JP4563764B2 - Peptide quantification method - Google Patents

Peptide quantification method Download PDF

Info

Publication number
JP4563764B2
JP4563764B2 JP2004290781A JP2004290781A JP4563764B2 JP 4563764 B2 JP4563764 B2 JP 4563764B2 JP 2004290781 A JP2004290781 A JP 2004290781A JP 2004290781 A JP2004290781 A JP 2004290781A JP 4563764 B2 JP4563764 B2 JP 4563764B2
Authority
JP
Japan
Prior art keywords
peptide
peptides
concentration
nth
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004290781A
Other languages
Japanese (ja)
Other versions
JP2006105699A (en
Inventor
正純 宮腰
正次 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Pharmaceutical Co Ltd
Original Assignee
Maruzen Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Pharmaceutical Co Ltd filed Critical Maruzen Pharmaceutical Co Ltd
Priority to JP2004290781A priority Critical patent/JP4563764B2/en
Publication of JP2006105699A publication Critical patent/JP2006105699A/en
Application granted granted Critical
Publication of JP4563764B2 publication Critical patent/JP4563764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、検体に含まれる複数種類のペプチドを定量する方法に関し、特に、複数種類のペプチドのうちの一種類のペプチドの濃度に基づいて、他の複数種類のペプチドの濃度を求めることができる方法に関する。   The present invention relates to a method for quantifying a plurality of types of peptides contained in a specimen, and in particular, the concentration of other types of peptides can be determined based on the concentration of one type of peptides among the types of peptides. Regarding the method.

動植物等から得られるペプチドは、様々な生理活性を有することが知られている。例えば、ゴマ、かつお節、イワシ等から得られるペプチドは、アンジオテンシン変換酵素活性阻害作用を有することが知られており、小麦から得られるペプチドは、インスリン分泌促進作用を有することが知られている。これらの作用を有するペプチドは、医学的、生理学的に重要な役割を果たすため、ペプチドを定量する方法が重要視され、従来、様々なペプチドの定量方法が提案されている。   Peptides obtained from animals and plants are known to have various physiological activities. For example, peptides obtained from sesame, bonito, sardines and the like are known to have angiotensin converting enzyme activity inhibitory action, and peptides obtained from wheat are known to have insulin secretion promoting action. Peptides having these actions play important medical and physiological roles, and therefore, methods for quantifying peptides are regarded as important, and conventionally various methods for quantifying peptides have been proposed.

例えば、ペプチドは、従来、単離精製した単一成分、又は化学合成された単一成分を標準物質として高速液体クロマトグラフィー(特許文献1参照)や電気泳動(特許文献2参照)等により定量されている。   For example, peptides are conventionally quantified by high performance liquid chromatography (see Patent Document 1), electrophoresis (see Patent Document 2), etc. using a single component isolated and purified or a chemically synthesized single component as a standard substance. ing.

また、チオール基を有するペプチドを蛍光ラベル化して定量する方法(特許文献3参照)や酵素免疫検定法による神経ペプチドの定量方法(特許文献4参照)なども提案されている。
特許第3388602号公報 特開2004−184092号公報 特開2003−50236号公報 特開2003−161732号公報
In addition, a method of quantifying a peptide having a thiol group by fluorescent labeling (see Patent Document 3), a method of quantifying a neuropeptide by an enzyme immunoassay (see Patent Document 4), and the like have been proposed.
Japanese Patent No. 3388602 JP 2004-184092 A JP 2003-50236 A JP 2003-161732 A

しかしながら、植物等の抽出物や動植物等の分解物等に含まれる複数種類のペプチドの中から特定の複数種類のペプチドを定量する場合、ペプチドが特有の発色団を有していないため、高速液体クロマトグラフィーや電気泳動では分別検出をすることが困難であった。   However, when quantifying specific types of peptides among multiple types of peptides contained in extracts such as plants and degradation products such as animals and plants, since the peptides do not have a specific chromophore, high-speed liquid It was difficult to perform fractional detection by chromatography or electrophoresis.

また、特許文献3及び特許文献4に記載の定量方法は、特殊なペプチドを定量する方法であり、煩雑な前処理等を必要とするため、汎用性に乏しいという問題があった。   In addition, the quantification methods described in Patent Document 3 and Patent Document 4 are methods for quantifying special peptides and require complicated pretreatment, and thus have a problem of poor versatility.

このような実状に鑑みて、本発明は、簡便に、かつ効率的に複数種類のペプチドを定量することができる方法を提供することを目的とする。   In view of such a situation, an object of the present invention is to provide a method capable of quantifying a plurality of types of peptides simply and efficiently.

上記課題を解決するため、本発明は、検体に含まれる第1〜第n(nは2以上の整数である。)のペプチドを定量する方法であって、(a)第1のペプチドと構成するアミノ酸の種類の異なるペプチドを内部標準物質として添加した検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルに基づいて、第1のペプチド及び内部標準物質のピーク面積比を算出し、第1のペプチド及び内部標準物質のピーク面積比と第1のペプチドの濃度との相関関係に基づいて、第1のペプチドの濃度を求める工程、(b)前記内部標準物質としてのペプチドを添加していない検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルに基づいて、第1〜第nのペプチドのピーク面積を算出する工程、及び(c)次式(1):A=B/C×D[式中、Aは検体に含まれる第k(kは2〜nの整数である。)のペプチドの濃度を表し、Bは検体に含まれる第kのペプチドのピーク面積を表し、Cは検体に含まれる第1のペプチドのピーク面積を表し、Dは検体に含まれる第1のペプチドの濃度を表す。]に基づいて、第2〜第nのペプチドの濃度を求める工程を含む前記方法である(請求項1)。 In order to solve the above problems, the present invention is a method for quantifying first to nth peptides (n is an integer of 2 or more) contained in a specimen, and (a) a first peptide and a configuration The peak area ratio of the first peptide and the internal standard is calculated based on the mass spectrum obtained by processing a sample to which a peptide having a different type of amino acid is added as an internal standard by liquid chromatography / mass spectrometry. A step of calculating and determining the concentration of the first peptide based on the correlation between the peak area ratio of the first peptide and the internal standard and the concentration of the first peptide, (b) the peptide as the internal standard based specimen you are not added to the mass spectrum obtained by treating by liquid chromatography / mass spectrometry, the peak areas of the peptide of the first to n And (c) the following formula (1): A = B / C × D [where A is the concentration of the peptide of k-th (k is an integer of 2 to n) contained in the sample]. B represents the peak area of the kth peptide contained in the specimen, C represents the peak area of the first peptide contained in the specimen, and D represents the concentration of the first peptide contained in the specimen. ], The method comprising the step of determining the concentration of the second to nth peptides (claim 1).

上記発明(請求項1)によれば、検体に含まれる第1のペプチドの濃度に基づいて、第2〜第nのペプチドの濃度を求めることができるため、簡便に、かつ効率的に複数種類のペプチドを定量することができる。また、上記発明(請求項1)によれば、第1のペプチドの濃度の定量精度を向上させることができ、これにより、第2〜第nのペプチドの定量精度を向上させることができる。 According to the above invention (Invention 1), since the concentrations of the second to n-th peptides can be determined based on the concentration of the first peptide contained in the specimen, a plurality of types can be simply and efficiently obtained. Can be quantified. Moreover, according to the said invention (invention 1), the fixed_quantity | quantitative_assay precision of the density | concentration of a 1st peptide can be improved, and, thereby, the fixed_quantity | quantitative accuracy of the 2nd-nth peptide can be improved.

上記発明(請求項1)においては、前記内部標準物質としてのペプチドが、前記第1のペプチドと共通するアミノ酸配列を有することが好ましい(請求項3)。 In the said invention (invention 1), it is preferable that the peptide as said internal standard substance has an amino acid sequence which is common with said 1st peptide (invention 3).

上記発明(請求項3)によれば、内部標準物質の化学的性質が、第1のペプチドの化学的性質と類似するため、第1のペプチドの定量精度をさらに向上させることができ、これにより、第2〜第nのペプチドの定量精度をさらに向上させることができる。   According to the above invention (invention 3), since the chemical property of the internal standard substance is similar to the chemical property of the first peptide, the quantitative accuracy of the first peptide can be further improved. The quantitative accuracy of the second to nth peptides can be further improved.

上記発明(請求項1,2)においては、前記工程(b)において、第1〜第nのペプチドの保持時間に基づいて、検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルのピークと第1〜第nのペプチドとの対応関係を決定し、第1〜第nのペプチドのピーク面積を算出することが好ましい(請求項)。 In the said invention (invention 1 and 2 ), in the said process (b), it obtained by processing a test substance with a liquid chromatography / mass spectrometry based on the retention time of the 1st-nth peptide. It is preferable to determine the correspondence between the peak of the mass spectrum and the first to nth peptides, and calculate the peak area of the first to nth peptides (claim 3 ).

ペプチドの保持時間は、液体クロマトグラフィー/質量分析法で処理したときに用いた液体クロマトグラフィー/質量分析法の条件(例えば、カラムに充填された固定相の種類、カラム温度、移動相の流速等)が同一であれば、ペプチドの種類に応じて異なる。したがって、上記発明(請求項)によれば、検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルの各ピークが、第1〜第nのペプチドのいずれのピークであるかを、第1〜第nのペプチドの保持時間に基づいて、正確に決定することができる。 Peptide retention time depends on the conditions of liquid chromatography / mass spectrometry used when processed by liquid chromatography / mass spectrometry (eg, type of stationary phase packed in column, column temperature, mobile phase flow rate, etc. ) Are the same, it depends on the type of peptide. Therefore, according to the said invention (invention 3 ), each peak of the mass spectrum obtained by processing the specimen by liquid chromatography / mass spectrometry is any of the first to nth peptides. Can be accurately determined based on the retention times of the first to nth peptides.

上記発明(請求項1〜)においては、前記第1〜第nのペプチドのアミノ酸残基数が、2〜50個であることが好ましい(請求項)。 In the said invention (invention 1-3 ), it is preferable that the number of amino acid residues of the said 1st-nth peptide is 2-50 pieces (invention 4 ).

アミノ酸残基数が2〜50個のペプチドの場合、ペプチドの種類にかかわらず、ペプチドの濃度と当該ペプチドのピーク面積との比がほぼ一定になる。したがって、上記発明(請求項)によれば、式(1)に基づいて、第2〜第nのペプチドを定量することができる。 In the case of a peptide having 2 to 50 amino acid residues, the ratio between the peptide concentration and the peak area of the peptide is almost constant regardless of the type of peptide. Therefore, according to the said invention (invention 4 ), the 2nd-nth peptide can be quantified based on Formula (1).

本発明によれば、検体に含まれる複数種類のペプチドのうちの一種類のペプチドの濃度に基づいて、他の複数種類のペプチドの濃度を求めることができ、簡便に、かつ効率的に複数種類のペプチドを定量することができる。   According to the present invention, based on the concentration of one kind of peptides among a plurality of kinds of peptides contained in a specimen, the concentration of other kinds of peptides can be determined, and a plurality of kinds can be obtained simply and efficiently. Can be quantified.

以下、本発明について詳細に説明する。
本発明は、検体に含まれる第1〜第n(nは2以上の整数である。)のペプチドを定量する方法である。
Hereinafter, the present invention will be described in detail.
The present invention is a method for quantifying first to n-th (n is an integer of 2 or more) peptides contained in a specimen.

定量の対象となる第1〜第nのペプチド(「複数種類のペプチド」ということがある。)は、それぞれ種類が異なるペプチドである。第1〜第nのペプチドのアミノ酸残基数、アミノ酸配列等は特に限定されるものではない。第1〜第nのペプチドのアミノ酸残基数は、通常2〜50個、好ましくは2〜20個、さらに好ましくは2〜5個である。第1〜第nのペプチドのアミノ酸残基数が上記範囲であると、ペプチドの種類にかかわらず、液体クロマトグラフィー/質量分析法によって得られたマススペクトルのピーク面積とペプチドの濃度との比がほぼ一定になる。したがって、次式(1):A=B/C×D[式中、Aは検体に含まれる第k(kは2〜nの整数である。)のペプチドの濃度を表し、Bは検体に含まれる第kのペプチドのピーク面積を表し、Cは検体に含まれる第1のペプチドのピーク面積を表し、Dは検体に含まれる第1のペプチドの濃度を表す。]に基づいて、第2〜第nのペプチドの濃度を求めることができる。   The first to nth peptides (sometimes referred to as “plural types of peptides”) to be quantified are peptides of different types. The number of amino acid residues, amino acid sequence and the like of the first to nth peptides are not particularly limited. The number of amino acid residues of the first to nth peptides is usually 2 to 50, preferably 2 to 20, and more preferably 2 to 5. When the number of amino acid residues of the first to nth peptides is in the above range, the ratio between the peak area of the mass spectrum obtained by liquid chromatography / mass spectrometry and the concentration of the peptide is independent of the type of peptide. It becomes almost constant. Accordingly, the following formula (1): A = B / C × D [where A represents the concentration of the kth peptide (k is an integer of 2 to n) contained in the specimen, and B represents the specimen. The peak area of the kth peptide contained is represented, C represents the peak area of the first peptide contained in the specimen, and D represents the concentration of the first peptide contained in the specimen. ], The concentration of the 2nd to nth peptides can be determined.

第1〜第nのペプチドは、天然物であってもよいし、合成物であってもよい。天然物としてのペプチドは、天然に存するペプチド又は天然に存するタンパク質の分解物として得ることができ、例えば、動植物等の抽出原料を抽出処理に供することによって得ることができる。また、合成物としてのペプチドは、公知の合成方法に従って得ることができる。   The first to nth peptides may be natural products or synthetic products. The peptide as a natural product can be obtained as a naturally occurring peptide or a degradation product of a naturally occurring protein. For example, it can be obtained by subjecting an extraction raw material such as an animal or plant to an extraction treatment. Moreover, the peptide as a synthetic | combination product can be obtained according to a well-known synthesis method.

抽出原料である動植物等の種類としては、例えば、脱脂ゴマ、ゴマ、大豆、イワシ、牡蠣、蓄肉(牛肉,豚肉等)等が挙げられるが、これらに限定されるものではない。   Examples of the types of animals and plants that are extraction raw materials include defatted sesame, sesame, soybeans, sardines, oysters, meat storage (beef, pork, etc.), but are not limited thereto.

抽出処理は、特に限定されるものではなく、公知の方法により行うことができる。例えば、抽出原料をヘキサン等の非極性溶媒に供して脱脂等の前処理をし、抽出原料の5〜50倍量の抽出溶媒(水酸化ナトリウム水溶液等のアルカリ溶媒等)に投入する。抽出溶媒による抽出処理後、抽出液を必要に応じて至適pH及び至適温度に調整し、タンパク質分解酵素等により酵素処理を行う。その後酵素を失活させ、濾過・濃縮・乾燥・粉末化することにより粉末状の複数種類のペプチドを得ることができる。   The extraction process is not particularly limited, and can be performed by a known method. For example, the extraction raw material is subjected to a pretreatment such as degreasing by using a non-polar solvent such as hexane, and charged into an extraction solvent (an alkali solvent such as an aqueous sodium hydroxide solution) in an amount 5 to 50 times that of the extraction raw material. After the extraction treatment with the extraction solvent, the extract is adjusted to the optimum pH and optimum temperature as necessary, and the enzyme treatment is performed with a proteolytic enzyme or the like. Thereafter, the enzyme is deactivated and filtered, concentrated, dried, and pulverized to obtain a plurality of types of powdered peptides.

検体は、少なくとも第1〜第nのペプチドが含まれたものであれば特に限定されるものではなく、例えば、抽出原料を抽出処理することにより得られる抽出液;当該抽出液を希釈又は濃縮した希釈液又は濃縮液;当該抽出液、希釈液又は濃縮液を精製し乾燥することにより得られたペプチド固形物;当該ペプチド固形物を溶媒に溶解したペプチド溶液;合成により得られたペプチド固形物;当該ペプチド固形物を溶媒に溶解したペプチド溶液等が挙げられる。また、検体には第1〜第nのペプチド以外のペプチドが含まれていてもよい。   The specimen is not particularly limited as long as it contains at least the first to nth peptides. For example, an extract obtained by subjecting an extraction raw material to an extraction treatment; the extract is diluted or concentrated Diluted solution or concentrated solution; Peptide solid obtained by purifying and drying the extract, diluted solution or concentrated solution; Peptide solution obtained by dissolving the peptide solid in a solvent; Peptide solid obtained by synthesis; Examples thereof include a peptide solution obtained by dissolving the peptide solid in a solvent. In addition, the sample may contain a peptide other than the first to nth peptides.

検体は、液体クロマトグラフィー/質量分析法で処理する前に、必要に応じて前処理をしてもよい。検体は、複数種類のペプチド以外の不純物等を含んでいることもあり、前処理をして検体に含まれる不純物等を除去すると、ペプチドの定量精度を向上させることができる。なお、検体が不純物等を含まないものである場合は、当該前処理を省略してもよい。   The sample may be pretreated as necessary before being processed by liquid chromatography / mass spectrometry. The specimen may contain impurities other than a plurality of types of peptides, and if the impurities etc. contained in the specimen are removed by pretreatment, the peptide quantification accuracy can be improved. Note that in the case where the specimen does not contain impurities, the pretreatment may be omitted.

検体の前処理は、検体に含まれる不純物等を除去することができれば特に限定されるものではなく、例えば、液体クロマトグラフィー、ゲル浸透クロマトグラフィー、透析、電気泳動等により行うことができる。ゲル浸透クロマトグラフィー又は透析により前処理を行えば、検体から不純物等を除去できるとともに、脱塩をすることもできるため好ましい。   The pretreatment of the sample is not particularly limited as long as impurities contained in the sample can be removed, and can be performed, for example, by liquid chromatography, gel permeation chromatography, dialysis, electrophoresis, or the like. Pretreatment by gel permeation chromatography or dialysis is preferable because impurities and the like can be removed from the specimen and desalting can be performed.

「液体クロマトグラフィー/質量分析法」は、検体を液体クロマトグラフで処理した後、質量分析計で処理するすべての方法を含み、液体クロマトグラフ/質量分析計を用いた方法に限定されるものではない。また、「液体クロマトグラフィー/質量分析法」には、液体クロマトグラフィー/マススペクトロメトリー(LC/MS)分析法及び液体クロマトグラフィー/マススペクトロメトリー/マススペクトロメトリー(LC/MS/MS)分析法が含まれる。LC/MS分析法によれば、選択イオンモニタリング(SIM)ピークを得ることができ、LC/MS/MS分析法によれば選択反応モニタリング(SRM)ピークを得ることができる。本発明の方法における「液体クロマトグラフィー/質量分析法」は、LC/MS分析法であってもよいし、LC/MS/MS分析法であってもよい。   “Liquid chromatography / mass spectrometry” includes all methods in which a sample is processed with a liquid chromatograph and then processed with a mass spectrometer, and is not limited to a method using a liquid chromatograph / mass spectrometer. Absent. “Liquid chromatography / mass spectrometry” includes liquid chromatography / mass spectrometry (LC / MS) analysis and liquid chromatography / mass spectrometry / mass spectrometry (LC / MS / MS) analysis. included. According to the LC / MS analysis method, a selected ion monitoring (SIM) peak can be obtained, and according to the LC / MS / MS analysis method, a selective reaction monitoring (SRM) peak can be obtained. The “liquid chromatography / mass spectrometry” in the method of the present invention may be an LC / MS analysis method or an LC / MS / MS analysis method.

本発明の方法は、下記の工程(a)〜(c)を含む。
(a)第1のペプチドの濃度を求める工程
(b)検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルに基づいて、第1〜第nのペプチドのピーク面積を算出する工程
(c)次式(1):A=B/C×D[式中、Aは検体に含まれる第k(kは2〜nの整数である。)のペプチドの濃度を表し、Bは検体に含まれる第kのペプチドのピーク面積を表し、Cは検体に含まれる第1のペプチドのピーク面積を表し、Dは検体に含まれる第1のペプチドの濃度を表す。]に基づいて、第2〜第nのペプチドの濃度を求める工程
工程(c)は、工程(a)及び工程(b)の後に行う必要があるが、工程(a)又は工程(b)を行う順序は特に限定されるものではない。
The method of the present invention includes the following steps (a) to (c).
(A) Step of determining the concentration of the first peptide (b) Calculate the peak areas of the first to nth peptides based on the mass spectrum obtained by processing the specimen by liquid chromatography / mass spectrometry. (C) The following formula (1): A = B / C × D [wherein A represents the concentration of the kth peptide (k is an integer of 2 to n) contained in the specimen, and B Represents the peak area of the kth peptide contained in the specimen, C represents the peak area of the first peptide contained in the specimen, and D represents the concentration of the first peptide contained in the specimen. The step of determining the concentration of the second to nth peptides based on the step (c) needs to be performed after the step (a) and the step (b), but the step (a) or the step (b) The order to perform is not specifically limited.

工程(a)
工程(a)は、第1のペプチドの濃度を定量する工程である。
第1のペプチドは、第2〜第nのペプチドの濃度を求めるにあたって基準となるペプチドであるため、工程(c)を行う段階では第1のペプチドの濃度が判明していることを要する。
Step (a)
Step (a) is a step of quantifying the concentration of the first peptide.
Since the first peptide is a peptide that serves as a reference for determining the concentrations of the second to n-th peptides, it is necessary that the concentration of the first peptide is known at the stage of performing step (c).

第1のペプチドの濃度は、例えば、下記の方法により求めることができるが、この方法に限定されるものではない。
まず、内部標準物質を添加した検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルに基づいて、第1のペプチド及び内部標準物質のピーク面積比を算出する。次に、第1のペプチド及び内部標準物質のピーク面積比と第1のペプチドの濃度との相関関係に基づいて、第1のペプチドの濃度を求める。このように、第1のペプチド及び内部標準物質のピーク面積比と第1のペプチドの濃度との相関関係に基づいて第1のペプチドの濃度を求めると、第1のペプチドの濃度の定量精度を向上させることができる。
The concentration of the first peptide can be determined, for example, by the following method, but is not limited to this method.
First, the peak area ratio of the first peptide and the internal standard substance is calculated based on the mass spectrum obtained by processing the sample to which the internal standard substance has been added by liquid chromatography / mass spectrometry. Next, the concentration of the first peptide is determined based on the correlation between the peak area ratio of the first peptide and the internal standard substance and the concentration of the first peptide. Thus, when the concentration of the first peptide is determined based on the correlation between the peak area ratio of the first peptide and the internal standard substance and the concentration of the first peptide, the quantitative accuracy of the concentration of the first peptide is improved. Can be improved.

第1のペプチド及び内部標準物質のピーク面積比を算出する際に用いる液体クロマトグラフィー/質量分析法は、LC/MS分析法であってもよいし、LC/MS/MS分析法であってもよいが、LC/MS/MS分析法を用いれば、SRMピーク面積を得ることができるため好ましい。SRMピーク面積に基づいて第1のペプチドの濃度を定量すると、定量精度を向上させることができる。   The liquid chromatography / mass spectrometry used for calculating the peak area ratio of the first peptide and the internal standard substance may be an LC / MS analysis method or an LC / MS / MS analysis method. Although it is good, it is preferable to use an LC / MS / MS analysis method because an SRM peak area can be obtained. If the concentration of the first peptide is quantified based on the SRM peak area, the quantification accuracy can be improved.

内部標準物質としては、定量対象である第1〜第nのペプチド以外のペプチドを用いるのが好ましい。第1のペプチドと化学的性質が類似する物質を内部標準物質として選択すると、第1のペプチドの定量精度を向上させることができ、これにより、第2〜第nのペプチドの定量精度を向上させることができる。   As the internal standard substance, it is preferable to use a peptide other than the first to nth peptides to be quantified. When a substance having a chemical property similar to that of the first peptide is selected as the internal standard substance, it is possible to improve the quantitative accuracy of the first peptide, thereby improving the quantitative accuracy of the second to nth peptides. be able to.

内部標準物質であるペプチドのアミノ酸配列は、特に限定されるものではないが、内部標準物質及び第1のペプチドは、共通するアミノ酸配列を有することが好ましい。アミノ酸配列はペプチドの化学的性質を決定する一因であると考えられるため、内部標準物質及び第1のペプチドが共通するアミノ酸配列を有すると、両者の化学的性質が類似する可能性が高く、第1のペプチドの定量精度を向上させることができる。   The amino acid sequence of the peptide that is the internal standard substance is not particularly limited, but the internal standard substance and the first peptide preferably have a common amino acid sequence. Since the amino acid sequence is considered to be a factor that determines the chemical properties of the peptide, if the internal standard substance and the first peptide have a common amino acid sequence, the chemical properties of both are likely to be similar, The quantitative accuracy of the first peptide can be improved.

内部標準物質であるペプチドのアミノ酸残基数は、特に限定されるものではないが、通常2〜50個、好ましくは2〜5個である。アミノ酸残基数が上記範囲内であると、第1のペプチド及び内部標準物質のピーク面積比の変化量と第1のペプチドの濃度の変化量との比はほぼ一定となるため、第1のペプチドの濃度の定量精度を向上させることができる。   The number of amino acid residues of the peptide that is the internal standard substance is not particularly limited, but is usually 2 to 50, preferably 2 to 5. When the number of amino acid residues is within the above range, the ratio between the amount of change in the peak area ratio of the first peptide and the internal standard substance and the amount of change in the concentration of the first peptide is substantially constant. Quantitative accuracy of peptide concentration can be improved.

検体に添加する内部標準物質の濃度は、第1のペプチド及び内部標準物質のピーク面積比と第1のペプチドの濃度との相関関係を求める際に用いた内部標準物質の濃度と同一の濃度であることを要する。   The concentration of the internal standard substance to be added to the sample is the same as the concentration of the internal standard substance used to obtain the correlation between the peak area ratio of the first peptide and the internal standard substance and the concentration of the first peptide. It needs to be.

上記相関関係は、例えば、第1のペプチド及び内部標準物質のピーク面積と第1のペプチドの濃度との関係を示す検量線を作成することにより求めることができる。   The correlation can be obtained, for example, by creating a calibration curve indicating the relationship between the peak areas of the first peptide and the internal standard substance and the concentration of the first peptide.

検量線は、下記の方法により作成することができる。
各種濃度に調整したそれぞれの第1のペプチド溶液と所定の濃度に調整した内部標準物質溶液とを等量ずつ混合して検量線用試料溶液を調製し、当該検量線用試料溶液を液体クロマトグラフィー/質量分析法で処理することによって得られるマススペクトルに基づいて、第1のペプチド及び内部標準物質のピーク面積を算出する。得られたピーク面積から、第1のペプチド及び内部標準物質のピーク面積比を算出する。得られたピーク面積比及び第1のペプチドの濃度から、第1のペプチド及び内部標準物質のピーク面積比と第1のペプチドの濃度との関係を示す検量線を作成する。
The calibration curve can be created by the following method.
A calibration curve sample solution is prepared by mixing equal amounts of each first peptide solution adjusted to various concentrations and an internal standard solution adjusted to a predetermined concentration, and the calibration curve sample solution is subjected to liquid chromatography. / Based on the mass spectrum obtained by processing by mass spectrometry, the peak areas of the first peptide and the internal standard substance are calculated. From the obtained peak area, the peak area ratio of the first peptide and the internal standard substance is calculated. A calibration curve indicating the relationship between the peak area ratio of the first peptide and the internal standard substance and the concentration of the first peptide is prepared from the obtained peak area ratio and the first peptide concentration.

検量線作成時に用いる液体クロマトグラフィー/質量分析法は、LC/MS/MS分析法でもよいし、LC/MS分析法でもよい。LC/MS/MS分析法を用いれば、SRMピーク面積を得ることができ、LC/MS分析法を用いれば、SIMピーク面積を得ることができるが、検量線作成時にはLC/MS/MS分析法を用いて、SRMピーク面積を得ることが好ましい。SRMピーク面積に基づいて定量する方が、SIMピーク面積に基づいて定量するよりも、第1のペプチドの濃度の定量精度をさらに向上させることができる。   The liquid chromatography / mass spectrometry used when preparing the calibration curve may be an LC / MS / MS analysis method or an LC / MS analysis method. If the LC / MS / MS analysis method is used, the SRM peak area can be obtained, and if the LC / MS analysis method is used, the SIM peak area can be obtained. Is preferably used to obtain the SRM peak area. The quantification based on the SRM peak area can further improve the quantification accuracy of the concentration of the first peptide than the quantification based on the SIM peak area.

後述する実施例から明らかなように、第1のペプチド及び内部標準物質のピーク面積比の変化量と第1のペプチドの濃度の変化量との比はほぼ一定であり、所定の濃度範囲においては良好な直線性を示す。したがって、検体に含まれる第1のペプチド及び内部標準物質のピーク面積比が判明すれば、検量線を用いて検体に含まれる第1のペプチドの濃度を求めることができる。   As will be apparent from the examples described later, the ratio between the amount of change in the peak area ratio of the first peptide and the internal standard substance and the amount of change in the concentration of the first peptide is substantially constant. Shows good linearity. Therefore, if the peak area ratio between the first peptide and the internal standard substance contained in the sample is known, the concentration of the first peptide contained in the sample can be determined using a calibration curve.

工程(b)
工程(b)は、検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルに基づいて、第1〜第nのペプチドのピーク面積を算出する工程である。工程(b)で用いられる液体クロマトグラフィー/質量分析法は、LC/MS/MS分析法でもよいし、LC/MS分析法でもよいが、LC/MS分析法を用いるのが好ましい。LC/MS分析法を用いる方が、検体を液体クロマトグラフィー/質量分析法で処理するときの操作が簡便である。
Step (b)
Step (b) is a step of calculating the peak areas of the first to nth peptides based on the mass spectrum obtained by processing the specimen by liquid chromatography / mass spectrometry. The liquid chromatography / mass spectrometry used in step (b) may be an LC / MS / MS analysis method or an LC / MS analysis method, but it is preferable to use an LC / MS analysis method. The use of the LC / MS analysis method is simpler when the specimen is processed by liquid chromatography / mass spectrometry.

工程(b)において、第1〜第nのペプチドの保持時間に基づいて、検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルのピークと第1〜第nのペプチドとの対応関係を決定し、第1〜第nのペプチドのピーク面積を算出することが好ましい。
「保持時間」は、液体クロマトグラフィー/質量分析法で処理したときの保持時間を意味する。
In the step (b), based on the retention times of the first to nth peptides, the peak of the mass spectrum obtained by treating the specimen by liquid chromatography / mass spectrometry, the first to nth peptides, It is preferable to calculate the peak area of the 1st to n-th peptides.
“Retention time” means the retention time when processed by liquid chromatography / mass spectrometry.

ペプチドの保持時間は、液体クロマトグラフィー/質量分析法で処理したときに用いた液体クロマトグラフィー/質量分析法の条件(例えば、カラムに充填された固定相の種類、カラム温度、移動相の流速等)が同一であれば、ペプチドの種類に応じて異なる。したがって、第1〜第nのペプチドの保持時間に基づいて、検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルのピークと第1〜第nのペプチドとの対応関係を決定することができる。   Peptide retention time depends on the conditions of liquid chromatography / mass spectrometry used when processed by liquid chromatography / mass spectrometry (eg, type of stationary phase packed in column, column temperature, mobile phase flow rate, etc. ) Are the same, it depends on the type of peptide. Therefore, based on the retention time of the first to nth peptides, the correspondence between the peak of the mass spectrum obtained by processing the specimen by liquid chromatography / mass spectrometry and the first to nth peptides Can be determined.

第1〜第nのペプチドの保持時間は、検体を液体クロマトグラフィー/質量分析法で処理したときに用いた液体クロマトグラフィー/質量分析法の条件と同一の条件の下、第1〜第nのペプチドを一種類ずつ液体クロマトグラフィー/質量分析法で処理することによって求めることを要する。   The retention times of the 1st to nth peptides are the same as the conditions of the liquid chromatography / mass spectrometry used when the specimen was processed by liquid chromatography / mass spectrometry. It is necessary to obtain the peptides one by one by treating them with liquid chromatography / mass spectrometry.

第1〜第nのペプチドの保持時間は、検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルのピークと第1〜第nのペプチドとの対応関係を決定する際に判明していればよい。なお、第1〜第nのペプチドの保持時間が予め判明していれば、第1〜第nのペプチドの保持時間を測定しなくてもよい。   The retention times of the first to nth peptides are determined when determining the correspondence between the peak of the mass spectrum obtained by processing the specimen by liquid chromatography / mass spectrometry and the first to nth peptides. It only needs to be known. If the retention times of the first to nth peptides are known in advance, the retention times of the first to nth peptides may not be measured.

工程(c)
工程(c)は、次式(1)に基づいて、第2〜第nのペプチドの濃度を求める工程である。
A=B/C×D・・・(1)
ただし、式(1)中、Aは検体に含まれる第k(kは2〜nの整数である。)のペプチドの濃度を表し、Bは検体に含まれる第kのペプチドのピーク面積を表し、Cは検体に含まれる第1のペプチドのピーク面積を表し、Dは検体に含まれる第1のペプチドの濃度を表す。
第1〜第nのペプチド濃度の単位としては、例えば、ng/mL、μg/mL等が挙げられるが、これらに限定されるものではない。
Step (c)
Step (c) is a step of determining the concentration of the second to nth peptides based on the following formula (1).
A = B / C × D (1)
In formula (1), A represents the concentration of the kth peptide (k is an integer of 2 to n) contained in the specimen, and B represents the peak area of the kth peptide contained in the specimen. , C represents the peak area of the first peptide contained in the specimen, and D represents the concentration of the first peptide contained in the specimen.
Examples of the unit of the first to nth peptide concentrations include, but are not limited to, ng / mL and μg / mL.

後述する実施例から明らかなように、ペプチドの種類にかかわらず、ペプチドのピーク面積と当該ペプチドの濃度との比は、ほぼ一定であると推測できる。したがって、検体に含まれる第1のペプチドの濃度を定量すれば、第1のペプチドのピーク面積と第2〜第nのペプチドのピーク面積との比及び第1のペプチドの濃度を用いて、式(1)に基づき、第2〜第nのペプチドの濃度を求めることができるため、簡易に、かつ効率的に複数種類のペプチドを定量することができる。   As is clear from the examples described later, it can be estimated that the ratio of the peak area of the peptide to the concentration of the peptide is almost constant regardless of the type of peptide. Therefore, if the concentration of the first peptide contained in the sample is quantified, the ratio of the peak area of the first peptide to the peak area of the second to nth peptides and the concentration of the first peptide are used. Since the concentration of the second to nth peptides can be determined based on (1), a plurality of types of peptides can be quantified easily and efficiently.

本発明によれば、検体に含まれる複数種類のペプチドのうちの一種類のペプチド濃度に基づいて、他の複数種類のペプチドを定量することができるため、簡易に、かつ効率的に複数種類のペプチドを定量することができる。   According to the present invention, since a plurality of other types of peptides can be quantified based on one type of peptide concentration among a plurality of types of peptides contained in a specimen, a plurality of types of peptides can be easily and efficiently obtained. Peptides can be quantified.

以下、実施例により本発明をさらに詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.

〔実施例1〕ペプチドの抽出・精製
脱脂ゴマ160kgに抽出溶媒として0.05Nの水酸化ナトリウム3000Lを加え、55℃の温度条件下で45分間攪拌してゴマタンパク質を溶解抽出した。得られた抽出液に2Nの塩酸を加え、抽出液のpHを4.5に調整し、等電点沈殿によりタンパク質を得た。得られたタンパク質を水1500Lに懸濁させ、懸濁液に0.05Nの水酸化ナトリウム水溶液を加え、懸濁液のpHを7.0に調整した後、サモアーゼ(商品名,大和化成社製)300gを添加し、65℃の温度条件下で2時間反応させた。その後、酵素反応液に2Nの塩酸を加えて酵素反応液のpHを5.0に調整し、加熱により酵素を失活させ、濾過・濃縮・粉末化し、粉末状脱脂ゴマペプチド50kgを得た。
[Example 1] Extraction and purification of peptide To 160 kg of defatted sesame seeds, 3000 L of 0.05N sodium hydroxide was added as an extraction solvent, and the mixture was stirred at a temperature of 55 ° C for 45 minutes to dissolve and extract sesame protein. 2N hydrochloric acid was added to the obtained extract to adjust the pH of the extract to 4.5, and protein was obtained by isoelectric point precipitation. The obtained protein was suspended in 1500 L of water, 0.05N aqueous sodium hydroxide solution was added to the suspension, and the pH of the suspension was adjusted to 7.0, followed by Samoaze (trade name, manufactured by Daiwa Kasei Co., Ltd.). ) 300 g was added and reacted for 2 hours at a temperature of 65 ° C. Thereafter, 2N hydrochloric acid was added to the enzyme reaction solution to adjust the pH of the enzyme reaction solution to 5.0, the enzyme was deactivated by heating, filtered, concentrated and powdered to obtain 50 kg of powdered defatted sesame peptide.

〔実施例2〕検量線の作成
(1)LVY標準溶液の調製
脱脂ゴマに含まれていることが知られているトリペプチド(Leu-Val-Tyr(LVY),ペプチド研究所社製)10mgを精密に量り取り、10質量%トリフルオロ酢酸水溶液を加え完全に溶解させ、10mLに定容した。この溶液を10質量%トリフルオロ酢酸水溶液にて段階的に希釈し、各種濃度(15×10ng/mL,3.0×10ng/mL,0.60×10ng/mL)のLVY標準溶液を調製した。
[Example 2] Preparation of calibration curve (1) Preparation of LVY standard solution 10 mg of tripeptide (Leu-Val-Tyr (LVY), manufactured by Peptide Laboratories) known to be contained in defatted sesame It was weighed accurately and 10% by mass aqueous trifluoroacetic acid solution was added to completely dissolve it, and the volume was adjusted to 10 mL. This solution was diluted stepwise with a 10% by mass aqueous trifluoroacetic acid solution, with various concentrations (15 × 10 3 ng / mL, 3.0 × 10 3 ng / mL, 0.60 × 10 3 ng / mL). An LVY standard solution was prepared.

(2)内部標準溶液の調製
ジペプチド(Val-Tyr(VY),シグマ−アルドリッチ社製)10mgを精密に量り取り、10質量%トリフルオロ酢酸水溶液を加え完全に溶解させ、10mLに定容し、内部標準溶液原液とした。この内部標準溶液原液1mLに10質量%トリフルオロ酢酸水溶液を加えて10mLに定容し、内部標準溶液を調製した。
(2) Preparation of internal standard solution Weigh accurately 10 mg of dipeptide (Val-Tyr (VY), Sigma-Aldrich), add 10 mass% trifluoroacetic acid aqueous solution completely, dissolve to 10 mL, An internal standard solution was used. A 10% by mass aqueous trifluoroacetic acid solution was added to 1 mL of this internal standard solution, and the volume was adjusted to 10 mL to prepare an internal standard solution.

(3)検量線の作成
各種濃度のLVY標準溶液と内部標準溶液とを等量ずつ混合した検量線用溶液を調製し、下記の条件により、検量線用溶液をLC/MS/MS分析法で処理し、VY及びLVYのSRMピーク面積を測定した。
(3) Preparation of calibration curve Prepare a calibration curve solution by mixing LVY standard solution of various concentrations and internal standard solution in equal amounts, and use the LC / MS / MS analysis method for the calibration curve solution under the following conditions. The SRM peak areas of VY and LVY were measured.

[LC/MS/MS分析法の条件]
カラム:ODS-80Ts(内径;4.6mm,長さ;100mm,東ソー社製)
カラム温度:30℃
流速:400μL/min
検量線用溶液注入量:20μL
移動相:0.1%トリフルオロ酢酸を含む
水/アセトニトリルのグラジエント(90:10→55:45)
UV検出波長:215nm
MS検出条件:エレクトロスプレーイオン(ESI)法
positive(測定範囲;m/z 150〜800)
MS/MS検出条件:(VY)ESI positive前駆イオンm/z 281,SRM m/z 182
(LVY)ESI positive前駆イオンm/z 394,SRM m/z 213
[Conditions for LC / MS / MS analysis]
Column: ODS-80Ts (inner diameter: 4.6 mm, length: 100 mm, manufactured by Tosoh Corporation)
Column temperature: 30 ° C
Flow rate: 400 μL / min
Calibration curve solution injection volume: 20 μL
Mobile phase: contains 0.1% trifluoroacetic acid
Water / acetonitrile gradient (90: 10 → 55: 45)
UV detection wavelength: 215 nm
MS detection condition: Electrospray ion (ESI) method
positive (measurement range; m / z 150 to 800)
MS / MS detection conditions: (VY) ESI positive precursor ion m / z 281, SRM m / z 182
(LVY) ESI positive precursor ion m / z 394, SRM m / z 213

上記の測定結果に基づいて検量線を作成した。図1に、作成した検量線を示す。図1に示すように、作成した検量線は、LVY濃度が15×10ng/mL以下であれば、良好な直線性を示し、LVY及びVY(内部標準物質)のSRMピーク面積比とLVY濃度とは、それぞれの変化量の比が一定であることが確認された。したがって、下記式(2)が成立し、LVY及びVYのSRMピーク面積比に基づいて、LVYの濃度を求めることができることが確認された。
LVY濃度(ng/mL)=(SRMピーク面積比−0.2003)/0.033・・・(2)
SRMピーク面積比(%)=LVYのSRMピーク面積/VYのSRMピーク面積×100
A calibration curve was created based on the above measurement results. FIG. 1 shows the created calibration curve. As shown in FIG. 1, the prepared calibration curve shows good linearity when the LVY concentration is 15 × 10 3 ng / mL or less, and the SRM peak area ratio of LVY and VY (internal standard substance) and LVY. It was confirmed that the ratio of the amount of each change was constant. Therefore, it was confirmed that the following formula (2) is established, and the LVY concentration can be obtained based on the SRM peak area ratio of LVY and VY.
LVY concentration (ng / mL) = (SRM peak area ratio−0.2003) /0.033 (2)
SRM peak area ratio (%) = LVY SRM peak area / VY SRM peak area × 100

〔実施例3〕各種ペプチドのSIMピーク面積の測定,保持時間の測定
脱脂ゴマに含有される複数種類のペプチド(Leu-Val-Tyr(LVY),Ile-Val-Tyr(IVY),Val-Ile-Tyr(VIY),Leu-Ser-Ala(LSA),Leu-Gln-Pro(LQP),Leu-Lys-Tyr(LKY),Met-Leu-Pro-Ala-Tyr(MLPAY))及び実施例2で用いた内部標準物質(Val-Tyr(VY))を1mgずつ精密に量り取り、10質量%トリフルオロ酢酸水溶液を加えて完全に溶解させ、それぞれ10mLに定容し各種ペプチド溶液を調製した。
[Example 3] Measurement of SIM peak area and retention time of various peptides Multiple peptides contained in defatted sesame (Leu-Val-Tyr (LVY), Ile-Val-Tyr (IVY), Val-Ile -Tyr (VIY), Leu-Ser-Ala (LSA), Leu-Gln-Pro (LQP), Leu-Lys-Tyr (LKY), Met-Leu-Pro-Ala-Tyr (MLPAY)) and Example 2 1 mg of the internal standard substance (Val-Tyr (VY)) used in 1 was precisely weighed and 10 mass% trifluoroacetic acid aqueous solution was added and completely dissolved, and each peptide volume was adjusted to 10 mL to prepare various peptide solutions.

上記各種ペプチド溶液を100μLずつ混合し、10質量%トリフルオロ酢酸水溶液を加え、各種ペプチド濃度が0.01mg/mLになるように試料溶液を調製し、下記の条件により、試料溶液をLC/MS分析法で処理し、各種ペプチドのSIMピーク面積を測定した。
また、下記の条件により、上記各種ペプチド溶液を一種類ずつLC/MS分析法で処理し、各種ペプチドの保持時間を測定した。
100 μL of each of the above peptide solutions is mixed, 10 mass% trifluoroacetic acid aqueous solution is added, sample solutions are prepared so that various peptide concentrations are 0.01 mg / mL, and the sample solution is LC / MS under the following conditions. It processed by the analysis method and measured the SIM peak area of various peptides.
Moreover, the above-mentioned various peptide solutions were processed one by one by LC / MS analysis under the following conditions, and the retention times of various peptides were measured.

[LC/MS分析法の条件]
カラム:ODS-80Ts(内径;4.6mm,長さ;100mm,東ソー社製)
カラム温度:30℃
流速:400μL/min
試料溶液注入量:20μL
移動相:0.1%トリフルオロ酢酸を含む
水/アセトニトリルのグラジエント(90:10→55:45)
UV検出波長:215nm
MS検出条件:エレクトロスプレーイオン化(ESI)法
positive(測定範囲 m/z 150〜800)
ESI positive SIM(VY) m/z 281
ESI positive SIM(LVY) m/z 394
ESI positive SIM(IVY) m/z 394
ESI positive SIM(VIY) m/z 394
ESI positive SIM(LSA) m/z 290
ESI positive SIM(LQP) m/z 357
ESI positive SIM(LKY) m/z 423
ESI positive SIM(MLPAY) m/z 594
[Conditions for LC / MS analysis]
Column: ODS-80Ts (inner diameter: 4.6 mm, length: 100 mm, manufactured by Tosoh Corporation)
Column temperature: 30 ° C
Flow rate: 400 μL / min
Sample solution injection volume: 20 μL
Mobile phase: contains 0.1% trifluoroacetic acid
Water / acetonitrile gradient (90: 10 → 55: 45)
UV detection wavelength: 215 nm
MS detection conditions: Electrospray ionization (ESI) method
positive (measuring range m / z 150 to 800)
ESI positive SIM (VY) m / z 281
ESI positive SIM (LVY) m / z 394
ESI positive SIM (IVY) m / z 394
ESI positive SIM (VIY) m / z 394
ESI positive SIM (LSA) m / z 290
ESI positive SIM (LQP) m / z 357
ESI positive SIM (LKY) m / z 423
ESI positive SIM (MLPAY) m / z 594

図2に、上記測定により得られたマススペクトルのSIMピークを示す。また、図2に示すSIMピークから算出したSIMピーク面積及び各種ペプチドの保持時間を表1に示す。   In FIG. 2, the SIM peak of the mass spectrum obtained by the said measurement is shown. Table 1 shows the SIM peak areas calculated from the SIM peaks shown in FIG.

Figure 0004563764
Figure 0004563764

図2及び表1に示すように、各種ペプチドのSIMピーク面積はほぼ同一であることが確認された。このことから、ペプチドの種類にかかわらず、ペプチドのSIMピーク面積とペプチド濃度との比がほぼ一定であることが推測できた。したがって、第1〜第nのペプチドが含まれている検体において、式(2)に基づいて定量した第1のペプチド(LVY)の濃度、及び第1〜第nのペプチドのSIMピーク面積を用いて、次式(3)に基づき、第2〜第nのペプチドの濃度を定量することができると考えられる。
A’=B’/C’×D’・・・(3)
ただし、式(3)中、A’は検体に含まれる第k’(k’は2〜nの整数である。)のペプチドの濃度(ng/mL)を表し、B’は検体に含まれる第k’のペプチドのSIMピーク面積を表し、C’は検体に含まれる第1のペプチドのSIMピーク面積を表し、D’は検体に含まれる第1のペプチドの濃度(ng/mL)を表す。
As shown in FIG. 2 and Table 1, it was confirmed that the SIM peak areas of various peptides were almost the same. From this, it was estimated that the ratio between the SIM peak area of the peptide and the peptide concentration was almost constant regardless of the type of peptide. Therefore, in the specimen containing the first to nth peptides, the concentration of the first peptide (LVY) quantified based on the formula (2) and the SIM peak area of the first to nth peptides are used. Thus, it is considered that the concentration of the second to nth peptides can be quantified based on the following formula (3).
A ′ = B ′ / C ′ × D ′ (3)
However, in Formula (3), A 'represents the concentration (ng / mL) of the k'th peptide (k' is an integer of 2 to n) contained in the specimen, and B 'is contained in the specimen. Represents the SIM peak area of the kth peptide, C ′ represents the SIM peak area of the first peptide contained in the specimen, and D ′ represents the concentration (ng / mL) of the first peptide contained in the specimen. .

また、表1に示すように、ペプチドの種類に応じて液体クロマトグラフィー/質量分析法で処理したときの保持時間が異なるため、液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルの各SIMピークが、各種ペプチドのいずれのSIMピークであるかを、各種ペプチドの保持時間に基づいて決定できることが確認された。   In addition, as shown in Table 1, the retention time when processed by liquid chromatography / mass spectrometry differs depending on the type of peptide, so the mass spectrum obtained by processing by liquid chromatography / mass spectrometry. It was confirmed that it was possible to determine which SIM peak of each peptide was based on the retention time of each peptide.

〔実施例4〕脱脂ゴマペプチドの定量
実施例1で得られた粉末状脱脂ゴマペプチド50mgを精密に量り取り、10質量%トリフルオロ酢酸水溶液を加え、超音波処理等により可溶性のものを完全に溶解させ、10mLに定容したゴマペプチド溶液を得た。
[Example 4] Quantification of defatted sesame peptide 50 mg of powdered defatted sesame peptide obtained in Example 1 was accurately weighed, 10 mass% trifluoroacetic acid aqueous solution was added, and the soluble one was completely removed by ultrasonication or the like. A sesame peptide solution having a constant volume of 10 mL was obtained by dissolution.

上記ゴマペプチド溶液と実施例2で用いた内部標準溶液とを等量ずつ混合した試料溶液を調製し、下記の条件により、当該試料溶液をLC/MS/MS分析法で処理し、得られたマススペクトルからLVY(第1のペプチド)及びVY(内部標準物質)のSRMピーク面積を算出した。また、下記の条件により、当該試料溶液をLC/MS分析法で処理し、得られたマススペクトルの各SIMピークが、各種ペプチドのいずれのSIMピークであるかを、実施例3で測定した各種ペプチドの保持時間に基づいて決定し、各種ペプチドのSIMピーク面積を算出した。   A sample solution was prepared by mixing equal amounts of the above sesame peptide solution and the internal standard solution used in Example 2, and the sample solution was processed by LC / MS / MS analysis under the following conditions. SRM peak areas of LVY (first peptide) and VY (internal standard substance) were calculated from the mass spectrum. Further, the sample solution was processed by LC / MS analysis under the following conditions, and various SIM peaks of various peptides were measured in Example 3 to determine which SIM peak of each mass spectrum was obtained. Based on the retention time of peptides, the SIM peak areas of various peptides were calculated.

[LC/MS(LC/MS/MS)分析法の条件]
カラム:ODS-80Ts(径;4.6mm,長さ;100mm,東ソー社製)
カラム温度:30℃
流速:400μL/min
試料溶液注入量:20μL
移動相:0.1%トリフルオロ酢酸を含む
水/アセトニトリルのグラジエント(90:10→55:45)
UV検出波長:215nm
MS検出条件:エレクトロスプレーイオン化(ESI)法
positive(測定範囲 m/z 150〜800)
ESI positive SIM(LVY) m/z 394
ESI positive SIM(IVY) m/z 281
ESI positive SIM(VIY) m/z 394
ESI positive SIM(LSA) m/z 394
ESI positive SIM(LQP) m/z 394
ESI positive SIM(LKY) m/z 394
ESI positive SIM(MLPAY) m/z 394
MS/MS検出条件:(VY)ESI positive 前駆イオン m/z 281,SRM m/z 182
(LVY)ESI positive 前駆イオン m/z 394,SRM m/z 213
[LC / MS (LC / MS / MS) analysis method conditions]
Column: ODS-80Ts (diameter: 4.6 mm, length: 100 mm, manufactured by Tosoh Corporation)
Column temperature: 30 ° C
Flow rate: 400 μL / min
Sample solution injection volume: 20 μL
Mobile phase: contains 0.1% trifluoroacetic acid
Water / acetonitrile gradient (90: 10 → 55: 45)
UV detection wavelength: 215 nm
MS detection conditions: Electrospray ionization (ESI) method
positive (measuring range m / z 150 to 800)
ESI positive SIM (LVY) m / z 394
ESI positive SIM (IVY) m / z 281
ESI positive SIM (VIY) m / z 394
ESI positive SIM (LSA) m / z 394
ESI positive SIM (LQP) m / z 394
ESI positive SIM (LKY) m / z 394
ESI positive SIM (MLPAY) m / z 394
MS / MS detection conditions: (VY) ESI positive precursor ion m / z 281 and SRM m / z 182
(LVY) ESI positive precursor ion m / z 394, SRM m / z 213

LC/MS/MS分析法での処理により得られた測定結果を用いて、式(2)に基づき、試料溶液中のLVY濃度を算出した。また、LC/MS分析法での処理により得られたマススペクトルから算出した各種ペプチド及びLVYのSIMピーク面積を用いて、式(3)に基づき、試料溶液中の各種ペプチドの濃度を算出した。
上記試験結果について、表2に示す。
The LVY concentration in the sample solution was calculated based on the formula (2) using the measurement result obtained by the treatment by the LC / MS / MS analysis method. Moreover, the concentration of various peptides in the sample solution was calculated based on the formula (3) using various peptides calculated from mass spectra obtained by the LC / MS analysis method and the SIM peak area of LVY.
The test results are shown in Table 2.

Figure 0004563764
Figure 0004563764

上記試験の結果、脱脂ゴマに含まれる複数種類のペプチドのうち、LSA,LQP,LKY,LVY,MLPAYはペプチド濃度を算出することができ、検体に複数種類のペプチドが含まれている場合であっても、その複数種類のペプチドを液体クロマトグラフィー/質量分析法で処理することによって得られるSIMピーク面積、及び複数種類のペプチドのうちの一種類のペプチドの濃度に基づいて、複数種類のペプチドをそれぞれ定量できることが確認された。   As a result of the above test, LSA, LQP, LKY, LVY, and MLPAY can calculate the peptide concentration among a plurality of types of peptides included in the defatted sesame, and the sample contains a plurality of types of peptides. However, based on the SIM peak area obtained by processing the plurality of types of peptides with liquid chromatography / mass spectrometry, and the concentration of one type of peptides among the plurality of types of peptides, It was confirmed that each could be quantified.

本発明の方法は、植物からの抽出物、動植物等の分解物、食品、化粧品等に含有される活性ペプチド群の定量分析等に有用である。   The method of the present invention is useful for quantitative analysis of active peptide groups contained in extracts from plants, degradation products of animals and plants, foods, cosmetics, and the like.

LC/MS/MS分析法で処理することによって得られたマススペクトルから作成した、LVY及びVYのSRMピーク面積比とLVY濃度との相関関係を示す検量線である。It is the calibration curve which shows the correlation with the LVY density | concentration and the LVY density | concentration ratio of LVY and VY which were created from the mass spectrum obtained by processing by LC / MS / MS analysis. 脱脂ゴマに含有される複数種類のペプチドを、LC/MS分析法で処理することによって得られたマススペクトル(SIMピーク)である。It is a mass spectrum (SIM peak) obtained by processing a plurality of types of peptides contained in defatted sesame by LC / MS analysis.

Claims (4)

検体に含まれる第1〜第n(nは2以上の整数である。)のペプチドを定量する方法であって、
(a)第1のペプチドと構成するアミノ酸の種類の異なるペプチドを内部標準物質として添加した検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルに基づいて、第1のペプチド及び内部標準物質のピーク面積比を算出し、第1のペプチド及び内部標準物質のピーク面積比と第1のペプチドの濃度との相関関係に基づいて、第1のペプチドの濃度を求める工程、
(b)前記内部標準物質としてのペプチドを添加していない検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルに基づいて、第1〜第nのペプチドのピーク面積を算出する工程、及び
(c)次式(1):A=B/C×D[式中、Aは検体に含まれる第k(kは2〜nの整数である。)のペプチドの濃度を表し、Bは検体に含まれる第kのペプチドのピーク面積を表し、Cは検体に含まれる第1のペプチドのピーク面積を表し、Dは検体に含まれる第1のペプチドの濃度を表す。]に基づいて、第2〜第nのペプチドの濃度を求める工程
を含む前記方法。
A method for quantifying first to nth peptides (n is an integer of 2 or more) contained in a specimen,
(A) Based on a mass spectrum obtained by processing a sample to which a peptide having a different type of amino acid constituting the first peptide is added as an internal standard substance by liquid chromatography / mass spectrometry, the first peptide And calculating the peak area ratio of the internal standard substance, and determining the concentration of the first peptide based on the correlation between the peak area ratio of the first peptide and the internal standard substance and the concentration of the first peptide,
(B) The peak areas of the first to nth peptides are calculated based on the mass spectrum obtained by processing the sample not added with the peptide as the internal standard substance by liquid chromatography / mass spectrometry. And (c) the following formula (1): A = B / C × D [wherein A represents the concentration of the peptide of k-th (k is an integer of 2 to n) contained in the sample]. , B represents the peak area of the kth peptide contained in the specimen, C represents the peak area of the first peptide contained in the specimen, and D represents the concentration of the first peptide contained in the specimen. The method comprising the step of determining the concentration of the second to nth peptides based on the above.
前記内部標準物質としてのペプチドが、前記第1のペプチドと共通するアミノ酸配列を有することを特徴とする請求項に記載の方法。 The method of claim 1, wherein the peptide as an internal standard substance, and having the amino acid sequence in common with the first peptide. 前記工程(b)において、第1〜第nのペプチドの保持時間に基づいて、検体を液体クロマトグラフィー/質量分析法で処理することによって得られたマススペクトルのピークと第1〜第nのペプチドとの対応関係を決定し、第1〜第nのペプチドのピーク面積を算出する請求項1又は2に記載の方法。 In the step (b), based on the retention times of the first to nth peptides, the peak of the mass spectrum obtained by treating the specimen by liquid chromatography / mass spectrometry and the first to nth peptides determining the correspondence between the method according to claim 1 or 2 for calculating the peak areas of the peptide of the first to n. 前記第1〜第nのペプチドのアミノ酸残基数が、2〜50個である請求項1〜のいずれかに記載の方法。 The method according to any one of claims 1 to 3 , wherein the first to nth peptides have 2 to 50 amino acid residues.
JP2004290781A 2004-10-01 2004-10-01 Peptide quantification method Active JP4563764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290781A JP4563764B2 (en) 2004-10-01 2004-10-01 Peptide quantification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290781A JP4563764B2 (en) 2004-10-01 2004-10-01 Peptide quantification method

Publications (2)

Publication Number Publication Date
JP2006105699A JP2006105699A (en) 2006-04-20
JP4563764B2 true JP4563764B2 (en) 2010-10-13

Family

ID=36375624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290781A Active JP4563764B2 (en) 2004-10-01 2004-10-01 Peptide quantification method

Country Status (1)

Country Link
JP (1) JP4563764B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4921019B2 (en) 2006-04-06 2012-04-18 昭和電工株式会社 Joining method between members
JP4913587B2 (en) 2006-12-28 2012-04-11 雪印メグミルク株式会社 Peptide and protein quantification
JP5212687B2 (en) * 2007-10-11 2013-06-19 学校法人近畿大学 Method for quantifying compound having α-glucosidase inhibitory activity, and method for evaluating α-glucosidase inhibitory activity of Sarachia plant or extract thereof
WO2009123297A1 (en) * 2008-04-03 2009-10-08 株式会社日立ハイテクノロジーズ Quantitative analysis method using mass spectrometer
AU2010341485B2 (en) * 2009-12-22 2016-11-17 Expression Pathology, Inc. Epidermal growth factor receptor (EGFR) protein SRM/MRM assay
AU2010341482A1 (en) * 2009-12-22 2012-07-19 Expression Pathology, Inc. Insulin receptor substrate 1 (IRS1) protein SRM/MRM assay
CN103760269B (en) * 2014-01-23 2015-08-19 中国动物疫病预防控制中心 A kind of detection method of residue of veterinary drug
CN103969362B (en) * 2014-03-14 2017-02-15 中国环境科学研究院 Method for quantitatively detecting FQs(fluroquinolones) in chicken manure
CN104111291B (en) * 2014-06-19 2016-08-31 中国农业科学院农业环境与可持续发展研究所 A kind of soil poisoning dead Ticks pesticide and the detection method of three kinds of metabolite thereof
CN104133017B (en) * 2014-07-31 2015-09-02 国家烟草质量监督检验中心 The assay method of OPEO and NPE content in water base adhesive
CN104730163B (en) * 2015-03-19 2016-09-14 湖北犇星农化有限责任公司 Based on 3, the detection of 3,5,6-tetra-chloro-4,4-dihydropyridine-2-ketone controls the method that 3,5,6-trichloropyridine-2-sodium alkoxide produce
CN105044247A (en) * 2015-09-07 2015-11-11 天津生机集团股份有限公司 Detection method for chloramphenicol drug residues in veterinary drugs
CN105510457B (en) * 2015-12-01 2017-09-12 河南中标检测服务有限公司 A kind of method for detecting Residue of Antibiotics in Milk
CN106568866A (en) * 2016-11-10 2017-04-19 山东省海洋资源与环境研究院 Measuring method of desoxym equindox, 3-metyl-2-acetyl-quinoxaline and MQCA in trepang
HUE057483T2 (en) 2017-06-02 2022-05-28 Genzyme Corp Methods for absolute quantification of low-abundance polypeptides using mass spectrometry

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214754A (en) * 1988-02-23 1989-08-29 Shimadzu Corp Composition-ratio determining apparatus
JPH05196606A (en) * 1991-09-03 1993-08-06 Kao Corp Micro quantitative analyzing method of surface active agent
JP2002523058A (en) * 1998-08-25 2002-07-30 ユニバーシティ オブ ワシントン Rapid quantitative analysis of proteins or protein functions in complex mixtures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1370571E (en) * 2001-03-22 2005-09-30 Vlaams Interuniv Inst Biotech PROCESSES AND APPARATUS FOR QUALITATIVE AND QUANTITATIVE ANALYSIS, GEL, PROTEOM AND THEIR UTILIZATIONS
US7045296B2 (en) * 2001-05-08 2006-05-16 Applera Corporation Process for analyzing protein samples
US20060141631A1 (en) * 2002-04-15 2006-06-29 Bondarenko Pavel V Quantitation of biological molecules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214754A (en) * 1988-02-23 1989-08-29 Shimadzu Corp Composition-ratio determining apparatus
JPH05196606A (en) * 1991-09-03 1993-08-06 Kao Corp Micro quantitative analyzing method of surface active agent
JP2002523058A (en) * 1998-08-25 2002-07-30 ユニバーシティ オブ ワシントン Rapid quantitative analysis of proteins or protein functions in complex mixtures
JP2003107066A (en) * 1998-08-25 2003-04-09 Univ Of Washington Quick quantitative analysis of protein or protein function in composition mixture

Also Published As

Publication number Publication date
JP2006105699A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4563764B2 (en) Peptide quantification method
DE112011106145B4 (en) Mass spectrometric quantification of analytes using a universal reporter
CN101600959B (en) Method for quantification of peptide and protein
Dahlmann et al. Liquid chromatography–electrospray ionisation-mass spectrometry based method for the simultaneous determination of algal and cyanobacterial toxins in phytoplankton from marine waters and lakes followed by tentative structural elucidation of microcystins
Friedman Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences
Harding et al. iε-(γ-Glutamyl) lysine cross-linkage in citrulline-containing protein fractions from hair
Nedjar-Arroume et al. Isolation and characterization of four antibacterial peptides from bovine hemoglobin
DE60204669T2 (en) METHOD AND DEVICE FOR GEL-FREE QUALITATIVE PROTEOMANALYSIS AND ITS USE
Min et al. Determination of dl-amino acids, derivatized with R (−)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2, 1, 3-benzoxadiazole, in nail of diabetic patients by UPLC–ESI-TOF-MS
Blankenship et al. High-sensitivity amino acid analysis by derivatization with O-phthalaldehyde and 9-fluorenylmethyl chloroformate using fluorescence detection: Applications in protein structure determination
JP2016145833A (en) Analysis of amino acids in body fluid by liquid chromatography mass spectrometry
Sherwood et al. Measurement of plasma and urine amino acids by high-performance liquid chromatography with electrochemical detection using phenylisothiocyanate derivatization
JP2018163155A (en) Amino acid analysis method
Roth Fluorimetric determination of free hydroxyproline and proline in blood plasma
Greifenhagen et al. Oxidative degradation of N ε-fructosylamine-substituted peptides in heated aqueous systems
CN108948176B (en) Osteopontin characteristic peptide and application thereof
CN110824083B (en) Application of donkey-bone glue characteristic polypeptide in detection of donkey-bone glue components in animal skin glue and products thereof
Arsad et al. Quantitation of protein cysteine–phenol adducts in minced beef containing 4-methyl catechol
Fleischer et al. Fast mass spectrometry-based enantiomeric excess determination of proteinogenic amino acids
Cai et al. Collagen derived species-specific peptides for distinguishing donkey-hide gelatin (Asini Corii Colla)
JP2017187321A (en) Method of analyzing pyrroloquinoline quinone
Springer et al. Electrospray ionization mass spectrometric characterization of acrylamide adducts to hemoglobin
JP5248841B2 (en) Methylmercury-binding protein or methylmercury-binding polypeptide and analysis method thereof
Sun et al. Validated method for determination of ultra-trace closantel residues in bovine tissues and milk by solid-phase extraction and liquid chromatography–electrospray ionization-tandem mass spectrometry
Julka et al. Benzoyl derivatization as a method to improve retention of hydrophilic peptides in tryptic peptide mapping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250