JP2002171763A - Dc power supply unit for electric resistance type ash- melting furnace - Google Patents

Dc power supply unit for electric resistance type ash- melting furnace

Info

Publication number
JP2002171763A
JP2002171763A JP2000369182A JP2000369182A JP2002171763A JP 2002171763 A JP2002171763 A JP 2002171763A JP 2000369182 A JP2000369182 A JP 2000369182A JP 2000369182 A JP2000369182 A JP 2000369182A JP 2002171763 A JP2002171763 A JP 2002171763A
Authority
JP
Japan
Prior art keywords
furnace
electrode
power supply
main electrode
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000369182A
Other languages
Japanese (ja)
Other versions
JP4564648B2 (en
Inventor
Teruo Ogura
輝男 小倉
Takeshi Onoda
壮史 小野田
Atsushi Hiraoka
淳 平岡
Kazunori Doi
量徳 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
IHI Corp
Original Assignee
Sansha Electric Manufacturing Co Ltd
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd, IHI Corp filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2000369182A priority Critical patent/JP4564648B2/en
Publication of JP2002171763A publication Critical patent/JP2002171763A/en
Application granted granted Critical
Publication of JP4564648B2 publication Critical patent/JP4564648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Furnace Details (AREA)
  • Rectifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously and steplessly regulate an output voltage and downsize the whole unit. SOLUTION: The primary side of a polyphase transformer 17 capable of steplessly changing the transformation ratio of the output voltage is connected to an AC power supply 16. A circuit 18 for a main electrode 3 of an ash-melting furnace connected to the main electrode 3 and a furnace bottom electrode 4 of the ash-melting furnace is provided on the secondary side of the polyphase transformer 17. A silicon rectifier 19 of a constant voltage and a thyristor rectifier 20 of a variable voltage are incorporated in series on the way of the circuit 18 for the main electrode 3. The thyristor rectifier 20 is subjected to a phase control to regulate the output voltage supplied to the main electrode 3 in response to a change in the load resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃棄物の焼却灰や飛
灰等の灰を溶融処理するようにした電気抵抗式灰溶融炉
用直流電源装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power supply for an electric resistance type ash melting furnace which melts ash such as incineration ash and fly ash of waste.

【0002】[0002]

【従来の技術】廃棄物の焼却灰等を溶融処理するために
用いられている電気抵抗式灰溶融炉は、図5にその一例
の概略を示す如く、炉蓋2の中心部に主電極3を昇降可
能に貫通させて下端部を炉体1内の溶融メタル層5上の
溶融スラグ6内に挿入するようにし、該主電極3と炉体
1の底部に設けた炉底電極4との間に、直流電源装置7
により制御された出力電圧に基づく電流を溶融スラグ6
を通して流すことにより、炉体1内に投入された灰8を
順次ジュール熱で溶融させるようにしてある。
2. Description of the Related Art As shown schematically in FIG. 5, an electric resistance type ash melting furnace used for melting incineration ash and the like of wastes has a main electrode 3 at a central portion of a furnace lid 2. Is penetrated so as to be able to ascend and descend so that the lower end is inserted into the molten slag 6 on the molten metal layer 5 in the furnace body 1, so that the main electrode 3 and the furnace bottom electrode 4 provided on the bottom of the furnace body 1 are connected to each other. In between, DC power supply 7
Current based on the output voltage controlled by the melting slag 6
The ash 8 charged into the furnace body 1 is sequentially melted by Joule heat.

【0003】上記灰溶融炉では、主電極3の溶融スラグ
6内への挿入量や溶融メタル層5の厚さ等の変化に伴う
電極3,4間の負荷抵抗が広範囲となることから、直流
電源装置7では、負荷抵抗に応じた広範囲な電圧を出力
する必要がある。
In the above-mentioned ash melting furnace, the load resistance between the electrodes 3 and 4 accompanying a change in the insertion amount of the main electrode 3 into the molten slag 6 and the thickness of the molten metal layer 5 becomes wide. In the power supply device 7, it is necessary to output a wide voltage according to the load resistance.

【0004】そのため、従来の直流電源装置7は、図6
に一例を示す如く、複数(図では3つ)のタップ9a,
9b,9cの切換操作で出力電圧の変圧比を変えること
ができるようにしてある整流器用変圧器10の一次側を
交流電源回路に接続して、該整流器用変圧器10の二次
側に、主電極3と炉底電極4に接続し且つ各々サイリス
タ整流器12a,12b,12cを有して上記タップ9
a,9b,9cにそれぞれ接続した並列配置の整流回路
部13a,13b,13cを有する負荷側回路11を接
続した構成としてある。14は直流リアクトルを示す。
[0004] Therefore, the conventional DC power supply 7 has a configuration shown in FIG.
As shown in FIG. 1, a plurality (three in the figure) of taps 9a,
The primary side of the rectifier transformer 10 which can change the transformation ratio of the output voltage by the switching operation of 9b and 9c is connected to an AC power supply circuit, and the secondary side of the rectifier transformer 10 is The tap 9 is connected to the main electrode 3 and the bottom electrode 4 and has thyristor rectifiers 12a, 12b and 12c, respectively.
The configuration is such that a load-side circuit 11 having rectifier circuit units 13a, 13b, and 13c arranged in parallel and connected to a, 9b, and 9c, respectively, is connected. Reference numeral 14 denotes a DC reactor.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記直流電
源装置7の場合、出力電圧を変更するためには、タップ
9a,9b,9cの切換操作が必要となるが、タップ切
換時には無負荷状態にしなければならないので、無段階
に連続的に電圧調整を行うことができず、安定操業の面
で不利であり、又、電源側への高調波電流を削減するた
めの高調波対策として、24パルス又は12パルスの回
路11を用いることになるが、タップ数分だけ整流回路
部が存在するため、広いスペースが必要となり、全体的
に大型となる問題がある。
However, in the case of the DC power supply 7, it is necessary to switch the taps 9a, 9b and 9c in order to change the output voltage. Therefore, it is not possible to continuously adjust the voltage steplessly, which is disadvantageous in terms of stable operation. In addition, as a countermeasure against harmonics to reduce the harmonic current to the power supply, 24 pulses Alternatively, a 12-pulse circuit 11 is used, but since there are rectifier circuits for the number of taps, a large space is required and there is a problem that the whole becomes large.

【0006】因に、炉体1内に、主電極3とは別に出滓
電極を昇降可能に設けて、溶融スラグを連続出滓させる
ようにしてある双極型の電気抵抗式灰溶融炉において
は、上記直流電源装置7とは別に、同様な直流電源装置
を出滓電極用に装備させ、主電極と出滓電極のそれぞれ
に単独に整流器を備えた構成としてあるため、装置全体
がより大型となり、設置スペース上に問題があった。
A bipolar electric resistance ash melting furnace in which a slag electrode is provided in the furnace body 1 separately from the main electrode 3 so as to be movable up and down so that molten slag is continuously slag. Aside from the DC power supply 7, a similar DC power supply is provided for the slag electrode, and the main electrode and the slag electrode are each provided with a rectifier independently, so that the entire device becomes larger. There was a problem with the installation space.

【0007】そこで、本発明は、電極への出力電圧を負
荷抵抗の変動に応じて無段階に連続的に調整することが
できるようにすると共に、装置全体の小型化を図ること
ができるようにしようとするものである。
Therefore, the present invention enables the output voltage to the electrodes to be continuously and continuously adjusted in accordance with the fluctuation of the load resistance, and to reduce the size of the entire device. What you want to do.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するために、炉体内に昇降可能に配置した主電極と炉
体の底部に設置した炉底電極との間に電流を流すことに
より、炉体内に投入された灰を溶融させるようにしてあ
る電気抵抗式灰溶融炉に用いる直流電源装置において、
交流電源に多相変圧器の一次側を接続し、且つ該多相変
圧器の二次側に、上記主電極と炉底電極に接続した主電
極用回路を設け、該主電極用回路に、シリコン整流器と
サイリスタ整流器とを直列に組み込んだ構成とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for supplying an electric current between a main electrode which can be moved up and down in a furnace and a furnace bottom electrode which is installed at the bottom of the furnace. Thus, in a DC power supply device used in an electric resistance type ash melting furnace that is configured to melt ash charged in the furnace body,
The primary side of the polyphase transformer is connected to the AC power supply, and the secondary side of the polyphase transformer is provided with a main electrode circuit connected to the main electrode and the furnace bottom electrode. The configuration is such that a silicon rectifier and a thyristor rectifier are incorporated in series.

【0009】シリコン整流器とサイリスタ整流器が直列
に接続されているため、主電極への出力電圧は両整流器
の出力電圧の和となるが、この際、サイリスタ整流器の
出力電圧は位相制御により可変とすることができるの
で、負荷抵抗の変動に応じて出力電圧を無段階に連続的
に調整することができる。多相変圧器はタップ切換操作
が不要であることから、回路を簡素化でき、全体を小型
化できる。
Since the silicon rectifier and the thyristor rectifier are connected in series, the output voltage to the main electrode is the sum of the output voltages of both rectifiers. At this time, the output voltage of the thyristor rectifier is made variable by phase control. Therefore, the output voltage can be continuously and continuously adjusted according to the change in the load resistance. Since the multi-phase transformer does not require a tap switching operation, the circuit can be simplified and the whole can be downsized.

【0010】又、炉体内に下部で連通するようにした第
1炉室と第2炉室を区画形成し、第1炉室内に昇降可能
に配置した主電極と炉体の底部に設置した炉底電極との
間、及び第2炉室内に昇降可能に配置した出滓電極と上
記炉底電極との間にそれぞれ電流を流すことにより、第
1炉室内に投入された灰を第1炉室と第2炉室で溶融さ
せて第2炉室から出滓させるようにしてある電気抵抗式
灰溶融炉に用いる直流電源装置において、交流電源に多
相変圧器の一次側を接続し、且つ該多相変圧器の二次側
に、上記主電極と炉底電極に接続した主電極用回路を設
け、該主電極用回路に、シリコン整流器とサイリスタ整
流器とを、シリコン整流器が通電方向上流側となるよう
に直列に組み込み、更に、上記主電極用回路のシリコン
整流器の上流部と下流部との間に、出滓電極と炉底電極
に接続した出滓電極用回路を並列に接続し、該出滓電極
用回路にサイリスタ整流器を組み込み、該出滓電極用回
路に上記主電極用回路のシリコン整流器を共用させるよ
うにした構成とすることにより、主電極への出力電圧と
出滓電極への出力電圧を、それぞれサイリスタ整流器の
位相制御により無段階に調整でき、この際、シリコン整
流器は共用としてあることから、シリコン整流器を別々
に用いる場合に比して小型化できる。
Further, a first furnace chamber and a second furnace chamber which are communicated with each other at a lower portion in the furnace body are formed in a partitioned manner, and a main electrode arranged so as to be able to move up and down in the first furnace chamber and a furnace installed at the bottom of the furnace body. By supplying current between the bottom electrode and between the slag electrode and the furnace bottom electrode, which can be moved up and down in the second furnace chamber, the ash charged into the first furnace chamber is removed from the first furnace chamber. And a DC power supply used in an electric resistance type ash melting furnace that is melted in the second furnace chamber and discharged from the second furnace chamber, wherein the primary side of the multi-phase transformer is connected to an AC power supply, and On the secondary side of the polyphase transformer, a main electrode circuit connected to the main electrode and the furnace bottom electrode is provided, and the silicon rectifier and the thyristor rectifier are provided on the main electrode circuit, and the silicon rectifier is provided on the upstream side in the energization direction. So that it is connected in series with the upstream part of the silicon rectifier of the main electrode circuit. A circuit for the slag electrode connected to the slag electrode and the furnace bottom electrode is connected in parallel with the flow portion, a thyristor rectifier is incorporated in the slag electrode circuit, and the main electrode is connected to the slag electrode circuit. In this configuration, the output voltage to the main electrode and the output voltage to the slag electrode can be continuously adjusted by controlling the phase of the thyristor rectifier. Since the rectifier is shared, the size can be reduced as compared with the case where the silicon rectifier is used separately.

【0011】更に、主電極と出滓電極のトータルの最大
出力を制限するためのトータル出力制限器を設けた構成
とすることにより、電源側の容量と多相変圧器の容量を
低減することができる。
Further, by providing a total output limiter for limiting the total maximum output of the main electrode and the slag electrode, the capacity on the power supply side and the capacity of the polyphase transformer can be reduced. it can.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の実施の一形態を示すもの
で、図5に示したと同様な構成としてある電気抵抗式灰
溶融炉において、タップ切換操作で出力電圧を調整する
ようにした直流電源装置7に代えて、負荷抵抗に応じた
広範囲な電圧を無段階に出力できるようにした直流電源
装置15Aを設ける。
FIG. 1 shows an embodiment of the present invention. In an electric resistance type ash melting furnace having a configuration similar to that shown in FIG. 5, a DC power supply in which an output voltage is adjusted by a tap switching operation. Instead of the device 7, there is provided a DC power supply device 15A capable of continuously outputting a wide range of voltage according to the load resistance.

【0014】上記直流電源装置15Aは、交流電源16
に、多相変圧器17の一次側を接続し、該多相変圧器1
7の二次側には、負荷としての主電極3と炉底電極4に
接続した主電極用回路18を設け、且つ該主電極用回路
18に、順変換型のシリコン整流器19と順変換/逆変
換型のサイリスタ整流器20とを、シリコン整流器19
が通電方向上流側となるように直列に組み込み、更に、
上記サイリスタ整流器20の下流側に直流リアクトル1
4を組み付けてなる構成としてある。
The DC power supply 15A includes an AC power supply 16
To the primary side of the multi-phase transformer 17,
7 is provided with a main electrode circuit 18 connected to the main electrode 3 as a load and the furnace bottom electrode 4, and a forward conversion type silicon rectifier 19 and a forward conversion / The reverse conversion type thyristor rectifier 20 and the silicon rectifier 19
Is installed in series so that is on the upstream side in the energization direction.
A DC reactor 1 is provided downstream of the thyristor rectifier 20.
4 is assembled.

【0015】上記構成としてある電気抵抗式灰溶融炉用
直流電源装置15Aは、シリコン整流器19とサイリス
タ整流器20が直列に接続されているため、負荷として
の主電極3に供給する出力電圧は、シリコン整流器19
の出力電圧Esとサイリスタ整流器20の出力電圧Et
との和となる。この際、シリコン整流器19は出力調整
要素がないので、出力電圧Esは一定であるが、サイリ
スタ整流器20は位相制御により出力電圧Etを可変と
することができるので、該サイリスタ整流器20の出力
電圧Etを位相制御することにより、主電極3へ供給す
る出力電圧Es+Etの値を変更することができる。し
たがって、主電極3に供給する出力電圧Es+Etを、
電極3,4間の負荷抵抗に応じて広範囲にしかも無段階
に連続的に調整することができる。
In the DC power supply 15A for an electric resistance type ash melting furnace having the above-described configuration, the silicon rectifier 19 and the thyristor rectifier 20 are connected in series, so that the output voltage supplied to the main electrode 3 as a load is silicon. Rectifier 19
And the output voltage Et of the thyristor rectifier 20
And the sum of At this time, since the silicon rectifier 19 has no output adjustment element, the output voltage Es is constant, but the thyristor rectifier 20 can make the output voltage Et variable by phase control. , The value of the output voltage Es + Et supplied to the main electrode 3 can be changed. Therefore, the output voltage Es + Et supplied to the main electrode 3 is
It can be continuously adjusted over a wide range and steplessly according to the load resistance between the electrodes 3 and 4.

【0016】上記において主電極3への出力電圧Es+
Etを調整するときに、従来の如き無負荷状態にしてタ
ップの切換操作を行う必要がないので、電極3,4間の
負荷抵抗の変動に対し安定した操業を行うことができ、
又、タップ切換操作をなくしてタップに接続する整流回
路部を不要としているので、従来に比して大幅にサイリ
スタ素子の数を減らすことができて回路構成が簡素化さ
れるため、装置全体の小型化を図ることができる。
In the above description, the output voltage Es +
When adjusting Et, it is not necessary to perform a tap switching operation in a no-load state as in the related art, so that a stable operation can be performed with respect to a change in the load resistance between the electrodes 3 and 4.
In addition, since there is no need for a rectifier circuit section connected to the tap by eliminating the tap switching operation, the number of thyristor elements can be greatly reduced as compared with the conventional case, and the circuit configuration is simplified, so that the entire device The size can be reduced.

【0017】次に、図2及び図3は本発明の実施の他の
形態を示すもので、双極型の電気抵抗式灰溶融炉に無段
階調整可能な直流電源装置を適用したものである。すな
わち、図5に示したと同様な構成としてある電気抵抗式
灰溶融炉の炉体1内を、上端位置から所要深さ位置まで
下向きに延びる仕切壁21より仕切って、該仕切壁21
の下部で連通する第1炉室1aと第2炉室1bとを区画
形成し、第1炉室1a内に主電極3を、又、第2炉室1
b内に出滓電極22をそれぞれ昇降可能に配置し、且つ
第1炉室1aに灰8を投入できるようにして第1炉室1
a内の溶融スラグ6を仕切壁21の下部を通して第2炉
室1b内に流入させるようにすると共に、第2炉室1b
内の溶融スラグ6を第2炉室1bの側壁に設けた出滓口
23からオーバーフローさせて連続出滓させるようにし
てある双極型の電気抵抗式灰溶融炉において、負荷抵抗
に応じた広範囲な電圧を主電極3と出滓電極22に無段
階に連続的に出力できるようにした直流電源装置15B
を設けたものである。
FIGS. 2 and 3 show another embodiment of the present invention, in which a DC power supply capable of stepless adjustment is applied to a bipolar electric resistance type ash melting furnace. That is, the inside of the furnace body 1 of the electric resistance type ash melting furnace having the same configuration as that shown in FIG. 5 is partitioned by a partition wall 21 extending downward from an upper end position to a required depth position.
A first furnace chamber 1a and a second furnace chamber 1b communicating with each other at the lower part of the furnace are defined, and the main electrode 3 and the second furnace chamber 1 are formed in the first furnace chamber 1a.
b, the slag electrode 22 is arranged so as to be able to move up and down, and the ash 8 can be put into the first furnace chamber 1a.
a into the second furnace chamber 1b through the lower part of the partition wall 21 and the second furnace chamber 1b.
In a bipolar electric resistance type ash melting furnace in which the molten slag 6 inside is overflowed from a slag port 23 provided on the side wall of the second furnace chamber 1b to continuously slag, a wide range according to the load resistance is obtained. DC power supply 15B capable of continuously and continuously outputting a voltage to main electrode 3 and slag electrode 22
Is provided.

【0018】上記直流電源装置15Bは、図3に示す如
く、図1に示した直流電源装置15Aと同様な構成にお
いて、主電極用回路18のシリコン整流器19を上流部
と下流部で挟む位置に、出滓電極22と炉底電極4に接
続した出滓電極用回路24を並列に接続し、該出滓電極
用回路24に、順変換/逆変換型のサイリスタ整流器2
5と直流リアクトル14を組み込み、該出滓電極用回路
24に主電極用回路18のシリコン整流器19を共用さ
せるようにした構成としてある。その他の構成は図1に
示したものと同じであり、同一部分には同一符号が付し
てある。
As shown in FIG. 3, the DC power supply 15B has a configuration similar to that of the DC power supply 15A shown in FIG. 1, and is provided at a position sandwiching the silicon rectifier 19 of the main electrode circuit 18 between the upstream part and the downstream part. , A slag electrode circuit 24 connected to the slag electrode 22 and the furnace bottom electrode 4 are connected in parallel, and the slag electrode circuit 24 is connected to the forward / reverse conversion type thyristor rectifier 2.
5 and the DC reactor 14 are incorporated, and the silicon rectifier 19 of the main electrode circuit 18 is shared with the slag electrode circuit 24. Other configurations are the same as those shown in FIG. 1, and the same portions are denoted by the same reference numerals.

【0019】図3に示す直流電源装置15Bの場合、主
電極3、炉底電極4間の負荷抵抗の変動に対しては、図
1に示した直流電源装置15Aの場合と同様に、直列に
接続されているシリコン整流器19とサイリスタ整流器
20を用いて、シリコン整流器19−サイリスタ整流器
20−直流リアクトル14−主電極3,炉底電極4−シ
リコン整流器19の順に電流を流し、上記該サイリスタ
整流器20の位相制御を行うことにより主電極3へ供給
する出力電圧を調整するようにし、一方、出滓電極2
2、炉底電極4間の負荷変動に対しては、直列に接続さ
れているシリコン整流器19とサイリスタ整流器25を
用いて、シリコン整流器19−サイリスタ整流器25−
直流リアクトル14−出滓電極22,炉底電極4−シリ
コン整流器19の順に電流を流し、上記サイリスタ整流
器25の位相制御を行うことにより出滓電極22へ供給
する出力電圧を調整するようにする。
In the case of the DC power supply 15B shown in FIG. 3, the variation of the load resistance between the main electrode 3 and the furnace bottom electrode 4 is changed in series similarly to the case of the DC power supply 15A shown in FIG. Using the connected silicon rectifier 19 and thyristor rectifier 20, a current flows in the order of silicon rectifier 19-thyristor rectifier 20-DC reactor 14-main electrode 3, bottom electrode 4-silicon rectifier 19. By controlling the phase, the output voltage supplied to the main electrode 3 is adjusted.
2. With respect to the load variation between the furnace bottom electrodes 4, the silicon rectifier 19 and the thyristor rectifier 25 are connected in series using the silicon rectifier 19 and the thyristor rectifier 25.
An electric current flows in the order of the DC reactor 14-the slag electrode 22, the furnace bottom electrode 4-the silicon rectifier 19, and the output voltage supplied to the slag electrode 22 is adjusted by controlling the phase of the thyristor rectifier 25.

【0020】上記主電極3への出力電圧は、シリコン整
流器19の一定電圧とサイリスタ整流器20の位相制御
による可変電圧の和であり、又、出滓電極22への出力
電圧は、シリコン整流器19の一定電圧とサイリスタ整
流器25の位相制御による可変電圧の和であるから、た
とえば、主電極3と出滓電極22の電圧を0〜240V
に調整できるとした場合に、シリコン整流器19の電圧
を120Vとして一定とすると、サイリスタ整流器2
0,25では、ともに−120V〜+120Vの範囲で
可変とすることができ、各負荷としての電極3,22を
0〜240Vに別々に広範囲に制御することができる。
このように、定電圧のシリコン整流器19を主電極用回
路18と出滓電極用回路24で共用させるようにしてあ
るため、各回路18,24で別々にシリコン整流器を用
いる場合に比して全体を小型化することができ、コスト
的にも有利となる。
The output voltage to the main electrode 3 is the sum of the constant voltage of the silicon rectifier 19 and the variable voltage by the phase control of the thyristor rectifier 20, and the output voltage to the slag electrode 22 is Since it is the sum of the constant voltage and the variable voltage by the phase control of the thyristor rectifier 25, for example, the voltage of the main electrode 3 and the slag electrode 22 is set to 0 to 240 V
If the voltage of the silicon rectifier 19 is kept constant at 120 V, the thyristor rectifier 2
In the case of 0 and 25, both can be made variable in the range of -120V to + 120V, and the electrodes 3 and 22 as each load can be separately and widely controlled to 0 to 240V.
As described above, since the constant voltage silicon rectifier 19 is shared by the main electrode circuit 18 and the slag electrode circuit 24, the entire circuit 18 and 24 use an overall silicon rectifier as compared with the case where a silicon rectifier is used separately. Can be reduced in size, which is also advantageous in terms of cost.

【0021】次いで、図4は本発明の実施の更に他の形
態を示すもので、図3に示した双極型の電気抵抗式灰溶
融炉用直流電源装置15Bにおいて、主電極3と出滓電
極22へのトータルの最大出力を制限するための最大出
力制限器26を設け、該最大出力制限器26の設定出力
値の範囲内で主電極3への出力を優先させ出滓電極22
への出力を制限するように、主電極用回路18のサイリ
スタ整流器20へ制御指令を送る整流器制御器27と、
出滓電極用回路24のサイリスタ整流器25へ制御指令
を送る整流器制御器28とを備えてなる直流電源装置1
5Cとしたものである。その他の構成は図3に示したも
のと同じであり、同一部分には同一符号が付してある。
FIG. 4 shows still another embodiment of the present invention. In the bipolar electric resistance type ash melting furnace DC power supply 15B shown in FIG. 3, the main electrode 3 and the slag electrode are used. A maximum output limiter 26 for limiting the total maximum output to the main electrode 3 is provided, and the output to the main electrode 3 is prioritized within the range of the set output value of the maximum output limiter 26, and the slag electrode 22
A rectifier controller 27 that sends a control command to the thyristor rectifier 20 of the main electrode circuit 18 so as to limit the output to the rectifier controller 27;
A rectifier controller 28 for sending a control command to a thyristor rectifier 25 of the slag electrode circuit 24.
5C. Other configurations are the same as those shown in FIG. 3, and the same portions are denoted by the same reference numerals.

【0022】図4に示す直流電源装置15Cの場合、た
とえば、主電極3への出力の最大値を2000kWと
し、出滓電極22への出力の最大値を1200kWとし
て運転される場合に、最大出力制限器26でトータル最
大出力を2000kWに設定し、たとえば、主電極3へ
の出力が1600kW必要となったようなときには、出
滓電極22への出力が400kWに制限されて、トータ
ルで2000kWに抑えられるようにする。
In the case of the DC power supply 15C shown in FIG. 4, for example, when the maximum output of the main electrode 3 is set to 2000 kW and the maximum output of the slag electrode 22 is set to 1200 kW, the maximum output is set. The limiter 26 sets the total maximum output to 2000 kW. For example, when the output to the main electrode 3 needs to be 1600 kW, the output to the slag electrode 22 is limited to 400 kW, and the total output is suppressed to 2000 kW. To be able to

【0023】このように、トータルの最大出力を制限す
ることにより、電源側の容量を低減することができて、
需要設備としての契約電力を下げることができ、これに
伴い、施設の運営費、電源側の力率改善用コンデンサー
の容量を下げることができ、又、整流器用の多相変圧器
17の容量も下げることができるので、装置全体の更な
る小型化を図ることができ、設置スペース上より有利と
なる。
As described above, by limiting the total maximum output, the capacity on the power supply side can be reduced.
The contract power as demand equipment can be reduced, and accordingly, the operating cost of the facility, the capacity of the power factor improving capacitor on the power supply side can be reduced, and the capacity of the polyphase transformer 17 for the rectifier can also be reduced. Since it can be lowered, the size of the entire apparatus can be further reduced, which is more advantageous in terms of installation space.

【0024】[0024]

【発明の効果】以上述べた如く、本発明の電気抵抗式灰
溶融炉用直流電源装置によれば、炉体内に昇降可能に配
置した主電極と炉体の底部に設置した炉底電極との間に
電流を流すことにより、炉体内に投入された灰を溶融さ
せるようにしてある電気抵抗式灰溶融炉に用いる直流電
源装置において、交流電源に多相変圧器の一次側を接続
し、且つ該多相変圧器の二次側に、上記主電極と炉底電
極に接続した主電極用回路を設け、該主電極用回路に、
シリコン整流器とサイリスタ整流器とを直列に組み込ん
だ構成としてあるので、サイリスタ整流器の位相制御に
より主電極への出力電圧を負荷抵抗の変動に応じて無段
階に連続的に調整することができて、安定な操業が可能
となると共に、従来の如きタップ切換操作が不要となる
ことから、回路を簡素化でき、装置全体の小型化を図る
ことができ、又、炉体内に下部で連通するようにした第
1炉室と第2炉室を区画形成し、第1炉室内に昇降可能
に配置した主電極と炉体の底部に設置した炉底電極との
間、及び第2炉室内に昇降可能に配置した出滓電極と上
記炉底電極との間にそれぞれ電流を流すことにより、第
1炉室内に投入された灰を第1炉室と第2炉室で溶融さ
せて第2炉室から出滓させるようにしてある電気抵抗式
灰溶融炉に用いる直流電源装置において、交流電源に多
相変圧器の一次側を接続し、且つ該多相変圧器の二次側
に、上記主電極と炉底電極に接続した主電極用回路を設
け、該主電極用回路に、シリコン整流器とサイリスタ整
流器とを、シリコン整流器が通電方向上流側となるよう
に直列に組み込み、更に、上記主電極用回路のシリコン
整流器の上流部と下流部との間に、出滓電極と炉底電極
に接続した出滓電極用回路を並列に接続し、該出滓電極
用回路にサイリスタ整流器を組み込み、該出滓電極用回
路に上記主電極用回路のシリコン整流器を共用させるよ
うにした構成とすることにより、主電極への出力電圧と
出滓電極への出力電圧をそれぞれ無段階に調整すること
ができると共に、シリコン整流器の共用化により、コス
トの低減と装置全体の小型化を図ることができ、更に、
主電極と出滓電極のトータルの最大出力を制限するため
の最大出力制限器を設けた構成とすることにより、電源
側の容量を低減できて小型化を図ることができ、且つ多
相変圧器の容量も下げることができて設置スペースをよ
り小さくすることができる、等の優れた効果を発揮す
る。
As described above, according to the DC power supply device for an electric resistance type ash melting furnace of the present invention, the main electrode arranged up and down in the furnace body and the furnace bottom electrode installed at the bottom of the furnace body are connected. In a DC power supply used in an electric resistance type ash melting furnace which is configured to melt ash put into the furnace body by flowing a current between the furnace, a primary side of a polyphase transformer is connected to an AC power supply, and On the secondary side of the polyphase transformer, a main electrode circuit connected to the main electrode and the furnace bottom electrode is provided, and the main electrode circuit is
Since the silicon rectifier and the thyristor rectifier are built in series, the output voltage to the main electrode can be continuously and continuously adjusted according to the fluctuation of the load resistance by controlling the phase of the thyristor rectifier. Operation can be performed, and the tap switching operation as in the related art is not required, so that the circuit can be simplified, the size of the entire apparatus can be reduced, and the lower body communicates with the furnace body. A first furnace chamber and a second furnace chamber are defined and formed between a main electrode arranged so as to be able to ascend and descend in the first furnace chamber and a furnace bottom electrode installed at the bottom of the furnace body, and ascendable and descendable into the second furnace chamber. By flowing a current between the disposed slag electrode and the furnace bottom electrode, the ash charged into the first furnace chamber is melted in the first furnace chamber and the second furnace chamber and discharged from the second furnace chamber. Used in electric resistance ash melting furnaces that are made to slag In the power supply apparatus, a primary electrode circuit connected to the main electrode and the bottom electrode is provided on the secondary side of the polyphase transformer, with the primary side connected to the AC power supply. A silicon rectifier and a thyristor rectifier are incorporated in the electrode circuit in series such that the silicon rectifier is located on the upstream side in the direction of current flow. The slag electrode circuit and the slag electrode circuit connected to the furnace bottom electrode are connected in parallel, a thyristor rectifier is incorporated in the slag electrode circuit, and the silicon rectifier of the main electrode circuit is shared with the slag electrode circuit. With such a configuration, the output voltage to the main electrode and the output voltage to the slag electrode can be respectively adjusted steplessly, and the common use of the silicon rectifier reduces costs and reduces the size of the entire device. Plan Door can be, further,
By providing a maximum output limiter for limiting the total maximum output of the main electrode and the slag electrode, the capacity on the power supply side can be reduced, the size can be reduced, and the multi-phase transformer can be achieved. , The capacity of the device can be reduced and the installation space can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を示す電気抵抗式灰溶融
炉用直流電源装置の回路図である。
FIG. 1 is a circuit diagram of a DC power supply for an electric resistance type ash melting furnace according to an embodiment of the present invention.

【図2】本発明の実施の他の形態を示すもので、双極型
の電気抵抗式灰溶融炉への採用例を示す概略図である。
FIG. 2 shows another embodiment of the present invention, and is a schematic view showing an example of application to a bipolar electric resistance ash melting furnace.

【図3】図2に示す双極型の電気抵抗式灰溶融炉用直流
電源装置の回路図である。
FIG. 3 is a circuit diagram of the bipolar electric resistance type ash melting furnace DC power supply device shown in FIG. 2;

【図4】本発明の実施の更に他の形態を示す双極型の電
気抵抗式灰溶融炉用直流電源装置の回路図である。
FIG. 4 is a circuit diagram of a DC power supply device for a bipolar electric resistance type ash melting furnace showing still another embodiment of the present invention.

【図5】電気抵抗式灰溶融炉の一例を示す概略図であ
る。
FIG. 5 is a schematic view showing an example of an electric resistance type ash melting furnace.

【図6】従来の直流電源装置の一例を示す回路図であ
る。
FIG. 6 is a circuit diagram showing an example of a conventional DC power supply device.

【符号の説明】[Explanation of symbols]

1 炉体 1a 第1炉室 1b 第2炉室 3 主電極 4 炉底電極 8 灰 15A,15B,15C 直流電源装置 16 交流電源 17 多相変圧器 18 主電極用回路 19 シリコン整流器 20 サイリスタ整流器 22 出滓電極 24 出滓電極用回路 25 サイリスタ整流器 26 最大出力制限器 DESCRIPTION OF SYMBOLS 1 Furnace body 1a 1st furnace room 1b 2nd furnace room 3 Main electrode 4 Furnace bottom electrode 8 Gray 15A, 15B, 15C DC power supply 16 AC power supply 17 Polyphase transformer 18 Main electrode circuit 19 Silicon rectifier 20 Thyristor rectifier 22 Slag electrode 24 Slag electrode circuit 25 Thyristor rectifier 26 Maximum output limiter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野田 壮史 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社東京エンジニアリング センター内 (72)発明者 平岡 淳 大阪府大阪市東淀川区西淡路3丁目1番56 号 株式会社三社電機製作所内 (72)発明者 土井 量徳 大阪府大阪市東淀川区西淡路3丁目1番56 号 株式会社三社電機製作所内 Fターム(参考) 3K058 AA00 AA95 BA19 CB06 CD01 GA08 3K061 NB01 4K063 AA04 AA12 BA13 CA04 CA07 FA22 FA23 FA25 5H006 AA06 CA03 CA07 CA12 CA13 CB02 CC02 DA04 DB02 DC05 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Onoda 3-2-16-1 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries, Ltd. Tokyo Engineering Center (72) Inventor Jun Hiraoka 3 Nishi-Awaji, Higashiyodogawa-ku, Osaka-shi, Osaka No. 1-56, Sansha Electric Manufacturing Co., Ltd. (72) Inventor Kazunori Doi 3-1-1, Nishiawaji, Higashi-Yodogawa-ku, Osaka-shi, Osaka F-term (reference) 3K058 AA00 AA95 BA19 CB06 CD01 GA08 3K061 NB01 4K063 AA04 AA12 BA13 CA04 CA07 FA22 FA23 FA25 5H006 AA06 CA03 CA07 CA12 CA13 CB02 CC02 DA04 DB02 DC05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉体内に昇降可能に配置した主電極と炉
体の底部に設置した炉底電極との間に電流を流すことに
より、炉体内に投入された灰を溶融させるようにしてあ
る電気抵抗式灰溶融炉に用いる直流電源装置において、
交流電源に多相変圧器の一次側を接続し、且つ該多相変
圧器の二次側に、上記主電極と炉底電極に接続した主電
極用回路を設け、該主電極用回路に、シリコン整流器と
サイリスタ整流器とを直列に組み込んだ構成を有するこ
とを特徴とする電気抵抗式灰溶融炉用直流電源装置。
1. An electric current is applied between a main electrode which can be moved up and down in a furnace body and a furnace bottom electrode which is provided at the bottom of the furnace body so that the ash put into the furnace body is melted. In the DC power supply used for the electric resistance type ash melting furnace,
The primary side of the polyphase transformer is connected to the AC power supply, and the secondary side of the polyphase transformer is provided with a main electrode circuit connected to the main electrode and the furnace bottom electrode. A DC power supply for an electric resistance type ash melting furnace, having a configuration in which a silicon rectifier and a thyristor rectifier are incorporated in series.
【請求項2】 炉体内に下部で連通するようにした第1
炉室と第2炉室を区画形成し、第1炉室内に昇降可能に
配置した主電極と炉体の底部に設置した炉底電極との
間、及び第2炉室内に昇降可能に配置した出滓電極と上
記炉底電極との間にそれぞれ電流を流すことにより、第
1炉室内に投入された灰を第1炉室と第2炉室で溶融さ
せて第2炉室から出滓させるようにしてある電気抵抗式
灰溶融炉に用いる直流電源装置において、交流電源に多
相変圧器の一次側を接続し、且つ該多相変圧器の二次側
に、上記主電極と炉底電極に接続した主電極用回路を設
け、該主電極用回路に、シリコン整流器とサイリスタ整
流器とを、シリコン整流器が通電方向上流側となるよう
に直列に組み込み、更に、上記主電極用回路のシリコン
整流器の上流部と下流部との間に、出滓電極と炉底電極
に接続した出滓電極用回路を並列に接続し、該出滓電極
用回路にサイリスタ整流器を組み込み、該出滓電極用回
路に上記主電極用回路のシリコン整流器を共用させるよ
うにした構成を有することを特徴とする電気抵抗式灰溶
融炉用直流電源装置。
2. A first device which communicates with a furnace body at a lower portion.
A furnace chamber and a second furnace chamber were defined and partitioned between a main electrode arranged to be able to move up and down in the first furnace chamber and a furnace bottom electrode installed at the bottom of the furnace body, and to be able to move up and down in the second furnace chamber. By supplying an electric current between the slag electrode and the furnace bottom electrode, the ash charged into the first furnace chamber is melted in the first furnace chamber and the second furnace chamber, and the ash is discharged from the second furnace chamber. In the DC power supply device used in the electric resistance type ash melting furnace, the primary side of the polyphase transformer is connected to the AC power source, and the main electrode and the bottom electrode are connected to the secondary side of the polyphase transformer. And a silicon rectifier and a thyristor rectifier are incorporated in the main electrode circuit in series such that the silicon rectifier is on the upstream side in the direction of current flow. Electrode connected to the slag electrode and the furnace bottom electrode between the upstream and downstream parts of An electric resistance, wherein a circuit is connected in parallel, a thyristor rectifier is incorporated in the slag electrode circuit, and the silicon rectifier of the main electrode circuit is shared with the slag electrode circuit. DC power supply for ash melting furnace.
【請求項3】 主電極と出滓電極のトータルの最大出力
を制限するための最大出力制限器を設けた請求項2記載
の電気抵抗式灰溶融炉用直流電源装置。
3. A DC power supply for an electric resistance type ash melting furnace according to claim 2, further comprising a maximum output limiter for limiting the total maximum output of the main electrode and the slag electrode.
JP2000369182A 2000-12-04 2000-12-04 DC power supply for electric resistance ash melting furnace Expired - Lifetime JP4564648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000369182A JP4564648B2 (en) 2000-12-04 2000-12-04 DC power supply for electric resistance ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000369182A JP4564648B2 (en) 2000-12-04 2000-12-04 DC power supply for electric resistance ash melting furnace

Publications (2)

Publication Number Publication Date
JP2002171763A true JP2002171763A (en) 2002-06-14
JP4564648B2 JP4564648B2 (en) 2010-10-20

Family

ID=18839259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000369182A Expired - Lifetime JP4564648B2 (en) 2000-12-04 2000-12-04 DC power supply for electric resistance ash melting furnace

Country Status (1)

Country Link
JP (1) JP4564648B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561279A (en) * 1978-10-30 1980-05-08 Toshiba Corp Controller of power converter
JPH11211054A (en) * 1998-01-22 1999-08-06 Ishikawajima Harima Heavy Ind Co Ltd Ash melting furnace
JP2000274621A (en) * 1999-03-19 2000-10-03 Nkk Corp Melting furnace and melting method for waste containing phosphorus
JP2000331774A (en) * 1999-05-18 2000-11-30 Kitashiba Electric Co Ltd Fusion system by plural induction furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561279A (en) * 1978-10-30 1980-05-08 Toshiba Corp Controller of power converter
JPH11211054A (en) * 1998-01-22 1999-08-06 Ishikawajima Harima Heavy Ind Co Ltd Ash melting furnace
JP2000274621A (en) * 1999-03-19 2000-10-03 Nkk Corp Melting furnace and melting method for waste containing phosphorus
JP2000331774A (en) * 1999-05-18 2000-11-30 Kitashiba Electric Co Ltd Fusion system by plural induction furnace

Also Published As

Publication number Publication date
JP4564648B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
EP0616414A1 (en) Controllable compound voltage DC/AC transforming circuit
JP2009506743A (en) Pulse width modulation power inverter output control
US6472851B2 (en) Hybrid tap-changing transformer with full range of control and high resolution
US6020726A (en) AC voltage regulator
JPH04218818A (en) Ac power source
US20110216802A1 (en) Power supply arrangement
US6285169B1 (en) Sag generator with switch-mode impedance
JP2002171763A (en) Dc power supply unit for electric resistance type ash- melting furnace
CN101248705A (en) Heating power supply device
JP6630220B2 (en) Welding power supply
US20080123714A1 (en) Electronic Circuit And Method Of Supplying Electricity ...
JP3533982B2 (en) Power converter
JP2544907B2 (en) Heating power supply
JPH1042559A (en) Step-up/down type power controller
RU2245600C1 (en) Step-by-step ac voltage regulation device
JP2840924B2 (en) Power control method and device
JP4684758B2 (en) Power supply
CN216721192U (en) Combined voltage regulating circuit of high-voltage power supply rectifier
JP2001145351A (en) Automatic voltage regulator
RU2776027C1 (en) Arc load ac controller
RU2188496C1 (en) Device for stepped adjustment of alternating voltage
US20240004415A1 (en) Micro-Stepping Cascading Voltage Regulator
JPH08126203A (en) Stationary voltage regulator
JPS5816316A (en) Controlling system of reactive electric power
RU2035828C1 (en) Rectified voltage regulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091028

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term