JP4561239B2 - Fuel cell separator and fuel cell using the same - Google Patents

Fuel cell separator and fuel cell using the same Download PDF

Info

Publication number
JP4561239B2
JP4561239B2 JP2004245565A JP2004245565A JP4561239B2 JP 4561239 B2 JP4561239 B2 JP 4561239B2 JP 2004245565 A JP2004245565 A JP 2004245565A JP 2004245565 A JP2004245565 A JP 2004245565A JP 4561239 B2 JP4561239 B2 JP 4561239B2
Authority
JP
Japan
Prior art keywords
separator
fuel cell
polymer electrolyte
carbon
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004245565A
Other languages
Japanese (ja)
Other versions
JP2006066139A (en
Inventor
正俊 寺西
強 吉野
川島  勉
徹 壽川
光央 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004245565A priority Critical patent/JP4561239B2/en
Publication of JP2006066139A publication Critical patent/JP2006066139A/en
Application granted granted Critical
Publication of JP4561239B2 publication Critical patent/JP4561239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、高分子電解質型燃料電池を構成する燃料電池セパレータおよびそれを用いた燃料電池に関するものである。   The present invention relates to a fuel cell separator constituting a polymer electrolyte fuel cell and a fuel cell using the same.

通常、高分子電解質を用いた燃料電池は、水素を含有する燃料ガスと、空気など酸素を含有する酸化剤ガスとを、電気化学的に反応させることで、電力と熱とを同時に発生させるものである。その構造は、まず、水素イオンを選択的に輸送する高分子電解質膜の両面に、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒反応層を形成する。次に、この触媒反応層の外面に燃料ガスの通気性と、電子導電性とを併せ持つ、例えばカーボンペーパーやカーボンクロスで拡散層を形成し、この拡散層と触媒反応層とを合わせて電極とするものである。   In general, a fuel cell using a polymer electrolyte generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air. It is. In the structure, first, a catalytic reaction layer composed mainly of carbon powder carrying a platinum-based metal catalyst is formed on both surfaces of a polymer electrolyte membrane that selectively transports hydrogen ions. Next, a diffusion layer is formed of, for example, carbon paper or carbon cloth having both air permeability of fuel gas and electronic conductivity on the outer surface of the catalytic reaction layer, and the diffusion layer and the catalytic reaction layer are combined to form an electrode. To do.

次に、供給する燃料ガスや酸化剤ガスが外にリークしたり、燃料ガスと酸化剤ガスとが互いに混合したりしないように、電極の周囲には高分子電解質膜を挟んでガスシール材やガスケットを配置する。このシール材やガスケットは、電極及び高分子電解質膜と一体化してあらかじめ組み立て、これを、MEA(膜電極接合体)と呼ぶ場合もある。MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列に接続するための導電性のセパレータ板を配置する。セパレータ板のMEAと接触する部分には、電極面に反応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路を形成する。ガス流路はセパレータ板と別に設けることもできるが、セパレータの表面に溝を設けてガス流路とする方式が一般的である。   Next, in order to prevent the supplied fuel gas and oxidant gas from leaking out and mixing the fuel gas and oxidant gas with each other, a gas seal material or Place the gasket. This sealing material or gasket may be integrated with the electrode and the polymer electrolyte membrane and assembled in advance, and this may be referred to as MEA (membrane electrode assembly). On the outside of the MEA, a conductive separator plate for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series is disposed. In the portion of the separator plate that contacts the MEA, a reaction gas is supplied to the electrode surface, and a gas flow path for carrying away the generated gas and surplus gas is formed. The gas flow path can be provided separately from the separator plate, but a system in which a groove is provided on the surface of the separator to form a gas flow path is common.

この溝に燃料ガスを供給するためは、燃料ガスを供給する配管を、使用するセパレータの枚数に分岐し、その分岐先を直接セパレータ状の溝につなぎ込む配管治具が必要となる。この治具をマニホールドと呼び、前述するような燃料ガスの供給配管から直接つなぎ込むタイプを外部マニホールドを呼ぶ。このマニホールドには、構造をより簡単にした内部マニホールドと呼ぶ形式のものがある。内部マニホールドとは、ガス流路を形成したセパレータ板に、貫通した孔を設け、ガス流路の出入り口をこの孔まで通し、この孔から直接燃料ガスを供給するものである。   In order to supply the fuel gas to the groove, a pipe jig for branching the pipe for supplying the fuel gas to the number of separators to be used and directly connecting the branch destination to the separator-like groove is required. This jig is called a manifold, and the type connected directly from the fuel gas supply pipe as described above is called an external manifold. There is a type of this manifold called an internal manifold with a simplified structure. The internal manifold is a separator plate in which a gas flow path is formed with a through-hole, through the gas flow path to the hole, and fuel gas is directly supplied from the hole.

燃料電池は運転中に発熱するので、電池を良好な温度状態に維持するために、冷却水等で冷却する必要がある。通常、1〜3セル毎に冷却水を流す冷却部をセパレータとセパレータとの間に挿入するが、セパレータの背面に冷却水流路を設けて冷却部とする場合が多い。これらのMEAとセパレータおよび冷却部を交互に重ねていき、10〜400セル積層した後、集電板と絶縁板を介し、端板でこれを挟み、締結ボルトで両端から固定するのが一般的な積層電池の構造である。   Since the fuel cell generates heat during operation, it is necessary to cool it with cooling water or the like in order to maintain the battery at a good temperature. Usually, a cooling unit that allows cooling water to flow every 1 to 3 cells is inserted between the separator and the separator. However, a cooling water channel is often provided on the back surface of the separator to form a cooling unit. These MEAs, separators, and cooling units are alternately stacked, and after stacking 10 to 400 cells, they are sandwiched between end plates via current collector plates and insulating plates, and fixed from both ends with fastening bolts. This is a structure of a laminated battery.

このような高分子電解質型燃料電池に用いるセパレータは、導電性が高く、かつ燃料ガスに対して高いガス気密性を持ち、更に水素/酸素を酸化還元する際の反応に対して高い耐食性、即ち耐酸性を持つ必要がある。このような理由で従来のセパレータは、グラッシーカーボン板または樹脂含浸黒鉛板等の表面に切削加工でガス流路を形成したり、また、ガス流路溝を形成したプレス金型にバインダーと共に膨張黒鉛粉末を入れ、これをプレス加工した後、加熱処理することで作製していた。   The separator used in such a polymer electrolyte fuel cell has high conductivity, high gas tightness with respect to the fuel gas, and high corrosion resistance against the reaction during oxidation / reduction of hydrogen / oxygen. Must have acid resistance. For this reason, conventional separators have a gas channel formed by cutting on the surface of a glassy carbon plate or a resin-impregnated graphite plate, or expanded graphite together with a binder in a press die having a gas channel groove. It was produced by putting a powder, pressing it, and then heat-treating it.

また、近年、従来より使用されたカーボン材料に代えて、ステンレスなどの金属板を用いる試みが行われている。金属板を用いたセパレータは、金属板が高温で酸化性の雰囲気に曝されるため、長期間使用すると、金属板の腐食や溶解が起きる可能性がある。金属板が腐食すると、腐食部分の電気抵抗が増大し、電池の出力が低下する。また、金属板が溶解すると、溶解した金属イオンが高分子電解質に拡散し、これが高分子電解質のイオン交換サイトにトラップされ、結果的に高分子電解質自身のイオン電導性が低下する。このような劣化を避けるため金属板の表面にある程度の厚さを持つ金メッキを施すことが通例であった。   In recent years, attempts have been made to use metal plates such as stainless steel instead of conventionally used carbon materials. In the separator using the metal plate, the metal plate is exposed to an oxidizing atmosphere at a high temperature. Therefore, when used for a long time, the metal plate may be corroded or dissolved. When the metal plate is corroded, the electric resistance of the corroded portion increases and the output of the battery decreases. Further, when the metal plate is dissolved, the dissolved metal ions are diffused into the polymer electrolyte and trapped at the ion exchange site of the polymer electrolyte, resulting in a decrease in the ionic conductivity of the polymer electrolyte itself. In order to avoid such deterioration, it is customary to apply gold plating having a certain thickness on the surface of the metal plate.

高分子電解質型燃料電池は、高分子電解質膜内を電離した水素が移動しやすくするため、燃料ガスとしての水素を含むガスや、酸化剤としての酸素ガスを含むガスに水蒸気を混合して供給することが一般的である。一方、発電時の燃焼反応により水分(水蒸気)が生成するため、セパレータに形成された流路溝には燃料や酸化剤と混合する水蒸気と、発電により生成する水分(水蒸気)とが通過する。セパレータ表面は生成した水が必要以上に結露しないように一定の温度に制御されるのが一般的ではあるが、発電した電力の消費量や燃料供給の変化により、燃料電池内部の発生熱量が変化し、内部温度が変動したり、生成水の量が変動したりする。   In polymer electrolyte fuel cells, in order to facilitate the movement of ionized hydrogen in the polymer electrolyte membrane, water vapor is mixed with gas containing hydrogen as the fuel gas or oxygen gas as the oxidant. It is common to do. On the other hand, since water (water vapor) is generated by the combustion reaction during power generation, water vapor mixed with fuel and oxidant and water (water vapor) generated by power generation pass through the channel groove formed in the separator. The separator surface is generally controlled at a constant temperature so that the generated water does not condense more than necessary, but the amount of heat generated within the fuel cell changes due to changes in the amount of power generated and the fuel supply. However, the internal temperature fluctuates and the amount of generated water fluctuates.

例えば温度が低下した場合などにはセパレータ表面が結露しやすくなることがあり、このような現象を完全に排除することは不可能である。結露が発生すると、水滴が流路を塞ぎ、その塞いだ場所以降の電極や触媒に対し燃料供給不足が発生するため、徐々に電圧が低下し、またその水滴が排出されると、流路閉塞が解除されるため燃料供給が回復し、電圧が上昇すると言った電圧不安定現象(フラッディング)が発生するという問題があった。   For example, when the temperature is lowered, the separator surface is likely to condense, and it is impossible to completely eliminate such a phenomenon. When dew condensation occurs, water drops block the flow path, resulting in a shortage of fuel supply to the electrodes and catalyst after the plugged place, so the voltage gradually drops and the water drops are blocked when the water drops are discharged. As a result, the fuel supply is restored and voltage instability (flooding) occurs.

このような問題点を解決するために、セパレータ表面の親水性を高め、結露した水を薄い膜状に広げることで排水性を高めるという方式が提案されている。例えば、特許文献1で提案されているように、親水化のため、親水性樹脂や金属酸化物を添加させ作成した導電性樹脂で作成したセパレータが検討されている。電圧不安定現象(フラッディング)を起こさないようにするためには、セパレータ表面の親水性を、水の接触角が10°以下の超親水状態にする必要がある。そのためには 親水性樹脂や金属酸化物の添加量を増やす必要がある。   In order to solve such problems, a method has been proposed in which the hydrophilicity of the separator surface is increased and the water drainage is improved by spreading condensed water into a thin film. For example, as proposed in Patent Document 1, a separator made of a conductive resin prepared by adding a hydrophilic resin or a metal oxide for hydrophilization has been studied. In order not to cause voltage instability phenomenon (flooding), it is necessary to make the hydrophilicity of the separator surface super-hydrophilic with a water contact angle of 10 ° or less. For this purpose, it is necessary to increase the amount of hydrophilic resin or metal oxide added.

しかしながら、添加量を増やすと、セパレータ材料の電気抵抗が大きくなり、抵抗損失による電圧低下が大きくなり電池性能を低下させるという問題があった。また、親水材料を添加させるのではなく、導電性カーボンと結合剤を混合し圧縮成形したセパレータ表面にプラズマ処理を施し、炭素元素CにC=O、やC−OHなどの親水基を形成させる方法があった。圧縮成形されたカーボン表面はカーボン粒子を構成する黒鉛結晶の化学的に安定なベーサル面(結晶基底面)がセパレータ表面に多く表出しているため、プラズマ処理を施しても、化学的に安定なため表面に十分な量の親水基を形成することができないという問題を有していた。   However, when the addition amount is increased, there is a problem that the electrical resistance of the separator material is increased, the voltage drop due to the resistance loss is increased, and the battery performance is lowered. Further, instead of adding a hydrophilic material, plasma treatment is performed on a separator surface obtained by mixing conductive carbon and a binder and compression-molding to form a hydrophilic group such as C═O or C—OH on the carbon element C. There was a way. The compression-molded carbon surface has many chemically stable basal planes (crystal basal planes) of the graphite crystals that make up the carbon particles exposed on the separator surface, so it is chemically stable even after plasma treatment. Therefore, there has been a problem that a sufficient amount of hydrophilic groups cannot be formed on the surface.

一方、黒鉛結晶のプリズム面(結晶側面)は化学的に不安定なため親水基を形成しやすく表面に多く表出していることが望ましいが、カーボン粒子と結合剤を混練した圧縮成形体では、表層の厚み1μmの層は黒鉛結晶がベーサル面を表出して層状に存在していることが多く、黒鉛結晶のプリズム面は表層から1μm以上内層まで削除すれば表出してくる。   On the other hand, the prism surface (crystal side surface) of graphite crystal is chemically unstable, so it is desirable to expose a large amount of hydrophilic groups on the surface. However, in a compression molded body in which carbon particles and a binder are kneaded, In the surface layer having a thickness of 1 μm, the graphite crystal is often present in a layered manner with the basal surface exposed, and the prism surface of the graphite crystal is exposed if it is deleted from the surface layer to the inner layer by 1 μm or more.

また、結合剤とカーボン材料との混合度合いにもよるが、セパレータに必要とされる導電特性を満足し、かつ強度を維持するためのカーボン材料の全体に占める割合の最適値は一般に70%〜85%であり、表層を削除する前のベーサル面の表出する面積が表面全体に占める面積比率は70%から90%になっている。表層を削除すれば、ベーサル面の表出する面積が表面全体に占める面積比率は10%以上70%以下程度になる。つまりプリズム面の表出する面積が表面全体に占める面積比率が30%より大きくなれば表面の親水性を付与するのに十分な量の親水官能基が形成される。   Further, although depending on the degree of mixing of the binder and the carbon material, the optimum value of the ratio of the total carbon material to satisfy the conductive properties required for the separator and maintain the strength is generally 70% to It is 85%, and the area ratio of the exposed area of the basal surface before removing the surface layer to the entire surface is 70% to 90%. If the surface layer is deleted, the area ratio of the exposed area of the basal surface to the entire surface becomes about 10% to 70%. That is, when the area ratio of the surface of the prism surface to the entire surface is greater than 30%, a sufficient amount of hydrophilic functional groups are formed to impart surface hydrophilicity.

図3にその模式図を示す。カーボン粒子1は黒鉛結晶8が面方向や層方向に結合した集合体9となっている。カーボン粒子1と結合剤2が圧縮成形されると型に接触する面の近傍のカーボン粒子1は表面に平行にして並んでいるため、前記カーボン粒子1を構成する黒鉛結晶8のベーサル面7も同様に表面に平行にして並んでいる。カーボン粒子1を構成する黒鉛結晶8の集合体9は鱗片状の形状になっており大きさは、厚さ1〜5μm、直径50〜100μmである。そして、成形表面からの深さが1μmまではカーボン粒子が整列して形成されている確立が高いが、1μmより深い部分ではカーボン粒子1の向きはランダムな向きを向いて整列していない粒子が存在する確立が高くなる。つまり、表層の1μm以上を除去すれば、化学的に不安定なプリズム面が多く表出する。
特開2003−217608号公報
The schematic diagram is shown in FIG. The carbon particles 1 are aggregates 9 in which graphite crystals 8 are bonded in a plane direction or a layer direction. When the carbon particles 1 and the binder 2 are compression-molded, the carbon particles 1 in the vicinity of the surface in contact with the mold are arranged in parallel to the surface, so that the basal surface 7 of the graphite crystal 8 constituting the carbon particle 1 is also Similarly, they are arranged parallel to the surface. The aggregate 9 of the graphite crystals 8 constituting the carbon particles 1 has a scaly shape and has a thickness of 1 to 5 μm and a diameter of 50 to 100 μm. It is highly established that the carbon particles are aligned and formed up to a depth of 1 μm from the molding surface, but in the portion deeper than 1 μm, the orientation of the carbon particles 1 is random and the particles are not aligned. The existing establishment is high. In other words, if 1 μm or more of the surface layer is removed, many chemically unstable prism surfaces appear.
JP 2003-217608 A

燃料ガスや酸化ガスと混合する水蒸気や、発電によって発生する水分(水蒸気)がセパレータ表面に結露した場合でも水滴とならず、燃料ガス、酸化剤ガスの流路面に薄く水膜として広がり流路を閉塞しないセパレータを実現する。さらには、燃料電池に接続された負荷が変動したり、燃料供給量が変動しても電圧低下や上昇を起こさない安定した発電性能を有する燃料電池を提供する。   Even when water vapor mixed with fuel gas or oxidant gas or moisture generated by power generation (water vapor) condenses on the separator surface, it does not form water droplets, spreads thinly as a water film on the flow surface of fuel gas and oxidant gas, and opens the flow channel A separator that does not close is realized. Furthermore, the present invention provides a fuel cell having a stable power generation performance that does not cause a voltage drop or increase even when a load connected to the fuel cell fluctuates or a fuel supply amount fluctuates.

本発明の目的は燃料電池の高安定運転を実現することである。また、セパレータの表面特性は接触角などで事前に計測できるが、電圧不安定現象は燃料電池を積層し、発電動作を開始させた後に、セパレータ特性と電極特性などの相互作用にて発現するため、発電させてから電圧が不安定のためセパレータを交換するといった作業が実施される場合もあり、このような作業ロスを削減することを目的とする。   An object of the present invention is to realize highly stable operation of a fuel cell. In addition, separator surface characteristics can be measured in advance by contact angle, etc., but voltage instability phenomena are manifested by interactions between separator characteristics and electrode characteristics after stacking fuel cells and starting power generation operation. Since the voltage is unstable after power generation, work such as exchanging the separator may be performed, and the object is to reduce such work loss.

第1に導電性カーボン材料と結合剤とを混練した混合物質を加圧、加熱成形した導電性セパレータであって、前記セパレータに形成されたガス流路の少なくとも一部の表面には前記表面より突出した突出カーボン粒子及び結晶構造が窪んだ凹型カーボン粒子が表出し、前記両カーボン粒子の表面は黒鉛結晶で構成され、かつ前記黒鉛結晶のベーサル面(結晶底面)表出部分の前記表面全体に占める面積比率が10%以上70%以下であることを特徴とする。
First, a conductive separator obtained by pressurizing and thermoforming a mixed material obtained by kneading a conductive carbon material and a binder, wherein at least a part of a surface of a gas flow path formed in the separator has the surface More protruding carbon particles and concave carbon particles having a depressed crystal structure are exposed, the surfaces of both the carbon particles are composed of graphite crystals , and the entire surface of the basal surface (crystal bottom surface) exposed portion of the graphite crystals. The area ratio is 10% or more and 70% or less.

特に、表面に親水基を形成すると好適である。In particular, it is preferable to form a hydrophilic group on the surface.

このとき、前記親水基は少なくとも酸素を含むプラズマ処理にて形成すると更によい。At this time, the hydrophilic group is more preferably formed by plasma treatment containing at least oxygen.

また、前記親水基はUVオゾン処理にて形成しても良い。The hydrophilic group may be formed by UV ozone treatment.

なお、前述の高分子電解質型燃料電池セパレータを用いて高分子電解質型燃料電池とすると好適である。It is preferable that a polymer electrolyte fuel cell is formed by using the polymer electrolyte fuel cell separator described above.

本発明によれば、燃料電池を構成するセパレータ表面を親水化することができる。そのため、発電により発生した生成水はセパレータ表面に付着し、薄い水膜を形成する。そして流路内に均一に水膜が形成することで、生成した水と流路面との接触角がゼロに等しくなり、生成水が水滴となって流路を詰まらせることなく、水を排出することが可能となる。燃料ガスが流路に安定して供給されるため、安定した発電が可能となる。   According to the present invention, the separator surface constituting the fuel cell can be hydrophilized. Therefore, the generated water generated by the power generation adheres to the separator surface and forms a thin water film. And by uniformly forming a water film in the flow path, the contact angle between the generated water and the flow path surface becomes equal to zero, and the generated water becomes water droplets and discharges the water without clogging the flow path. It becomes possible. Since the fuel gas is stably supplied to the flow path, stable power generation is possible.

まず、触媒層を形成した電極の作成方法を説明する。アセチレンブラック粉末に、平均粒径が約30Åの白金粒子を25重量%担持したものを電極の触媒とした。この触媒粉末をイソプロパノ−ルに分散させた溶液に、パーフルオロカーボンスルホン酸の粉末をエチルアルコールに分散したディスパージョン溶液を混合し、触媒ペースト状にした。   First, a method for producing an electrode having a catalyst layer will be described. An electrode catalyst comprising 25% by weight of platinum particles having an average particle diameter of about 30% supported on acetylene black powder was used. A dispersion solution in which perfluorocarbonsulfonic acid powder was dispersed in ethyl alcohol was mixed with a solution in which the catalyst powder was dispersed in isopropanol to form a catalyst paste.

一方、電極の支持体になるカーボンペーパーを撥水処理した。外寸14cm×14cm、厚み360μmのカ−ボン不織布(東レ製、TGP−H−120)を、フッ素樹脂含有の水性ディスパージョン(ダイキン工業製、ネオフロンND1)に含浸した後、これを乾燥し、400℃で30分加熱することで、撥水性を与えた。このカ−ボン不織布の一方の面に、触媒ペーストをスクリ−ン印刷法を用いて塗布することで触媒層を形成した。このとき、触媒層の一部は、カ−ボン不織布の中に埋まり込んでいる。このようにして作成した触媒層とカ−ボン不織布とを合わせて電極とした。形成後の反応電極中に含まれる白金量は0.6mg/cm2、パーフルオロカーボンスルホン酸の量は1.2mg/cm2となるよう調整した。 On the other hand, the carbon paper which becomes a support body of an electrode was water-repellent treated. After impregnating a carbon nonwoven fabric (made by Toray, TGP-H-120) having an outer size of 14 cm × 14 cm and a thickness of 360 μm into a fluororesin-containing aqueous dispersion (manufactured by Daikin Industries, Neoflon ND1), this is dried. Water repellency was imparted by heating at 400 ° C. for 30 minutes. A catalyst layer was formed on one surface of the carbon nonwoven fabric by applying the catalyst paste using a screen printing method. At this time, a part of the catalyst layer is embedded in the carbon nonwoven fabric. The catalyst layer thus prepared and the carbon nonwoven fabric were combined to form an electrode. Amount of platinum contained in the reaction electrode after forming the 0.6 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

次に、外寸が15cm×15cmのプロトン伝導性高分子電解質膜の裏表両面に、一対の電極を触媒層が電解質膜の側に接するようにホットプレスで接合し、これを電極電解質膜接合体(MEA)とした。ここでは、プロトン伝導性高分子電解質として、パーフルオロカーボンスルホン酸を30μmの厚みに薄膜化したものを用いた。   Next, a pair of electrodes are joined by hot pressing on both sides of the proton conductive polymer electrolyte membrane having an outer dimension of 15 cm × 15 cm so that the catalyst layer is in contact with the electrolyte membrane, and this is joined to the electrode electrolyte membrane assembly. (MEA). Here, as the proton conductive polymer electrolyte, a perfluorocarbon sulfonic acid thinned to a thickness of 30 μm was used.

次に、本発明のポイントである導電性セパレータについて記載する。まず、平均粒径が約50μmの人造黒鉛粉末を用意し、人造黒鉛粉末80重量%に、熱硬化性フェノール樹脂20重量%を押し出し混練機で混練し、この混練粉末をガス流路用溝と冷却水流路用溝およびマニホールドを成形するための加工を施した金型に投入し、ホットプレスした。ホットプレスの条件は、金型温度150℃、圧力100kg/cm2で10分間とした。得られたセパレータは、外寸が20cm×20cm、厚みが3.0mm、ガス流路および冷却水流路の深さが1.0mmであった。従って、セパレータ板の最も肉薄部の厚みは1.0mmである。導電性カーボン材料について本実施例では、人造黒鉛を用いたが、例えば 天然黒鉛、カーボンブラック、ケッチェンブラックなどの適用も可能である。 Next, the conductive separator which is the point of the present invention will be described. First, artificial graphite powder having an average particle size of about 50 μm is prepared, and 80% by weight of the artificial graphite powder is kneaded with an extruding kneader with 20% by weight of a thermosetting phenol resin. It put into the metal mold | die which gave the process for shape | molding the groove | channel for cooling water flow paths, and a manifold, and hot-pressed. The hot pressing conditions were a mold temperature of 150 ° C. and a pressure of 100 kg / cm 2 for 10 minutes. The obtained separator had an outer size of 20 cm × 20 cm, a thickness of 3.0 mm, and a depth of the gas channel and the cooling water channel of 1.0 mm. Therefore, the thickness of the thinnest part of the separator plate is 1.0 mm. In this embodiment, artificial graphite is used for the conductive carbon material. However, for example, natural graphite, carbon black, ketjen black and the like can be applied.

このようにして作成したセパレータの表面には、厚みが1μm〜5μm程度で直径50〜100μmのベーサル面が表面と平行になった黒鉛粒子で構成されたカーボン粒子の層がある。この層を平均粒子径20μmの酸化アルミ粉を直径5mmのノズルから1kg/minの吐出量で0.5m/minの平面移動速度で吹き付けることによって10μmの厚み分を除去する。   On the surface of the separator thus prepared, there is a carbon particle layer composed of graphite particles having a thickness of about 1 μm to 5 μm and a basal surface having a diameter of 50 to 100 μm parallel to the surface. This layer is sprayed with aluminum oxide powder having an average particle diameter of 20 μm from a nozzle having a diameter of 5 mm at a discharge rate of 1 kg / min at a plane moving speed of 0.5 m / min to remove a thickness of 10 μm.

図1は以上のようにして作成した、本実施例による導電性セパレータの断面形状を示したものである。表面に表出していたベーサル面の向きをそろえた黒鉛結晶の層は除去され、表面より突出した突出カーボン粒子3や結晶構造が窪んだ形状になった凹型カーボン粒子4などが多く表出する。凹型カーボン粒子4を拡大したものを図2に示す。黒鉛粒子6a〜6cは表面にプリズム面(結晶側面)5a〜5cを表出している。このプリズム面(結晶側面)5a〜5cはさらに拡大すると図4に示す黒鉛結晶10のような共有結合の一部が未結合の箇所が多く持つ結晶で構成されている。   FIG. 1 shows the cross-sectional shape of the conductive separator according to the present example prepared as described above. The graphite crystal layer with the orientation of the basal surface exposed on the surface is removed, and a large number of protruding carbon particles 3 protruding from the surface and concave carbon particles 4 having a depressed crystal structure are exposed. An enlarged view of the concave carbon particles 4 is shown in FIG. The graphite particles 6a to 6c expose prism surfaces (crystal side surfaces) 5a to 5c on the surface. When further enlarged, the prism surfaces (crystal side surfaces) 5a to 5c are composed of crystals having many unbonded portions such as a graphite crystal 10 shown in FIG.

また、突出カーボン粒子3の表面にも同様に黒鉛結晶10のような共有結合の一部が未結合の箇所を多く持つ結晶で構成される。つまり、化学的に安定したカーボン表面が破壊され、このような未結合箇所が多く表面に表出しているような化学的に不安定な状態の表面が多く表出することになる。このように化学的に不安定な状態の表面に対しては水の分子などが吸着しやすいため表面の親水性が高まる。さらに表層が除去されたときに凹凸形状が形成されているため表面積が増えるという効果もあり、親水性はさらに高くなる。   Similarly, the surface of the protruding carbon particle 3 is composed of a crystal having a large number of unbonded portions such as the graphite crystal 10 in which covalent bonds are partially bonded. In other words, the chemically stable carbon surface is destroyed, and a lot of chemically unstable surfaces appear such that many such unbonded portions are exposed on the surface. In this way, the hydrophilicity of the surface is increased because water molecules and the like are easily adsorbed to the chemically unstable surface. Furthermore, since the irregular shape is formed when the surface layer is removed, there is an effect that the surface area is increased, and the hydrophilicity is further increased.

表層除去後の表面はカーボン材料と結合剤である樹脂が混合されているため、樹脂部分、黒鉛結晶のベーサル面、黒鉛結晶のプリズム面が混在して表出している。電子走査顕微鏡(SEM)にて断面観察を実施したところ、プリズム面の面積が表面全体面積に占める割合は少ない部分でも30%程度、多いところでは90%程度あった。   Since the surface after removing the surface layer is a mixture of the carbon material and the resin as the binder, the resin portion, the basal surface of the graphite crystal, and the prism surface of the graphite crystal are mixed and exposed. When the cross section was observed with an electron scanning microscope (SEM), the ratio of the area of the prism surface to the entire surface area was about 30% even at a small portion, and about 90% at the large portion.

次に、このような状態のセパレータ表面に酸素活性ラジカルを反応させる目的で酸素プラズマ処理を施す。使用したプラズマ処理装置は減圧方平行平板型の一般的なRFプラズマ装置でRF電源は13.56MHzの周波数、出力500W、酸素供給量は500sccm、処理時間は5分、チャンバー内圧力は0.5Torrとした。このようにプラズマ処理を施すと、1つの炭素原子の周囲の4つ共有結合の一部が化学的に不安定な未結合状態であるため、活性な酸素ラジカル種と反応し、酸素を含む親水官能基を形成する。   Next, oxygen plasma treatment is performed for the purpose of reacting oxygen active radicals on the separator surface in such a state. The plasma processing apparatus used is a general RF plasma apparatus of a decompression parallel plate type, the RF power source has a frequency of 13.56 MHz, the output is 500 W, the oxygen supply amount is 500 sccm, the processing time is 5 minutes, and the pressure in the chamber is 0.5 Torr. It was. When the plasma treatment is performed in this manner, a part of the four covalent bonds around one carbon atom is in a chemically unstable unbonded state, so that it reacts with active oxygen radical species and becomes hydrophilic with oxygen. Form a functional group.

このセパレータの表面分析をX線光電子分光分析法(X−ray Photoelectron Spectroscopy:XPS)で行ったところ、カーボン表面には、化1および化2で示した酸化物官能基すなわち親水性官能基が付与されていたことを確認した。   When the surface analysis of this separator was performed by X-ray photoelectron spectroscopy (XPS), the oxide functional group shown in Chemical Formula 1 and Chemical Formula 2, that is, the hydrophilic functional group, was imparted to the carbon surface. Confirmed that it was.

Figure 0004561239
Figure 0004561239

Figure 0004561239
Figure 0004561239

また、水に対する接触角を計測したところ、図5に示すように圧縮成形直後の接触角は80°、ブラスト処理後は100°であったが、プラズマ処理を施すと10°となった。尚、上述の接触角はセパレータ表面が乾燥状態で水滴を滴下した場合の水滴の接触角であるが、表面が100%の加湿状態に暴露している場合に同様に接触角を計測したところ、圧縮成形直後の接触角は70°、ブラスト処理後は20°、プラズマ処理を施すと0°近傍となった。共有結合の未結合箇所が多く表面に表出している化学的不安定な表面が多く表出している部分に、親水官能基を付着させる目的でプラズマ処理を行うと、CとOの結合箇所が多く形成され、さらにCとOの結合強度も高まるため、非常に大きな親水性を示すとともに、耐久性も高まることになる。   Further, when the contact angle to water was measured, as shown in FIG. 5, the contact angle immediately after compression molding was 80 ° and 100 ° after blasting, but it was 10 ° after plasma treatment. The contact angle described above is the contact angle of the water droplet when the separator surface is in a dry state, and when the surface is exposed to a humidified state of 100%, the contact angle is measured in the same manner. The contact angle immediately after compression molding was 70 °, 20 ° after blasting, and 0 ° after plasma treatment. When plasma treatment is performed for the purpose of attaching a hydrophilic functional group to a portion where many chemically unstable surfaces are exposed on the surface where many covalent bonds are not bonded, the bonded sites of C and O are Many of them are formed, and the bond strength between C and O is increased, so that it exhibits extremely high hydrophilicity and durability.

尚、プラズマ処理装置は今回は電極が平行に対向している平行平板型を用いたが、電極が円筒チャンバーの側面に配備されたバレル型でも良い。また、今回は減圧処理を施したが、大気圧雰囲気でプラズマを照射する方法でも良い。また、オゾン雰囲気で紫外光を照射するUVオゾン処理でも良い。   The plasma processing apparatus used here is a parallel plate type in which the electrodes face each other in parallel, but may be a barrel type in which the electrodes are arranged on the side surface of the cylindrical chamber. In addition, although the decompression process is performed this time, a method of irradiating plasma in an atmospheric pressure atmosphere may be used. Further, UV ozone treatment in which ultraviolet light is irradiated in an ozone atmosphere may be used.

このようにして作成したセパレータ2枚を用い、MEAシートの一方の面に酸化剤ガス流路が形成された本実施例によるセパレータを、裏面に燃料ガス流路が形成された本実施例によるセパレータを重ね合わせ、これを単電池とした。この単電池を2セル積層した後、冷却水路溝を形成したセパレータでこの2セル積層電池を挟み込み、このパターンを繰り返して100セル積層の電池スタックを作成した。この時、電池スタックの両端部には、ステンレス製の集電板と電気絶縁材料の絶縁板、さらに端板と締結ロッドで固定した。この時の締結圧力はセパレータの面積当たり15kg/cm2とした。 Using the two separators thus prepared, the separator according to this example in which the oxidant gas flow path was formed on one surface of the MEA sheet, and the separator according to this example in which the fuel gas flow path was formed on the back surface Were stacked to form a single cell. After stacking two cells of this single cell, the two-cell stacked battery was sandwiched by a separator having a cooling channel groove, and this pattern was repeated to create a battery stack of 100 cells. At this time, the both ends of the battery stack were fixed with a current collector plate made of stainless steel, an insulating plate made of an electrically insulating material, and an end plate and a fastening rod. The fastening pressure at this time was 15 kg / cm 2 per separator area.

このように作製した本実施例の高分子電解質型燃料電池を、80℃に保持し、一方の電極側に75℃の露点となるよう加湿・加温した水素ガスを、もう一方の電極側に65℃の露点となるように加湿・加温した空気を供給した。その結果、電流を外部に出力しない無負荷時には、96Vの電池開放電圧を得た。またこのときの積層電池全体の内部抵抗を測定したところ、約45mΩであった。   The polymer electrolyte fuel cell of this example produced in this way was held at 80 ° C., and hydrogen gas that had been humidified and heated to a dew point of 75 ° C. on one electrode side was placed on the other electrode side. Air that was humidified and heated to a dew point of 65 ° C. was supplied. As a result, a battery open voltage of 96 V was obtained at no load when no current was output to the outside. Further, when the internal resistance of the whole laminated battery at this time was measured, it was about 45 mΩ.

この電池を燃料利用率85%、酸素利用率50%、電流密度0.7A/cm2の条件で連続発電試験を行い、出力特性の時間変化を計測した。その結果、本実施例の電池は、8000時間以上にわたって約14kW(62V−224A)の電池出力を維持することを確認した。また、表面にプラズマ処理を施さず、ブラスト処理のみで構成し、上述の如く電池を構成し、連続発電試験を実施したが、同様に8000時間以上約14kW(62V−224A)の電池出力を維持することを確認した。 This battery was subjected to a continuous power generation test under the conditions of a fuel utilization rate of 85%, an oxygen utilization rate of 50%, and a current density of 0.7 A / cm 2 , and the time change of the output characteristics was measured. As a result, it was confirmed that the battery of this example maintained a battery output of about 14 kW (62V-224A) for 8000 hours or more. In addition, the plasma treatment was not performed on the surface, only the blast treatment was performed, the battery was constructed as described above, and the continuous power generation test was performed. Similarly, the battery output of about 14 kW (62V-224A) was maintained for 8000 hours or more. Confirmed to do.

以上のように本発明によれば、カーボン成形体の表面を超親水化処理可能な方法を提供したが、固体高分子型燃料電池セパレータ流路への適用以外に、酸化物型、炭酸溶融塩型燃料電池セパレータにも適用可能である。また、カーボン素材を接合するための接合面の親水化処理にも適用可能である。   As described above, according to the present invention, there has been provided a method capable of superhydrophilic treatment of the surface of a carbon molded body. In addition to application to a solid polymer fuel cell separator flow path, an oxide type, carbonated molten salt It is also applicable to a type fuel cell separator. Moreover, it is applicable also to the hydrophilic treatment of the joint surface for joining a carbon raw material.

本発明の一実施例におけるセパレータ表面付近の断面を示す模式図The schematic diagram which shows the cross section of the separator surface vicinity in one Example of this invention. 本発明の一実施例におけるセパレータ表面付近の凹型カーボン粒子の断面を示す模式図The schematic diagram which shows the cross section of the concave carbon particle of the separator surface vicinity in one Example of this invention. 従来の一実施例におけるセパレータ表面付近の断面を示す模式図Schematic diagram showing a cross section near the separator surface in one conventional example 黒鉛結晶の模式図Schematic diagram of graphite crystal 本発明の一実施例におけるセパレータの表面の接触角を表すグラフThe graph showing the contact angle of the surface of the separator in one Example of this invention

符号の説明Explanation of symbols

1 カーボン粒子
2 結合剤
7 ベーサル面
8 黒鉛結晶
1 Carbon particles
2 Binder
7 Basal surface
8 Graphite crystals

Claims (5)

導電性カーボン材料と結合剤とを混練した混合物質を加圧、加熱成形した導電性セパレータであって、前記セパレータに形成されたガス流路の少なくとも一部の表面には前記表面より突出した突出カーボン粒子及び結晶構造が窪んだ凹型カーボン粒子が表出し、前記両カーボン粒子の表面は黒鉛結晶で構成され、かつ前記黒鉛結晶のベーサル面(結晶底面)表出部分の前記表面全体に占める面積比率が10%以上70%以下であること
を特徴とする高分子電解質型燃料電池セパレータ。
A conductive separator obtained by pressurizing and heat-molding a mixed material obtained by kneading a conductive carbon material and a binder, wherein at least a part of a surface of a gas flow path formed in the separator protrudes from the surface. Protruding carbon particles and concave carbon particles having a depressed crystal structure are exposed, the surfaces of both carbon particles are composed of graphite crystals , and the area occupied by the entire surface of the basal surface (crystal bottom surface) exposed portion of the graphite crystals A polymer electrolyte fuel cell separator, wherein the ratio is 10% or more and 70% or less.
表面に親水基を形成したことを特徴とする請求項1記載の高分子電解質型燃料電池セパレータ。 Claim 1 Symbol placement polymer electrolyte fuel cell separator, characterized in that the formation of the hydrophilic group on the surface. 前記親水基は少なくとも酸素を含むプラズマ処理にて形成した請求項記載の高分子電解質型燃料電池セパレータ。 The polymer electrolyte fuel cell separator according to claim 2, wherein the hydrophilic group is formed by plasma treatment containing at least oxygen. 前記親水基はUVオゾン処理にて形成した請求項記載の高分子電解質型燃料電池セパレータ。 The polymer electrolyte fuel cell separator according to claim 2, wherein the hydrophilic group is formed by UV ozone treatment. 請求項1〜4の何れか一項に記載のセパレータを用いて構成した高分子電解質型燃料電池。 A polymer electrolyte fuel cell comprising the separator according to any one of claims 1 to 4 .
JP2004245565A 2004-08-25 2004-08-25 Fuel cell separator and fuel cell using the same Expired - Fee Related JP4561239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245565A JP4561239B2 (en) 2004-08-25 2004-08-25 Fuel cell separator and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245565A JP4561239B2 (en) 2004-08-25 2004-08-25 Fuel cell separator and fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2006066139A JP2006066139A (en) 2006-03-09
JP4561239B2 true JP4561239B2 (en) 2010-10-13

Family

ID=36112460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245565A Expired - Fee Related JP4561239B2 (en) 2004-08-25 2004-08-25 Fuel cell separator and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP4561239B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380771B2 (en) 2006-11-28 2014-01-08 トヨタ自動車株式会社 FUEL CELL SEPARATOR, METHOD FOR PRODUCING FUEL CELL SEPARATOR, AND FUEL CELL
JP2009009815A (en) 2007-06-28 2009-01-15 Toyota Central R&D Labs Inc Electrode catalyst substrate, its manufacturing method, and solid polymer fuel cell
JP5262156B2 (en) * 2008-02-07 2013-08-14 凸版印刷株式会社 Solid polymer fuel cell and manufacturing method thereof
JP5879553B2 (en) * 2010-01-20 2016-03-08 パナソニックIpマネジメント株式会社 Method for manufacturing fuel cell separator, method for manufacturing fuel cell separator with gasket, and method for manufacturing fuel cell
KR101195104B1 (en) * 2010-01-20 2012-10-29 파나소닉 주식회사 Production method for fuel cell separator, fuel cell separator, production method for fuel cell separator having gasket, and production method for fuel cell
JP5839161B2 (en) * 2011-06-17 2016-01-06 日産自動車株式会社 Gas diffusion layer for fuel cell and manufacturing method thereof
JP6145781B2 (en) * 2015-08-03 2017-06-14 パナソニックIpマネジメント株式会社 Fuel cell separator
JP2017143078A (en) * 2017-04-12 2017-08-17 パナソニックIpマネジメント株式会社 Method for manufacturing fuel cell separator and fuel cell separator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243410A (en) * 1999-02-23 2000-09-08 Hitachi Chem Co Ltd Separator for fuel cell and its manufacture and fuel cell using the separator
JP2002025570A (en) * 2000-07-04 2002-01-25 Sekisui Chem Co Ltd Processing method of separator for fuel cell and fuel cell
JP2003504832A (en) * 1999-07-15 2003-02-04 テレダイン エナジー システムズ インコーポレイテッド Improved conductive fuel cell current collector and method of manufacture
JP2005216679A (en) * 2004-01-29 2005-08-11 Shin Etsu Polymer Co Ltd Separator for fuel cell and its manufacturing method
JP2005216732A (en) * 2004-01-30 2005-08-11 Nissan Motor Co Ltd Manufacturing method of separator for cell of fuel cell and separator for cell of fuel cell
JP2005332660A (en) * 2004-05-19 2005-12-02 Nissan Motor Co Ltd Manufacturing method of fuel cell separator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243410A (en) * 1999-02-23 2000-09-08 Hitachi Chem Co Ltd Separator for fuel cell and its manufacture and fuel cell using the separator
JP2003504832A (en) * 1999-07-15 2003-02-04 テレダイン エナジー システムズ インコーポレイテッド Improved conductive fuel cell current collector and method of manufacture
JP2002025570A (en) * 2000-07-04 2002-01-25 Sekisui Chem Co Ltd Processing method of separator for fuel cell and fuel cell
JP2005216679A (en) * 2004-01-29 2005-08-11 Shin Etsu Polymer Co Ltd Separator for fuel cell and its manufacturing method
JP2005216732A (en) * 2004-01-30 2005-08-11 Nissan Motor Co Ltd Manufacturing method of separator for cell of fuel cell and separator for cell of fuel cell
JP2005332660A (en) * 2004-05-19 2005-12-02 Nissan Motor Co Ltd Manufacturing method of fuel cell separator

Also Published As

Publication number Publication date
JP2006066139A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
EP1265303B1 (en) Polymer electrolyte fuel cell and method of manufacturing the same
EP1739772B1 (en) Gas diffusion layer and fuel cell using same
EP1229600A1 (en) Polymer electrolyte type fuel cell
US6468685B1 (en) Separator for a fuel cell
EP1601035A1 (en) Polymer electrolyte fuel cell and method for producing the same
CN1495953A (en) Fuel cell
JP3580218B2 (en) Polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
US8431284B2 (en) Low electrical resistance bipolar plate-diffusion media assembly
JP2001110432A (en) Polymer electrolyte type fuel cell
JP4934951B2 (en) FUEL CELL SEPARATOR, MANUFACTURING METHOD THEREOF, AND SOLID POLYMER FUEL CELL USING THE SAME
JP4561239B2 (en) Fuel cell separator and fuel cell using the same
US8586265B2 (en) Method of forming membrane electrode assemblies for electrochemical devices
JP2005032681A (en) Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method
JP2006318717A (en) Polyelectrolyte fuel cell and its manufacturing method
JP2002280003A (en) Method for manufacturing electrode of polymer electrolyte fuel cell and electrolyte membrane electrode joining body
US7060383B2 (en) Fuel cell
JP2003197203A (en) Fuel cell
KR102084567B1 (en) Flow field for fuel cell including graphene foam
JP3972705B2 (en) Electrolyte membrane electrode assembly, method for producing the same, and fuel cell
EP1984967B1 (en) Method of forming membrane electrode assemblies for electrochemical devices
WO2006038475A1 (en) Fuel cell and separator for fuel cell
JP2000228205A (en) High polymer electrolyte fuel cell
JP2004207082A (en) Fuel cell and separator for fuel cell
WO2007013046A2 (en) Fuel cell surface activation
JP2004311056A (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070613

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4561239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees