to share a silicon rectifier of the main electrode circuit, respectively stepless output voltage to the output voltage and the tapping electrode of the main electrodes In addition, the common use of the silicon rectifier can reduce the cost and reduce the overall size of the device, and the maximum output to limit the total maximum output of the main electrode and the output electrode. By having a configuration provided with a limiter, the capacity on the power supply side can be reduced and downsizing can be achieved, and the capacity of the multiphase transformer can also be reduced, and the installation space can be further reduced. Etc. It is effective.
[Brief description of the drawings]
1 is a circuit diagram showing one embodiment of the electrical resistance type ash melting furnace DC power supply.
FIG. 2 is a schematic diagram showing an embodiment of a DC power supply device for an electric resistance ash melting furnace according to the present invention, which is applied to a bipolar electric resistance ash melting furnace.
FIG. 3 is a circuit diagram of the bipolar electric resistance ash melting furnace DC power supply device shown in FIG. 2;
FIG. 4 is a circuit diagram of a DC electric power supply device for a bipolar electric resistance ash melting furnace showing another embodiment of the present invention.
FIG. 5 is a schematic view showing an example of an electric resistance type ash melting furnace.
FIG. 6 is a circuit diagram showing an example of a conventional DC power supply device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Furnace 1a 1st furnace chamber 1b 2nd furnace chamber 3 Main electrode 4 Furnace bottom electrode 8 Ash 15A, 15B, 15C DC power supply device 16 AC power supply 17 Multiphase transformer 18 Main electrode circuit 19 Silicon rectifier 20 Thyristor rectifier 22 Output electrode 24 Output electrode circuit 25 Thyristor rectifier 26 Maximum output limiter

Claims (2)

炉体内に下部で連通するようにした第1炉室と第2炉室を区画形成し、第1炉室内に昇降可能に配置した主電極と炉体の底部に設置した炉底電極との間、及び第2炉室内に昇降可能に配置した出滓電極と上記炉底電極との間にそれぞれ電流を流すことにより、第1炉室内に投入された灰を第1炉室と第2炉室で溶融させて第2炉室から出滓させるようにしてある電気抵抗式灰溶融炉に用いる直流電源装置において、交流電源に多相変圧器の一次側を接続し、且つ該多相変圧器の二次側に、上記主電極と炉底電極に接続した主電極用回路を設け、該主電極用回路に、シリコン整流器とサイリスタ整流器とを、シリコン整流器が通電方向上流側となるように直列に組み込み、更に、上記主電極用回路のシリコン整流器の上流部と下流部との間に、出滓電極と炉底電極に接続した出滓電極用回路を並列に接続し、該出滓電極用回路にサイリスタ整流器を組み込み、該出滓電極用回路に上記主電極用回路のシリコン整流器を共用させるようにした構成を有することを特徴とする電気抵抗式灰溶融炉用直流電源装置。  A first furnace chamber and a second furnace chamber that communicate with each other in the lower part of the furnace body are partitioned and formed between a main electrode disposed in the first furnace chamber so as to be movable up and down and a furnace bottom electrode disposed at the bottom of the furnace body. The ash charged into the first furnace chamber is made to flow into the first furnace chamber and the second furnace chamber by flowing current between the tapping electrode disposed in the second furnace chamber so as to be movable up and down, and the furnace bottom electrode. In the direct current power supply apparatus used for the electric resistance ash melting furnace which is melted in the second furnace chamber and connected to the primary side of the multiphase transformer, A main electrode circuit connected to the main electrode and the furnace bottom electrode is provided on the secondary side, and a silicon rectifier and a thyristor rectifier are connected to the main electrode circuit in series so that the silicon rectifier is upstream in the energization direction. In addition, between the upstream portion and the downstream portion of the silicon rectifier of the main electrode circuit, The lead electrode circuit connected to the lead electrode and the furnace bottom electrode is connected in parallel, a thyristor rectifier is incorporated in the lead electrode circuit, and the silicon rectifier of the main electrode circuit is shared by the lead electrode circuit A DC power supply device for an electric resistance type ash melting furnace, characterized by having the configuration as described above. 主電極と出滓電極のトータルの最大出力を制限するための最大出力制限器を設けた請求項記載の電気抵抗式灰溶融炉用直流電源装置。The main electrode and the tapping electrode of the total maximum output maximum output limiter electrical resistance type ash melting furnace DC power supply device according to claim 1, wherein provided for limiting.
JP2000369182A 2000-12-04 2000-12-04 DC power supply for electric resistance ash melting furnace Expired - Lifetime JP4564648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000369182A JP4564648B2 (en) 2000-12-04 2000-12-04 DC power supply for electric resistance ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000369182A JP4564648B2 (en) 2000-12-04 2000-12-04 DC power supply for electric resistance ash melting furnace

Publications (2)

Publication Number Publication Date
JP2002171763A JP2002171763A (en) 2002-06-14
JP4564648B2 true JP4564648B2 (en) 2010-10-20

Family

ID=18839259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000369182A Expired - Lifetime JP4564648B2 (en) 2000-12-04 2000-12-04 DC power supply for electric resistance ash melting furnace

Country Status (1)

Country Link
JP (1) JP4564648B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561279A (en) * 1978-10-30 1980-05-08 Toshiba Corp Controller of power converter
JPH11211054A (en) * 1998-01-22 1999-08-06 Ishikawajima Harima Heavy Ind Co Ltd Ash melting furnace
JP2000274621A (en) * 1999-03-19 2000-10-03 Nkk Corp Melting furnace and melting method for waste containing phosphorus
JP2000331774A (en) * 1999-05-18 2000-11-30 Kitashiba Electric Co Ltd Fusion system by plural induction furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561279A (en) * 1978-10-30 1980-05-08 Toshiba Corp Controller of power converter
JPH11211054A (en) * 1998-01-22 1999-08-06 Ishikawajima Harima Heavy Ind Co Ltd Ash melting furnace
JP2000274621A (en) * 1999-03-19 2000-10-03 Nkk Corp Melting furnace and melting method for waste containing phosphorus
JP2000331774A (en) * 1999-05-18 2000-11-30 Kitashiba Electric Co Ltd Fusion system by plural induction furnace

Also Published As

Publication number Publication date
JP2002171763A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
KR100335868B1 (en) Power converter with low loss switching
JP2680494B2 (en) Single-phase AC power converter
CN101099413B (en) Control apparatus for alternating-current reduction furnaces
EP1917713B1 (en) Pulse width modulated power inverter output control
JP2009201350A (en) Power supply apparatus
HU216986B (en) Power converter for dc power supply to an electric arc furnace
JP2012175714A (en) Power supply unit
CA2371094A1 (en) Process and device for supplying current to an electric-arc melting unit
JPH04218818A (en) Ac power source
CA2352070C (en) Hybrid tap-changing transformer with full range of control and high resolution
US8817840B2 (en) Power supply arrangement
JP4564648B2 (en) DC power supply for electric resistance ash melting furnace
CN101658066B (en) Current fed inverter with pulse regulator for electric induction heating, melting and stirring
CA2583481C (en) Electronic circuit and method for feeding electric power to a alternating-current electric-arc furnace
KR100357276B1 (en) Automatic Voltage Regulator
JP2013236537A (en) Power supply device
JP2017188974A (en) Welding power supply
JP4232504B2 (en) AC voltage regulator
RU2245600C1 (en) Step-by-step ac voltage regulation device
CA2077080C (en) Ac power source for welding
RU2115268C1 (en) Power converter used to feed electric arc furnace with direct current and power converter unit
JPH08126203A (en) Stationary voltage regulator
JP2707037B2 (en) Power supply for plasma arc
JPH0145197B2 (en)
SU873220A2 (en) Automatic temperature regulation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091028

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term