JP4564615B2 - Fault location system - Google Patents

Fault location system Download PDF

Info

Publication number
JP4564615B2
JP4564615B2 JP31358099A JP31358099A JP4564615B2 JP 4564615 B2 JP4564615 B2 JP 4564615B2 JP 31358099 A JP31358099 A JP 31358099A JP 31358099 A JP31358099 A JP 31358099A JP 4564615 B2 JP4564615 B2 JP 4564615B2
Authority
JP
Japan
Prior art keywords
surge
transmission
slave station
slave
detection time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31358099A
Other languages
Japanese (ja)
Other versions
JP2001133504A (en
Inventor
多喜也 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kouatsu Electric Co
Original Assignee
Nippon Kouatsu Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kouatsu Electric Co filed Critical Nippon Kouatsu Electric Co
Priority to JP31358099A priority Critical patent/JP4564615B2/en
Priority to CA002325101A priority patent/CA2325101C/en
Publication of JP2001133504A publication Critical patent/JP2001133504A/en
Application granted granted Critical
Publication of JP4564615B2 publication Critical patent/JP4564615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、故障点標定システムに関する。更に詳しくは、標定時点のサージ伝播速度を算出することで、正確に故障箇所を標定することができる故障点標定システムに関する。
【0002】
【従来の技術】
従来、送電線路や配電線路(以下、あわせて「送配電線路」と記載する。)において送配電線路の途中に故障が発生した場合に、その故障箇所を挟む二つの子局におけるサージ検出時刻の差から送配電線路上の故障位置を標定する方法が知られている(特公昭63−51274号公報等)。かかる標定方法においては、両端の子局においてそれぞれサージを検出した時刻、2子局間の距離、及びサージが送配電線路を伝播する速度(以下、サージ伝播速度とする)を基に故障位置を特定する。
【0003】
このサージ伝播速度は、送配電線路自体(例えば、架空配電線やケーブル配電線による違い、及び対地抵抗率の違い等)の条件や気象条件等によって変化する。このため、従来の標定方法では、予め計測して求めたサージ伝播速度を概算値として用いることが多かった。また、子局間の距離が短い場合は、概算値のサージ伝播速度を用いて標定を行っても、無視できる程度の誤差とすることが多かった。
【0004】
【発明が解決しようとする課題】
しかし、送配電線路や気象等の条件によっては、標定時のサージ伝播速度と、概算値のサージ伝播速度とが大きく異なるものとなるため、標定の誤差が無視できないものとなる場合があった。また、子局間の距離が長い場合においても標定の誤差が無視できないものとなる場合があった。
【0005】
本発明は、このような問題点を解決するものであり、標定時点のサージ伝播速度を算出することによって故障箇所を正確に標定することができる故障点標定システムを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の故障点標定システムを以下に説明する。
【0007】
本発明の故障点標定システムは、送配電線路に設置されサージ検出時刻の情報を親局(2)に送信する子局(1)と、該サージ検出時刻の情報をもとに故障点を標定する該親局(2)と、を有、上記子局(1)は、時計としての機能を備え、GPS電波を受信して、GPSの保有する現在時刻を特定し、該GPSの保有する現在時刻と自己の現在時刻を同期させることができ、当該子局(1)が設置された送配電線路のサージ電流又はサージ電圧を検出して、該サージ電流又はサージ電圧を検出した時刻であるサージ検出時刻を特定し、該サージ検出時刻を通信網を通じて上記親局(2)に送信し、上記親局(2)は、上記子局(1)から送信される上記サージ検出時刻を通信網を介して受信し、故障区間の両端の子局(1)の上記サージ検出時刻の差と、該故障区間の送配電線路の長さと、サージ伝播速度から送配電線路の故障の生じた位置を特定し、該サージ伝播速度は、上記送配電線路網の故障点に隣接する一の子局、及び該一の子局に隣接する他の子局の、上記サージ検出時刻と、該一の子局及び該他の子局間の送配電線路の長さとをもとにサージ伝播速度を求める。
【0009】
そして、上記送配電線路網の電源端に最も近い子局の上記サージ検出時刻t1と、送配電線路網の末端の子局の上記サージ検出時刻t2と、サージの伝播速度vと、該子局間の送配電線路の長さLと、をもとに、該電源端側の子局から上記故障点までの送配電線路上の距離L1を、式L1=(L+(t1−t2)×v)/2から求め、更に、上記計算で得られた故障点位置を挟む一対の子局のうちの一の子局の上記サージ検出時刻t3と、他の子局の上記サージ検出時刻t4と、サージの伝播速度vと、該一対の子局間の送配電線路の長さL’と、をもとに、該一の子局から上記故障点までの送配電線路上の距離L3を、式L3=(L’+(t3−t4)×v)/2から求めることを特徴とする
【0010】
【発明の実施の形態】
以下、図1〜6を用いて本発明の実施の形態を説明する。
〔実施例〕
(1)故障点標定システムの構成
本故障点標定システムは、図1に示すように、送配電線路の各鉄塔や電柱に設置される子局1と、電力会社の営業所や支店などに設置され、子局1からの情報をもとに故障点を標定する親局2とからなる。
【0011】
(a)子局
子局1は、図2に示すように、GPSアンテナ111と、GPS受信機112と、発振回路121と、基準時計122と、時刻同期補正回路123と、ZCT131(零相変流器)と、フィルタ回路132と、サージ信号検出回路133と、サージ検出時刻保持回路134と、中央処理ユニット141と、通信インターフェイス142と、を備える。
【0012】
そして、ZCT131、フィルタ回路132、サージ信号検出回路133、サージ検出時刻保持回路134、並びに中央処理ユニット141の一部は「サージ検出手段13」に相当する。また、中央処理ユニット141と通信インターフェイス142は「サージ情報送信手段14b」に相当する。
【0013】
そして、同程度の概念としては、 GPSアンテナ111とGPS受信機112をまとめて「GPS受信手段11」としてとらえることができ、発振回路121と基準時計122と時刻同期補正回路123とをまとめて「計時手段12」としてとらえることができる。
【0014】
以下、各構成要素について説明する。
(i)ZCT131(零相変流器)
送配電線路の鉄塔に取付けられ、故障時に発生するサージ信号(サージ電流)を検出し、フィルタ回路132に送る。尚、サージ信号としてサージ電圧を検出する場合には、PT又はPD等の電圧検出器を使用する。
(ii)フィルタ回路132
ZCT131が検出した信号から、サージ信号以外の不要な商用周波信号成分等を除去し、サージ信号のみを通過させ、サージ信号検出回路133に送る。
(iii)サージ信号検出回路133
サージ信号のレベルを検出し、信号レベルがサージ認定レベルを超えたら、サージの発生と判断して時刻保持信号をサージ検出時刻保持回路134へ出力する。
【0015】
(iv)サージ検出時刻保持回路134
サージ信号検出回路133から時刻保持信号が出力されると、その時の基準時計122の時刻を保持し、それをサージ検出時刻として中央処理ユニット141へ出力する。
【0016】
(vi)GPSアンテナ111とGPS受信機112
GPSアンテナ111がGPS衛星からの電波を受信し、それをGPS受信機112に送る。そしてGPS受信機112が、その電波からGPS衛星が保有する標準時刻の情報を同期信号として取り出し、時刻同期補正回路123へ出力する。
(vii)時刻同期補正回路123
GPS受信機112から出力される同期信号に従って、基準時計122の時刻をGPS衛星が保有する標準時刻へ同期させる。
【0017】
(viii)基準時計122
基準時刻をサージ検出時刻保持回路134へ出力する。
(ix)発振回路121
時刻を計時するための基準時間信号を基準時計122へ出力する。
【0018】
(x)中央処理ユニット141
サージ検出時刻保持回路134から出力されるサージ検出時刻を、通信インターフェイス142を介して親局2に送信する。
(xi)通信インターフェイス142
中央処理ユニット141が公衆回線網を使って親局2と通信できるように、中央処理ユニット141と公衆回線網との間で通信信号を中継する。
【0019】
(b)親局
また、親局2は図3に示すように、通信インターフェイス21と、 補助記憶装置222と、中央処理装置23と、CRT241と、プリンタ242と、キーボード25とを有する。
【0020】
ここで、通信インターフェイス21は、各子局からのサージ検出時刻の情報を受信する子局サージ情報受信手段21bとして位置づけることができる。
そして、中央処理装置23は、サージ検出時刻、及びサージ伝播速度をもとに故障位置を標定する故障位置特定手段23cとして位置づけることができる。
また、中央処理装置23は、サージ検出時刻をもとにサージ伝播速度を算出するサージ伝播速度算出手段23dとして位置づけることができる。
【0021】
更に、CRT241とプリンタ242は、標定結果を出力する情報出力手段24として位置づけることができる。そして、キーボード25は、入力手段として位置づけることができる。
以下で各構成要素について説明する。
【0022】
(i)通信インターフェイス21
子局1との間の通信信号を中継する。即ち、公衆回線網を介して子局1から送られてくる信号を変換して、中央処理装置23に渡す。
【0023】
(ii)中央処理装置23(パーソナルコンピュータ、ワークステーションなど)各子局1,1,1,...から送られてくる位置情報とサージ検出時刻とを、通信インターフェイス21を介して受け取り、後述する故障点標定処理を行う。
故障点標定処理によって得た故障点は、補助記憶装置222に記憶されていた送配電線路図データと共に、CRT241もしくはプリンタ242へ出力される。
【0024】
(iii)補助記憶装置222(ハードディスクなど)
各子局1,1,1,...から送られてくるサージ検出時刻や位置情報、並びに中央処理装置23が計算した故障点及び中央処理装置23での処理に必要な送配電線路図データを記録し保存する。
ここで、送配電線路図データには、電柱や鉄塔の位置データ、各電柱(鉄塔)間の距離データなどがある。
(iv)プリンタ242
中央処理装置23の指示により、中央処理装置23から送られた送配電線路図データや故障点の標定結果などを印刷する。
【0025】
(v)CRT241
中央処理装置23の指示により、中央処理装置23から送られた送配電線路図や故障点の標定結果などを表示する。
(vi)キーボード25(入力手段)
送配電線路図を作成するために必要な作図データ等を入力する。
ここで、作図データには、電柱や鉄塔の位置データ、各電柱(鉄塔)間の距離データなどがある。
【0026】
(2)サージ伝播速度の算出処理
以下、サージ伝播速度算出手段23dで行われるサージ伝播速度を算出する方法についてを説明する。また、故障が生じた送配電線路の構成は多く考えることができるが、以下の(a)、(b)に大別することができる。
(a)直線状に配列する子局の場合
図5に示すように、1本の送配電線路に順次子局1A、1B、1Cが設けられ、子局1B、1C間の点Pで故障が生じた場合を考える。
【0027】
故障によってサージが生じた場合、サージは故障点Pより送配電線路を伝播し、子局1Cを通過する他、子局1B及び子局1Aをこの順で通過する。このため、子局1A、子局1B間の距離LABがわかれば、数1に示す(1)式により子局1A、1B間のサージ伝播速度vABを算出することができる。
【0028】
【数1】

Figure 0004564615
【0029】
(b)分岐点に位置する子局の場合
図6に示すように、途中で分岐点Rがある送配電線路であって、分岐した送配電線路のそれぞれに子局1D、1E、1Fが設けられ、分岐点Rと子局1Fとの間の点Pで故障が生じた場合を考える。
【0030】
故障によってサージが生じた場合、サージは故障点Pより送配電線路を伝播し、子局1Fを通過する他、分岐点Rを経由して子局1D及び子局1Eを通過する。このとき、子局1D及び子局1Eと、分岐点R間との距離LRD、LREがわかり、距離LRD、LREが同一でなければ、数2に示す(2)式により分岐点Rから子局1D、1Eまでにおけるサージ伝播速度VRDEを算出することができる。
また、サージ伝播速度vRDEを求めた分岐点R及び子局1D、1E間は、故障点Pを含む分岐点R及び子局1F間に隣接し、送配電線路や気象条件が似通っている。このため、サージ伝播速度vRDEは、分岐点R及び子局1F間におけるサージ伝播速度vRFと略同じと見なすことができる。このため、求めたサージ伝播速度vRDEを故障点Pの位置評定に用いるサージ伝播速度vとして用いることができる。
【0031】
【数2】
Figure 0004564615
【0032】
上記サージ伝播速度の算出方法を用いた、サージ伝播速度の算出処理を行い、標定時点のサージ伝播速度vを正確に求めることで、故障点標定の誤差を減らすことができる。
【0033】
(3)故障点標定システムにおける処理
以下では、送配電線路に故障が生じた場合に故障箇所を特定するための手続きについて説明する。まず(a)において、子局におけるサージ検出時刻の標定について説明をし、次に(b)において、親局における故障点の標定について説明する。
【0034】
(a)子局におけるサージ検出時刻の標定
以下に、子局1の中央処理ユニット141におけるサージ検出時刻の標定手続を示す。
子局は、故障時に発生するサージ電流をZCT131で受信し、フィルタ回路132及びサージ信号検出回路133によって検出し、サージ検出信号をサージ検出時刻保持回路134へ出力する。次いで、サージ検出時刻保持回路134ではサージ検出信号を受けたときの基準時刻を保持し、サージ検出時刻として中央処理ユニット141へ出力する。続いて、中央処理ユニット141は、サージ検出信号の検出時刻データを、故障情報として子局番号と共に親局へ自動送信する。
【0035】
(b)親局における故障点の標定
以下に、親局2の中央処理装置23における故障点の標定の原理及び手続きを示す。まず(i)において、その故障点標定の原理について説明し、次に(ii)でその手続きについて説明する。
【0036】
(i)故障点標定の原理
図4に故障点の標定原理図を示す。
子局▲1▼と子局▲2▼の間で地絡故障が発生すると、図4に示すように進行波(サージ)が発生する。この進行波が子局▲1▼及び子局▲2▼で検出される時刻は、送配電線路を伝播する進行波の伝播速度vが一定であると仮定すれば、故障発生地点からの各子局までの距離L1,L2に比例することになる。
【0037】
つまり、子局▲1▼と子局▲2▼の間の送配電線路の長さL、及び進行波の伝播速度vが分かっており、子局▲1▼及び子局▲2▼で検出した時刻差を正確に検出することができれば、図4に示すように、計算式「L1=(L+(t1−t2)×v)/2」により子局▲1▼から故障点までの距離L1を求めることができることになる。
この「進行波の伝播速度v」においては、上記サージ伝播速度の算出処理により、標定時点の速度を求めることができる。
【0038】
また、本実施例の故障点標定システムにおいては、サージ時刻の差を検討する子局(電源端と末端の子局)の間の送配電線路の長さLは、予め計算し記憶しているものである。この長さLは、手動入力や、GPSによる自動計測などで求めたものである。
【0039】
更に、隣り合う子局については、送配電線路がほぼ直線であるという仮定のもとに、子局の位置情報(緯度、経度、高度)をもとに両者の間の送配電線路の距離を計算することができる。
また、隣り合わない子局間の距離については、その間に存在する隣り合う子局同士の間の送配電線路の長さを足し合わせることで、子局間の送配電線路の長さLを得ることができる。
【0040】
(ii)故障点標定の手続き
親局2の中央処理装置23は、あらかじめ電源端に最も近い子局と、送配電線路網の各末端の子局との間の送配電線路の長さLを計算し記憶している。
そして、中央処理装置23は、送配電線路上の電源端に最も近い子局1と、幹線及び支線の末端に最も近い子局1との組み合わせを選択し、両子局のサージ検出時刻の差から故障点を標定する。
【0041】
即ち、中央処理装置23は、電源端側の子局のサージ検出時刻t1と、末端側の子局の上記サージ検出時刻t2と、サージ伝播速度vと、両子局間の送配電線路の長さLと、をもとに、電源端側の子局から送配電線路の故障の生じた位置(故障点)までの送配電線路上の距離L1を、式L1=(L+(t1−t2)×v)/2から求める。
【0042】
そして、標定した故障点の近くにその故障点を挟む子局1,1がある場合は、再度、それらの子局のサージ検出時刻の差から故障点の標定をし直すことにより、標定の信頼性を上げることができる。
この故障点の標定手続については、オペレータがその都度手動操作により中央処理装置23に必要な指示を与えて、故障点の標定処理をさせるものとしてもよいし、中央処理装置23が自動的に処理できるようにプログラムを組んでもよい。
【0043】
なおこの場合、両端の子局の基準時計の時刻を同期させていなければ正確な時刻差は検出できないが、ここでは、上述したように、GPS衛星から送られてくる標準時刻と、各子局の基準時計の時刻を組合わせて随時補正することにより、各子局の時刻の同期を取っている。
【0044】
(iii)故障発生個所の表示
親局2の中央処理装置23は、故障点の標定が完了すると、故障発生個所をオペレータに知らせるため、補助記憶装置222に格納している送配電線路図情報と、標定した故障点とをCRT241の画面に表示する。また、オペレータの要求に応じてそれらをプリンタ242から印刷させる。
【0045】
(4)故障点標定システムの運用
子局1は、送配電線路を支持する電柱(鉄塔)に取り付け、いつ故障が発生しても検出できるように24時間連続で運転する。
親局2は、例えば、電力会社の支店又は営業所に設置し、オペレータがいる間だけ運転するようにしてもよいし、いつ故障が発生してもすぐに故障点が確認できるように、24時間運転としてもよい。
【0046】
(5)故障点標定システムの効果
本実施例の故障点標定システムは、子局内の計時手段12とGPS受信手段11を組合わせることにより、各子局で同期し、正確な時刻を維持することで、故障箇所の両側(電源端と末端)に位置する子局のサージ信号の到達時刻の差から、故障点の位置(子局から故障点の位置までの距離)を特定する。また、子局間のサージ信号の到達時刻の差からサージ伝播速度を求め、このサージ伝播速度をもとに故障点の位置を特定するため、送配電線路や気象等の条件が変化しても正確に故障点の位置を特定することができる。
【0047】
〔その他〕
なお、本発明においては、前記実施例に示すものに限られず、目的、用途に応じて本発明の範囲内で種々変更した態様とすることができる。即ち、サージ伝播速度を求めるために用いた子局は、本実施例では故障点に隣接するものとしたが、数局程度の離れていても算出することができる。また、算出する際に利用する2の子局は互いに隣接していなくてもよく、間に他の子局があってもよい。このように、子局間の間を長くすることによって、サージ伝達時刻の差が大きくなるため、サージ伝達速度を求め易くすることができる。
【0048】
子局から親局への情報の送信は、携帯電話、PHS及び公衆電話回線等の有線や無線等の公衆回線網を利用するものとすることができるし、送配電線路に設けられた専用回線網(メタルケーブル、光ファイバ、無線など)によって行うものとしてもよい。更に、送配電線路上に変調した信号を搬送させてもよい。
【0049】
また、送配電線路図情報中の地図データについても、補助記憶装置に記録される態様に限られるものではなく、磁気ディスク、光ディスク(CD−ROM、DVD等)、光磁気ディスク(MO等)等の他の記録メディアに記録されるものであってもよい。また、インターネット上の地図情報システムを運用しているWWWサイトのサーバから地図データをダウンロードし、又はオンラインで取り出すものとしてもよい。インターネットを介してサーバからデータをダウンロードし、又はオンラインで取り出す態様とすれば、地図情報を独自に保持する必要がなく常に最新の地図情報を入手することができる。
【0050】
【発明の効果】
故障点標定システムにおいては、標定時点のサージ伝播速度を求め、このサージ伝播速度を用いて送配電線路や気象等の条件が変化しても正確に故障点の位置を特定することができる。
【0051】
そして親局を備えるため、その親局によって、各子局からのサージ検出時刻の情報をもとに故障点を標定することができる。しかも、送配電線路網に設けられる子局とは別に親局を備えるため、故障点の標定機能を親局の設備に任せることで、各子局の設備を簡易かつコンパクトなものとすることができる。
【図面の簡単な説明】
【図1】故障点標定システムの親局と子局の関係を示す説明図である。
【図2】子局の各構成要素の説明図である。
【図3】親局の各構成要素の説明図である。
【図4】故障箇所を特定する原理を示す説明図である。
【図5】サージ伝播速度の算出方法を説明する為の模式図である。
【図6】サージ伝播速度の算出方法を説明する為の模式図である。
【符号の説明】
1;子局、11;GPS受信手段、111;GPSアンテナ、112;GPS受信機、12;計時手段、121;発振回路、122;基準時計、123;時刻同期補正回路、13;サージ検出手段、131;ZCT(零相変流器)、132;フィルタ回路、133;サージ信号検出回路、134;サージ検出時刻保持回路、14b;サージ情報送信手段、141;中央処理ユニット、142;通信インターフェイス、2;親局、21;通信インターフェイス、21a;子局位置情報受信手段、21b;子局サージ情報受信手段、22;地図情報記憶手段、221;CD−ROMドライブ、222;補助記憶装置、23;中央処理装置、23a;送配電線路図情報作成手段、23b;故障区間特定手段、23c;故障位置特定手段、23d;サージ伝播速度算出手段、24;送配電線路図情報出力手段、241;CRT、242;プリンタ、25;キーボード(入力手段)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fault location system. More specifically, the present invention relates to a failure point location system that can accurately locate a failure location by calculating a surge propagation speed at the time of location.
[0002]
[Prior art]
Conventionally, when a failure occurs in the middle of a transmission / distribution line in a transmission line or a distribution line (hereinafter referred to as “transmission / distribution line”), the surge detection time of two slave stations sandwiching the failure point A method for locating a failure position on a transmission / distribution line from a difference is known (Japanese Patent Publication No. 63-51274). In such an orientation method, the fault location is determined based on the time when the surge is detected at the slave stations at both ends, the distance between the slave stations, and the speed at which the surge propagates through the transmission and distribution line (hereinafter referred to as surge propagation speed). Identify.
[0003]
This surge propagation speed varies depending on the conditions of the transmission / distribution line (for example, differences between overhead distribution lines and cable distribution lines, differences in ground resistivity, etc.) and weather conditions. For this reason, in the conventional orientation method, the surge propagation speed obtained by measurement in advance is often used as an approximate value. In addition, when the distance between the slave stations is short, the error is often negligible even if the orientation is performed using the estimated surge propagation speed.
[0004]
[Problems to be solved by the invention]
However, depending on conditions such as transmission and distribution lines and weather, the surge propagation speed at the time of standardization and the surge propagation speed of the approximate value are significantly different, so the standardization error may not be negligible. Also, even when the distance between the slave stations is long, the orientation error may not be negligible.
[0005]
The present invention solves such problems, and an object of the present invention is to provide a fault location system that can accurately locate a fault location by calculating a surge propagation speed at the time of location.
[0006]
[Means for Solving the Problems]
The fault location system of the present invention will be described below.
[0007]
The failure point locating system of the present invention locates the failure point based on the slave station (1) installed on the transmission / distribution line and transmitting the surge detection time information to the master station (2), and the surge detection time information. to parent station (2), have a, it said child station (1) is provided with a function as a clock, to receive GPS radio waves, to identify the current time of the GPS held held by the GPS The current time can be synchronized with the current time of the self, and it is the time when the surge current or surge voltage is detected by detecting the surge current or surge voltage of the power transmission / distribution line where the slave station (1) is installed. The surge detection time is specified, the surge detection time is transmitted to the master station (2) through a communication network, and the master station (2) transmits the surge detection time transmitted from the slave station (1) to the communication network. The above surge of the slave station (1) at both ends of the failure section Identify the location where the failure of the transmission / distribution cable path occurred from the difference in departure time, the length of the transmission / distribution cable path in the failure section, and the surge propagation speed, and the surge propagation speed is adjacent to the failure point of the transmission / distribution cable network Based on the surge detection time of one slave station and the other slave station adjacent to the one slave station and the length of the transmission and distribution line between the one slave station and the other slave station. Find the surge propagation speed.
[0009]
Then , the surge detection time t1 of the slave station closest to the power supply end of the transmission / distribution power line network, the surge detection time t2 of the slave station at the end of the transmission / distribution power line network, the propagation velocity v of the surge, and the slave station Based on the length L of the power transmission / distribution line, the distance L1 on the power transmission / distribution line from the slave station on the power source side to the failure point is expressed by the equation L1 = (L + (t1−t2) × v ) / 2, and further, the surge detection time t3 of one slave station of the pair of slave stations sandwiching the failure point position obtained by the above calculation, and the surge detection time t4 of the other slave station, Based on the surge propagation velocity v and the length L ′ of the transmission / distribution line between the pair of slave stations, the distance L3 on the transmission / distribution line from the one slave station to the failure point is expressed by the following equation: and obtaining from L3 = (L '+ (t3 -t4) × v) / 2.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
〔Example〕
(1) Configuration of the fault location system The fault location system is installed in each slave station 1 installed in each tower and utility pole of the transmission and distribution line, as well as in the sales office or branch office of the power company, as shown in Fig. 1. And a master station 2 for locating a failure point based on information from the slave station 1.
[0011]
(A) As shown in FIG. 2, the slave station slave station 1 includes a GPS antenna 111, a GPS receiver 112, an oscillation circuit 121, a reference clock 122, a time synchronization correction circuit 123, a ZCT 131 (zero phase change). , A filter circuit 132, a surge signal detection circuit 133, a surge detection time holding circuit 134, a central processing unit 141, and a communication interface 142.
[0012]
The ZCT 131, the filter circuit 132, the surge signal detection circuit 133, the surge detection time holding circuit 134, and a part of the central processing unit 141 correspond to the “surge detection means 13”. The central processing unit 141 and the communication interface 142 correspond to the “surge information transmitting unit 14b”.
[0013]
As a similar concept, the GPS antenna 111 and the GPS receiver 112 can be collectively regarded as “GPS receiving means 11”, and the oscillation circuit 121, the reference clock 122, and the time synchronization correction circuit 123 are collectively represented as “ It can be regarded as the time measuring means 12 ”.
[0014]
Hereinafter, each component will be described.
(I) ZCT131 (zero phase current transformer)
A surge signal (surge current) generated at the time of failure is detected and sent to the filter circuit 132. When detecting a surge voltage as a surge signal, a voltage detector such as PT or PD is used.
(Ii) Filter circuit 132
Unnecessary commercial frequency signal components other than the surge signal are removed from the signal detected by the ZCT 131, and only the surge signal is allowed to pass through to the surge signal detection circuit 133.
(Iii) Surge signal detection circuit 133
When the level of the surge signal is detected and the signal level exceeds the surge approval level, it is determined that a surge has occurred and a time holding signal is output to the surge detection time holding circuit 134.
[0015]
(Iv) Surge detection time holding circuit 134
When a time holding signal is output from the surge signal detection circuit 133, the time of the reference clock 122 at that time is held and is output to the central processing unit 141 as the surge detection time.
[0016]
(Vi) GPS antenna 111 and GPS receiver 112
The GPS antenna 111 receives radio waves from GPS satellites and sends them to the GPS receiver 112. Then, the GPS receiver 112 extracts the standard time information held by the GPS satellite from the radio wave as a synchronization signal and outputs it to the time synchronization correction circuit 123.
(Vii) Time synchronization correction circuit 123
According to the synchronization signal output from the GPS receiver 112, the time of the reference clock 122 is synchronized with the standard time held by the GPS satellite.
[0017]
(Viii) Reference clock 122
The reference time is output to the surge detection time holding circuit 134.
(Ix) Oscillation circuit 121
A reference time signal for measuring time is output to the reference clock 122.
[0018]
(X) Central processing unit 141
The surge detection time output from the surge detection time holding circuit 134 is transmitted to the master station 2 via the communication interface 142.
(Xi) Communication interface 142
Communication signals are relayed between the central processing unit 141 and the public line network so that the central processing unit 141 can communicate with the master station 2 using the public line network.
[0019]
(B) Master Station The master station 2 also includes a communication interface 21, an auxiliary storage device 222, a central processing unit 23, a CRT 241, a printer 242, and a keyboard 25, as shown in FIG.
[0020]
Here, the communication interface 21 can be positioned as a slave station surge information receiving unit 21b that receives information on the surge detection time from each slave station.
Then, the central processing unit 23 can be positioned as failure position specifying means 23c for locating the failure position based on the surge detection time and the surge propagation speed.
Further, the central processing unit 23 can be positioned as a surge propagation speed calculating unit 23d that calculates the surge propagation speed based on the surge detection time.
[0021]
Furthermore, the CRT 241 and the printer 242 can be positioned as information output means 24 that outputs the orientation result. The keyboard 25 can be positioned as input means.
Each component will be described below.
[0022]
(I) Communication interface 21
The communication signal with the slave station 1 is relayed. That is, the signal sent from the slave station 1 via the public line network is converted and passed to the central processing unit 23.
[0023]
(Ii) Central processing unit 23 (personal computer, workstation, etc.) Each slave station 1, 1, 1,. . . The position information and surge detection time sent from are received via the communication interface 21 and a fault location process described later is performed.
The failure point obtained by the failure point locating process is output to the CRT 241 or the printer 242 together with the transmission / distribution line diagram data stored in the auxiliary storage device 222.
[0024]
(Iii) Auxiliary storage device 222 (such as a hard disk)
Each slave station 1, 1, 1,. . . The surge detection time and position information sent from the central processing unit 23, the failure point calculated by the central processing unit 23, and transmission / distribution line diagram data necessary for processing in the central processing unit 23 are recorded and stored.
Here, the transmission / distribution line diagram data includes position data of power poles and steel towers, distance data between power poles (steel towers), and the like.
(Iv) Printer 242
In accordance with an instruction from the central processing unit 23, transmission / distribution line diagram data sent from the central processing unit 23, a fault location determination result, and the like are printed.
[0025]
(V) CRT241
In response to an instruction from the central processing unit 23, a transmission / distribution line diagram sent from the central processing unit 23, a fault location determination result, and the like are displayed.
(Vi) Keyboard 25 (input means)
Enter drawing data and other data required to create a power distribution line diagram.
Here, the drawing data includes position data of power poles and steel towers, distance data between power poles (steel towers), and the like.
[0026]
(2) Surge Propagation Speed Calculation Processing Hereinafter, a method for calculating the surge propagation speed performed by the surge propagation speed calculation means 23d will be described. In addition, many configurations of the transmission / distribution electric line in which a failure has occurred can be broadly divided into the following (a) and (b).
(A) In the case of slave stations arranged in a straight line As shown in FIG. 5, slave stations 1A, 1B, 1C are sequentially provided on one transmission / distribution line, and a failure occurs at a point P between the slave stations 1B, 1C. Consider what happens.
[0027]
When a surge occurs due to a failure, the surge propagates from the failure point P through the power transmission / distribution line, passes through the slave station 1C, and also passes through the slave station 1B and the slave station 1A in this order. For this reason, if the distance L AB between the slave station 1A and the slave station 1B is known, the surge propagation speed v AB between the slave stations 1A and 1B can be calculated by the equation (1) shown in Equation 1.
[0028]
[Expression 1]
Figure 0004564615
[0029]
(B) In the case of a slave station located at a branch point As shown in FIG. 6, there is a transmission / distribution line having a branch point R in the middle, and a slave station 1D, 1E, 1F is provided in each branched transmission / distribution line. Suppose that a failure occurs at a point P between the branch point R and the slave station 1F.
[0030]
When a surge occurs due to a failure, the surge propagates through the transmission / distribution line from the failure point P, passes through the slave station 1F, and passes through the slave station 1D and the slave station 1E via the branch point R. In this case, the slave station 1D child station 1E, reveals the distance L RD, L RE and between the branch point R, the distance L RD, unless the identical L RE, shown in Formula 2 (2) branch points by formula The surge propagation velocity V RDE from R to the slave stations 1D and 1E can be calculated.
Further, the branch point R and the slave stations 1D and 1E for which the surge propagation velocity v RDE is obtained are adjacent to the branch point R including the fault point P and the slave station 1F, and the transmission / distribution line and the weather conditions are similar. For this reason, the surge propagation speed v RDE can be regarded as substantially the same as the surge propagation speed v RF between the branch point R and the slave station 1F. For this reason, the obtained surge propagation speed v RDE can be used as the surge propagation speed v used for the position evaluation of the failure point P.
[0031]
[Expression 2]
Figure 0004564615
[0032]
By performing the surge propagation speed calculation process using the surge propagation speed calculation method and accurately obtaining the surge propagation speed v at the time of orientation, errors in fault location can be reduced.
[0033]
(3) Processing in the fault location system Below, the procedure for specifying a fault location when a fault occurs in the transmission and distribution line will be described. First, in (a), the location of the surge detection time in the slave station will be described, and then in (b), the location of the failure point in the master station will be described.
[0034]
(A) Standardization of surge detection time in the slave station The procedure for standardizing the surge detection time in the central processing unit 141 of the slave station 1 is shown below.
The slave station receives the surge current generated at the time of failure by the ZCT 131, detects it by the filter circuit 132 and the surge signal detection circuit 133, and outputs the surge detection signal to the surge detection time holding circuit 134. Next, the surge detection time holding circuit 134 holds the reference time when the surge detection signal is received, and outputs it to the central processing unit 141 as the surge detection time. Subsequently, the central processing unit 141 automatically transmits the detection time data of the surge detection signal to the master station together with the slave station number as failure information.
[0035]
(B) Fault point location in the master station Below, the principle and procedure of fault location in the central processing unit 23 of the master station 2 are shown. First, in (i), the principle of fault location will be explained, and then in (ii) the procedure will be explained.
[0036]
(I) Principle of failure point location Fig. 4 shows the location principle of failure location.
When a ground fault occurs between the slave station (1) and the slave station (2), a traveling wave (surge) is generated as shown in FIG. When the traveling wave is detected at the slave station (1) and the slave station (2), assuming that the propagation velocity v of the traveling wave propagating through the transmission and distribution line is constant, each child from the failure occurrence point This is proportional to the distances L1 and L2 to the station.
[0037]
That is, the length L of the transmission / distribution line between the slave station (1) and the slave station (2) and the propagation velocity v of the traveling wave are known and detected at the slave station (1) and the slave station (2). If the time difference can be detected accurately, as shown in FIG. 4, the distance L1 from the slave station {circle around (1)} to the failure point can be calculated by the calculation formula “L1 = (L + (t1−t2) × v) / 2”. You can ask for it.
With this “propagation speed v of traveling wave”, the speed at the time of orientation can be obtained by the calculation process of the surge propagation speed.
[0038]
Moreover, in the fault location system of the present embodiment, the length L of the transmission / distribution cable path between the slave stations (the power supply terminal and the terminal slave station) that examines the difference in surge time is calculated and stored in advance. Is. This length L is obtained by manual input or automatic measurement by GPS.
[0039]
Furthermore, for adjacent slave stations, the distance between the transmission and distribution lines between the two stations is calculated based on the location information (latitude, longitude, altitude) of the slave stations on the assumption that the transmission and distribution lines are almost straight. Can be calculated.
Moreover, about the distance between the slave stations which are not adjacent, the length L of the power transmission / distribution line between the slave stations is obtained by adding the lengths of the transmission / distribution cable paths between the adjacent slave stations existing between them. be able to.
[0040]
(Ii) Procedure for fault location The central processing unit 23 of the master station 2 determines the length L of the transmission / distribution cable path between the slave station closest to the power supply terminal in advance and the slave station at each end of the transmission / distribution cable network. Calculate and remember.
Then, the central processing unit 23 selects a combination of the slave station 1 closest to the power supply end on the transmission and distribution line and the slave station 1 closest to the end of the main line and the branch line, and from the difference in the surge detection times of both slave stations. Locate the point of failure.
[0041]
That is, the central processing unit 23 detects the surge detection time t1 of the slave station on the power supply end side, the surge detection time t2 of the slave station on the terminal side, the surge propagation speed v, and the length of the transmission / distribution line between the slave stations. Based on L, the distance L1 on the transmission / distribution line from the slave station on the power supply end side to the position (failure point) where the failure occurred on the transmission / distribution line is expressed as L1 = (L + (t1-t2) × v) / 2.
[0042]
If there are slave stations 1 and 1 that sandwich the failure point near the determined failure point, the failure point is determined again from the difference in the surge detection times of those slave stations, thereby determining the reliability of the orientation. Can raise the sex.
The failure point location procedure may be such that the operator gives a necessary instruction to the central processing unit 23 by manual operation each time to cause the failure point location processing, or the central processing unit 23 automatically performs the processing. You may set up a program to do it.
[0043]
In this case, an accurate time difference cannot be detected unless the time of the reference clocks of the slave stations at both ends is synchronized, but here, as described above, the standard time sent from the GPS satellite and each slave station The time of each slave station is synchronized by combining the time of the reference clock and correcting it as needed.
[0044]
(Iii) Display of failure location When the central processing unit 23 of the master station 2 completes the location of the failure point, in order to notify the operator of the failure location, transmission / distribution line map information stored in the auxiliary storage device 222 Then, the determined failure point is displayed on the screen of the CRT 241. Further, they are printed from the printer 242 in response to an operator request.
[0045]
(4) Operation of the fault location system The slave station 1 is attached to a power pole (steel tower) that supports the transmission and distribution line, and operates continuously for 24 hours so that it can be detected whenever a failure occurs.
The master station 2 may be installed, for example, at a branch or sales office of an electric power company and operated only while there is an operator, or 24 so that a failure point can be confirmed immediately when a failure occurs. It is good also as time driving.
[0046]
(5) Effect of the fault location system The fault location system of this embodiment is synchronized with each slave station and maintains accurate time by combining the time measuring means 12 and the GPS receiving means 11 in the slave station. Thus, the position of the failure point (distance from the slave station to the position of the failure point) is specified from the difference in the arrival times of the surge signals of the slave stations located on both sides (the power supply end and the end) of the failure location. In addition, the surge propagation speed is obtained from the difference in the arrival time of the surge signal between the slave stations, and the location of the failure point is specified based on this surge propagation speed. The position of the failure point can be specified accurately.
[0047]
[Others]
In addition, in this invention, it can be set as the aspect variously changed within the range of this invention according to the objective and use, without being restricted to what is shown to the said Example. That is, the slave station used to determine the surge propagation speed is adjacent to the failure point in this embodiment, but can be calculated even if it is separated by several stations. Further, the two slave stations used for the calculation may not be adjacent to each other, and there may be other slave stations between them. In this way, by increasing the distance between the slave stations, the difference in surge transmission time increases, so that the surge transmission speed can be easily obtained.
[0048]
Transmission of information from the slave station to the master station can be made using a wired or wireless public network such as a mobile phone, PHS and public telephone line, or a dedicated line provided on the transmission and distribution line It may be performed by a net (metal cable, optical fiber, radio, etc.). Further, a modulated signal may be conveyed on the transmission / distribution line.
[0049]
Further, the map data in the transmission / distribution line diagram information is not limited to the mode recorded in the auxiliary storage device, but a magnetic disk, an optical disk (CD-ROM, DVD, etc.), a magneto-optical disk (MO, etc.), etc. It may be recorded on other recording media. Also, map data may be downloaded from a server of a WWW site that operates a map information system on the Internet, or retrieved online. If data is downloaded from a server via the Internet or taken out online, the map information does not need to be maintained independently, and the latest map information can always be obtained.
[0050]
【The invention's effect】
In this failure point location system, the surge propagation speed at the time of orientation can be obtained, and the location of the failure point can be accurately identified by using this surge propagation speed even if conditions such as the transmission / distribution line and weather change.
[0051]
And To provide a master station, by the master station, the information of the SD time from each slave station can be locating a fault point on the basis. Moreover, since the master station is provided separately from the slave stations provided in the transmission and distribution line network, it is possible to make the facilities of each slave station simple and compact by leaving the fault point location function to the master station equipment. it can.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a relationship between a master station and a slave station in a fault location system.
FIG. 2 is an explanatory diagram of each component of a slave station.
FIG. 3 is an explanatory diagram of each component of the master station.
FIG. 4 is an explanatory diagram showing the principle of identifying a fault location.
FIG. 5 is a schematic diagram for explaining a method of calculating a surge propagation speed.
FIG. 6 is a schematic diagram for explaining a method of calculating a surge propagation speed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1; Slave station, 11; GPS receiving means, 111; GPS antenna, 112; GPS receiver, 12; Time measuring means, 121; Oscillation circuit, 122; Reference clock, 123; Time synchronization correction circuit, 13; 131; ZCT (zero phase current transformer), 132; filter circuit, 133; surge signal detection circuit, 134; surge detection time holding circuit, 14b; surge information transmission means, 141; central processing unit, 142; ; Master station, 21; communication interface, 21a; slave station position information receiving means, 21b; slave station surge information receiving means, 22; map information storage means, 221; CD-ROM drive, 222; auxiliary storage device, 23; Processing device 23a; Transmission / distribution line diagram information creation means 23b; Fault section identification means 23c; Fault location identification means 23d; Di propagation velocity calculating means, 24; TD line diagram information output means, 241; CRT, 242; printer, 25; keyboard (input means).

Claims (1)

送配電線路に設置されサージ検出時刻の情報を親局(2)に送信する子局(1)と、該サージ検出時刻の情報をもとに故障点を標定する該親局(2)と、を有
上記子局(1)は、時計としての機能を備え、GPS電波を受信して、GPSの保有する現在時刻を特定し、該GPSの保有する現在時刻と自己の現在時刻を同期させることができ、当該子局(1)が設置された送配電線路のサージ電流又はサージ電圧を検出して、該サージ電流又はサージ電圧を検出した時刻であるサージ検出時刻を特定し、該サージ検出時刻を通信網を通じて上記親局(2)に送信し、
上記親局(2)は、上記子局(1)から送信される上記サージ検出時刻を通信網を介して受信し、故障区間の両端の子局(1)の上記サージ検出時刻の差と、該故障区間の送配電線路の長さと、サージ伝播速度から送配電線路の故障の生じた位置を特定し、
該サージ伝播速度は、上記送配電線路網の故障点に隣接する一の子局、及び該一の子局に隣接する他の子局の、上記サージ検出時刻と、該一の子局及び該他の子局間の送配電線路の長さとをもとにサージ伝播速度を求める故障点標定システムであって、
上記親局(2)は、上記送配電線路網の電源端に最も近い子局の上記サージ検出時刻t1と、送配電線路網の末端の子局の上記サージ検出時刻t2と、上記サージ伝播速度vと、該子局間の送配電線路の長さLと、をもとに、該電源端側の子局から上記故障点までの送配電線路上の距離L1を、式L1=(L+(t1−t2)×v)/2から求め、
更に、上記計算で得られた故障点位置を挟む一対の子局のうちの一の子局の上記サージ検出時刻t3と、他の子局の上記サージ検出時刻t4と、上記サージ伝播速度vと、該一対の子局間の送配電線路の長さL’と、をもとに、該一の子局から上記故障点までの送配電線路上の距離L3を、式L3=(L’+(t3−t4)×v)/2から求めることを特徴とする故障点標定システム。
A slave station (1) installed in the transmission / distribution line and transmitting information on the surge detection time to the master station (2), and the master station (2) for locating the failure point based on the information on the surge detection time; I have a,
The slave station (1) has a function as a clock, can receive GPS radio waves, identify the current time held by the GPS, and synchronize the current time held by the GPS with its own current time. Detects the surge current or surge voltage of the transmission / distribution line where the slave station (1) is installed, identifies the surge detection time that is the time when the surge current or surge voltage was detected, and communicates the surge detection time Sent to the master station (2) through the network,
The master station (2) receives the surge detection time transmitted from the slave station (1) via a communication network, and the difference between the surge detection times of the slave stations (1) at both ends of the failure section, From the length of the transmission / distribution line in the failure section and the surge propagation speed, specify the position where the failure of the transmission / distribution line has occurred,
The surge propagation speed is calculated based on the surge detection time, the one slave station, and the slave station adjacent to the failure point of the transmission and distribution line network, and the other slave stations adjacent to the one slave station. A fault location system that determines the surge propagation speed based on the length of the transmission and distribution line between other slave stations ,
The master station (2) includes the surge detection time t1 of the slave station closest to the power supply terminal of the transmission / distribution power line network, the surge detection time t2 of the slave station at the end of the transmission / distribution power network, and the surge propagation speed. Based on v and the length L of the transmission / distribution line between the slave stations, the distance L1 on the transmission / distribution line from the slave station on the power source side to the failure point is expressed by the equation L1 = (L + ( calculated from t1-t2) × v) / 2,
Furthermore, the surge detection time t3 of one slave station of the pair of slave stations sandwiching the failure point position obtained by the calculation, the surge detection time t4 of the other slave station, the surge propagation velocity v, Based on the length L ′ of the transmission / distribution cable path between the pair of slave stations, the distance L3 on the transmission / distribution cable path from the one slave station to the failure point is expressed by the equation L3 = (L ′ + (t3-t4) × v) / fault point location system characterized in that it obtained from 2.
JP31358099A 1999-11-04 1999-11-04 Fault location system Expired - Lifetime JP4564615B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31358099A JP4564615B2 (en) 1999-11-04 1999-11-04 Fault location system
CA002325101A CA2325101C (en) 1999-11-04 2000-11-03 Method of calculating surge propagation speed and system for locating fault points by the use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31358099A JP4564615B2 (en) 1999-11-04 1999-11-04 Fault location system

Publications (2)

Publication Number Publication Date
JP2001133504A JP2001133504A (en) 2001-05-18
JP4564615B2 true JP4564615B2 (en) 2010-10-20

Family

ID=18043031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31358099A Expired - Lifetime JP4564615B2 (en) 1999-11-04 1999-11-04 Fault location system

Country Status (2)

Country Link
JP (1) JP4564615B2 (en)
CA (1) CA2325101C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085111B2 (en) * 2006-12-01 2012-11-28 九州電力株式会社 Calculation method of surge propagation speed in accident location system
WO2015080569A1 (en) * 2013-11-28 2015-06-04 Lee Soon Tan An automatic power fault detection method and system for monitoring and controlling a power distribution system
JP6263034B2 (en) * 2014-01-24 2018-01-17 九電テクノシステムズ株式会社 Fault location system and fault location method
JP6449663B2 (en) * 2015-02-03 2019-01-09 中国電力株式会社 Fault location method and fault location system
BR112020018356A2 (en) * 2018-03-16 2020-12-29 Siemens Aktiengesellschaft METHOD AND DEVICE TO LOCATE FAILURE POINT IN AREA NETWORK BASED ON PROGRESSIVE WAVE, AND STORAGE MEDIA
JP6597933B1 (en) * 2018-09-20 2019-10-30 中国電力株式会社 Ground fault location device, ground fault location system, ground fault location method, program, recording medium
JP7378725B2 (en) * 2019-10-16 2023-11-14 中国電力株式会社 Measurement terminal, measurement terminal setting method, ground fault location system
JP7360663B2 (en) * 2019-10-17 2023-10-13 西日本電線株式会社 Abnormal location identification device, system and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242974A (en) * 1988-03-24 1989-09-27 Tohoku Electric Power Co Inc Locating system for power transmission line fault point utilizing artificial satellite
JPH0454470A (en) * 1990-06-25 1992-02-21 Sumitomo Electric Ind Ltd Fault point locating device for power transmission line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242974A (en) * 1988-03-24 1989-09-27 Tohoku Electric Power Co Inc Locating system for power transmission line fault point utilizing artificial satellite
JPH0454470A (en) * 1990-06-25 1992-02-21 Sumitomo Electric Ind Ltd Fault point locating device for power transmission line

Also Published As

Publication number Publication date
JP2001133504A (en) 2001-05-18
CA2325101C (en) 2010-02-02
CA2325101A1 (en) 2001-05-04

Similar Documents

Publication Publication Date Title
EP1001271A1 (en) Fault point location system
AU769346B2 (en) Fault point location system
KR100822010B1 (en) Traffic information providing system using digital map for collecting traffic information and method thereof
US7266376B2 (en) Method and device for providing information related to activity of user
EP2541196B1 (en) Navigation device and method with function of estimating position within tunnel
JP4564615B2 (en) Fault location system
JP3964553B2 (en) Information distribution system
JP2000152501A (en) Transmission and distribution line diagram information preparing system and failure point orienting system
JP4373518B2 (en) Reference time correction method and fault location system
JP4069192B2 (en) Fault location method and fault location system
JP2003057051A (en) Navigation system and judgment method for vehicle running position in the same
JP3527432B2 (en) Slave station, surge detection time locating method, failure location system, and failure location method
JP2007232686A (en) Traffic guide device, system, and method, mobile terminal equipment, display method, and program
US7307959B2 (en) System and method for locating optical network elements and calculating span loss based on geographic coordinate information
JP2011009892A (en) Receiving device, program, and guidance method
JP4448568B2 (en) Fault location system
JP6121103B2 (en) Information processing device, terminal device, server, information processing system, information processing method, and information processing program
JP2002162431A (en) Fault-point orientation system
KR20120048953A (en) Apparatus, system and method for determining position of mobile terminal using access point including gnss receiver
JP2005189154A (en) Internet connection apparatus, positioning system, and information output system
JP2009008595A (en) Navigation device, navigation method, and navigation program
JP2002225708A (en) Position detector, information processor, and position detection system
JP2015084130A (en) Information collection system, information collection method, and information collection apparatus
JPH11281389A (en) Position confirmation guiding system and portable terminal
KR20000043964A (en) System for estimating radio electronic wave environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4564615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term