WO2006038475A1 - Fuel cell and separator for fuel cell - Google Patents

Fuel cell and separator for fuel cell Download PDF

Info

Publication number
WO2006038475A1
WO2006038475A1 PCT/JP2005/017504 JP2005017504W WO2006038475A1 WO 2006038475 A1 WO2006038475 A1 WO 2006038475A1 JP 2005017504 W JP2005017504 W JP 2005017504W WO 2006038475 A1 WO2006038475 A1 WO 2006038475A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas flow
flow path
fuel cell
separator plate
gas
Prior art date
Application number
PCT/JP2005/017504
Other languages
French (fr)
Japanese (ja)
Inventor
Eiichi Yasumoto
Shinichi Arisaka
Shigeyuki Unoki
Soichi Shibata
Kazuhito Hatoh
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006038475A1 publication Critical patent/WO2006038475A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an improvement in a separator plate of a fuel cell, particularly a polymer electrolyte fuel cell, used in a power source for portable devices, a portable power source, a power source for electric vehicles, a domestic cordage energy system, and the like.
  • a polymer electrolyte fuel cell is one in which a fuel gas such as hydrogen and an oxidizing gas such as air are electrochemically reacted by a gas diffusion electrode to simultaneously generate electricity and heat.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of a conventional polymer electrolyte fuel cell.
  • the polymer electrolyte fuel cell 111 basically includes a polymer electrolyte membrane 101 that selectively transports cations (hydrogen ions), and a pair of electrodes (anodes) disposed on both sides of the polymer electrolyte membrane 101. And force sword) 104.
  • the electrode 104 is composed of a catalyst layer 102 mainly composed of carbon powder supporting an electrode catalyst (for example, platinum metal) and a gas diffusion layer 103 formed on the outer surface of the catalyst layer 102 and having air permeability and conductivity. Become.
  • MEA membrane electrode assembly
  • the MEA is mechanically fixed, and adjacent MEAs 110 are electrically connected to each other in series.
  • separator plates 120 and 130 having gas flow paths for supplying fuel gas or oxidant gas (reactive gas) to the electrode 104 and carrying away gas generated by the reaction or surplus gas are disposed.
  • a gas seal material 106 is disposed around the electrode 104 with a polymer electrolyte membrane 101 interposed therebetween so that fuel gas and oxidant gas do not leak out of the battery or mix with each other.
  • O-rings 124 and 125 are also arranged to prevent water from leaking outside the battery.
  • the gas flow paths 122, 132 can be provided separately from the separator plates 120, 130. As shown in FIG. 9, the gas flow paths 122 are formed by providing grooves on the surfaces of the separator plates 120, 130. It is common.
  • Cooling water to keep the battery temperature constant is applied to the other surface of separator plates 120 and 130. Circulating cooling water channels 123 and 133 are provided. By circulating the cooling water, the heat energy generated by the reaction can be used in the form of hot water.
  • Patent Document 1 To deal with such a problem, for example, in Patent Document 1, by performing hydrophilic treatment on the downstream side of the gas flow path of the separator plate, the residual water inside the fuel cell is efficiently discharged out of the fuel cell. A method intended to do so is disclosed. Further, for example, in Patent Document 2, the contact angle between the convex portion and the electrode structure is made smaller than the contact angle of water with respect to the separator surface, regardless of whether the surface property of the separator is hydrophilic or force repellency. Thus, a method intended to enhance the drainage of water staying in the gas flow path is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-298871
  • Patent Document 2 JP 2003-197213
  • Patent Document 1 since the hydrophilization treatment is performed on the outlet of the gas flow path, the generated water generated inside the battery, the condensed water generated due to excessive humidification in the supply gas, etc. There is a possibility that residual water can be discharged efficiently.
  • the contact angle between the projection and the electrode structure which is not related to the surface properties of the separator plate, may be made smaller than the contact angle of water with respect to the separator surface.
  • the selection range (adopting range) of separator plate components can be widened there is a possibility.
  • there is no need to perform a special treatment on the surface of the separator plate there is a possibility that the process can be saved.
  • the contact angle with respect to the electrode structure of the convex portion of the separator plate is uniquely determined, so that the degree of freedom in designing the separator plate is reduced. Also, depending on how the fuel cell is installed, there is a risk that the water pushed out by the interface force between the gas diffusion layer and the separator plate cannot be smoothly discharged outside the fuel cell.
  • the present invention can reliably prevent the flooding phenomenon even when the gas flow rate is small and the flooding phenomenon occurs.
  • An object of the present invention is to provide a fuel cell that can be operated. Furthermore, the present invention provides a separator capable of easily and reliably constructing a fuel cell that can reliably prevent the flooding phenomenon even when the gas flow rate is low and the flooding phenomenon is likely to occur. It is also an object to provide a board.
  • the present invention provides:
  • a fuel cell in which a polymer electrolyte membrane and a membrane electrode assembly including an anode and a force sword sandwiching the polymer electrolyte membrane are stacked in a direction substantially perpendicular to the normal direction of the ground plane through a separator plate.
  • the separator plate has a gas flow path for supplying fuel gas to the surface facing the anode and supplying oxidant gas to the surface facing the power sword,
  • the gas channel has a gas channel part that intersects the direction of gravity
  • a fuel cell characterized in that the hydrophilic force of the bottom side region on the inner surface of the gas flow path portion is higher than the other portions on the inner surface of the gas flow path portion.
  • the “gas flow path portion” that intersects the gravity direction of the gas flow path is, for example, a main flow path (long) extending in a direction substantially perpendicular to the gravity direction in the case of a serpentine type gas flow path. ! /, Channel) part. Therefore, the gas flow path of the separator plate of the present invention does not need to intersect the direction of gravity over the entire length! /.
  • the ratio (area) of the gas flow path portion in the entire gas flow path varies depending on the separator shape and structure. Although it cannot be determined uniquely, it can be set within a range not impairing the effects of the present invention, and from the viewpoint of more effectively suppressing flooding, it is preferably 80% or more and less than 100%. More preferably, it is 80% or more and 98% or less.
  • a serpentine-type flow path including a plurality of straight portions and a turn portion that connects the ends of adjacent straight portions from the upstream side to the downstream side is often used. In this case, however, the straight part or the turn part intersects the direction of gravity.
  • the gas flow path of the separator plate may be constituted by a plurality of linear flow paths that are substantially parallel to the installation surface of the fuel cell. In this case, it is preferable to provide a highly hydrophilic region according to the present invention over the entire length of the gas flow path.
  • the separator plate has the above-described configuration, so that the gas in the gas flow path intersecting the gravity direction of the hydraulic gas flow path formed into droplets in the gas flow path. It stays in the area below the gravity direction on the inner surface of the flow path, that is, the area on the bottom side.
  • the hydrophilicity of the bottom side region is set to be selectively higher than other portions, a hydraulic liquid film is preferentially formed on the bottom side region and spreads. As a result, it is possible to smoothly discharge water with gas diffusion layer strength, and the upper side of the gas flow path portion can be opened without being blocked to prevent blockage of the gas flow path due to flooding. .
  • the “region on the bottom surface side of the inner surface of the gas flow channel portion” is a partial region intersecting with the direction of gravity of the inner surface of the gas flow channel as described above, and the partial region.
  • the present invention provides:
  • the gas channel has a gas channel part that intersects the direction of gravity
  • the present invention provides a fuel cell separator plate characterized in that the hydrophilic force of the bottom side region on the inner surface of the gas flow path portion is higher than the other portions on the inner surface of the gas flow path portion.
  • the separator of the present invention has higher hydrophilicity on the bottom side than other parts, so that the water spreads as a liquid film on the bottom side, and water can be smoothly discharged from the gas diffusion layer.
  • the upper side of the gas flow path portion is open, a highly reliable fuel cell that can prevent the gas flow path from being blocked by flooding can be configured easily and reliably.
  • hydrophilicity is selectively imparted to a specific portion in the gas flow path of the fuel cell separator, and the contact angle of water is made smaller than other portions. Even when the gas flow rate is low, it is possible to provide a highly reliable fuel cell that can reliably prevent the flooding phenomenon compared to the conventional case and can perform stable operation. In addition, according to the present invention, it is possible to provide a separator plate for a fuel cell that can easily and reliably constitute the fuel cell of the present invention.
  • FIG. 1 is a schematic longitudinal sectional view showing a basic configuration of a first embodiment of a fuel cell according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a main part of a separator plate 30 of the fuel cell 100 shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a main part of a separator plate provided in a fuel cell according to a second embodiment of the fuel cell of the present invention.
  • FIG. 4 is an enlarged cross-sectional view of a main part of a separator plate provided in a fuel cell according to a third embodiment of the fuel cell of the present invention.
  • FIG. 5 is a diagram for explaining a modification of the installation state of the fuel cell 100 shown in FIG. 1.
  • FIG. 6 is a graph showing current-voltage characteristics of fuel cells of Examples and Comparative Examples of the present invention.
  • FIG. 7 Average when the air utilization of the fuel cells of the examples and comparative examples of the present invention is changed. It is a graph which shows the fluctuation
  • FIG. 8 is a graph showing current-voltage characteristics of a fuel cell according to an example of the present invention.
  • FIG. 9 is a schematic longitudinal sectional view showing a basic structure of a conventional fuel cell.
  • FIG. 1 is a schematic cross-sectional view showing the basic configuration of the first embodiment of the fuel cell of the present invention.
  • This polymer electrolyte fuel cell 100 basically includes a polymer electrolyte membrane 1 that selectively transports cations (hydrogen ions), and a pair of electrodes (anode and force) disposed on both sides of the polymer electrolyte membrane 1.
  • Sword) consists of four.
  • the electrode 4 includes a catalyst layer 2 mainly composed of carbon powder supporting an electrode catalyst (for example, a noble metal such as platinum metal), and a gas diffusion layer 3 formed on the outer surface of the catalyst layer 2 and having air permeability and conductivity. It consists of.
  • MEA membrane electrode assembly
  • the separator plate 20, 30 having a gas flow path for supplying a fuel gas or an oxidant gas (reactive gas) to the electrode 4 and carrying away a gas generated by the reaction or excess gas. Is placed.
  • a gas seal material 6 is disposed around the electrode 4 with the polymer electrolyte membrane 1 interposed therebetween so that fuel gas and oxidant gas do not leak out of the battery or mix with each other.
  • O-rings 24 and 25 are arranged so that the cooling water does not leak outside the battery.
  • a plurality of MEAs 10 configured as described above are stacked alternately with separator plates interposed therebetween to form a cell stack of a fuel cell.
  • the material constituting the gas diffusion layer 3 is not particularly limited, and those known in the art can be used.
  • a conductive porous substrate such as carbon cloth or carbon paper can be used.
  • the catalyst layer 2 is a catalyst layer forming electrode comprising conductive carbon particles supporting an electrode catalyst made of a noble metal, a polymer electrolyte having cation (hydrogen ion) conductivity, and a dispersion medium. It can be formed by a method known in the art using the ink.
  • the MEA 10 can also be produced from the polymer electrolyte membrane 1, the catalyst layer 2 and the gas diffusion layer 3 as described above by a technique known in the art.
  • the fuel cell of the present invention is mainly characterized by the gas flow paths 22 and 32 of the separator plates 20 and 30.
  • Gas channels 22 and 32 are formed by providing grooves on the surfaces of the gas channels 22 and 32.
  • cooling water flow paths 23 and 33 for circulating cooling water for keeping the battery temperature constant are provided.
  • the heat energy generated by the reaction can be used in the form of hot water.
  • the separator plate in the fuel cell of the present invention includes an anode side separator plate 20 and a force sword side separator plate 30, and a cooling water flow path is formed therebetween.
  • the anode-side separator plate 20 has a fuel gas flow path 22 for supplying fuel gas to the anode on the surface facing the anode, and a cooling water flow path 23 on the opposite surface.
  • the force sword side separator plate 30 has an oxidant gas flow channel 32 for supplying an oxidant gas to the force sword on the surface facing the force sword, and a cooling water flow channel on the opposite surface. 33.
  • a cooling water flow path may be arranged for every two to three force single cells in which a cooling water flow path is formed between the single cells.
  • the fuel gas flow path is provided on one side and the oxidant gas flow path is provided on the other side.
  • a single separator plate that doubles is also possible to use a single separator plate that doubles as the sword side separator plate.
  • the material of the separator plate includes metal, carbon, and a material in which graphite and resin are mixed, and can be used widely.
  • separator plates obtained by injection molding a mixture of carbon powder and binder, or separator plates made of titanium or stainless steel Those having a surface plated with gold can also be used.
  • the fuel cell of the present invention is configured such that a plurality of MEAs are stacked in a direction substantially perpendicular to the normal direction of the ground plane P of the fuel cell via a separator plate,
  • the vertical direction indicated by the Z axis in the figure is the direction of gravity.
  • FIG. 2 is an enlarged cross-sectional view of a main part of the separator plate 30 of the fuel cell 100 shown in FIG.
  • FIG. 2 shows the main part of the power sword side separator plate 30A of the separator plate 30 shown in FIG. 1 and the gas diffusion layer 3 of the force sword in contact with the force sword side separator plate 30A.
  • FIG. 4 is an enlarged cross-sectional view of a main part when cut along a direction substantially perpendicular to P. Therefore, the gas flow path shown in FIG. 2 is a flow path that intersects the direction of gravity.
  • the oxidant gas flow path 32A of the separator plate 30A is configured by a groove provided to open on the surface of the separator plate.
  • the groove When the groove is covered with the gas diffusion layer 3, the groove has a rectangular cross section.
  • the hydrophilicity of the bottom portion c of the rectangle (that is, the bottom side region of the inner surface of the gas flow path 32A that intersects the direction of gravity) is the portion of the other two sides of the rectangle described above. It is set larger than the hydrophilicity of a and b.
  • the generated water is directed toward the lower part of the gas flow path 32A in the direction of gravity (that is, in the direction substantially parallel to the direction of arrow Y in the figure). It will be easier to fall, and will move preferentially to the area c of the bottom part of the rectangle, and will stay easily.
  • the generated water spreads as a liquid film, and there is a space in which gas can flow on the upper side of the gas flow path 32A. Therefore, the generated water is almost normal to the rectangular cross section of the gas flow path 32A in the figure (paper The gas channel 32A flows smoothly along the direction (substantially perpendicular to the surface) and discharged. That is, water can be smoothly discharged from the gas diffusion layer, and at least the upper side of the gas flow path 32A can be opened without being blocked, and the gas flow path can be prevented from being blocked by flooding. .
  • the degree of hydrophilicity of the inner surface of the gas channel 32A can be confirmed by measuring the contact angle with water.
  • the water contact angle for the hydrophilized region is smaller than the water contact angle for other parts.
  • the generated water and surplus water are more easily spread as a liquid film, and flooding can be prevented.
  • the surface force of the gas diffusion layer also increases the smoothness of water to the gas flow path 32A. As a result, the flooding can be prevented.
  • the optimum value of the contact angle of water with respect to the region on the bottom surface side of the gas flow path 32A cannot be uniquely defined, but the gas flow path 32A A sufficient effect can be obtained if the contact angle of water with the area on the bottom side is approximately 0 to 50 °.
  • the contact angle of water can be measured using, for example, FACE X-150 manufactured by Kyowa Interface Chemical Co., Ltd. It can also be measured using the Wilhelmi method, for example.
  • the method for hydrophilizing the bottom side region of the gas flow path 32A is not particularly limited as long as the effects of the present invention described above can be obtained.
  • a method of changing the surface property of the part by blasting by spraying a fine powder, or a method of imparting a hydrophilic functional group by ultraviolet irradiation or plasma treatment can be used.
  • the blast treatment can be applied to a carbon separator plate and a metal separator plate
  • the plasma treatment can be applied to a carbon separator plate.
  • the surface roughness (Ra) of the surface of the separator plate is changed by blasting, and as a result, the contact angle of water is reduced. Since it varies depending on the material of the separator plate used, etc., it cannot be uniquely defined. However, in the case of a carbon separator plate, the contact angle of water can be reduced by increasing Ra.
  • the plasma treatment method may be performed under reduced pressure or atmospheric pressure.
  • the ultraviolet irradiation process which irradiates an ultraviolet light in ozone atmosphere may be sufficient.
  • the hydrophilicity of the region on the bottom surface side can be improved as a result.
  • a fluorine resin dispersion such as polyethylene terephthalate (PTFE) or tetrafluoroethylene-hexafluoropropylene copolymer (FEP) is applied to the portion other than the bottom side and dried.
  • PTFE polyethylene terephthalate
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • Water repellency can be imparted.
  • hydrophilicity may be imparted to the region on the bottom side
  • water repellent treatment may be applied to the portion other than the region on the bottom side. The method for imparting water repellency is not limited to this.
  • the hydrophilicity of the region on the bottom surface side of the gas flow path 32A can be increased by performing water repellent treatment on the gas diffusion layer 3 side facing the gas flow path 32A.
  • the gas diffusion layer 3 inherently has a certain degree of water repellency.
  • the entire gas diffusion layer 3 is subjected to water repellent treatment.
  • Conducting water-repellent treatment by immersing the conductive porous substrate such as carbon paper and carbon cloth described above in a fluorine-containing resin dispersion containing PTFE and FEP, and drying to remove the dispersion medium. Can do.
  • the fuel cell (not shown) of the second embodiment is the same as that of the fuel cell 100 of the first embodiment shown in FIG.
  • the separator plate 30 is replaced with a different configuration, and the configuration other than the separator plate 30 is the same as that of the fuel cell 100 of the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view of a main part of a separator plate provided in the fuel cell according to the second embodiment. More specifically, FIG. 3 shows a cathode side separator plate 30B among the separator plates of the fuel cell of the second embodiment, and main portions of the gas diffusion layer 3 of the force sword in contact with the force sword side separator plate 30B.
  • FIG. 4 is an enlarged cross-sectional view of a main part when cut along a direction substantially perpendicular to the ground plane of the battery.
  • the gas flow path 32B of the power sword side separator plate 30B of the fuel cell of the second embodiment is formed by a groove provided on the surface of the separator plate as in the fuel cell 100 of the first embodiment described above.
  • a substantially trapezoidal cross section with the gas diffusion layer side at the bottom is formed.
  • the lower side c of this trapezoidal side is the area on the bottom side of the inner surface of the gas flow path 32B that intersects the direction of gravity, and the hydrophilicity of this area is greater than the other parts a and b. is doing.
  • the fuel cell (not shown) of the third embodiment is obtained by replacing the separator plate 30 in the fuel cell 100 of the first embodiment shown in FIG.
  • the configuration is the same as that of the fuel cell 100 of the first embodiment.
  • separator plate third embodiment of the separator plate of the present invention provided in the fuel cell of the third embodiment will be described.
  • FIG. 4 is an enlarged cross-sectional view of a main part of a separator plate provided in the fuel cell of the third embodiment. More specifically, FIG. 4 shows a cathode side separator plate 30C among the separator plates of the fuel cell according to the third embodiment, and main portions of the gas diffusion layer 3 of the force sword in contact with the force sword side separator plate 30C. FIG. 4 is an enlarged cross-sectional view of a main part when cut along a direction substantially perpendicular to the ground plane of the battery.
  • the power sword side separator plate 30C of the fuel cell of the second embodiment and the force sword in contact with the separator 30C The main part of the gas diffusion layer 3 is shown as a cross section cut in a direction perpendicular to the ground plane of the battery.
  • the gas flow path 32C of the force sword side separator plate 30C is the fuel cell 1 of the first embodiment.
  • this groove has a U-shaped cross section, and the hydrophilicity of the region on the bottom side e of the inner surface of the gas flow path constituted by the groove is made larger than the hydrophilicity of the other part d.
  • the “ground contact surface” on which the fuel cell is disposed has been described as a smooth surface (ground) substantially perpendicular to the direction of gravity.
  • the “ground plane” in the invention is not limited to this.
  • the “ground plane” in the present invention may vary depending on the installation space where the fuel cell of the present invention is installed, and may be a slope having a certain angle with respect to the horizontal direction. .
  • the fuel cell 100 of the first embodiment is installed in a normal state inclined obliquely with respect to a plane R (for example, the ground) parallel to the horizontal direction via a support 200. You can ask! /
  • the surface Q force including the tangent line between the contact point S between the fuel cell 100 and the support 200 and the contact point T between the fuel cell 100 and the ground surface is a ground contact surface in the present invention.
  • the cross-sectional shape of the gas flow path provided in the separator plate is not particularly limited as long as the region on the bottom side of the gas flow path that intersects the direction of gravity is made hydrophilic. Shapes other than the rectangular shape, the trapezoidal shape, and the U shape (R shape) described using the above-described embodiments may be used. This region of increasing hydrophilicity can be appropriately changed depending on the operating conditions of the fuel cell and the type of electrolyte membrane electrode assembly used. It should be decided as appropriate within the range up to about half of the gas flow path.
  • the force sword side separator plate has “the hydrophilicity of the region on the bottom surface side of the inner surface of the gas flow path portion is higher than the other portions of the inner surface of the gas flow channel portion.
  • the description has been given of the case of applying the “Yes” configuration the present invention is not limited to this.
  • a configuration in which “the hydrophilicity of the region on the bottom surface side on the inner surface of the gas flow path portion is made higher than the other portions on the inner surface of the gas flow path portion” can be applied to the anode side separator plate as well. it can.
  • Catalyst body (50% by mass is 1 ⁇ ) obtained by supporting platinum as an electrode catalyst on Ketjen Black (Ketjen Black EC, Ketjen Black International Co., Ltd., particle size 30 nm), which is carbon powder.
  • Ketjen Black Ketjen Black EC, Ketjen Black International Co., Ltd., particle size 30 nm
  • the obtained mixture was molded to prepare a catalyst layer (10 to 20 ⁇ m).
  • the catalyst layer thus obtained and a carbon cloth (Carbon GF-20-31E manufactured by Nippon Carbon Co., Ltd.) to be used as a gas diffusion layer are combined with a polymer electrolyte membrane (Nafionl l2 membrane manufactured by DuPont USA, ion exchange group capacity). : 0.9 meqZg) was bonded by hot pressing to produce an 18 cm square MEA with a 12 cm square anode and a force sword.
  • the fuel cell of the present invention having the structure shown in FIG. 1 was assembled using the obtained MEA.
  • the anode side separator plate and the force sword side separator plate have outer dimensions of 160 mm X 16 Omm X 5 mm, and have a gas flow path with a width of 0.9 mm and a depth of 0.7 mm, as shown in Fig. 4.
  • Graphite plate impregnated with phenol resin having carbon (carbon separator plate) was subjected to a hydrophilic treatment for assembly.
  • the hydrophilic treatment was performed using an oxygen plasma treatment apparatus.
  • the oxygen plasma device a general RF plasma device of a decompression parallel plate type is used, the RF power source is 13.56 MHz frequency, the output is 500 W, the oxygen supply amount is 500 sccm, the processing time is 5 minutes, and the chamber internal pressure is 0.5 Torr.
  • a masking material is arranged in advance in all parts other than the part e, which is a hydrophilic treatment area, so that only a specific partial area is subjected to plasma treatment.
  • the contact angle of water with the part e after the plasma treatment was 0 °, and the contact angle of water with the part d was 100 °, and it was confirmed that the part e was selectively hydrophilized. .
  • Fig. 6 shows the average battery voltage per single cell when the current density was changed from 0 to 0.8 AZcm 2 . At this time, the amount of gas was adjusted so that the utilization rate of the gas would be the above value. As a result, even when the current density was high, the battery voltage was not greatly reduced.
  • Fig. 7 shows the average battery voltage when the current density is fixed at 0.3 AZcm 2 and the air utilization is varied from 40% to 70%. As a result, even when the air utilization rate was high, flooding was suppressed, with a small drop in battery voltage, and the battery voltage was stable.
  • Fuel cell stacks of Examples 2 and 3 were fabricated in the same manner as in Example 1 except that the separator plate having the structure shown in FIGS. 2 and 3 was used, and the same battery test as in Example 1 was performed.
  • the parts subjected to the hydrophilic treatment were designated as part c in FIG. 2 and part c in FIG.
  • Example 1 As a result, as in Example 1, the battery voltage was not significantly reduced even in the high current density region, and the battery voltage was stable. Further, when the air utilization rate was changed, the flooding was suppressed, and the battery voltage was stable as in Example 1, in which the decrease in battery voltage was small.
  • Comparative Example 1 A fuel cell stack having the same configuration as in Example 1 was prepared except that a separator plate not subjected to hydrophilic treatment was used in the gas flow path, and the same cell test as in Example 1 was performed.
  • a fuel cell stack having the same configuration as in Example 1 was prepared, except that a separator plate with a hydrophilic treatment applied to the entire flow path without masking the gas flow path was prepared, and a battery test similar to that in Example 1 was performed. It was.
  • Example 2 a fuel cell stack having the same configuration as in Example 1 was prepared, except that a water-repellent gas diffusion layer was used, and the same cell test as in Example 1 was performed.
  • the carbon paper was preliminarily reinforced with tetrafluoroethylene monohexafluoropropylene copolymer Dispurgeon (ND-1 (trade name) manufactured by Daikin Industries, Ltd.). Water was immersed in a water repellent treatment solution mixed at a volume ratio of 1: 1, dried, and then fired at 380 ° C. to give a water repellent treatment to obtain a gas diffusion layer.
  • ND-1 tetrafluoroethylene monohexafluoropropylene copolymer Dispurgeon
  • FIG. 8 shows the battery voltage when the current density was changed from 0 to 0.8 AZcm 2 in comparison with Example 1. At this time, the amount of gas was adjusted so that the utilization rate of the gas would be the above value. As a result, flooding was suppressed even when the current density was high, no significant decrease in battery voltage was observed, and the decrease in battery voltage in the high current density region was smaller than in Example 1.
  • a fuel cell stack was constructed in the same manner as in Example 1 except that a separator plate subjected to the following treatment was used, and the cell characteristics were examined under the same conditions as in Example 1.
  • the parts a and b of the gas flow path of the separator plate having the structure shown in FIG. 2 are disperseed with tetrafluoroethylene monohexafluoropropylene copolymer (manufactured by Daikin Industries, Ltd.). ND-1 (trade name)) and water in a volume ratio of 1: 1 were applied, dried, and then fired at 380 ° C for water repellent treatment. Thereafter, the oxygen plasma apparatus used in Example 1 was used to perform hydrophilic treatment on the portion c of the gas flow path. Masking material was previously placed on all other parts so that only part c was plasma treated. The water contact angle for part c of the final separator plate was 0 ° and the water contact angle for parts a and b was 120 °.
  • Example 1 As a result, flooding was suppressed as in Example 1, and the battery voltage was not significantly reduced even in the high current density region, and the battery voltage was stable.
  • the flooding phenomenon is suppressed and stable operation can be performed. Therefore, it can be used as a power source for portable devices and a power source for portable devices. It can also be applied to fuel cells for electric vehicles or household cogeneration systems.

Abstract

A fuel cell stably operable while securely preventing flooding phenomenon, particularly, even when a gas flow velocity is low which tends to cause the flooding phenomenon. In separator plates (30A) having gas flow passages crossing the direction of a gravity, the hydrophilic property of the inner bottom surface portion (c) of the gas flow passages (32A) crossing the direction of the gravity is increased more than that of the other portions (a) and (b) of the gas flow passages.

Description

明 細 書  Specification
燃料電池および燃料電池用セパレータ  Fuel cell and fuel cell separator
技術分野  Technical field
[0001] 本発明は、携帯機器用電源、ポータブル電源、電気自動車用電源、家庭内コージ エネレーシヨンシステム等に使用される燃料電池、特に高分子電解質型燃料電池の セパレータ板の改良に関する。  TECHNICAL FIELD [0001] The present invention relates to an improvement in a separator plate of a fuel cell, particularly a polymer electrolyte fuel cell, used in a power source for portable devices, a portable power source, a power source for electric vehicles, a domestic cordage energy system, and the like.
背景技術  Background art
[0002] 高分子電解質型燃料電池は、水素などの燃料ガスと空気などの酸化ガスをガス拡 散電極によって電気化学的に反応させて、電気と熱とを同時に発生させるものである 。図 9は、従来の高分子電解質型燃料電池の構成を示す概略断面図である。この高 分子電解質燃料電池 111は、基本的には陽イオン (水素イオン)を選択的に輸送す る高分子電解質膜 101、および高分子電解質膜 101の両面に配置された一対の電 極 (アノードおよび力ソード) 104からなる。電極 104は、電極触媒 (例えば白金金属 など)を担持したカーボン粉末を主成分とする触媒層 102と、触媒層 102の外面に形 成され通気性および導電性を兼ね備えたガス拡散層 103とからなる。  [0002] A polymer electrolyte fuel cell is one in which a fuel gas such as hydrogen and an oxidizing gas such as air are electrochemically reacted by a gas diffusion electrode to simultaneously generate electricity and heat. FIG. 9 is a schematic cross-sectional view showing the configuration of a conventional polymer electrolyte fuel cell. The polymer electrolyte fuel cell 111 basically includes a polymer electrolyte membrane 101 that selectively transports cations (hydrogen ions), and a pair of electrodes (anodes) disposed on both sides of the polymer electrolyte membrane 101. And force sword) 104. The electrode 104 is composed of a catalyst layer 102 mainly composed of carbon powder supporting an electrode catalyst (for example, platinum metal) and a gas diffusion layer 103 formed on the outer surface of the catalyst layer 102 and having air permeability and conductivity. Become.
[0003] 高分子電解質膜 101および電極 104で構成される膜電極接合体 (MEA) 110の 外側には、当該 MEAを機械的に固定するとともに、隣接する MEA110を互いに電 気的に直列に接続し、さらに電極 104に燃料ガスまたは酸化剤ガス (反応ガス)を供 給し、かつ反応により発生したガスや余剰のガスを運び去るためのガス流路を有する セパレータ板 120、 130が配置される。また、燃料ガスや酸化剤ガスが電池外にリー クしたり、互いに混合したりしないように、電極 104の周囲には高分子電解質膜 101 を挟んでガスシール材 106が配置され、さらには冷却水が電池外にリークしないよう に、 Oリング 124、 125も配置される。  [0003] Outside the membrane electrode assembly (MEA) 110 composed of the polymer electrolyte membrane 101 and the electrode 104, the MEA is mechanically fixed, and adjacent MEAs 110 are electrically connected to each other in series. Further, separator plates 120 and 130 having gas flow paths for supplying fuel gas or oxidant gas (reactive gas) to the electrode 104 and carrying away gas generated by the reaction or surplus gas are disposed. . In addition, a gas seal material 106 is disposed around the electrode 104 with a polymer electrolyte membrane 101 interposed therebetween so that fuel gas and oxidant gas do not leak out of the battery or mix with each other. O-rings 124 and 125 are also arranged to prevent water from leaking outside the battery.
[0004] ガス流路 122、 132は、セパレータ板 120、 130と別に設けることもできる力 図 9に 示すように、セパレータ板 120、 130の表面に溝を設けてガス流路 122とする方式が 一般的である。  [0004] The gas flow paths 122, 132 can be provided separately from the separator plates 120, 130. As shown in FIG. 9, the gas flow paths 122 are formed by providing grooves on the surfaces of the separator plates 120, 130. It is common.
セパレータ板 120、 130の他方の面には、電池温度を一定に保っための冷却水を 循環させる冷却水の流路 123、 133が設けられる。冷却水を循環させることにより、反 応により発生した熱エネルギーは、温水などの形で利用することができる。 Cooling water to keep the battery temperature constant is applied to the other surface of separator plates 120 and 130. Circulating cooling water channels 123 and 133 are provided. By circulating the cooling water, the heat energy generated by the reaction can be used in the form of hot water.
[0005] この種の燃料電池においては、特に力ソード側で電池反応によって生成する水が セパレータ板 130のガス流路 132に滞留しやすぐ生成水の量が甚だしい場合は完 全にガス流路 132を塞いでしまう。これをフラッデイング現象という。フラッデイング現 象は、生成水によるものだけでなぐ供給ガスが過剰に加湿されている場合にも発生 し得る。そして、いったんフラッデイング現象が発生すると、その部分にはガスが流れ なくなり、電池性能が急激に低下して、電池として機能しなくなる可能性がある。  [0005] In this type of fuel cell, especially when the water generated by the cell reaction on the power sword side stays in the gas flow path 132 of the separator plate 130 and the amount of generated water is very large, the gas flow path is completely removed. Blocks 132. This is called the flooding phenomenon. The flooding phenomenon can also occur when the feed gas, which is just due to the product water, is excessively humidified. Once the flooding phenomenon occurs, there is a possibility that the gas will not flow in that part, and the battery performance will be drastically reduced, preventing it from functioning as a battery.
[0006] このような問題に対して、例えば特許文献 1には、セパレータ板のガス流路の下流 側に親水性処理を行うことで、燃料電池内部の残留水を効率よく燃料電池外に排出 することを意図した方法が開示されている。また、例えば特許文献 2では、セパレータ の表面性状が親水性である力撥水性であるかにかかわらず、凸部と電極構造体との 接触角度を、セパレータ表面に対する水の接触角度よりも小さくすることで、ガス流路 に滞留する水の排水性を高めることを意図した方法が開示されている。  [0006] To deal with such a problem, for example, in Patent Document 1, by performing hydrophilic treatment on the downstream side of the gas flow path of the separator plate, the residual water inside the fuel cell is efficiently discharged out of the fuel cell. A method intended to do so is disclosed. Further, for example, in Patent Document 2, the contact angle between the convex portion and the electrode structure is made smaller than the contact angle of water with respect to the separator surface, regardless of whether the surface property of the separator is hydrophilic or force repellency. Thus, a method intended to enhance the drainage of water staying in the gas flow path is disclosed.
特許文献 1:特開 2002— 298871号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-298871
特許文献 2 :特開 2003— 197213号公報  Patent Document 2: JP 2003-197213
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 上記特許文献 1によれば、ガス流路の出口部に親水化処理が施されているため、 電池内部で発生する生成水や供給ガス中の過剰の加湿により発生する凝縮水など の残留水を効率よく排出することができる可能性がある。  [0007] According to Patent Document 1 described above, since the hydrophilization treatment is performed on the outlet of the gas flow path, the generated water generated inside the battery, the condensed water generated due to excessive humidification in the supply gas, etc. There is a possibility that residual water can be discharged efficiently.
しカゝしながら、特にガスが過剰に加湿された場合やガス流速が小さい場合には、ガ ス流路の上流部においても残留水が滞留してフラッデイング現象が発生する。また、 ガス流路の出口部分の内面全体に親水処理を行っているため、流路全体が水に覆 われると流路全体に水が滞留し、フラッデイング現象が発生するおそれがある。  However, particularly when the gas is excessively humidified or when the gas flow rate is low, residual water stays in the upstream portion of the gas flow path and a flooding phenomenon occurs. In addition, since the entire inner surface of the outlet portion of the gas flow path is subjected to hydrophilic treatment, if the entire flow path is covered with water, water may remain in the entire flow path, and a flooding phenomenon may occur.
[0008] また、上記特許文献 2の方法によれば、セパレータ板の表面性状にかかわりなぐ 凸部と電極構造体との接触角度を、セパレータ表面に対する水の接触角度よりも小 さくすればよいため、セパレータ板の構成材料の選択範囲 (採用範囲)を広くできる 可能性がある。また、セパレータ板の表面に特別な処理を行わなくてもよいので、省 プロセス化できる可能性もある。 [0008] In addition, according to the method of Patent Document 2, the contact angle between the projection and the electrode structure, which is not related to the surface properties of the separator plate, may be made smaller than the contact angle of water with respect to the separator surface. , The selection range (adopting range) of separator plate components can be widened there is a possibility. In addition, since there is no need to perform a special treatment on the surface of the separator plate, there is a possibility that the process can be saved.
し力しながら、この方法によれば、セパレータ板の凸部の電極構造体に対する接触 角度が一義的に決まってしまうため、セパレータ板設計の際の自由度が小さくなつて しまう。また、燃料電池の設置の仕方によっては、ガス拡散層とセパレータ板の界面 力も押し出された水がスムーズに燃料電池外に排出できなくなるおそれもある。  However, according to this method, the contact angle with respect to the electrode structure of the convex portion of the separator plate is uniquely determined, so that the degree of freedom in designing the separator plate is reduced. Also, depending on how the fuel cell is installed, there is a risk that the water pushed out by the interface force between the gas diffusion layer and the separator plate cannot be smoothly discharged outside the fuel cell.
[0009] 以上のような問題点に鑑み、本発明は、ガス流速が小さくフラッデイング現象が発生 しゃすい状況になったとしても、フラッデイング現象を確実に防止することができ、安 定して運転を行うことのできる燃料電池を提供することを目的とする。さらに、本発明 は、ガス流速が小さくフラッデイング現象が発生しやすい状況になったとしても、フラッ デイング現象を確実に防止することができる燃料電池を容易且つ確実に構成するこ とが可能なセパレータ板を提供することも目的とする。  [0009] In view of the above problems, the present invention can reliably prevent the flooding phenomenon even when the gas flow rate is small and the flooding phenomenon occurs. An object of the present invention is to provide a fuel cell that can be operated. Furthermore, the present invention provides a separator capable of easily and reliably constructing a fuel cell that can reliably prevent the flooding phenomenon even when the gas flow rate is low and the flooding phenomenon is likely to occur. It is also an object to provide a board.
課題を解決するための手段  Means for solving the problem
[0010] 上記課題を解決すべく、本発明は、 [0010] In order to solve the above problems, the present invention provides:
高分子電解質膜および高分子電解質膜を挟むアノードおよび力ソードを含む膜電 極接合体を、セパレータ板を介して接地面の法線方向に略垂直な方向に複数個積 層した燃料電池であって、  A fuel cell in which a polymer electrolyte membrane and a membrane electrode assembly including an anode and a force sword sandwiching the polymer electrolyte membrane are stacked in a direction substantially perpendicular to the normal direction of the ground plane through a separator plate. And
セパレータ板は、アノードと対向する面に燃料ガスを供給し力ソードと対向する面に 酸化剤ガスを供給するガス流路を有し、  The separator plate has a gas flow path for supplying fuel gas to the surface facing the anode and supplying oxidant gas to the surface facing the power sword,
ガス流路は、重力方向と交わるガス流路部分を有し、  The gas channel has a gas channel part that intersects the direction of gravity,
ガス流路部分の内面における底面側の領域の親水性力 ガス流路部分の内面に おける他の部分よりも高いこと、を特徴とする燃料電池を提供する。  Provided is a fuel cell characterized in that the hydrophilic force of the bottom side region on the inner surface of the gas flow path portion is higher than the other portions on the inner surface of the gas flow path portion.
[0011] ここで、ガス流路のうち重力方向と交わる「ガス流路部分」とは、例えばサーペンタイ ン型のガス流路の場合は、重力方向に略垂直な方向に延びる主たる流路 (長!/、流路 )部分のことをいう。したがって、本発明のセパレータ板のガス流路は、その全長にわ たって重力方向と交わって!/、る必要はな!/、。  Here, the “gas flow path portion” that intersects the gravity direction of the gas flow path is, for example, a main flow path (long) extending in a direction substantially perpendicular to the gravity direction in the case of a serpentine type gas flow path. ! /, Channel) part. Therefore, the gas flow path of the separator plate of the present invention does not need to intersect the direction of gravity over the entire length! /.
本発明の燃料電池におけるセパレータ板の面内において、ガス流路全体における 上記ガス流路部分の割合 (面積)は、セパレータ形状や構造によって変化するため 一義的に決定することは出来ないが、本発明の効果を損なわない範囲で設定可能 であり、フラッデイングをより効果的に抑制するという観点から、 80%以上 100%未満 であることが好ましぐ 80%以上 98%以下であることがより好ましい。 In the plane of the separator plate in the fuel cell of the present invention, the ratio (area) of the gas flow path portion in the entire gas flow path varies depending on the separator shape and structure. Although it cannot be determined uniquely, it can be set within a range not impairing the effects of the present invention, and from the viewpoint of more effectively suppressing flooding, it is preferably 80% or more and less than 100%. More preferably, it is 80% or more and 98% or less.
[0012] また、セパレータ板のガス流路としては、複数の直線部と、隣接する直線部の端を 上流側から下流側へ連結するターン部と、からなるサーペンタイン形の流路が良く用 いられるが、この場合は、直線部またはターン部が重力方向と交わる。 In addition, as a gas flow path of the separator plate, a serpentine-type flow path including a plurality of straight portions and a turn portion that connects the ends of adjacent straight portions from the upstream side to the downstream side is often used. In this case, however, the straight part or the turn part intersects the direction of gravity.
本発明においては、セパレータ板のガス流路は、燃料電池の設置面に略平行な複 数の直線状の流路によって構成することもできる。この場合は、ガス流路の全長にわ たって、本発明による親水性の高 、領域を設けるのが好ま U、。  In the present invention, the gas flow path of the separator plate may be constituted by a plurality of linear flow paths that are substantially parallel to the installation surface of the fuel cell. In this case, it is preferable to provide a highly hydrophilic region according to the present invention over the entire length of the gas flow path.
[0013] 本発明の燃料電池においては、セパレータ板が上記のような構成をとることにより、 ガス流路内で液滴となった水力 ガス流路の重力方向と交わるガス流路において、 当該ガス流路の内面の重力方向の下側の領域、即ち底面側の領域に滞留すること になる。本発明の燃料電池では、この底面側の領域の親水性を他の部分よりも選択 的に高く設定してあるため、水力 なる液膜が底面側の領域上に優先的に形成され 、拡がってゆくので、ガス拡散層力もの水の排出をスムーズに行なうことができるととも に、当該ガス流路部分の上側は閉塞することなく開き、フラッデイングによるガス流路 の閉塞を防止することができる。 In the fuel cell of the present invention, the separator plate has the above-described configuration, so that the gas in the gas flow path intersecting the gravity direction of the hydraulic gas flow path formed into droplets in the gas flow path. It stays in the area below the gravity direction on the inner surface of the flow path, that is, the area on the bottom side. In the fuel cell of the present invention, since the hydrophilicity of the bottom side region is set to be selectively higher than other portions, a hydraulic liquid film is preferentially formed on the bottom side region and spreads. As a result, it is possible to smoothly discharge water with gas diffusion layer strength, and the upper side of the gas flow path portion can be opened without being blocked to prevent blockage of the gas flow path due to flooding. .
ここで、本発明において、「ガス流路部分の内面における底面側の領域」とは、上述 したように、ガス流路の内面うちの重力方向と交わる部分領域であり、かつ、当該部 分領域のうちの下側の部分領域 {ガス流路中にガスの流れが無いと仮定した場合に おいて、水の液滴 (ガス流路よりも小さい水の液滴)が当該液滴に力かる重力によりガ ス流路中を落下した際に、着弾する部分領域 }である。  Here, in the present invention, the “region on the bottom surface side of the inner surface of the gas flow channel portion” is a partial region intersecting with the direction of gravity of the inner surface of the gas flow channel as described above, and the partial region. Lower part of the region {When assuming that there is no gas flow in the gas channel, water droplets (water droplets smaller than the gas channel) will act on the droplets This is a partial area that lands when it falls in the gas flow path due to gravity.
[0014] 更に、本発明は、 [0014] Furthermore, the present invention provides:
高分子電解質膜および高分子電解質膜を挟むアノードおよび力ソードを含む膜電 極接合体を、セパレータ板を介して接地面の法線方向に略垂直な方向に複数個積 層した燃料電池に用いられるセパレータ板であって、  Used in fuel cells in which a polymer electrolyte membrane and a membrane electrode assembly including an anode and a force sword sandwiching the polymer electrolyte membrane are stacked in a direction substantially perpendicular to the normal direction of the ground plane via a separator plate Separator plate,
アノードまたは力ソードにガスを供給するガス流路を有し、  A gas flow path for supplying gas to the anode or power sword;
ガス流路は、重力方向と交わるガス流路部分を有し、 ガス流路部分の内面における底面側の領域の親水性力 ガス流路部分の内面に おける他の部分よりも高いこと、を特徴とする燃料電池用セパレータ板を提供するも のである。 The gas channel has a gas channel part that intersects the direction of gravity, The present invention provides a fuel cell separator plate characterized in that the hydrophilic force of the bottom side region on the inner surface of the gas flow path portion is higher than the other portions on the inner surface of the gas flow path portion.
[0015] このセパレータ板を用いれば、ガス流路内で液滴となった水力 ガス流路の重力方 向と交わるガス流路において、当該ガス流路の内面の重力方向の下側、即ち底面側 の領域に滞留することになる。そのため、本発明のセパレータにより、この底面側の 親水性が他の部分よりも高いため、水は底面側に液膜となって拡がり、ガス拡散層か らの水の排出をスムーズに行なうことができるとともに、当該ガス流路部分の上側が開 いているため、フラッデイングによるガス流路の閉塞を防止することができる信頼性の 高 、燃料電池を容易且つ確実に構成することができる。  [0015] By using this separator plate, in the gas flow path intersecting with the gravity direction of the hydraulic gas flow path formed into droplets in the gas flow path, the bottom side of the inner surface of the gas flow path, that is, the bottom surface It will stay in the side area. For this reason, the separator of the present invention has higher hydrophilicity on the bottom side than other parts, so that the water spreads as a liquid film on the bottom side, and water can be smoothly discharged from the gas diffusion layer. In addition, since the upper side of the gas flow path portion is open, a highly reliable fuel cell that can prevent the gas flow path from being blocked by flooding can be configured easily and reliably.
発明の効果  The invention's effect
[0016] 以上のように、本発明によれば、燃料電池セパレータのガス流路中の特定の部分 に親水性を選択的に付与し、他の部分よりも水の接触角を小さくすることで、ガス流 速が小さい場合でも、従来に比べてフラッデイング現象を確実に防止し、安定した運 転が行える信頼性の高い燃料電池を提供することができる。また、本発明によれば、 上記本発明の燃料電池を容易且つ確実に構成することのできる燃料電池用セパレ 一タ板を提供することができる。  [0016] As described above, according to the present invention, hydrophilicity is selectively imparted to a specific portion in the gas flow path of the fuel cell separator, and the contact angle of water is made smaller than other portions. Even when the gas flow rate is low, it is possible to provide a highly reliable fuel cell that can reliably prevent the flooding phenomenon compared to the conventional case and can perform stable operation. In addition, according to the present invention, it is possible to provide a separator plate for a fuel cell that can easily and reliably constitute the fuel cell of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の燃料電池の第一実施形態の基本構成を示す概略縦断面図である。  FIG. 1 is a schematic longitudinal sectional view showing a basic configuration of a first embodiment of a fuel cell according to the present invention.
[図 2]図 1に示した燃料電池 100のセパレータ板 30の要部拡大断面図である。  2 is an enlarged cross-sectional view of a main part of a separator plate 30 of the fuel cell 100 shown in FIG.
[図 3]本発明の燃料電池の第二実施形態の燃料電池に備えられるセパレータ板の要 部拡大断面図である。  FIG. 3 is an enlarged cross-sectional view of a main part of a separator plate provided in a fuel cell according to a second embodiment of the fuel cell of the present invention.
[図 4]本発明の燃料電池の第三実施形態の燃料電池に備えられるセパレータ板の要 部拡大断面図である。  FIG. 4 is an enlarged cross-sectional view of a main part of a separator plate provided in a fuel cell according to a third embodiment of the fuel cell of the present invention.
[図 5]図 1に示した燃料電池 100の設置状態の変形例を説明するための図である。  FIG. 5 is a diagram for explaining a modification of the installation state of the fuel cell 100 shown in FIG. 1.
[図 6]本発明の実施例および比較例の燃料電池の電流 電圧特性を示すグラフで ある。  FIG. 6 is a graph showing current-voltage characteristics of fuel cells of Examples and Comparative Examples of the present invention.
[図 7]本発明の実施例および比較例の燃料電池の空気利用率を変えた場合の平均 電圧の変動を示すグラフである。 [Fig. 7] Average when the air utilization of the fuel cells of the examples and comparative examples of the present invention is changed. It is a graph which shows the fluctuation | variation of a voltage.
[図 8]本発明の実施例の燃料電池の電流 電圧特性を示すグラフである。  FIG. 8 is a graph showing current-voltage characteristics of a fuel cell according to an example of the present invention.
[図 9]従来の燃料電池の基本構成を示す概略縦断面図である。  FIG. 9 is a schematic longitudinal sectional view showing a basic structure of a conventional fuel cell.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、以 下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略す ることちある。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant descriptions may be omitted.
[第一実施形態]  [First embodiment]
図 1は、本発明の燃料電池の第一実施形態の基本構成を示す概略断面図である。 この高分子電解質燃料電池 100は、基本的には陽イオン (水素イオン)を選択的に 輸送する高分子電解質膜 1、および高分子電解質膜 1の両面に配置された一対の 電極 (アノードおよび力ソード) 4からなる。電極 4は、電極触媒 (例えば白金金属など の貴金属)を担持したカーボン粉末を主成分とする触媒層 2と、触媒層 2の外面に形 成され通気性および導電性を兼ね備えたガス拡散層 3とからなる。  FIG. 1 is a schematic cross-sectional view showing the basic configuration of the first embodiment of the fuel cell of the present invention. This polymer electrolyte fuel cell 100 basically includes a polymer electrolyte membrane 1 that selectively transports cations (hydrogen ions), and a pair of electrodes (anode and force) disposed on both sides of the polymer electrolyte membrane 1. Sword) consists of four. The electrode 4 includes a catalyst layer 2 mainly composed of carbon powder supporting an electrode catalyst (for example, a noble metal such as platinum metal), and a gas diffusion layer 3 formed on the outer surface of the catalyst layer 2 and having air permeability and conductivity. It consists of.
[0019] 上記の高分子電解質膜 1および電極 4で構成される膜電極接合体 (MEA) 10の外 側には、当該 MEAを機械的に固定するとともに、隣接する MEA10を互いに電気的 に直列に接続し、さらに電極 4に燃料ガスまたは酸化剤ガス (反応ガス)を供給し、か つ反応により発生したガスや余剰のガスを運び去るためのガス流路を有するセパレ ータ板 20、 30が配置される。また、燃料ガスや酸化剤ガスが電池外にリークしたり、 互いに混合したりしな ヽように、電極 4の周囲には高分子電解質膜 1を挟んでガスシ ール材 6が配置され、さらには冷却水が電池外にリークしないように、 Oリング 24、 25 が配置される。このように構成された MEA10の複数個を、セパレータ板を介して交 互に積層して燃料電池のセルスタックを構成する。 [0019] On the outer side of the membrane electrode assembly (MEA) 10 composed of the polymer electrolyte membrane 1 and the electrode 4, the MEA is mechanically fixed, and adjacent MEAs 10 are electrically connected in series with each other. The separator plate 20, 30 having a gas flow path for supplying a fuel gas or an oxidant gas (reactive gas) to the electrode 4 and carrying away a gas generated by the reaction or excess gas. Is placed. In addition, a gas seal material 6 is disposed around the electrode 4 with the polymer electrolyte membrane 1 interposed therebetween so that fuel gas and oxidant gas do not leak out of the battery or mix with each other. O-rings 24 and 25 are arranged so that the cooling water does not leak outside the battery. A plurality of MEAs 10 configured as described above are stacked alternately with separator plates interposed therebetween to form a cell stack of a fuel cell.
[0020] ガス拡散層 3を構成する材料としては、特に限定されることなぐ当該分野で公知の ものを使用することができる。例えばカーボンクロスやカーボンペーパーなどの導電 性多孔質基材を用いることができる。 [0020] The material constituting the gas diffusion layer 3 is not particularly limited, and those known in the art can be used. For example, a conductive porous substrate such as carbon cloth or carbon paper can be used.
また、触媒層 2は、貴金属からなる電極触媒を担持した導電性炭素粒子と、陽ィォ ン (水素イオン)伝導性を有する高分子電解質と、分散媒と、を含む触媒層形成用ィ ンクを用いて、当該分野で公知の方法により形成することができる。 The catalyst layer 2 is a catalyst layer forming electrode comprising conductive carbon particles supporting an electrode catalyst made of a noble metal, a polymer electrolyte having cation (hydrogen ion) conductivity, and a dispersion medium. It can be formed by a method known in the art using the ink.
さらに、 MEA10も、上記のような高分子電解質膜 1、触媒層 2およびガス拡散層 3 から、当該分野で公知の技術によって作製することができる。  Furthermore, the MEA 10 can also be produced from the polymer electrolyte membrane 1, the catalyst layer 2 and the gas diffusion layer 3 as described above by a technique known in the art.
[0021] 本発明の燃料電池は、上述したように、主として、セパレータ板 20、 30のガス流路 22、 32に特徴を有する。ガス流路 22、 32の表面には溝を設けてガス流路 22、 32が 形成されている。また、セパレータ板 20、 30の他方の面には、電池温度を一定に保 つための冷却水を循環させる冷却水の流路 23、 33が設けられる。ここに冷却水を循 環させることにより、反応により発生した熱エネルギーは、温水などの形で利用するこ とがでさる。 As described above, the fuel cell of the present invention is mainly characterized by the gas flow paths 22 and 32 of the separator plates 20 and 30. Gas channels 22 and 32 are formed by providing grooves on the surfaces of the gas channels 22 and 32. Further, on the other surface of the separator plates 20 and 30, cooling water flow paths 23 and 33 for circulating cooling water for keeping the battery temperature constant are provided. By circulating cooling water here, the heat energy generated by the reaction can be used in the form of hot water.
[0022] 本発明の燃料電池におけるセパレータ板は、アノード側セパレータ板 20と力ソード 側セパレータ板 30とを含み、両者間に冷却水の流路が形成されている。アノード側 セパレータ板 20は、アノードと対向する面に、アノードへ燃料ガスを供給する燃料ガ スの流路 22を有し、反対側の面には、冷却水の流路 23を有する。力ソード側セパレ ータ板 30は、力ソードと対向する面に、力ソードへ酸化剤ガスを供給する酸化剤ガス の流路 32を有し、反対側の面には、冷却水の流路 33を有する。  [0022] The separator plate in the fuel cell of the present invention includes an anode side separator plate 20 and a force sword side separator plate 30, and a cooling water flow path is formed therebetween. The anode-side separator plate 20 has a fuel gas flow path 22 for supplying fuel gas to the anode on the surface facing the anode, and a cooling water flow path 23 on the opposite surface. The force sword side separator plate 30 has an oxidant gas flow channel 32 for supplying an oxidant gas to the force sword on the surface facing the force sword, and a cooling water flow channel on the opposite surface. 33.
[0023] 隣接する単セルのアノード側セパレータ板 20と力ソード側セパレータ板 30との間に は、流路 23と 33とにより形成される 1組の冷却水の流路が形成される。アノード側セ パレータ板 20には、冷却水の流路 23を囲むように溝 24が形成されており、ここに Oリ ング 25をはめ込むことにより、セパレータ板 20と 30との間から冷却水が外部へ漏洩 するのを防止する。  [0023] Between the anode-side separator plate 20 and the force-sword-side separator plate 30 of the adjacent single cell, a set of cooling water channels formed by the channels 23 and 33 is formed. A groove 24 is formed in the anode side separator plate 20 so as to surround the cooling water flow path 23. By inserting an O-ring 25 therein, the cooling water flows between the separator plates 20 and 30. Prevent leakage to the outside.
[0024] 図 1においては、各単セル間に冷却水の流路が形成されている力 単セル 2〜3個 毎に冷却水の流路を配置してもよい。単セル間に冷却水の流路を形成しない場合は 、一方の面に燃料ガスの流路を設け、他方の面に酸化剤ガスの流路を設けた、ァノ 一ド側セパレータ板と力ソード側セパレータ板とを兼ねる単一のセパレータ板を使用 することも可會である。  In FIG. 1, a cooling water flow path may be arranged for every two to three force single cells in which a cooling water flow path is formed between the single cells. When the cooling water flow path is not formed between the single cells, the fuel gas flow path is provided on one side and the oxidant gas flow path is provided on the other side. It is also possible to use a single separator plate that doubles as the sword side separator plate.
また、セパレータ板の材質としては、金属製、カーボン製、黒鉛と榭脂を混合した材 料などがあり、幅広く使用することができる。例えばカーボン粉末とバインダーとの混 合物を射出成形して得られるセパレータ板や、チタンやステンレス鋼製セパレータ板 の表面に金メッキを施したものなども使用することができる。 In addition, the material of the separator plate includes metal, carbon, and a material in which graphite and resin are mixed, and can be used widely. For example, separator plates obtained by injection molding a mixture of carbon powder and binder, or separator plates made of titanium or stainless steel Those having a surface plated with gold can also be used.
ここで、本発明の燃料電池は、図 1のように、 MEAがセパレータ板を介して燃料電 池の接地面 Pの法線方向に略垂直な方向に複数個積層されて構成されており、図 1 においては図中 Z軸が示す上下方向が重力方向となる。  Here, as shown in FIG. 1, the fuel cell of the present invention is configured such that a plurality of MEAs are stacked in a direction substantially perpendicular to the normal direction of the ground plane P of the fuel cell via a separator plate, In Fig. 1, the vertical direction indicated by the Z axis in the figure is the direction of gravity.
[0025] 以下においては、燃料電池 100に搭載されるセパレータ板 (本発明のセパレータ板 の第一実施形態)について図面を参照しながらさらに詳しく説明する。  Hereinafter, a separator plate (first embodiment of the separator plate of the present invention) mounted on the fuel cell 100 will be described in more detail with reference to the drawings.
図 2は、図 1に示した燃料電池 100のセパレータ板 30の要部拡大断面図である。 特に、図 2は、図 1に示したセパレータ板 30のうちの力ソード側セパレータ板 30Aと、 当該力ソード側セパレータ板 30Aに接する力ソードのガス拡散層 3の要部を、電池の 接地面 Pに略垂直な方向に沿って切断した場合の要部拡大断面図である。したがつ て、図 2に示されているガス流路は、重力方向と交わる流路である。セパレータ板 30 Aの酸化剤ガスの流路 32Aは、セパレータ板の表面に開口するように設けた溝によ つて構成されている。この溝は、ガス拡散層 3により覆われたとき、断面が矩形の流路 となる。燃料電池 100では、この矩形の底辺の部分 c (即ち重力方向と交わるガス流 路 32Aの内面のうちの底面側の領域)の親水性が、先に述べた矩形の他の 2辺の部 分 aおよび bの親水性よりも大きく設定されている。  FIG. 2 is an enlarged cross-sectional view of a main part of the separator plate 30 of the fuel cell 100 shown in FIG. In particular, FIG. 2 shows the main part of the power sword side separator plate 30A of the separator plate 30 shown in FIG. 1 and the gas diffusion layer 3 of the force sword in contact with the force sword side separator plate 30A. FIG. 4 is an enlarged cross-sectional view of a main part when cut along a direction substantially perpendicular to P. Therefore, the gas flow path shown in FIG. 2 is a flow path that intersects the direction of gravity. The oxidant gas flow path 32A of the separator plate 30A is configured by a groove provided to open on the surface of the separator plate. When the groove is covered with the gas diffusion layer 3, the groove has a rectangular cross section. In the fuel cell 100, the hydrophilicity of the bottom portion c of the rectangle (that is, the bottom side region of the inner surface of the gas flow path 32A that intersects the direction of gravity) is the portion of the other two sides of the rectangle described above. It is set larger than the hydrophilicity of a and b.
[0026] このような構成によって、まず、電極 4の主面の略法線方向(図中、矢印 Xで示され る方向)に、ガス拡散層 3からガス流路 32Aに生成水が排出される力 ガス拡散層 3 は通常ある程度の撥水性を有するため、この排出された生成水は、ガス拡散層 3側 には戻らない。そして、ガス流路 32Aの矩形の底辺側の部分 c (即ち重力方向と交わ るガス流路 32Aの内面のうちの底面側の領域)の親水性が、他の 2辺の部分 aおよび bの親水性より大きいため、重力だけの作用を受ける場合に比べて、生成水はガス流 路 32Aの重力方向の下方部分に向力つて(つまり図中、矢印 Yの方向に略平行な方 向に向力つて)より落ち易くなり、矩形の底辺の部分 cの領域に優先的に移動して滞 留し易くなる。  [0026] With such a configuration, first, generated water is discharged from the gas diffusion layer 3 to the gas flow path 32A in a substantially normal direction of the main surface of the electrode 4 (direction indicated by an arrow X in the figure). Since the gas diffusion layer 3 usually has a certain level of water repellency, the discharged generated water does not return to the gas diffusion layer 3 side. The hydrophilicity of the rectangular c side portion c of the gas flow path 32A (that is, the bottom side area of the inner surface of the gas flow path 32A that intersects the direction of gravity) is that of the other two side portions a and b. Compared to the case where only the action of gravity is applied, the generated water is directed toward the lower part of the gas flow path 32A in the direction of gravity (that is, in the direction substantially parallel to the direction of arrow Y in the figure). It will be easier to fall, and will move preferentially to the area c of the bottom part of the rectangle, and will stay easily.
[0027] そして、この底辺側の部分 cの領域の親水性が他の部分よりも高いため、生成水は 液膜となって拡がってガス流路 32Aの上側にはガスの流通可能な空間が確保され 易くなり、したがって、生成水は、図中のガス流路 32Aの矩形断面の略法線方向(紙 面に略垂直な方向)に沿ってガス流路 32Aをスムーズに流れて排出される。即ち、ガ ス拡散層からの水の排出をスムーズに行なうことができるとともに、当該ガス流路 32A の少なくとも上側は閉塞することなく開き、フラッデイングによるガス流路の閉塞を防 止することができる。 [0027] Since the hydrophilicity of the region c on the bottom side is higher than that of the other portions, the generated water spreads as a liquid film, and there is a space in which gas can flow on the upper side of the gas flow path 32A. Therefore, the generated water is almost normal to the rectangular cross section of the gas flow path 32A in the figure (paper The gas channel 32A flows smoothly along the direction (substantially perpendicular to the surface) and discharged. That is, water can be smoothly discharged from the gas diffusion layer, and at least the upper side of the gas flow path 32A can be opened without being blocked, and the gas flow path can be prevented from being blocked by flooding. .
このように、燃料電池 100においては、ガス拡散層 3からの水の排出がスムーズに 行なわれる。また、生成水の有無にかかわりなぐガス流路 32Aの他の部分で液滴と なった余剰水も、この領域で液膜となって拡がり、ガス流路 32Aを閉塞することがなく なる。  Thus, in the fuel cell 100, water is smoothly discharged from the gas diffusion layer 3. Further, surplus water that has become droplets in other parts of the gas flow path 32A regardless of the presence or absence of generated water also spreads as a liquid film in this region, and the gas flow path 32A is not blocked.
[0028] なお、ガス流路 32Aの内面の親水性の程度は、水に対する接触角を測定すること により確認することができる。親水化された領域に対する水の接触角は、他の部分に 対する水の接触角よりも小さくなつている。これにより、ガス流路 32Aの底面側の領域 で、生成水や余剰水がより液膜となって拡がりやすくなり、フラッデイングを防止するこ とができる。また、カロえて、ガス流路 32Aの底面側の領域に対する水の接触角をガス 拡散層に対する水の接触角より小さくした場合にも、ガス拡散層表面力もガス流路 3 2Aへの水のスムーズな移動が生じるため、フラッデイングを防止できる。  [0028] The degree of hydrophilicity of the inner surface of the gas channel 32A can be confirmed by measuring the contact angle with water. The water contact angle for the hydrophilized region is smaller than the water contact angle for other parts. As a result, in the region on the bottom side of the gas flow path 32A, the generated water and surplus water are more easily spread as a liquid film, and flooding can be prevented. In addition, even when the contact angle of water with respect to the region on the bottom side of the gas flow path 32A is smaller than the contact angle of water with the gas diffusion layer, the surface force of the gas diffusion layer also increases the smoothness of water to the gas flow path 32A. As a result, the flooding can be prevented.
[0029] 燃料電池 100の設計条件、配置条件、運転条件等によって、ガス流路 32Aの底面 側の領域に対する水の接触角の最適値は一義的に規定することはできないが、ガス 流路 32Aの底面側の領域に対する水の接触角を概ね 0〜50° にしておけば十分な 効果が得られる。  [0029] Depending on the design conditions, arrangement conditions, operating conditions, etc. of the fuel cell 100, the optimum value of the contact angle of water with respect to the region on the bottom surface side of the gas flow path 32A cannot be uniquely defined, but the gas flow path 32A A sufficient effect can be obtained if the contact angle of water with the area on the bottom side is approximately 0 to 50 °.
なお、水の接触角は、例えば、協和界面化学 (株)製の FACE X— 150などを用 いて測定することができる。また、例えばウィルヘルミ法を用いて測定することもできる  The contact angle of water can be measured using, for example, FACE X-150 manufactured by Kyowa Interface Chemical Co., Ltd. It can also be measured using the Wilhelmi method, for example.
[0030] ガス流路 32Aの底面側の領域を親水化する方法としては、先に述べた本発明の効 果を得られる限りにお 、ては特に制限はな 、が、例えば酸ィ匕アルミなどの微粉末を 吹き付けるブラスト処理によって当該部分の表面性状を変化させる方法や、紫外線 照射処理やプラズマ処理により親水性官能基を付与する方法などを用いることがで きる。 [0030] The method for hydrophilizing the bottom side region of the gas flow path 32A is not particularly limited as long as the effects of the present invention described above can be obtained. For example, a method of changing the surface property of the part by blasting by spraying a fine powder, or a method of imparting a hydrophilic functional group by ultraviolet irradiation or plasma treatment can be used.
これらの処理方法の種類はセパレータ板の材質によって使い分けることができる。 例えばブラスト処理は、カーボン製セパレータ板および金属製セパレータ板に適用 することができ、プラズマ処理はカーボン製セパレータ板に適用することができる。 These types of treatment methods can be properly used depending on the material of the separator plate. For example, the blast treatment can be applied to a carbon separator plate and a metal separator plate, and the plasma treatment can be applied to a carbon separator plate.
[0031] ブラスト処理による方法では、ブラスト処理によりセパレータ板の表面の面粗度 (Ra )を変化させ、結果的に水の接触角を小さくする。用いるセパレータ板の材質などに よっても変化するので一義的に規定することはできないが、カーボン製セパレータ板 の場合、 Raを大きくすることによって水の接触角を小さくすることができる。  [0031] In the method using blasting, the surface roughness (Ra) of the surface of the separator plate is changed by blasting, and as a result, the contact angle of water is reduced. Since it varies depending on the material of the separator plate used, etc., it cannot be uniquely defined. However, in the case of a carbon separator plate, the contact angle of water can be reduced by increasing Ra.
一方、プラズマ処理による方法においては、減圧下で行っても大気圧下で行っても よい。また、オゾン雰囲気で紫外光を照射する紫外線照射処理であってもよい。  On the other hand, the plasma treatment method may be performed under reduced pressure or atmospheric pressure. Moreover, the ultraviolet irradiation process which irradiates an ultraviolet light in ozone atmosphere may be sufficient.
[0032] また、上記とは反対に、ガス流路 32Aの内面のうち底面側の領域を除いて撥水処 理をすることによって、結果的に底面側の領域の親水性を高めることもできる。この場 合、底面側以外の部分にポリエチレンテレフタレート(PTFE)ゃテトラフルォロェチレ ン一へキサフルォロプロピレン共重合体(FEP)などのフッ素榭脂のディスパージヨン を塗布し、乾燥して撥水性を付与することができる。もちろん、上記のように底面側の 領域に親水性を付与するとともに、底面側の領域を除いた部分に撥水処理を施して もよい。なお、撥水性を付与する方法は、これに限るものではない。  [0032] Contrary to the above, by performing water-repellent treatment by removing the region on the bottom surface side of the inner surface of the gas flow path 32A, the hydrophilicity of the region on the bottom surface side can be improved as a result. . In this case, a fluorine resin dispersion such as polyethylene terephthalate (PTFE) or tetrafluoroethylene-hexafluoropropylene copolymer (FEP) is applied to the portion other than the bottom side and dried. Water repellency can be imparted. Of course, as described above, hydrophilicity may be imparted to the region on the bottom side, and water repellent treatment may be applied to the portion other than the region on the bottom side. The method for imparting water repellency is not limited to this.
[0033] さらに、上記に加えて、ガス流路 32Aに面するガス拡散層 3側に撥水処理を行うこ とで、ガス流路 32Aの底面側の領域の親水性を高めることもできる。ガス拡散層 3は 本来的にある程度の撥水性を有している力 ガス流路 32Aに面するガス拡散層 3側 に撥水処理を行うことで、本発明の効果をより確実に得ることができるようになる。  [0033] Further, in addition to the above, the hydrophilicity of the region on the bottom surface side of the gas flow path 32A can be increased by performing water repellent treatment on the gas diffusion layer 3 side facing the gas flow path 32A. The gas diffusion layer 3 inherently has a certain degree of water repellency. By performing water repellency treatment on the gas diffusion layer 3 side facing the gas flow path 32A, the effect of the present invention can be obtained more reliably. become able to.
[0034] ガス拡散層 3に撥水処理を行う方法としては、ガス拡散層 3のガス流路に臨む部分 において、少なくともガス流路 32Aの形状と同様の形状に撥水処理を施せばよいが 、実質的な観点力 はガス拡散層 3全体を撥水処理しておくのが好ましい。上記した カーボンペーパーやカーボンクロスなどの導電性多孔質基材を、 PTFEや FEPを含 むフッ素榭脂デイスパージヨンに浸漬し、乾燥して分散媒などを除去することによって 撥水処理を施すことができる。  [0034] As a method of performing the water repellent treatment on the gas diffusion layer 3, it is sufficient to perform the water repellent treatment at least in the shape similar to the shape of the gas flow channel 32A in the portion facing the gas flow channel of the gas diffusion layer 3. In terms of substantial viewpoint power, it is preferable that the entire gas diffusion layer 3 is subjected to water repellent treatment. Conducting water-repellent treatment by immersing the conductive porous substrate such as carbon paper and carbon cloth described above in a fluorine-containing resin dispersion containing PTFE and FEP, and drying to remove the dispersion medium. Can do.
[0035] [第二実施形態]  [0035] [Second Embodiment]
次に、本発明の燃料電池の第二実施形態について説明する。この第二実施形態 の燃料電池(図示せず)は、図 1に示した第一実施形態の燃料電池 100に於けるセ パレータ板 30を異なる構成に代えたものであり、セパレータ板 30以外の構成は第一 実施形態の燃料電池 100と同様である。 Next, a second embodiment of the fuel cell of the present invention will be described. The fuel cell (not shown) of the second embodiment is the same as that of the fuel cell 100 of the first embodiment shown in FIG. The separator plate 30 is replaced with a different configuration, and the configuration other than the separator plate 30 is the same as that of the fuel cell 100 of the first embodiment.
以下、第二実施形態の燃料電池に備えられるセパレータ板 (本発明のセパレータ 板の第二実施形態)について説明する。  Hereinafter, the separator plate (second embodiment of the separator plate of the present invention) provided in the fuel cell of the second embodiment will be described.
[0036] 図 3は、第二実施形態の燃料電池に備えられるセパレータ板の要部拡大断面図で ある。より詳しくは、図 3は、第二実施形態の燃料電池のセパレータ板のうちのカソー ド側セパレータ板 30Bと、当該力ソード側セパレータ板 30Bに接する力ソードのガス 拡散層 3の要部を、電池の接地面に略垂直な方向に沿って切断した場合の要部拡 大断面図である。 FIG. 3 is an enlarged cross-sectional view of a main part of a separator plate provided in the fuel cell according to the second embodiment. More specifically, FIG. 3 shows a cathode side separator plate 30B among the separator plates of the fuel cell of the second embodiment, and main portions of the gas diffusion layer 3 of the force sword in contact with the force sword side separator plate 30B. FIG. 4 is an enlarged cross-sectional view of a main part when cut along a direction substantially perpendicular to the ground plane of the battery.
第二実施形態の燃料電池の力ソード側セパレータ板 30Bのガス流路 32Bは、先に 述べた第一実施形態の燃料電池 100と同じくセパレータ板の表面に設けた溝によつ て形成される。ここでは、溝がガス拡散層 3により覆われたとき、ガス拡散層側を底辺 とする断面略台形の流路を形成する。この台形の側辺のうち下位の側辺の部分 cが、 重力方向と交わるガス流路 32Bの内面のうちの底面側の領域であり、この領域の親 水性を他の部分 aおよび bより大きくしている。  The gas flow path 32B of the power sword side separator plate 30B of the fuel cell of the second embodiment is formed by a groove provided on the surface of the separator plate as in the fuel cell 100 of the first embodiment described above. . Here, when the groove is covered with the gas diffusion layer 3, a substantially trapezoidal cross section with the gas diffusion layer side at the bottom is formed. The lower side c of this trapezoidal side is the area on the bottom side of the inner surface of the gas flow path 32B that intersects the direction of gravity, and the hydrophilicity of this area is greater than the other parts a and b. is doing.
[0037] [第三実施形態] [0037] [Third embodiment]
次に、本発明の燃料電池の第三実施形態について説明する。この第三実施形態 の燃料電池(図示せず)は、図 1に示した第一実施形態の燃料電池 100に於けるセ パレータ板 30を異なる構成に代えたものであり、セパレータ板 30以外の構成は第一 実施形態の燃料電池 100と同様である。  Next, a third embodiment of the fuel cell of the present invention will be described. The fuel cell (not shown) of the third embodiment is obtained by replacing the separator plate 30 in the fuel cell 100 of the first embodiment shown in FIG. The configuration is the same as that of the fuel cell 100 of the first embodiment.
以下、第三実施形態の燃料電池に備えられるセパレータ板 (本発明のセパレータ 板の第三実施形態)について説明する。  Hereinafter, a separator plate (third embodiment of the separator plate of the present invention) provided in the fuel cell of the third embodiment will be described.
[0038] 図 4は、第三実施形態の燃料電池に備えられるセパレータ板の要部拡大断面図で ある。より詳しくは、図 4は、第三実施形態の燃料電池のセパレータ板のうちのカソー ド側セパレータ板 30Cと、当該力ソード側セパレータ板 30Cに接する力ソードのガス 拡散層 3の要部を、電池の接地面に略垂直な方向に沿って切断した場合の要部拡 大断面図である。 FIG. 4 is an enlarged cross-sectional view of a main part of a separator plate provided in the fuel cell of the third embodiment. More specifically, FIG. 4 shows a cathode side separator plate 30C among the separator plates of the fuel cell according to the third embodiment, and main portions of the gas diffusion layer 3 of the force sword in contact with the force sword side separator plate 30C. FIG. 4 is an enlarged cross-sectional view of a main part when cut along a direction substantially perpendicular to the ground plane of the battery.
第二実施形態の燃料電池の力ソード側セパレータ板 30Cとこれに接する力ソードの ガス拡散層 3の要部を、電池の接地面に垂直な方向に切断した断面で示している。 力ソード側セパレータ板 30Cのガス流路 32Cは、上記第一実施形態の燃料電池 1The power sword side separator plate 30C of the fuel cell of the second embodiment and the force sword in contact with the separator 30C The main part of the gas diffusion layer 3 is shown as a cross section cut in a direction perpendicular to the ground plane of the battery. The gas flow path 32C of the force sword side separator plate 30C is the fuel cell 1 of the first embodiment.
00および第二実施形態の燃料電池と同じくセパレータ板の表面に設けた溝によって 形成される。この溝は断面 U字状であり、その溝により構成されるガス流路の内面のう ちの底面側 eの領域の親水性を他の部分 dの親水性より大きくする。 Like the fuel cell of 00 and the second embodiment, it is formed by a groove provided on the surface of the separator plate. This groove has a U-shaped cross section, and the hydrophilicity of the region on the bottom side e of the inner surface of the gas flow path constituted by the groove is made larger than the hydrophilicity of the other part d.
[0039] 図 3および図 4に示したように、重力方向と交わるガス流路の内面のうちの底面側の 領域の親水性を他の部分の親水性より大きくすることにより、第一実施形態と同様の 効果が発揮され、フラッデイングを防止することができる。 [0039] As shown in FIGS. 3 and 4, by making the hydrophilicity of the region on the bottom side of the inner surface of the gas flow path intersecting the direction of gravity larger than the hydrophilicity of other portions, the first embodiment The same effect can be demonstrated and flooding can be prevented.
[0040] 以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に 限定されるものではない。 [0040] Although the embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment.
例えば、上述の実施形態においては、図 1に接地面 Pとして示したように、燃料電池 が配置される「接地面」を重力方向に略直行する平滑な面 (地面)として説明したが、 本発明における「接地面」はこれに限定されるものではな 、。本発明における「接地 面」とは、本発明の燃料電池が設置される設置スペースの状況に応じて変動し得るも のであり、水平方向に対してある程度の角度を有する斜面であっても構わない。例え ば、図 5に示すように、第一実施形態の燃料電池 100は、支持体 200を介して、水平 方向に平行な面 R (例えば地面)に対して斜めに傾 ヽた常態で設置されて!ヽてもよ!/、 。この場合、燃料電池 100と支持体 200との接点 Sと、燃料電池 100と地面との接点 Tとの接線を含む面 Q力 本発明にお 、て 、う接地面となる。  For example, in the above-described embodiment, as described as the ground contact surface P in FIG. 1, the “ground contact surface” on which the fuel cell is disposed has been described as a smooth surface (ground) substantially perpendicular to the direction of gravity. The “ground plane” in the invention is not limited to this. The “ground plane” in the present invention may vary depending on the installation space where the fuel cell of the present invention is installed, and may be a slope having a certain angle with respect to the horizontal direction. . For example, as shown in FIG. 5, the fuel cell 100 of the first embodiment is installed in a normal state inclined obliquely with respect to a plane R (for example, the ground) parallel to the horizontal direction via a support 200. You can ask! / In this case, the surface Q force including the tangent line between the contact point S between the fuel cell 100 and the support 200 and the contact point T between the fuel cell 100 and the ground surface is a ground contact surface in the present invention.
[0041] また、本発明において、セパレータ板に設けるガス流路の断面形状は、重力方向と 交わるガス流路の底面側の領域が親水化されていればよぐ特に限定されない。上 述の各実施形態を用いて説明した、矩形状、台形状及び U字状 (R形状)以外の形 状であってもよい。この親水性を大きくする領域は、燃料電池の動作条件や使用する 電解質膜電極接合体の種類によって、適宜変更することができる。概ねガス流路の 半分くら 、までの領域の範囲で、適宜決定すればょ 、。  [0041] In the present invention, the cross-sectional shape of the gas flow path provided in the separator plate is not particularly limited as long as the region on the bottom side of the gas flow path that intersects the direction of gravity is made hydrophilic. Shapes other than the rectangular shape, the trapezoidal shape, and the U shape (R shape) described using the above-described embodiments may be used. This region of increasing hydrophilicity can be appropriately changed depending on the operating conditions of the fuel cell and the type of electrolyte membrane electrode assembly used. It should be decided as appropriate within the range up to about half of the gas flow path.
[0042] 更に、上述の各実施形態では、力ソード側セパレータ板について、「ガス流路部分 の内面における底面側の領域の親水性が、当該ガス流路部分の内面における他の 部分よりも高くする」構成を適用する場合について説明したが、本発明はこれに限定 されず、アノード側セパレータ板にも同様に「ガス流路部分の内面における底面側の 領域の親水性が、当該ガス流路部分の内面における他の部分よりも高くする」構成を 適用することができる。更に、力ソード側セパレータ板及びアノード側セパレータ板に 同時に「ガス流路部分の内面における底面側の領域の親水性力 当該ガス流路部 分の内面における他の部分よりも高くする」構成を適用してもよい。 Furthermore, in each of the above-described embodiments, the force sword side separator plate has “the hydrophilicity of the region on the bottom surface side of the inner surface of the gas flow path portion is higher than the other portions of the inner surface of the gas flow channel portion. Although the description has been given of the case of applying the “Yes” configuration, the present invention is not limited to this. Similarly, a configuration in which “the hydrophilicity of the region on the bottom surface side on the inner surface of the gas flow path portion is made higher than the other portions on the inner surface of the gas flow path portion” can be applied to the anode side separator plate as well. it can. In addition, a configuration in which “the hydrophilic force of the region on the bottom surface side of the inner surface of the gas flow path portion is made higher than the other portions on the inner surface of the gas flow path portion” is simultaneously applied to the force sword side separator plate and the anode side separator plate. May be.
[0043] また、燃料電池の設計およびコスト低減の観点から、フラッデイングが起こりやす!/ヽ どちらか一方のセパレータ板にのみ適用してもよい。更に、アノード側セパレータ板 および力ソード側セパレータ板でそれぞれ独立に、底面側の領域及びその他の領域 の位置、底面側の領域及びその他の領域の大きさ、底面側の領域の親水性及びそ の他の領域の親水性の設定することもできる。  [0043] From the viewpoint of fuel cell design and cost reduction, flooding is likely to occur! / ヽ It may be applied to only one of the separator plates. Further, the position of the bottom side region and other regions, the size of the bottom side region and other regions, the hydrophilicity of the bottom side region, and the area of the anode side separator plate and the force sword side separator plate are independently determined. The hydrophilicity of other areas can also be set.
実施例  Example
[0044] 以下に、実施例を用いて本発明をより詳細に説明するが、本発明は、これらのみに 限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
《実施例 1》  Example 1
まず、触媒層を作製した。炭素粉末であるケッチェンブラック (ケッチェンブラックィ ンターナショナル (株)製の Ketjen Black EC、粒径 30nm)上に電極触媒である 白金を担持させて得られた触媒体 (50質量%が1^) 66質量部を、水素イオン伝導材 でありかつ結着剤であるパーフルォロカーボンスルホン酸アイオノマー(米国 Aldric h社製の 5質量%Nafion分散液) 33質量部 (高分子乾燥質量)と混合し、得られた混 合物を成形して触媒層(10〜20 μ m)を作製した。  First, a catalyst layer was produced. Catalyst body (50% by mass is 1 ^) obtained by supporting platinum as an electrode catalyst on Ketjen Black (Ketjen Black EC, Ketjen Black International Co., Ltd., particle size 30 nm), which is carbon powder. ) 66 parts by mass of 33 parts by mass (polymer dry mass) of perfluorocarbon sulfonic acid ionomer (5% by mass Nafion dispersion manufactured by Aldric h, USA) that is a hydrogen ion conductive material and binder After mixing, the obtained mixture was molded to prepare a catalyst layer (10 to 20 μm).
このようにして得た触媒層と、ガス拡散層となるカーボンクロス(日本カーボン社製の カーボロン GF—20— 31E)とを、高分子電解質膜(米国 DuPont社の Nafionl l2 膜、イオン交換基容量: 0. 9meqZg)の両面にホットプレスにより接合し、 12cm角の アノードおよび力ソードを有する 18cm角の MEAを作製した。  The catalyst layer thus obtained and a carbon cloth (Carbon GF-20-31E manufactured by Nippon Carbon Co., Ltd.) to be used as a gas diffusion layer are combined with a polymer electrolyte membrane (Nafionl l2 membrane manufactured by DuPont USA, ion exchange group capacity). : 0.9 meqZg) was bonded by hot pressing to produce an 18 cm square MEA with a 12 cm square anode and a force sword.
[0045] っ 、で、得られた MEAを用いて図 1に示す構造を有する本発明の燃料電池を組 み立てた。アノード側セパレータ板および力ソード側セパレータ板は、 160mm X 16 Omm X 5mmの外寸を有し、かつ幅 0. 9mm、深さ 0. 7mmのガス流路を有し、図 4 のような構造を有するフエノール榭脂を含浸させた黒鉛板 (カーボン製セパレータ板) を親水処理して組立に供した。 Thus, the fuel cell of the present invention having the structure shown in FIG. 1 was assembled using the obtained MEA. The anode side separator plate and the force sword side separator plate have outer dimensions of 160 mm X 16 Omm X 5 mm, and have a gas flow path with a width of 0.9 mm and a depth of 0.7 mm, as shown in Fig. 4. Graphite plate impregnated with phenol resin having carbon (carbon separator plate) Was subjected to a hydrophilic treatment for assembly.
親水処理は、酸素プラズマ処理装置を用いて行った。酸素プラズマ装置としては、 減圧平行平板型の一般的な RFプラズマ装置を用い、 RF電源は 13. 56MHzの周 波数、出力 500W、酸素供給量は 500sccm、処理時間は 5分、チャンバ一内圧力は 0. 5Torrとした。  The hydrophilic treatment was performed using an oxygen plasma treatment apparatus. As the oxygen plasma device, a general RF plasma device of a decompression parallel plate type is used, the RF power source is 13.56 MHz frequency, the output is 500 W, the oxygen supply amount is 500 sccm, the processing time is 5 minutes, and the chamber internal pressure is 0.5 Torr.
[0046] 親水処理する領域である部分 e以外の部分すべてに、あらかじめマスキング材を配 置して、特定部分領域のみにプラズマ処理されるようにした。プラズマ処理後の部分 eに対する水の接触角は 0° 、プラズマ処理して ヽな 、部分 dに対する水の接触角は 100° であり、部分 eが選択的に親水化されたことが確認された。  [0046] A masking material is arranged in advance in all parts other than the part e, which is a hydrophilic treatment area, so that only a specific partial area is subjected to plasma treatment. The contact angle of water with the part e after the plasma treatment was 0 °, and the contact angle of water with the part d was 100 °, and it was confirmed that the part e was selectively hydrophilized. .
[0047] このように処理したアノード側セパレータ板および力ソード側セパレータ板を用いて 、単セル 80個を積層して燃料電池 (スタック)を作製した。このスタックのアノードには 水素ガスを、力ソードには空気をそれぞれ露点が 75°Cとなるように加湿して供給し、 冷却水の入口温度を 80°C、燃料利用率を 80%、空気利用率を 40%に調整して、電 池特性を調べた。  [0047] Using the anode side separator plate and the force sword side separator plate treated in this way, 80 single cells were stacked to produce a fuel cell (stack). Hydrogen gas is supplied to the anode of this stack and air is supplied to the power sword with humidification so that the dew point is 75 ° C. Coolant inlet temperature is 80 ° C, fuel utilization is 80%, air The battery characteristics were examined by adjusting the utilization rate to 40%.
[0048] 電流密度を 0〜0. 8AZcm2に変化させたときの単セル 1個当たりの平均電池電圧 を図 6に示した。このとき、ガスの利用率は上述の値になるようにガス量を調節した。こ れより、電流密度が高い場合にも電池電圧の大きな低下は見られな力つた。また、電 流密度を 0. 3AZcm2に固定し、空気利用率 40%〜70%まで変化させたときの平 均電池電圧を図 7に示した。この結果、高い空気利用率でも電池電圧の低下は小さ ぐフラッデイングが抑制され、電池電圧は安定していた。 [0048] Fig. 6 shows the average battery voltage per single cell when the current density was changed from 0 to 0.8 AZcm 2 . At this time, the amount of gas was adjusted so that the utilization rate of the gas would be the above value. As a result, even when the current density was high, the battery voltage was not greatly reduced. Fig. 7 shows the average battery voltage when the current density is fixed at 0.3 AZcm 2 and the air utilization is varied from 40% to 70%. As a result, even when the air utilization rate was high, flooding was suppressed, with a small drop in battery voltage, and the battery voltage was stable.
[0049] 《実施例 2および 3》  <Examples 2 and 3>
図 2および図 3のような構造を有するセパレータ板を用いた以外は実施例 1と同様 にして実施例 2および 3の燃料電池スタックを作製し、実施例 1と同様の電池試験を 行った。親水処理を行った部分は、図 2の部分 cおよび図 3の部分 cとした。  Fuel cell stacks of Examples 2 and 3 were fabricated in the same manner as in Example 1 except that the separator plate having the structure shown in FIGS. 2 and 3 was used, and the same battery test as in Example 1 was performed. The parts subjected to the hydrophilic treatment were designated as part c in FIG. 2 and part c in FIG.
この結果、実施例 1と同様に高電流密度域でも電池電圧の大きな低下は見られず 電池電圧も安定していた。また、空気利用率を変化させた場合、実施例 1と同様に電 池電圧の低下も小さぐフラッデイングが抑制され、電池電圧は安定していた。  As a result, as in Example 1, the battery voltage was not significantly reduced even in the high current density region, and the battery voltage was stable. Further, when the air utilization rate was changed, the flooding was suppressed, and the battery voltage was stable as in Example 1, in which the decrease in battery voltage was small.
[0050] 《比較例 1》 ガス流路に親水処理を行わないセパレータ板を用いた以外は実施例 1と同様の構 成の燃料電池スタックを作製し、実施例 1と同様の電池試験を行った。 [0050] << Comparative Example 1 >> A fuel cell stack having the same configuration as in Example 1 was prepared except that a separator plate not subjected to hydrophilic treatment was used in the gas flow path, and the same cell test as in Example 1 was performed.
この結果、図 6に示すように、高電流密度域で電池電圧の大きな低下と不安定挙動 が観測された。また、図 7に示すように、空気利用率を変化させた場合、高い空気利 用率側、つまりガス流量が小さい時の電池電圧の低下が大きぐ電池電圧の安定性 が悪くなつた。  As a result, as shown in Fig. 6, a large drop in battery voltage and unstable behavior were observed in the high current density region. In addition, as shown in Fig. 7, when the air utilization rate was changed, the stability of the battery voltage deteriorated due to the large decrease in battery voltage when the air utilization rate was high, that is, when the gas flow rate was small.
[0051] 《比較例 2》 [0051] <Comparative Example 2>
ガス流路にマスキングを行わず流路全面に親水処理を行つたセパレータ板を用 ヽ た以外は実施例 1と同様の構成の燃料電池スタックを作製し、実施例 1と同様の電池 試験を行った。  A fuel cell stack having the same configuration as in Example 1 was prepared, except that a separator plate with a hydrophilic treatment applied to the entire flow path without masking the gas flow path was prepared, and a battery test similar to that in Example 1 was performed. It was.
この結果、図 6に示すように、高電流密度域で電池電圧の低下と不安定挙動が観 測された。また、図 7に示すように、空気利用率を変化させた場合、高い空気利用率 側、つまりガス流量が小さい時の電池電圧の低下が大きぐ電池電圧の安定性は比 較例 1よりはやや向上した力 実施例 1よりは悪くなつた。  As a result, as shown in Fig. 6, a decrease in battery voltage and unstable behavior were observed in the high current density region. In addition, as shown in Fig. 7, when the air utilization rate is changed, the stability of the battery voltage is higher than that of Comparative Example 1 when the air utilization rate is high, that is, when the gas flow rate is small, the battery voltage decreases greatly. Slightly improved power It was worse than Example 1.
[0052] 《実施例 4》 [0052] <Example 4>
本実施例では、撥水処理したガス拡散層を用いた他は、実施例 1と同様の構成の 燃料電池スタックを作製し、実施例 1と同様の電池試験を行った。  In this example, a fuel cell stack having the same configuration as in Example 1 was prepared, except that a water-repellent gas diffusion layer was used, and the same cell test as in Example 1 was performed.
本実施例においては、カーボンペーパーを、あら力じめテトラフルォロエチレン一 へキサフルォロプロピレン共重合体のデイスパージヨン(ダイキン工業 (株)製の ND —1 (商品名))と水を体積比 1 : 1の割合で混合した撥水処理液に浸潰し、乾燥後、 3 80°Cで焼成して撥水処理を施してガス拡散層とした。  In this example, the carbon paper was preliminarily reinforced with tetrafluoroethylene monohexafluoropropylene copolymer Dispurgeon (ND-1 (trade name) manufactured by Daikin Industries, Ltd.). Water was immersed in a water repellent treatment solution mixed at a volume ratio of 1: 1, dried, and then fired at 380 ° C. to give a water repellent treatment to obtain a gas diffusion layer.
[0053] 電流密度を 0〜0. 8AZcm2に変化させたときの電池電圧を、実施例 1と比較して 図 8に示した。この時、ガスの利用率は上述の値になるようにガス量を調節した。これ より、電流密度が高い場合にもフラッデイングが抑制され、電池電圧の大きな低下は 見られず、実施例 1より高電流密度域での電池電圧の低下が小さくなつた。 FIG. 8 shows the battery voltage when the current density was changed from 0 to 0.8 AZcm 2 in comparison with Example 1. At this time, the amount of gas was adjusted so that the utilization rate of the gas would be the above value. As a result, flooding was suppressed even when the current density was high, no significant decrease in battery voltage was observed, and the decrease in battery voltage in the high current density region was smaller than in Example 1.
[0054] 《実施例 5》  [0054] <Example 5>
本実施例においては、以下の処理を行ったセパレータ板を用いた他は実施例 1と 同様にして燃料電池スタックを構成し、実施例 1と同じ条件で電池特性を調べた。 即ち、図 2に示す構造を有するセパレータ板のガス流路の部分 aおよび部分 bに、 テトラフルォロエチレン一へキサフルォロプロピレン共重合体のデイスパージヨン(ダ ィキン工業 (株)製の ND— 1 (商品名))と水を体積比 1: 1の割合で混合した撥水処 理液を塗布し、乾燥後、 380°Cで焼成して撥水処理を施した。その後、実施例 1で使 用した酸素プラズマ装置を用いて、ガス流路の部分 cに親水処理を行った。それ以外 の部分すべてにはあらかじめマスキング材を配置して、部分 cのみにプラズマ処理さ れるようにした。最終的なセパレータ板の部分 cに対する水の接触角は 0° 、部分 aお よび bに対する水の接触角は 120° であった。 In this example, a fuel cell stack was constructed in the same manner as in Example 1 except that a separator plate subjected to the following treatment was used, and the cell characteristics were examined under the same conditions as in Example 1. In other words, the parts a and b of the gas flow path of the separator plate having the structure shown in FIG. 2 are disperseed with tetrafluoroethylene monohexafluoropropylene copolymer (manufactured by Daikin Industries, Ltd.). ND-1 (trade name)) and water in a volume ratio of 1: 1 were applied, dried, and then fired at 380 ° C for water repellent treatment. Thereafter, the oxygen plasma apparatus used in Example 1 was used to perform hydrophilic treatment on the portion c of the gas flow path. Masking material was previously placed on all other parts so that only part c was plasma treated. The water contact angle for part c of the final separator plate was 0 ° and the water contact angle for parts a and b was 120 °.
[0055] その結果、実施例 1と同様にフラッデイングが抑制され、高電流密度域でも電池電 圧の大きな低下は見られず電池電圧も安定して ヽた。 As a result, flooding was suppressed as in Example 1, and the battery voltage was not significantly reduced even in the high current density region, and the battery voltage was stable.
産業上の利用可能性  Industrial applicability
[0056] 本発明の燃料電池は、フラッデイング現象が抑制され、安定した運転が行える。し たがって、携帯機器用の電源やポータブル機器用電源として利用可能である。また、 電気自動車用あるいは家庭用コージエネレーションシステムなどの燃料電池にも適 用可能である。 [0056] In the fuel cell of the present invention, the flooding phenomenon is suppressed and stable operation can be performed. Therefore, it can be used as a power source for portable devices and a power source for portable devices. It can also be applied to fuel cells for electric vehicles or household cogeneration systems.

Claims

請求の範囲 The scope of the claims
[1] 高分子電解質膜および前記高分子電解質膜を挟むアノードおよび力ソードを含む 膜電極接合体を、セパレータ板を介して接地面の法線方向に略垂直な方向に複数 個積層してなる燃料電池であって、  [1] A plurality of membrane electrode assemblies including a polymer electrolyte membrane, an anode sandwiching the polymer electrolyte membrane, and a force sword are laminated in a direction substantially perpendicular to the normal direction of the ground plane via a separator plate A fuel cell,
前記セパレータ板は、前記アノードと対向する面に燃料ガスを供給し前記力ソード と対向する面に酸化剤ガスを供給するガス流路を有し、  The separator plate has a gas flow path for supplying fuel gas to the surface facing the anode and supplying oxidant gas to the surface facing the force sword;
前記ガス流路は、重力方向と交わるガス流路部分を有し、  The gas flow path has a gas flow path portion that intersects the direction of gravity,
前記ガス流路部分の内面における底面側の領域の親水性力 当該ガス流路部分 の内面における他の部分よりも高いこと、を特徴とする燃料電池。  A fuel cell characterized in that the hydrophilic force of the bottom side region on the inner surface of the gas flow path portion is higher than the other portions on the inner surface of the gas flow path portion.
[2] 前記ガス流路が、前記セパレータ板に形成された溝力 なり、  [2] The gas flow path is a groove force formed in the separator plate,
前記溝が前記アノードまたは力ソードにより覆われたときに形成されるガス流路の断 面形状が、略矩形であり、  The cross-sectional shape of the gas flow path formed when the groove is covered with the anode or the force sword is substantially rectangular,
前記底面側の領域が、前記略矩形の底辺部の領域である請求項 1に記載の燃料 電池。  2. The fuel cell according to claim 1, wherein the region on the bottom surface side is a region of a bottom side portion of the substantially rectangular shape.
[3] 前記底面側の領域の水の接触角が、前記他の部分の水の接触角よりも小さい請求 項 1または 2に記載の燃料電池。  3. The fuel cell according to claim 1, wherein a contact angle of water in the bottom side region is smaller than a contact angle of water in the other part.
[4] 前記底面側の領域が、ブラスト処理またはプラズマ処理されている請求項 1〜3の[4] The region according to claim 1, wherein the bottom side region is blasted or plasma treated.
V、ずれかに記載の燃料電池。 V, a fuel cell according to any of the above.
[5] 前記ガス流路の内面は、前記底面側の領域を除!、て撥水処理されて!、る請求項 1[5] The inner surface of the gas flow path is subjected to water repellent treatment except for the region on the bottom surface side.
〜4の!、ずれかに記載の燃料電池。 ~ 4! The fuel cell according to any one of the above.
[6] 高分子電解質膜および前記高分子電解質膜を挟むアノードおよび力ソードを含む 膜電極接合体を、セパレータ板を介して接地面の法線方向に略垂直な方向に複数 個積層してなる燃料電池に用いられるセパレータ板であって、 [6] A plurality of membrane electrode assemblies including a polymer electrolyte membrane and an anode sandwiching the polymer electrolyte membrane and a force sword are laminated in a direction substantially perpendicular to the normal direction of the ground plane via a separator plate A separator plate used in a fuel cell,
前記アノードまたは力ソードにガスを供給するガス流路を有し、  A gas flow path for supplying gas to the anode or power sword;
前記ガス流路は、重力方向と交わるガス流路部分を有し、  The gas flow path has a gas flow path portion that intersects the direction of gravity,
前記ガス流路部分の内面における底面側の領域の親水性力 当該ガス流路部分 の内面における他の部分よりも高いこと、を特徴とする燃料電池用セパレータ板。  A separator plate for a fuel cell, characterized in that the hydrophilic force of the bottom side region on the inner surface of the gas flow path portion is higher than the other portions on the inner surface of the gas flow path portion.
PCT/JP2005/017504 2004-10-01 2005-09-22 Fuel cell and separator for fuel cell WO2006038475A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004290448 2004-10-01
JP2004-290448 2004-10-01

Publications (1)

Publication Number Publication Date
WO2006038475A1 true WO2006038475A1 (en) 2006-04-13

Family

ID=36142553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017504 WO2006038475A1 (en) 2004-10-01 2005-09-22 Fuel cell and separator for fuel cell

Country Status (1)

Country Link
WO (1) WO2006038475A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351334A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Fuel cell
WO2008113520A1 (en) * 2007-03-16 2008-09-25 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Gas distributor field plate for a fuel cell, and a fuel cell comprising the same
JP2009016141A (en) * 2007-07-03 2009-01-22 Honda Motor Co Ltd Polymer electrolyte fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138692A (en) * 1994-11-04 1996-05-31 Toyota Motor Corp Fuel cell
JP2002020690A (en) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd Hydrophilic coated film, its production process and solid polymer electrolyte fuel cell and heat exchanger using it
JP2003197217A (en) * 2001-08-21 2003-07-11 Equos Research Co Ltd Fuel cell
JP2004103495A (en) * 2002-09-12 2004-04-02 Sansho Kako:Kk Fuel cell separator, its manufacturing method, and fuel cell using the fuel cell separator
JP2005116179A (en) * 2003-10-02 2005-04-28 Nissan Motor Co Ltd Fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138692A (en) * 1994-11-04 1996-05-31 Toyota Motor Corp Fuel cell
JP2002020690A (en) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd Hydrophilic coated film, its production process and solid polymer electrolyte fuel cell and heat exchanger using it
JP2003197217A (en) * 2001-08-21 2003-07-11 Equos Research Co Ltd Fuel cell
JP2004103495A (en) * 2002-09-12 2004-04-02 Sansho Kako:Kk Fuel cell separator, its manufacturing method, and fuel cell using the fuel cell separator
JP2005116179A (en) * 2003-10-02 2005-04-28 Nissan Motor Co Ltd Fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351334A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Fuel cell
WO2008113520A1 (en) * 2007-03-16 2008-09-25 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Gas distributor field plate for a fuel cell, and a fuel cell comprising the same
JP2009016141A (en) * 2007-07-03 2009-01-22 Honda Motor Co Ltd Polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
JP4923319B2 (en) Fuel cell
KR100745935B1 (en) Gas diffusion layer and fuel cell using same
US6921598B2 (en) Polymer electrolyte fuel cell and method of manufacturing the same
JP4326179B2 (en) Polymer electrolyte fuel cell
JP4971972B2 (en) Separator for fuel cell, method for producing the same, and fuel cell having the separator
US7745063B2 (en) Fuel cell stack
CN107342429B (en) Fuel cell
US20030039876A1 (en) Electrochemical fuel cell with fluid distribution layer having non-uniform perforations
WO2005109556A1 (en) Fuel cell and separator thereof
WO2006121157A1 (en) Fuel cell
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
JP4934951B2 (en) FUEL CELL SEPARATOR, MANUFACTURING METHOD THEREOF, AND SOLID POLYMER FUEL CELL USING THE SAME
EP2367227A2 (en) A membrane electrode assembly for a fuel cell and a fuel cell stack incorporating the same
US10446857B2 (en) Fuel cell and manufacturing method of fuel cell
WO2006038475A1 (en) Fuel cell and separator for fuel cell
JP4561239B2 (en) Fuel cell separator and fuel cell using the same
JP2003197203A (en) Fuel cell
KR20200029707A (en) Gas diffusion layer for fuel cell applications and unit cell of fuel cell having the same
KR101534948B1 (en) Fuelcell
KR102118370B1 (en) Separator, and Fuel cell stack comprising the same
JP2007194041A (en) Fuel cell
JP3679789B2 (en) Fuel cell
JP4975982B2 (en) Fuel cell
JP2002270197A (en) High molecular electrolyte type fuel cull
JP4678830B2 (en) Fuel cell stack

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05785952

Country of ref document: EP

Kind code of ref document: A1