JP4559692B2 - Tread rubber composition and tire using the same - Google Patents

Tread rubber composition and tire using the same Download PDF

Info

Publication number
JP4559692B2
JP4559692B2 JP2002178234A JP2002178234A JP4559692B2 JP 4559692 B2 JP4559692 B2 JP 4559692B2 JP 2002178234 A JP2002178234 A JP 2002178234A JP 2002178234 A JP2002178234 A JP 2002178234A JP 4559692 B2 JP4559692 B2 JP 4559692B2
Authority
JP
Japan
Prior art keywords
rubber composition
weight
styrene
tread rubber
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002178234A
Other languages
Japanese (ja)
Other versions
JP2004018760A (en
Inventor
大輔 野原
哲一 音山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002178234A priority Critical patent/JP4559692B2/en
Priority to ES03733498T priority patent/ES2365607T3/en
Priority to PCT/JP2003/007800 priority patent/WO2004000931A1/en
Priority to EP03733498A priority patent/EP1514901B1/en
Priority to US10/518,629 priority patent/US20060167160A1/en
Publication of JP2004018760A publication Critical patent/JP2004018760A/en
Application granted granted Critical
Publication of JP4559692B2 publication Critical patent/JP4559692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、トレッドゴム組成物及びこれを用いたタイヤに関し、さらに詳しくは、優れたグリップ性能を発揮するタイヤトレッド用ゴム組成物及びタイヤに関するものである。
【0002】
【従来の技術】
近年、自動車の性能向上、道路の舗装化、及び高速道路網の発達に伴い、高運動性能を備えた空気入りタイヤの要求が強まっている。この特性が高い程、より高速で正確かつ安全に走行することが可能となる。とりわけ、加速性能やブレーキ性能に代表されるグリップ性能は重要な要求特性である。
従来より、高グリップ性能を得るために、タイヤトレッド用ゴム組成物に、ガラス転移温度の高いゴムである高スチレン含有率のスチレン−ブタジエン共重合ゴムを使用する方法があった。しかし、これによると、グリップ性能の向上は得られるが、走行によるゴム温度の上昇と共に、tanδ値が低下し、グリップ性能が急激に低下してしまうといった不都合があった。
【0003】
また、温度上昇に伴うグリップ性能低下を改良するために、1,3−ブタジエン、スチレンまたはイソプレン等のモノマーと、ジフェニル−2−メタクリロイロキシエチルホスフェートまたはジフェニル−2−アクリロイロキシエチルホスフェート等のジフェニルホスフェート基を含むメタクリレート化合物またはアクリレート化合物とを共重合して得られる共重合体ゴムを使用する技術(特開昭59−187011号公報参照)もあるが、これは、天然ゴムに適用できないばかりではなく、製造条件によってはポリマー、例えばスチレンーブタジエン共重合体ゴム、ポリブタジエンゴムの本来有すべき性質を損なう不都合があった。
【0004】
一方、プロセスオイルおよびカーボンブラックを高充填した配合系を使用することにより、ゴム組成物のtanδ値を大きくする方法もあるが、これによると、グリップ性能は向上するものの、破壊特性や耐摩耗性の著しい低下のため、高充填には限界があり、要求レベルの高グリップ特性を得にくいという不都合があった。
更に、ある種の樹脂を添加することによりゴム−路面間の凝着を高め、グリップを改良する技術も知られているが、一般的にグリップ性能が高いほど、製造工程中に存在する金属ミキサー、金属ロールとの密着性が高く、工場作業性を阻害する傾向がある。従って、グリップ性能と工場作業性の双方を充分に満足させるゴム用樹脂は殆ど得られていないのが実状である。
【0005】
【発明が解決しようとする課題】
本発明は、このような状況下で、工場作業性を満足する特定樹脂を用いるとともに、グリップ性に優れた性能が得られるトレッドゴム組成物及びこれを用いたタイヤを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意検討した結果、トレッドゴム組成物にテルペン系樹脂を一定量配合することが有効であることを見出し、本発明を完成するに至った。
すなわち、本発明は、ジエン系ゴム100重量部に対し、テルペン系樹脂を10〜150重量部配合してなることを特徴とするトレッドゴム組成物を提供するものである。
また、本発明は、前記トレッドゴム組成物を用いたタイヤを提供するものであ
る。
【0007】
【発明の実施の形態】
本発明のトレッドゴム組成物において、ゴム成分としては、天然ゴム及び合成ゴムが用いられる。合成ゴムとしては、例えば合成ポリイソプレンゴム、ポリブタジエンゴム、溶液重合スチレンブタジエンゴム,乳化重合スチレンブタジエンゴムなどのジエン系ゴムが挙げられる。これらのゴム成分は単独で用いてもよく、二種以上を組み合わせて用いてもよい。
前記スチレンブタジエンゴムとしては、特にゲル浸透クロマトグラフィー(GPC)により得られたポリスチレン換算重量平均分子量が4.0×105〜3.0×106であり、結合スチレン量が10〜50重量%、ブタジエン部のビニル結合量が20〜70%である、リチウム系重合開始剤で重合されたスチレン−ブタジエン共重合体ゴム(a)が好ましい。
上記スチレン−ブタジエン共重合体ゴム(a)の平均分子量が4.0×105未満の場合には、ゴム組成物の破壊特性が低下し、3.0×106を超えると重合溶液の粘度が高くなりすぎ生産性が低くなることがある。また共重合体ゴム(a)の結合スチレン量が10重量%未満では破壊特性が低下し、50重量%を超えると耐摩耗性が低下することがある。さらにブタジエン部のビニル結合量が20%未満ではグリップ性能が低下し、70%を越えると耐摩耗特性が低下することがある。さらに、同様の観点からブタジエン部のビニル結合量は30〜60%の範囲が好ましい。
【0008】
このスチレン−ブタジエン共重合体ゴム(a)は例えば、ブタジエンとスチレンとを炭化水素溶媒中でエーテル又は第三級アミンの存在下、リチウム系重合開始剤を用いてアニオン重合によって共重合することができる。炭化水素溶媒としては、特に限定されないが、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン等の芳香族炭化水素等を用いることができる。
また、リチウム系触媒としては特に制限はなく、有機リチウム化合物、リチウムアミド、リチウムアミドスズなどから適宜選択できるが、有機リチウム化合物が好ましく、エチルリチウム、プロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム等のアルキルリチウム、フェニルリチウム等のアリールリチウム、ビニルリチウム等のアルケニルリチウム、テトラメチレンジリチウム、ペンタメチレンジリチウム等のアルキレンジリチウム等が挙げられる。
この中でも、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム及びテトラメチレンジリチウムが好ましく、特にn−ブチルリチウムが好ましい。
【0009】
一方、本発明において、上記ゴム成分に配合されるテルペン系樹脂としては、具体的にはテルペン樹脂、水添テルペン樹脂、テルペンフェノール樹脂、芳香族変性テルペン樹脂などが挙げられる。
本発明のゴム組成物において、前記テルペン系樹脂は、ゴム成分100重量部に対して10〜150重量部を配合することが必要である。その配合量が10重量部未満では本発明の目的とする所望の効果を得ることができず、一方、150重量部を越えると、その増量に見合った効果が得られないばかりでなく、加硫後の諸物性に悪影響を及ぼし、更には工場作業性も悪化し、本発明の効果は得られない。この点から、テルペン系樹脂の配合量は、さらに20〜80重量部が好ましい。
本発明のゴム組成物において、前記テルペン系樹脂は、グリップ性能と工場作業性のバランスの観点より特にテルペンフェノール樹脂と水添テルペン樹脂が好ましく、特に好ましくはテルペンフェノール樹脂である。
【0010】
また、前記テルペンフェノール樹脂の中でも、グリップ性能と工場作業性のバランスを考慮すれば、該樹脂のOH価は20〜210が好ましく、特に50〜130が好ましい。
また、該テルペンフェノール樹脂の軟化点は80〜160℃が好ましく、特に120〜150℃が好ましい。この範囲において、グリップ性能と工場作業性の双方に高いレベルでバランスした性能が得られる。
このテルペンフェノール樹脂の原料テルペンモノマーとして限定されるものではなく、好ましくはα−ピネンやリモネンなどのモノテルペン炭化水素であり、さらに、グリップ性能と工場作業性の高いバランスの観点から、α−ピネンを含むものが好ましく、特にα−ピネンであることが好ましい。
【0011】
さらに、本発明のゴム組成物には、ゲル浸透クロマトグラフィーにより得られたポリスチレン換算の重量平均分子量(以下、単に重量平均分子量ということがある)が5.0×103 〜2.0×105 であり、結合スチレン量が25〜70重量%、ブタジエン部の二重結合のうち60%以上が水素添加された水添スチレン−ブタジエン共重合体(b)を配合することが好ましい。
【0012】
このような水添スチレン−ブタジエン共重合体(以下、水添共重合体ということがある)(b)は、前記スチレン−ブタジエン共重合体ゴム(a)の製造方法と同様にして合成したポリマーを、常法で水素添加することにより得ることができる。水素化触媒としては、例えば、アルミナ,シリカ−アルミナ,活性炭等に担持した白金,パラジウム触媒、けいそう土,アルミナ等に担持したニッケル触媒、コバルト系触媒、ラネーニッケル触媒等が挙げられ、また、反応条件としては通常1〜100気圧程度の加圧水素下で行われる。
前記水添共重合体(b)の重量平均分子量が前記範囲から逸脱すると、ドライグリップ性が低下し、また、結合スチレン量が25重量%未満の場合も、ドライグリップ性が低下し、70重量%を超えると樹脂状になるために組成物が固くなり、やはりドライグリップ性が低下することがある。さらにブタジエン部の二重結合のうち60%以上が水素添加されていない場合には、水添共重合体(b)との共架橋が起こり、十分なグリップ性が得られない。この点からブタジエン部の二重結合の80%以上が水素添加されていることがさらに好ましい。
【0013】
本発明のゴム組成物において、水添共重合体(b)は、ジエン系ゴム100重量部に対して10〜200重量部の割合で配合されることが好ましい。これは10重量部未満では強度とドライグリップ性の改良が不十分であり、200重量部を超えるとムーニー粘度が低くなって生産性が悪くなるからである。この点から水添共重合体(b)の配合割合はジエン系ゴム100重量部に対して、20〜100重量部の範囲がより好ましい。
また、この水添共重合体(b)は、前記スチレン−ブタジエン共重合体ゴム(a)とともに用いることが好ましい。この場合の配合量としては、前記スチレン−ブタジエン共重合体ゴム(a)の結合スチレン量をSt(a)重量%、水添共重合体(b)の結合スチレン量をSt(b)重量%としたとき、St(b)≧St(a)+10 の関係式を満足することが好ましい。
なお、前記水添共重合体(b)はゴムの軟化剤としての効果もあり、通常ゴムの軟化剤として使用するアロマティックオイルを使用することなく、ゴム組成物の混練等を可能とする。また、該水添共重合体(b)はゴム配合時(マスターバッチの製造時を含む)に添加してもよいし、また伸展油と同様にゴムの製造時に添加してもよい。
【0014】
また、本発明のゴム組成物においては、補強性充填材として、カーボンブラック、シリカ、アルミナ、水酸化アルミニウム、炭酸カルシウム、酸化チタンなどの少なくとも1種を使用することができ、好ましくはカーボンブラックが用いられる。
なお、本発明においては、上述のジエンゴム、補強性充填材、樹脂の他に、ゴム工業界で通常使用されている配合剤、例えば軟化剤、老化防止剤、カップリング剤、加硫促進剤、加硫促進助剤や加硫剤等を必要に応じて通常の配合量の範囲内で配合することができる。
【0015】
【実施例】
次に本発明を実施例によりさらに詳しく説明するが、本発明は、この例によってなんら限定されるものではない。
なお、工場作業性、及びタイヤのグリップ性についての評価は下記の方法により行なった。
(1)重量平均分子量
ウォーターズ社製単分散スチレン重合体を用い、GPCによる単分散スチレン重合体のピークの分子量とGPCのカウント数との関係を予め求めて検量線を作成し、これを用いて、重合体のポリスチレン換算での分子量を求めた。
(2)ミクロ構造
重合体のブタジエン部分のミクロ構造は、赤外法によって求め、重合体のスチレン単位含有量は1H−NMR(プロトンNMR)スペクトルの積分比により算出した。
(3)工場作業性
樹脂配合ゴムの、混練り時における金属ミキサー及び金属ロールとの密着性を下記ランク付けして評価した。
○(良好)、○〜△(やや良好)、△(普通)、△〜×(やや悪い)、×(悪い)
(4)グリップ性
タイヤのグリップ性は、1周4.4kmのサーキットを走行することで評価した。すなわち、グリップ性は、10〜20周目までの平均周回タイムをコントロールタイヤのタイムの逆数を、比較例1を100として指数表示した。この値が大きいものほどグリップが高く、値が小さいほどグリップが劣ることを示す。
【0016】
製造例1〔スチレン−ブタジエン共重合体ゴム(a−1)の合成〕
十分に窒素置換した攪拌翼つきの5リットルオートクレーブに、シクロヘキサン3000g、テトラヒドロフラン(THF)12g、1,3−ブタジエン200gおよびスチレン100g導入し、オートクレーブ内の温度を21℃に調整した。次に、n−ブチルリチウム0.10g加えて昇温条件下で60分間重合し、モノマーの転化率が99%であることを確認した。その後、老化防止剤として2,6−ジ−t−ブチル−p−クレゾールを3.5g加えた。分析値を第1表に示す。
製造例2〜8〔スチレン−ブタジエン共重合体ゴム(a−2)〜(a−8)の合成〕
製造例1において、モノマーの仕込み比、触媒量等を変えたこと以外は、製造例1と同様にして合成した。分析値を第1表に示す。
【0017】
【表1】

Figure 0004559692
【0018】
製造例9〔水添スチレン−ブタジエン共重合体(b−1)の合成〕
十分に窒素置換した攪拌翼つきの5リットルオートクレーブに、シクロヘキサン3000g、テトラヒドロフラン(THF)12g、1,3−ブタジエン150gおよびスチレン150gを導入し、オートクレーブ内の温度を21℃に調整した。次に、n−ブチルリチウム1.50gを加えて昇温条件下で60分間重合し、モノマーの転化率が99%であることを確認したのちトリブチルシリルクロライド4.68gを加え重合を停止した後、予め別容器で調製したナフテン酸ニッケル:トリエチルアルミニム:ブタジエン=1:3:3(モル比)の触媒液を共重合体中のブタジエン部1000モルに対しニッケル1モルとなるよう仕込んだ。その後、反応系内に水素圧力30atmで水素を導入し、80℃で反応させた。水素添加率は四塩化炭素を溶媒として用い、15重量%の濃度で測定した100MHzのプロトンNMRの不飽和結合部のスペクトルの減少から算出した。
分析値を第2表に示す。
製造例10〜15〔水添スチレン−ブタジエン共重合体(b−2)〜(b−7)の合成〕
製造例9において、モノマーの仕込み比、触媒量、水素圧力などを変えたこと以外は、製造例9と同様にして合成した。分析値を第2表に示す。
【0019】
【表2】
Figure 0004559692
【0020】
実施例1〜16及び比較例1〜3
ゴム成分としてSBR#1500(ジェイエスアール(株)製、乳化重合SBR)を用い、第3表の配合1に従ってゴム配合、混練りを行ない、第4表に示す各種樹脂を配合したゴム組成物を得た。この際、練りゴムとロールとの密着性を観察し、工場作業性を評価した。
【0021】
【表3】
Figure 0004559692
【0022】
(注)
老化防止剤6C;N−フェニル-N'1,3−ジメチルブチル-p-フェニレンジアミン
硫促進剤DM;ジベンゾチアジヂルジサルファイド
加硫促進剤CZ;N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド
次に、上記ゴム組成物をトレッドゴムとして用いて、タイヤサイズ:315/40R18の競技用タイヤを作製し、グリップ性を評価した。これらの結果を第4表に示す。
【0023】
【表4】
Figure 0004559692
【0024】
(注)樹脂の種類
A KORESIN(フェノール樹脂、BASF社製)
B YSレジンPX1250(テルペン樹脂、ヤスハラケミカル(株)製)
C YSレジンA800(テルペン樹脂、ヤスハラケミカル(株)製)
D YSポリスターU115(テルペンフェノール樹脂、ヤスハラケミカル(株)製)
E YSポリスター2130(テルペンフェノール樹脂、ヤスハラケミカル(株)製)
F YSポリスターT50(テルペンフェノール樹脂、ヤスハラケミカル(株)製)
G YSポリスターT80(テルペンフェノール樹脂、ヤスハラケミカル(株)製)
H YSポリスターT115(テルペンフェノール樹脂、ヤスハラケミカル(株)製)
I YSポリスターT145(テルペンフェノール樹脂、ヤスハラケミカル(株)製)
J YSポリスターS145(テルペンフェノール樹脂、ヤスハラケミカル(株)製)
K マイティエースG150(テルペンフェノール樹脂、ヤスハラケミカル(株)製)
L YSポリスターN125(テルペンフェノール樹脂、ヤスハラケミカル(株)製)
M クリアロンP125(水添テルペン樹脂、ヤスハラケミカル(株)製)
【0025】
第4表の結果から、各実施例は各比較例と比べて、グリップ性と工場作業性のいずれも優れていることが分かる。特に原料テルペンモノマーにα−ピネンを用いるとともに、OH価50〜130KOHmg/g、軟化点120〜150℃のテルペンフェノール樹脂20〜80重量部を配合した実施例4,8,9,14及び15ではその効果が著しい。
実施例17〜30及び比較例4
ゴム成分として製造例1〜8のスチレン−ブタヂエン共重合体ゴム(a)を用いるとともに、製造例9〜15による水添スチレン−ブタヂエン共重合体(b)を配合して、前記第3表の配合2に従ってゴム配合、混練りを行ないゴム組成物を得た。なお、この実施例で用いた樹脂としては全て種類Jを用いた。このゴム組成物の工場作業性評価とこれをトレッドに用いたタイヤのグリップ評価を上記と同様にして行なった。結果を第5表に示す。
【0026】
【表5】
Figure 0004559692
【0027】
第5表の結果から、各実施例は、従来のフェノール樹脂を用いた比較例8と比べて、グリップ性と工場作業性のいずれも優れていることが分かる。特に、ゴム成分として、重量平均分子量が7.0×105〜2.5×106、結合スチレン量が10〜50重量%、ブタジエン部のビニル結合量が20〜70%であるスチレン−ブタジエン共重合体ゴム(a)を用いるとともに、水添スチレン−ブタジエン共重合体(b)の性状を満足するb−1、b−6、b−7を用いた実施例17、20、23、24、29及び30では一段と優れる傾向が認められる。
【0028】
【発明の効果】
本発明のトレッドゴム組成物は、タイヤ製造におけるゴム練り工程で工場作業性が改善されるとともに、得られるゴム組成物はグリップ性に優れ、これをトレッドに用いたタイヤは良好なグリップ性能を発揮することができる。[0001]
[Industrial application fields]
The present invention relates to a tread rubber composition and a tire using the same, and more particularly to a rubber composition for a tire tread and a tire that exhibit excellent grip performance.
[0002]
[Prior art]
In recent years, with the improvement of automobile performance, road paving, and the development of expressway networks, there is an increasing demand for pneumatic tires with high movement performance. The higher this characteristic, the faster and more accurately and safely it is possible to travel. In particular, grip performance represented by acceleration performance and brake performance is an important required characteristic.
Conventionally, in order to obtain high grip performance, there has been a method of using a styrene-butadiene copolymer rubber having a high styrene content, which is a rubber having a high glass transition temperature, as a rubber composition for a tire tread. However, although this improves the grip performance, there is a disadvantage that the tan δ value decreases and the grip performance decreases rapidly as the rubber temperature increases due to running.
[0003]
In addition, in order to improve the grip performance degradation accompanying the temperature rise, monomers such as 1,3-butadiene, styrene or isoprene, and diphenyl-2-methacryloyloxyethyl phosphate or diphenyl-2-acryloyloxyethyl phosphate There is a technique using a copolymer rubber obtained by copolymerizing a methacrylate compound or an acrylate compound containing a diphenyl phosphate group (see Japanese Patent Application Laid-Open No. 59-187011), but this is not only applicable to natural rubber. However, depending on the production conditions, there is a disadvantage that the inherent properties of polymers such as styrene-butadiene copolymer rubber and polybutadiene rubber are impaired.
[0004]
On the other hand, there is a method to increase the tan δ value of the rubber composition by using a compound system that is highly filled with process oil and carbon black. According to this, although grip performance is improved, fracture characteristics and wear resistance are improved. Therefore, there is a limit to high filling, and it is difficult to obtain a required level of high grip characteristics.
Further, a technique for improving adhesion between rubber and road surface by adding a certain resin and improving the grip is known. Generally, the higher the grip performance, the more the metal mixer that exists in the manufacturing process. The adhesiveness with a metal roll is high, and tends to inhibit factory workability. Accordingly, the fact is that almost no rubber resin that sufficiently satisfies both grip performance and factory workability is obtained.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a tread rubber composition that uses a specific resin that satisfies factory workability under such circumstances, and that can provide excellent performance in grip properties, and a tire using the tread rubber composition. Is.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that it is effective to add a certain amount of a terpene resin to the tread rubber composition, and have completed the present invention.
That is, this invention provides the tread rubber composition characterized by mix | blending 10-150 weight part of terpene resin with respect to 100 weight part of diene rubbers.
The present invention also provides a tire using the tread rubber composition.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the tread rubber composition of the present invention, natural rubber and synthetic rubber are used as the rubber component. Examples of the synthetic rubber include diene rubbers such as synthetic polyisoprene rubber, polybutadiene rubber, solution polymerized styrene butadiene rubber, and emulsion polymerized styrene butadiene rubber. These rubber components may be used alone or in combination of two or more.
As the styrene-butadiene rubber, the polystyrene-converted weight average molecular weight obtained by gel permeation chromatography (GPC) is 4.0 × 10 5 to 3.0 × 10 6 and the amount of bound styrene is 10 to 50% by weight. The styrene-butadiene copolymer rubber (a) polymerized with a lithium polymerization initiator having a vinyl bond amount in the butadiene part of 20 to 70% is preferred.
When the average molecular weight of the styrene-butadiene copolymer rubber (a) is less than 4.0 × 10 5 , the fracture characteristics of the rubber composition are lowered, and when it exceeds 3.0 × 10 6 , the viscosity of the polymerization solution is increased. May become too high and productivity may be lowered. When the amount of bound styrene in the copolymer rubber (a) is less than 10% by weight, the fracture characteristics are lowered, and when it exceeds 50% by weight, the wear resistance may be lowered. Further, when the vinyl bond amount in the butadiene portion is less than 20%, the grip performance is lowered, and when it exceeds 70%, the wear resistance may be lowered. Further, from the same viewpoint, the vinyl bond amount in the butadiene portion is preferably in the range of 30 to 60%.
[0008]
This styrene-butadiene copolymer rubber (a) can be copolymerized by anionic polymerization using a lithium-based polymerization initiator in the presence of ether or tertiary amine in a hydrocarbon solvent, for example. it can. The hydrocarbon solvent is not particularly limited, but alicyclic hydrocarbons such as cyclohexane and methylcyclopentane, aliphatic hydrocarbons such as pentane, hexane and heptane, aromatic hydrocarbons such as benzene and toluene, etc. may be used. it can.
The lithium-based catalyst is not particularly limited and can be appropriately selected from organic lithium compounds, lithium amides, lithium amide tins, etc., but organic lithium compounds are preferred, and ethyl lithium, propyl lithium, n-butyl lithium, sec-butyl lithium Alkyl lithium such as t-butyl lithium, aryl lithium such as phenyl lithium, alkenyl lithium such as vinyl lithium, alkylene dilithium such as tetramethylene dilithium and pentamethylene dilithium, and the like.
Among these, n-butyl lithium, sec-butyl lithium, t-butyl lithium and tetramethylene dilithium are preferable, and n-butyl lithium is particularly preferable.
[0009]
On the other hand, in the present invention, specific examples of the terpene resin blended with the rubber component include terpene resins, hydrogenated terpene resins, terpene phenol resins, aromatic modified terpene resins, and the like.
In the rubber composition of the present invention, the terpene resin needs to be blended in an amount of 10 to 150 parts by weight with respect to 100 parts by weight of the rubber component. If the blending amount is less than 10 parts by weight, the desired effect of the present invention cannot be obtained. On the other hand, if the blending amount exceeds 150 parts by weight, not only an effect commensurate with the increase can be obtained, but also vulcanization. Various physical properties will be adversely affected, and the factory workability will also deteriorate, and the effects of the present invention will not be obtained. In this respect, the blending amount of the terpene resin is further preferably 20 to 80 parts by weight.
In the rubber composition of the present invention, the terpene resin is particularly preferably a terpene phenol resin and a hydrogenated terpene resin, particularly preferably a terpene phenol resin, from the viewpoint of a balance between grip performance and factory workability.
[0010]
Among the terpene phenol resins, the OH value of the resin is preferably 20 to 210, particularly 50 to 130, considering the balance between grip performance and factory workability.
The softening point of the terpene phenol resin is preferably 80 to 160 ° C, particularly preferably 120 to 150 ° C. In this range, it is possible to obtain a performance balanced at a high level for both grip performance and factory workability.
The terpene phenol resin is not limited as a raw material terpene monomer, but is preferably a monoterpene hydrocarbon such as α-pinene or limonene, and α-pinene from the viewpoint of a balance between grip performance and factory workability. In particular, α-pinene is preferable.
[0011]
Furthermore, the rubber composition of the present invention has a polystyrene-reduced weight average molecular weight obtained by gel permeation chromatography (hereinafter sometimes simply referred to as a weight average molecular weight) of 5.0 × 10 3 to 2.0 × 10. 5, and bound styrene content is 25 to 70 wt%, 60% or more of the double bonds of the butadiene portion is hydrogenated hydrogenated styrene - is preferably blended butadiene copolymer (b).
[0012]
Such a hydrogenated styrene-butadiene copolymer (hereinafter sometimes referred to as a hydrogenated copolymer) (b) is a polymer synthesized in the same manner as the method for producing the styrene-butadiene copolymer rubber (a). Can be obtained by hydrogenation in a conventional manner. Examples of the hydrogenation catalyst include platinum supported on alumina, silica-alumina, activated carbon and the like, palladium catalyst, diatomaceous earth, nickel catalyst supported on alumina, cobalt-based catalyst, Raney nickel catalyst, and the like. The conditions are usually performed under pressurized hydrogen at about 1 to 100 atm.
When the weight average molecular weight of the hydrogenated copolymer (b) deviates from the above range, the dry grip property is lowered, and when the amount of bound styrene is less than 25% by weight, the dry grip property is lowered to 70% by weight. If it exceeds 50%, it becomes resinous and the composition becomes hard, and the dry grip property may also be lowered. Furthermore, when 60% or more of the double bonds in the butadiene portion are not hydrogenated, co-crosslinking with the hydrogenated copolymer (b) occurs, and sufficient grip properties cannot be obtained. In this respect, it is more preferable that 80% or more of the double bond in the butadiene portion is hydrogenated.
[0013]
In the rubber composition of the present invention, the hydrogenated copolymer (b) is preferably blended at a ratio of 10 to 200 parts by weight with respect to 100 parts by weight of the diene rubber. This is because when the amount is less than 10 parts by weight, the improvement of strength and dry grip properties is insufficient, and when the amount exceeds 200 parts by weight, the Mooney viscosity decreases and the productivity deteriorates. From this point, the blending ratio of the hydrogenated copolymer (b) is more preferably in the range of 20 to 100 parts by weight with respect to 100 parts by weight of the diene rubber.
The hydrogenated copolymer (b) is preferably used together with the styrene-butadiene copolymer rubber (a). In this case, the amount of styrene-butadiene copolymer rubber (a) bound styrene is St (a) wt%, and the amount of bound styrene of hydrogenated copolymer (b) is St (b) wt%. It is preferable that the relational expression of St (b) ≧ St (a) +10 is satisfied.
The hydrogenated copolymer (b) also has an effect as a rubber softening agent, and enables kneading of the rubber composition without using an aromatic oil which is usually used as a rubber softening agent. Moreover, this hydrogenated copolymer (b) may be added at the time of rubber | gum compounding (including the time of manufacture of a masterbatch), and may be added at the time of manufacture of rubber | gum like extending oil.
[0014]
In the rubber composition of the present invention, at least one of carbon black, silica, alumina, aluminum hydroxide, calcium carbonate, titanium oxide and the like can be used as the reinforcing filler, preferably carbon black. Used.
In the present invention, in addition to the above-mentioned diene rubber, reinforcing filler, resin, compounding agents commonly used in the rubber industry, such as softeners, anti-aging agents, coupling agents, vulcanization accelerators, Vulcanization accelerating aids, vulcanizing agents, and the like can be blended within the range of ordinary blending amounts as necessary.
[0015]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example.
The factory workability and tire grip performance were evaluated by the following methods.
(1) Weight average molecular weight Using a monodisperse styrene polymer manufactured by Waters, a calibration curve was prepared by previously obtaining the relationship between the molecular weight of the monodisperse styrene polymer peak by GPC and the number of GPC counts. The molecular weight of the polymer in terms of polystyrene was determined.
(2) The microstructure of the butadiene portion of the microstructure polymer was determined by the infrared method, and the styrene unit content of the polymer was calculated by the integral ratio of 1 H-NMR (proton NMR) spectrum.
(3) Factory workability The adhesion of the resin-blended rubber with the metal mixer and the metal roll during kneading was ranked and evaluated as follows.
○ (good), ○ to △ (somewhat good), △ (normal), △ to × (somewhat bad), × (bad)
(4) Grip property The grip property of the tire was evaluated by running on a circuit of 4.4 km per lap. That is, the grip performance is indicated by an index, with the average lap time from the 10th to the 20th lap being the reciprocal of the time of the control tire, and Comparative Example 1 being 100. The larger the value, the higher the grip, and the smaller the value, the poorer the grip.
[0016]
Production Example 1 [Synthesis of Styrene-Butadiene Copolymer Rubber (a-1)]
Cyclohexane 3000 g, tetrahydrofuran (THF) 12 g, 1,3-butadiene 200 g, and styrene 100 g were introduced into a 5 liter autoclave with stirring blades sufficiently purged with nitrogen, and the temperature in the autoclave was adjusted to 21 ° C. Next, 0.10 g of n-butyllithium was added and polymerization was performed for 60 minutes under the temperature rising condition, and it was confirmed that the monomer conversion rate was 99%. Thereafter, 3.5 g of 2,6-di-t-butyl-p-cresol was added as an antiaging agent. The analytical values are shown in Table 1.
Production Examples 2 to 8 [Synthesis of styrene-butadiene copolymer rubbers (a-2) to (a-8)]
Synthesis was performed in the same manner as in Production Example 1 except that the monomer charge ratio, the amount of catalyst, and the like were changed in Production Example 1. The analytical values are shown in Table 1.
[0017]
[Table 1]
Figure 0004559692
[0018]
Production Example 9 [Synthesis of Hydrogenated Styrene-Butadiene Copolymer (b-1)]
Cyclohexane 3000 g, tetrahydrofuran (THF) 12 g, 1,3-butadiene 150 g, and styrene 150 g were introduced into a 5 liter autoclave with stirring blades sufficiently purged with nitrogen, and the temperature in the autoclave was adjusted to 21 ° C. Next, 1.50 g of n-butyllithium was added and polymerization was performed for 60 minutes under the temperature rising condition. After confirming that the monomer conversion was 99%, 4.68 g of tributylsilyl chloride was added to terminate the polymerization. Then, a catalyst solution of nickel naphthenate: triethylaluminum: butadiene = 1: 3: 3 (molar ratio) prepared in a separate container in advance was charged so as to be 1 mol of nickel with respect to 1000 mol of the butadiene portion in the copolymer. Thereafter, hydrogen was introduced into the reaction system at a hydrogen pressure of 30 atm and reacted at 80 ° C. The hydrogenation rate was calculated from the decrease in the spectrum of the unsaturated bond portion of 100 MHz proton NMR measured at a concentration of 15% by weight using carbon tetrachloride as a solvent.
The analytical values are shown in Table 2.
Production Examples 10 to 15 [Synthesis of hydrogenated styrene-butadiene copolymers (b-2) to (b-7)]
Synthesis was performed in the same manner as in Production Example 9 except that the monomer charge ratio, the amount of catalyst, the hydrogen pressure, and the like were changed in Production Example 9. The analytical values are shown in Table 2.
[0019]
[Table 2]
Figure 0004559692
[0020]
Examples 1-16 and Comparative Examples 1-3
A rubber composition containing SBR # 1500 (manufactured by JSR Co., Ltd., emulsion polymerization SBR) as a rubber component, blending and kneading the rubber according to Formulation 1 in Table 3, and blending various resins shown in Table 4 Obtained. At this time, the adhesion between the kneaded rubber and the roll was observed to evaluate the factory workability.
[0021]
[Table 3]
Figure 0004559692
[0022]
(note)
Anti-aging agent 6C; N-phenyl-N′1,3-dimethylbutyl-p-phenylenediamine sulfur accelerator DM; dibenzothiazyl disulfide vulcanization accelerator CZ; N-cyclohexyl-2-benzothiazolylsulfene Amide Next, using the rubber composition as a tread rubber, a tire for a tire having a tire size of 315 / 40R18 was produced, and the grip property was evaluated. These results are shown in Table 4.
[0023]
[Table 4]
Figure 0004559692
[0024]
(Note) Resin type A KORESIN (phenol resin, manufactured by BASF)
B YS Resin PX1250 (terpene resin, manufactured by Yasuhara Chemical Co., Ltd.)
CYS resin A800 (terpene resin, manufactured by Yasuhara Chemical Co., Ltd.)
DYS Polystar U115 (terpene phenol resin, manufactured by Yasuhara Chemical Co., Ltd.)
E YS Polystar 2130 (terpene phenol resin, manufactured by Yasuhara Chemical Co., Ltd.)
FYS Polystar T50 (terpene phenol resin, manufactured by Yasuhara Chemical Co., Ltd.)
G YS Polystar T80 (terpene phenol resin, manufactured by Yasuhara Chemical Co., Ltd.)
H YS Polystar T115 (terpene phenol resin, manufactured by Yasuhara Chemical Co., Ltd.)
I YS Polystar T145 (terpene phenol resin, manufactured by Yasuhara Chemical Co., Ltd.)
J YS Polystar S145 (terpene phenol resin, manufactured by Yasuhara Chemical Co., Ltd.)
K Mighty Ace G150 (terpene phenol resin, manufactured by Yasuhara Chemical Co., Ltd.)
L YS Polystar N125 (terpene phenol resin, manufactured by Yasuhara Chemical Co., Ltd.)
M Clearon P125 (hydrogenated terpene resin, manufactured by Yasuhara Chemical Co., Ltd.)
[0025]
From the results in Table 4, it can be seen that each example is superior in both grip performance and factory workability as compared with each comparative example. In particular, while using α-pinene as a raw material terpene monomer, in Examples 4, 8, 9, 14, and 15 in which 20 to 80 parts by weight of a terpene phenol resin having an OH value of 50 to 130 KOH mg / g and a softening point of 120 to 150 ° C. The effect is remarkable.
Examples 17 to 30 and Comparative Example 4
While using the styrene-butadiene copolymer rubber (a) of Production Examples 1 to 8 as the rubber component, the hydrogenated styrene-butadiene copolymer (b) of Production Examples 9 to 15 was blended, A rubber composition was obtained by blending and kneading rubber according to Formulation 2. Note that the type J was used as the resin used in this example. Evaluation of factory workability of this rubber composition and evaluation of the grip of a tire using the rubber composition were performed in the same manner as described above. The results are shown in Table 5.
[0026]
[Table 5]
Figure 0004559692
[0027]
From the results in Table 5, it can be seen that each example is superior in both grip performance and factory workability as compared with Comparative Example 8 using a conventional phenol resin. In particular, as a rubber component, styrene-butadiene having a weight average molecular weight of 7.0 × 10 5 to 2.5 × 10 6 , a bound styrene amount of 10 to 50% by weight, and a vinyl bond amount of butadiene part of 20 to 70%. Examples 17, 20, 23 and 24 using b-1, b-6 and b-7 satisfying the properties of the hydrogenated styrene-butadiene copolymer (b) while using the copolymer rubber (a) , 29 and 30 tend to be more excellent.
[0028]
【The invention's effect】
The tread rubber composition of the present invention improves factory workability in the rubber kneading process in tire production, and the resulting rubber composition has excellent grip properties, and a tire using the rubber composition exhibits good grip performance. can do.

Claims (11)

リチウム系重合開始剤で重合されたスチレン−ブタジエン共重合体ゴム(a)であり、かつゲル浸透クロマトグラフィーにより得られたポリスチレン換算重量平均分子量が7.0×10 5 〜2.5×10 6 、結合スチレン量が10〜50重量%、ブタジエン部のビニル結合量が20〜70%であるジエン系ゴム100重量部に対し、原料モノマーがα−ピネンを含むテルペンフェノール樹脂を10〜150重量部、ゲル浸透クロマトグラフィーにより得られたポリスチレン換算重量平均分子量が5.0×10 3 〜2.0×10 5 であり結合スチレン量が25〜70重量%、ブタジエン部の二重結合のうち60%以上が水素添加された水添スチレン−ブタジエン共重合体(b)を10〜200重量部配合してなることを特徴とするトレッドゴム組成物。 The polystyrene-reduced weight average molecular weight obtained by gel permeation chromatography is 7.0 × 10 5 to 2.5 × 10 6, which is a styrene-butadiene copolymer rubber (a) polymerized with a lithium polymerization initiator. 10 to 150 parts by weight of a terpene phenol resin containing α-pinene as a raw material monomer with respect to 100 parts by weight of a diene rubber having a bound styrene amount of 10 to 50% by weight and a vinyl bond amount of butadiene part of 20 to 70%. The polystyrene-reduced weight average molecular weight obtained by gel permeation chromatography is 5.0 × 10 3 to 2.0 × 10 5 , the amount of bound styrene is 25 to 70% by weight, and 60% of the double bonds in the butadiene part. tread rubber composition which is characterized in that by blending 10 to 200 parts by weight butadiene copolymer (b) - or hydrogenated hydrogenated styrene . ジエン系ゴム100重量部に対し、テルペンフェノール樹脂を20〜80重量部配合してなる請求項1記載のトレッドゴム組成物。The tread rubber composition according to claim 1, wherein 20 to 80 parts by weight of a terpene phenol resin is blended with 100 parts by weight of the diene rubber. テルペンフェノール樹脂のOH価(KOHmg/g)が20〜210である請求項1又は2記載のトレッドゴム組成物。The tread rubber composition according to claim 1 or 2, wherein the terpene phenol resin has an OH value (KOHmg / g) of 20 to 210. テルペンフェノール樹脂のOH価(KOHmg/g)が50〜130である請求項記載のトレッドゴム組成物。The tread rubber composition according to claim 3, wherein the terpene phenol resin has an OH value (KOHmg / g) of 50 to 130. テルペンフェノール樹脂の軟化点が80〜160℃である請求項1〜4のいずれかに記載のトレッドゴム組成物。The tread rubber composition according to any one of claims 1 to 4, wherein the terpene phenol resin has a softening point of 80 to 160 ° C. テルペンフェノール樹脂の軟化点が120〜150℃である請求項記載のトレッドゴム組成物。The tread rubber composition according to claim 5 , wherein the terpene phenol resin has a softening point of 120 to 150 ° C. テルペンフェノール樹脂の原料モノマーがα−ピネンである請求項1〜6のいずれかに記載のトレッドゴム組成物。The tread rubber composition according to any one of claims 1 to 6 , wherein a raw material monomer of the terpene phenol resin is α-pinene. スチレン−ブタジエン共重合体ゴム(a)の結合スチレン量が20〜40重量%である請求項1〜7のいずれかに記載のトレッドゴム組成物。The tread rubber composition according to any one of claims 1 to 7 , wherein the amount of bound styrene of the styrene-butadiene copolymer rubber (a) is 20 to 40% by weight. スチレン−ブタジエン共重合体ゴム(a)のブタジエン部のビニル結合量が30〜60%である請求項1〜8のいずれかに記載のトレッドゴム組成物。The tread rubber composition according to any one of claims 1 to 8, wherein the butadiene portion of the styrene-butadiene copolymer rubber (a) has a vinyl bond content of 30 to 60%. 水添スチレン−ブタジエン共重合体(b)のブタジエン部の二重結合のうち80%以上が水素添加されている請求項1〜9のいずれかに記載のトレッドゴム組成物。The tread rubber composition according to any one of claims 1 to 9, wherein 80% or more of the double bonds in the butadiene portion of the hydrogenated styrene-butadiene copolymer (b) is hydrogenated. 請求項1〜1のいずれかに記載のトレッドゴム組成物をトレッド部材に用いたことを特徴とするタイヤ。A tire comprising the tread rubber composition according to any one of claims 1 to 10 as a tread member.
JP2002178234A 2002-06-19 2002-06-19 Tread rubber composition and tire using the same Expired - Fee Related JP4559692B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002178234A JP4559692B2 (en) 2002-06-19 2002-06-19 Tread rubber composition and tire using the same
ES03733498T ES2365607T3 (en) 2002-06-19 2003-06-19 RUBBER COMPOSITION FOR TIRE AND PNEUMATIC MANUFACTURED OF THE SAME.
PCT/JP2003/007800 WO2004000931A1 (en) 2002-06-19 2003-06-19 Rubber composition for tire and tire made therefrom
EP03733498A EP1514901B1 (en) 2002-06-19 2003-06-19 Rubber composition for tire and tire made therefrom
US10/518,629 US20060167160A1 (en) 2002-06-19 2003-06-19 Rubber composition for tire and tire made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178234A JP4559692B2 (en) 2002-06-19 2002-06-19 Tread rubber composition and tire using the same

Publications (2)

Publication Number Publication Date
JP2004018760A JP2004018760A (en) 2004-01-22
JP4559692B2 true JP4559692B2 (en) 2010-10-13

Family

ID=31176022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178234A Expired - Fee Related JP4559692B2 (en) 2002-06-19 2002-06-19 Tread rubber composition and tire using the same

Country Status (2)

Country Link
JP (1) JP4559692B2 (en)
ES (1) ES2365607T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717853B2 (en) 2016-10-14 2020-07-21 Kraton Chemical, Llc Rubber compositions containing improved tread enhancement additives and use thereof

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615874B2 (en) * 2004-02-02 2011-01-19 株式会社ブリヂストン Rubber composition, tire using the same, and method for producing rubber composition
JP2006160813A (en) * 2004-12-03 2006-06-22 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP5062801B2 (en) * 2005-03-02 2012-10-31 株式会社ブリヂストン Pneumatic tire and manufacturing method thereof
JP2006249188A (en) * 2005-03-09 2006-09-21 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP4895600B2 (en) * 2005-12-20 2012-03-14 住友ゴム工業株式会社 Rubber composition for tire and tire having sidewall using the same
ES2353220T3 (en) * 2006-01-16 2011-02-28 Bridgestone Corporation RUBBER AND PNEUMATIC COMPOSITION MANUFACTURED USING THE SAME.
JP5019775B2 (en) * 2006-04-03 2012-09-05 株式会社ブリヂストン Rubber composition and tire using the same
JP5076366B2 (en) * 2006-06-02 2012-11-21 横浜ゴム株式会社 Rubber composition for tire tread
FR2910906B1 (en) 2006-12-27 2009-03-06 Michelin Soc Tech PLASTICATING SYSTEM AND RUBBER COMPOSITION FOR PNEUMATIC INCORPORATING SAID SYSTEM
KR100819340B1 (en) 2007-06-15 2008-04-03 금호타이어 주식회사 Apex rubber composition
JP5605669B2 (en) * 2007-11-02 2014-10-15 住友ゴム工業株式会社 Rubber composition for tire and tire
JP5629422B2 (en) * 2007-12-03 2014-11-19 株式会社ブリヂストン Rubber composition for tire and tire using the same
WO2009125747A1 (en) * 2008-04-07 2009-10-15 株式会社ブリヂストン Rubber composition for tire and tire
JP5381396B2 (en) * 2008-06-30 2014-01-08 横浜ゴム株式会社 Rubber composition for tire tread
JP5407305B2 (en) * 2008-12-02 2014-02-05 横浜ゴム株式会社 Rubber composition for tire tread
JP4883172B2 (en) * 2009-12-10 2012-02-22 横浜ゴム株式会社 Rubber composition for tire
JP5654358B2 (en) * 2011-01-06 2015-01-14 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP5397441B2 (en) * 2011-09-14 2014-01-22 横浜ゴム株式会社 Rubber composition for tire
JP5995314B2 (en) * 2012-03-16 2016-09-21 日東電工株式会社 Adhesive composition and adhesive sheet
CN103539912B (en) * 2012-07-12 2016-03-09 中国石油天然气股份有限公司 A kind of preparation method of high-performance butadiene-styrene liquid rubber
CN104487506B (en) * 2012-08-03 2019-06-07 住友橡胶工业株式会社 Rubber composition for tire tread and pneumatic tire
JP6105351B2 (en) * 2013-03-27 2017-03-29 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6355581B2 (en) * 2015-03-20 2018-07-11 住友ゴム工業株式会社 POLYMER COMPOSITE AND PROCESS FOR PRODUCING THE SAME, TIRE RUBBER COMPOSITION AND PNEUMATIC TIRE
TW201710309A (en) * 2015-07-22 2017-03-16 Jsr Corp Hydrogenated conjugated diene polymer, production method therefor, polymer composition, crosslinked polymer, and tire
JP6733223B2 (en) * 2016-03-07 2020-07-29 住友ゴム工業株式会社 High performance tires
JP6551431B2 (en) * 2017-02-08 2019-07-31 住友ゴム工業株式会社 Polymer composite, method for producing the same, and rubber composition for tire and pneumatic tire
CN109485791B (en) * 2017-09-13 2021-10-19 中国石油化工股份有限公司 Linear styrene-butadiene copolymer, process for producing the same, composition thereof, aromatic vinyl resin and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717853B2 (en) 2016-10-14 2020-07-21 Kraton Chemical, Llc Rubber compositions containing improved tread enhancement additives and use thereof

Also Published As

Publication number Publication date
ES2365607T3 (en) 2011-10-07
JP2004018760A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4559692B2 (en) Tread rubber composition and tire using the same
JP2894986B2 (en) Diene polymer rubber composition
JP5265202B2 (en) Rubber composition and pneumatic tire using the same
EP0919580B1 (en) Block copolymer and rubber composition comprising the same
EP3059257A1 (en) Modified conjugated diene-based polymer, preparation method therefor, and rubber composition comprising same
JP3996008B2 (en) Rubber composition and pneumatic tire using the same for tread
KR101750818B1 (en) Tire rubber composition and pneumatic tire
JPS6335668B2 (en)
US20230138073A1 (en) Hydrogenated Conjugated Diene-Based Polymer, Hydrogenated Conjugated Diene-Based Polymer Composition, Rubber Composition, and Method for Producing Hydrogenated Conjugated Diene-Based Polymer
JP4486318B2 (en) Synthesis of rubber with high vinyl content
JP4113847B2 (en) Rubber composition and tire using the same
JP4315501B2 (en) Rubber composition, pneumatic tire using the same for tread and competition tire
EP3950380A1 (en) Cross-linked product and tire
US20160009834A1 (en) Modified Conjugated Diene Polymer, Method for Producing Same, and Rubber Composition Using Same
JP2008001747A (en) Rubber composition and pneumatic tire using the same
JP4881520B2 (en) Oil-extended rubber, rubber composition containing the same, tire using the same for tread rubber, and competition tire
JP4726314B2 (en) Modified conjugated diene polymer composition
JPH0776635A (en) Selectively partially hydrogenated polymer composition
JPH08333480A (en) Rubber composition for studless tire tread
JP2010265379A (en) Rubber composition and pneumatic tire using the same
JPH07238187A (en) Rubber composition for tire tread
JPH0686500B2 (en) Method for producing conjugated diolefin polymer
JP2002284934A (en) Rubber composition
RU2793934C9 (en) Conjugated diene-based polymer, branching agent, conjugated diene-based polymer production method, conjugated diene-based oil-filled polymer, rubber composition and tire
RU2793934C1 (en) Conjugated diene-based polymer, branching agent, conjugated diene-based polymer production method, conjugated diene-based oil-filled polymer, rubber composition and tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R150 Certificate of patent or registration of utility model

Ref document number: 4559692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees