JP4559570B2 - Method for producing high purity zinc borofluoride hexahydrate - Google Patents

Method for producing high purity zinc borofluoride hexahydrate Download PDF

Info

Publication number
JP4559570B2
JP4559570B2 JP35083999A JP35083999A JP4559570B2 JP 4559570 B2 JP4559570 B2 JP 4559570B2 JP 35083999 A JP35083999 A JP 35083999A JP 35083999 A JP35083999 A JP 35083999A JP 4559570 B2 JP4559570 B2 JP 4559570B2
Authority
JP
Japan
Prior art keywords
zinc
hexahydrate
borofluoride
producing
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35083999A
Other languages
Japanese (ja)
Other versions
JP2001163618A (en
Inventor
敏郎 福留
裕久 菊山
洋史 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stella Chemifa Corp
Original Assignee
Stella Chemifa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stella Chemifa Corp filed Critical Stella Chemifa Corp
Priority to JP35083999A priority Critical patent/JP4559570B2/en
Priority to TW089124088A priority patent/TW496788B/en
Priority to KR1020000074892A priority patent/KR100673874B1/en
Publication of JP2001163618A publication Critical patent/JP2001163618A/en
Application granted granted Critical
Publication of JP4559570B2 publication Critical patent/JP4559570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen

Description

【0001】
【産業上の利用分野】
本発明は、高純度ホウフッ化亜鉛6水塩の製造方法に係り、より詳細には、例えば、金属製の缶の内面にエポキシ樹脂をコーティング施工する際にエポキシ樹脂硬化剤として使用される高純度ホウフッ化亜鉛6水塩の製造方法に関する。
【0002】
【従来の技術】
ホウフッ化亜鉛6水塩は1809年Gay−Lussac等によって発明されて以来、多数の研究がなされて来た。その製法は主に亜鉛化合物とホウフッ酸とを反応させる方法である。
【0003】
また、三フッ化ホウ素を用いる方法がMeyerhoferによって研究され、Brit.Patent 226,491(Dec,20,1923)になっている。
【0004】
ホウフッ化亜鉛の用途は亜鉛メッキやWash and wear加工用にエポキシ樹脂の硬化剤として用いられている。
【0005】
これらの用途に対してはホウフッ化亜鉛六水塩は水溶液として使用される。従って、結晶状の製品ではなく、例えば、ホウフッ化亜鉛を40〜50%含有する水溶液でよかった。
【0006】
近年になり、ホウフッ化亜鉛六水塩は、缶内面にエポキシ樹脂をコーティングする際のエポキシ樹脂の硬化剤として使用されている。かかる用途に対しては水分の少ないホウフッ化亜鉛6水塩の結晶状の製品が重用される。
【0007】
この結晶状の製品は従来の製法による水溶液から得るのは極めて困難である。
水溶液を濃縮すれば、やがてシロップ状になり、なかなか結晶化するに至らない。濃縮液を冷却して結晶を得ても収率が極めて低く、不経済である。反応系に余分な水分があれば、生成物がその水分に溶解して結晶が析出しないとか析出してもなかなか乾燥しにくいとかなどの問題がある。
【0008】
そのため、より蒸発しやすいアルコールで脱水・乾燥する手段がとられる。この場合、溶媒としてアルコールを使用せざるを得ず、また、脱水・乾燥などの操作に手間がかかりる。従って、この方法はコストアップになる。さらに、この方法では最終的な収率は精々70〜75%にとどまるため原価が高くなってしまう。また溶媒のアルコールは回収再利用しないかぎり、環境汚染の原因になる。
【0009】
【発明が解決しようとする課題】
本発明は、ホウフッ化亜鉛6水塩の結晶状製品を、蒸発濃縮などの操作にたよることなく、またアルコールなどの高価な溶媒を使用せずに、単に化学量論的手段を用いるだけで簡便かつ安価に製造することができる高純度ホウフッ化亜鉛6水塩の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題は、亜鉛または亜鉛化合物とホウフッ化物とを反応させることによりホウフッ化亜鉛6水塩を製造するホウフッ化亜鉛6水塩の製造方法において、
原料に含まれる水分と反応生成水の和がホウフッ化亜鉛1モルに対して5.5〜6モルとすることを特徴とする高純度ホウフッ化亜鉛6水塩の製造方法により解決される。
【0011】
また、該亜鉛化合物がフッ化亜鉛4水塩および/または無水フッ化亜鉛であることが好ましい。
【0012】
【作用】
本発明者は、ホウフッ化亜鉛6水塩の晶出に際して、その物性を克明に観察検討した結果、亜鉛やホウ素、フッ素などの物量バランスはしっかりと合わせることは言うまでもないが、反応に関与する水の存在が大きく影響していることを見い出した。反応に関与する水の総量がホウフッ化亜鉛が水和して6水和物になる量に等しいかわずかに少なくなるようにして反応させる。原料に由来する水や反応によって生成する水の総量を把握して反応させるのがこの製法のポイントである。
【0013】
反応系に存在する水の総量は、ホウフッ化亜鉛1モルに対して、6モルか6モルよりやや少ない程度が限度である。
【0014】
原料に含まれる水分と反応生成水の和が5.5〜6モルになるように原料を組み合わせ、不足量は水を加えて補えばよい。
【0015】
この条件を満たす原料を次の群から選んで組み合わせればよい。
Zn原料:亜鉛未,酸化亜鉛,フッ化亜鉛4水塩,
無水フッ化亜鉛
ホウフッ化物原料:BF3(ガス),BF3・H2O,2BF3・3H2O,
BF3・2H2O,CH3OH・BF3,C25OH・BF3
(CH32O・BF3,(C252O・BF3
【0016】
これらの組み合わせの数例を化学式で例示する。

Figure 0004559570
【0017】
Znの原料としてはフッ化亜鉛4水塩やこの化合物を110℃で加熱・脱水して得た無水フッ化亜鉛が純度の高い製品を得るのに好適である。
【0018】
亜鉛末や酸化亜鉛とフッ化水素酸でフッ化亜鉛を合成して、これに三フッ化ホウ素を添加してホウフッ化亜鉛を得る方法では、反応が緩慢であり、前記方法に比べると高純度の製品が得られにくい。
【0019】
ホウフッ化物原料としては、三フッ化ホウ素ガスのほか、BF3・H2O,2BF3・3H2O、BF3・2H2Oなどの水錯塩が好適である。
【0020】
アルコールやエーテルなどの三フッ化ホウ素錯塩はフッ化亜鉛とよく反応するが、BF3を離したのちアルコールやエーテルが遊離して来る。副生したアルコールやエーテルにはホウフッ化亜鉛が多量にとけるので、結晶状のホウフッ化亜鉛6水塩を得るには、加熱してアルコールやエーテルを蒸発・濃縮冷却して晶析させる必要があり、好ましくない。
【0021】
本発明者はホウフッ化亜鉛6水塩を調製する際の水の影響について詳細に検討した。
【0022】
フッ化亜鉛4水塩を脱水して得た無水フッ化亜鉛と2BF3・3H2Oの組成を持つ三フッ化ホウ素水錯塩とを反応させてホウフッ化亜鉛6水塩1モルを調整するに際し、水の存在量を5モル〜6.25モルの範囲で0.25モルづつ変化させて影響を検討した結果、表1に示すとおりであった。
【0023】
ホウフッ化亜鉛6水塩の生成反応は水の過不足に大きく左右される。水が不足すれば反応が完全には進行せず、生成物からはガスが盛んに発生する。その程度は水が少なければ少ないほど多くなる。
【0024】
【表1】
ホウフッ化亜鉛6水塩調製時の水の過不足の影響
Figure 0004559570
【0025】
この生成物に不足分の水を補填してやると、直ちに反応して正常な粉状製品になる。このとき発熱を伴うがこの熱は水和熱と推測される。水和の不完全な生成物は不安定な状態でガス化しやすいものと考えられる。
【0026】
一方、余剰な水分があれば、その水分に結晶が溶解して一部シロップ状を呈し
湿潤状態になり、乾燥してもなかなか粉状製品をえるのが難しくなる。
【0027】
以上のとおり高純度ホウフッ化亜鉛6水塩を得るキイポイントは水の管理である。原料に含まれる水や反応生成水など反応系に存在する水総量がホウフッ化亜鉛1モルに対して好ましくは5.5〜6.25モル、より好ましくは5.75〜6モルになるように制御する。
【0028】
本発明の製造方法は溶解・濾過精製、再結晶などの手間のかかる操作を省き、一工程で高純度の製品を得る方法を提供するものであるが、厳正な条件下で行っても製品中に精々1.5%程度ではあるがエチルアルコール不溶解分を含む。この不溶解分はX線回折分析の結果、フッ化亜鉛であることが確認された。
【0029】
このエチルアルコール不溶解分は、製品を保管養生することによって、徐々に低減することがわかった。保管養生の条件は60℃程度の保温下で行えばより短時間で促進されるが、それだけコストがかかるので、常温下で充分である。常温下で行ったエチルアルコール不溶解分低減試験結果の例を図1に示す。保管養生は、製品をビンなどに入れ、蓋をした状態で行うことが好ましい。ホウフッ化亜鉛6水塩は、水との親和性が高く、吸湿性が高いため水分を含む雰囲気から遮断するためビンなどの容器に入れ蓋をした状態で保管養生を行うものである。
【0030】
この結果によれば、調製当日1%前後あったエチルアルコール不溶解分は養生熟成することによって、1日経過時に急激に低下し、3日でさらに低下し、以降次第に低下して来る。エチルアルコールに溶けるホウフッ化亜鉛分が99.5%以上の高純度に仕上げるには常温においてさえおよそ3日あれば充分である。
【0031】
【実施例】
以下に実施例を示して本発明の方法を具体的に開示する。
【0032】
(実施例1)
フッ化亜鉛4水塩を脱水して得た無水フッ化亜鉛12.5gを容積1L(リットル)のPFAビンにとり純水13.0gを加えて懸濁状とした。
【0033】
三フッ化ホウ素ガス16.5gを加えたところ激しく発熱反応し、温度は112℃まで上った。三フッ化ホウ素ガスが僅かに残ったので窒素ガスを通じてパージした。生成物は粉状結晶で、収量は41.8gで理論値に等しかった。
【0034】
生成物を分析したところエタノール不溶解分0.62%、含量(Znから)99.8%であった。
【0035】
(実施例2)
フッ化亜鉛4水塩131.6gと、フッ化亜鉛4水塩を脱水して得た無水フッ化亜鉛25.9gとを容積1LのPFAビンにとり、2BF3・3H2Oの組成を持つ三フッ化ホウ素水錯塩191.5gを加えたところ激しく反応して発熱し80℃まで昇温した。よく振ってさらに反応をすすめたところ、1時間後に固体粉状の製品348.3gを得た(収率99.8%)。含量(Znから)100.2%であった。
【0036】
室温において7日熟成後同様に分析したところエタノール不溶解分0.20%、含量(Znから)100.6%であった。
【0037】
(実施例3)
フッ化亜鉛4水塩を脱水して得た無水フッ化亜鉛103.8gを容積1LのPFAビンにとり、BF3・H2Oの組成を持つ三フッ化ホウ素水錯塩171gを徐々に加えたところ少し反応して70℃まで昇温した。この混合物に純水72gを少しづつ加えて混合、反応したところ、激しく反応して発熱し、117℃まで昇温した。反応後8時間して分析したところエタノール不溶解分1.35%、含量(Znから)101.8%であった。
【0038】
常温において7日間保管養生して同様に分析したところエタノール不溶解分0.16%、含量(Znから)101.3%であった。
【0039】
(実施例4)
フッ化亜鉛4水塩を脱水して得た無水フッ化亜鉛830.4gを容積5LのPFAビンに入れ、2BF3・3H2Oの組成を持つ三フッ化ホウ素水錯塩1532gを加えたところ温度60℃のスラリーになった。この混合物に純水418gを徐々に加えて混合撹拌したところ、激しく反応して125℃まで昇温した。製品2773g(収率99.8%)を得た。8時間後分析したところ、エタノール不溶解分1.16%、含量(Znから)101.1%であった。室温で7日間保管熟成したのち、同様に分析したところ、エタノール不溶解分0.1%、含量(Znから)100.0%であった。
【0040】
(実施例5)
フッ化亜鉛4水塩を脱水して得た無水フッ化亜鉛103.8gに、BF3・H2Oの組成を持つ三フッ化ホウ素水錯塩209.5gを混合した。混合すると少し反応し温度は65℃になった。
【0041】
この混合物に水36gを加えよく混合したところ激しく反応して発熱し、112℃まで昇温した。
【0042】
8時間後分析したところエタノール不溶解分1.45%、含量(Znから)100.6%であった。
【0043】
室温で7日保管熟成したのち、同様に分析したところエタノール不溶解分0.32%含量(Znから)100.9%であった。
【0044】
(比較例1)
フッ化亜鉛4水塩175.4gを容積1LのPFAビンにとり2BF3・3H2Oの組成を持つ三フッ化ホウ素水錯塩191.5gを加えたところ反応して発熱し85%まで昇温した。反応物はシロップ状を呈した。
【0045】
80℃湯浴上で窒素ガスを通じて5時間処理したが、乾燥固体製品は得られなかった。
【0046】
(比較例2)
フッ化亜鉛4水塩175.4gを容積1LのPFAビンにとり、2BF3・3H2Oの組成を持つ三フッ化ホウ素水錯塩191gを加えて反応させたところ反応して発熱し84℃まで昇温した。
【0047】
このものにエタノール200mlを加えて濾過した。
【0048】
未反応フッ化亜鉛の固体を濾別し澄明な濾液を得た。
【0049】
この濾液を100℃の湯浴上で窒素を通じながら8時間濃縮した。
【0050】
冷却後晶出した結晶を濾別したところエチルアルコールを含む湿潤結晶が得られた。
【0051】
このものを100℃湯浴上で窒素ガスを通じながら乾燥したところ211gのホウフッ化亜鉛6水塩を得た。収率60.8%製品を分析したところエタノール不溶解分0.22%、含量(Znから)100.0%であった。
【0052】
この製法では濾過・濃縮・乾燥に手間がかかり高価なアルコールを溶媒にする上に、収率が低い欠点がある。
【0053】
(比較例3)
三フッ化ホウ素のアルコール錯塩と、フッ化亜鉛4水塩を脱水して得た無水フッ化亜鉛とを反応させてホウフッ化亜鉛6水塩を得る。次式のような反応式に従って反応させる。
【0054】
Figure 0004559570
【0055】
無水フッ化亜鉛51.8gと、BF3含量52%の三フッ化ホウ素メタノール錯塩130.4gとを混合した。
【0056】
この混合物に純水54.0gを加えて混合撹拌したところ激しく反応して発熱し、95℃まで昇温した。
【0057】
得られた反応生成物は透明な液体であり、生成したホウフッ化亜鉛は全て副生するメタノールに溶解しており、結晶を得るには更にメタノールやエタノールを蒸発・濃縮する必要がある。
【0058】
(比較例4)
三フッ化ホウ素のエーテル錯塩とフッ化亜鉛4水塩を脱水して得た無水フッ化亜鉛とを反応させてホウフッ化亜鉛六水塩を得る。次式のような反応式に従って反応させる。
【0059】
Figure 0004559570
【0060】
無水フッ化亜鉛22.0gに、BF3含量48.3%の三フッ化ホウ素エチルエーテル錯塩59.5gを加えて混合した。
【0061】
この混合物に純水22.9gを加えて混合撹拌したところ、激しく反応して発熱した反応熱によって副生したエチルエーテルの約半量が揮散したが、残りの半量が反応系に残って、生成したホウフッ化亜鉛を溶解して液状の生成物を得た。
結晶を得るには残存するエーテルを蒸発乾涸する必要がある。
【0062】
(比較例5)
亜鉛未32.7gと50%フッ化水素酸40gおよび純水7gとを混合した。
反応は徐々にしか進行せず、湯浴上で2時間反応させたが、未反応の亜鉛未が残った。 この混合物に2BF3・3H2Oの組成を持つ三フッ化ホウ素水錯塩95.8gを加えた。この反応は次式に示すような関係になる。
Figure 0004559570
【0063】
24時間放置したのち分析したところエタノール不溶解分3.8%、含量(Znから)86.1%であり、とても実用になるような製品は得られなかった。
【0064】
(比較例6)
酸化亜鉛20.35gと50%フッ化水素酸20.0gとを混合したのち、2BF3・3H2Oの組成を持つ三フッ化ホウ素水錯塩47.4gを反応させた。
【0065】
この反応は次式に示すような関係になる。
Figure 0004559570
【0066】
この反応は思ったより進行しにくく、60℃湯浴上で10時間反応させたのち、分析したところエタノール不溶解分3.23%、含量(Znから)81.5%を得た。純度が低く実用に供し得ないものであった。
【0067】
【発明の効果】
例えば缶内面の樹脂コーティング用のエポキシ樹脂硬化剤として重用されるホウフッ化亜鉛6水塩の固体製品を化学量論的手段で簡便に安価に調製・供給することができる。
【図面の簡単な説明】
【図1】養生時間とエチルアルコール不溶解分のとの関係を示すグラフである。[0001]
[Industrial application fields]
The present invention relates to a method for producing a high purity zinc borofluoride hexahydrate, and more specifically, for example, a high purity used as an epoxy resin curing agent when an epoxy resin is coated on the inner surface of a metal can. The present invention relates to a method for producing zinc borofluoride hexahydrate.
[0002]
[Prior art]
Zinc borofluoride hexahydrate has been studied since 1809 by Gay-Lussac et al. The production method is mainly a method of reacting a zinc compound and borofluoric acid.
[0003]
Also, a method using boron trifluoride was studied by Meyerhofer, Brit. Patent 226,491 (Dec, 20, 1923).
[0004]
Zinc borofluoride is used as a curing agent for epoxy resins for galvanizing and Wash and wear processing.
[0005]
For these applications, zinc borofluoride hexahydrate is used as an aqueous solution. Therefore, instead of a crystalline product, for example, an aqueous solution containing 40 to 50% zinc borofluoride may be used.
[0006]
In recent years, zinc borofluoride hexahydrate has been used as a curing agent for epoxy resins when coating the inner surface of cans with epoxy resins. For such applications, a crystalline product of zinc borofluoride hexahydrate with little moisture is used.
[0007]
This crystalline product is very difficult to obtain from an aqueous solution by conventional manufacturing methods.
If the aqueous solution is concentrated, it will eventually become a syrup and will not readily crystallize. Even if the concentrate is cooled to obtain crystals, the yield is extremely low, which is uneconomical. If there is excess water in the reaction system, there are problems such that the product dissolves in the water and crystals do not precipitate, and even if it precipitates, it is difficult to dry.
[0008]
Therefore, a means for dehydrating and drying with alcohol which is more easily evaporated is taken. In this case, alcohol must be used as a solvent, and operations such as dehydration and drying are troublesome. Therefore, this method increases costs. In addition, the final yield of this method is at most 70 to 75%, which increases the cost. Solvent alcohol can cause environmental pollution unless it is recovered and reused.
[0009]
[Problems to be solved by the invention]
In the present invention, a crystalline product of zinc borofluoride hexahydrate can be obtained by simply using a stoichiometric means without using an operation such as evaporation and using an expensive solvent such as alcohol. It aims at providing the manufacturing method of the high purity zinc borofluoride hexahydrate which can be manufactured simply and cheaply.
[0010]
[Means for Solving the Problems]
In the method for producing zinc borofluoride hexahydrate, which produces zinc borofluoride hexahydrate by reacting zinc or a zinc compound with borofluoride,
This is solved by a method for producing a high-purity zinc borofluoride hexahydrate , characterized in that the sum of water and reaction product water contained in the raw material is 5.5 to 6 moles per mole of zinc borofluoride.
[0011]
The zinc compound is preferably zinc fluoride tetrahydrate and / or anhydrous zinc fluoride.
[0012]
[Action]
As a result of careful observation and examination of the physical properties at the time of crystallization of zinc borofluoride hexahydrate, the present inventor, as a matter of course, balances the physical quantity of zinc, boron, fluorine, etc. I found out that the existence of has greatly influenced. The reaction is carried out so that the total amount of water involved in the reaction is equal to or slightly less than the amount of zinc borofluoride hydrated to hexahydrate. The point of this production method is to grasp the total amount of water derived from the raw material and the water produced by the reaction and react.
[0013]
The total amount of water present in the reaction system is limited to 6 moles or slightly less than 6 moles per mole of zinc borofluoride.
[0014]
The raw materials are combined so that the sum of the moisture contained in the raw materials and the reaction product water is 5.5 to 6 mol, and the deficiency may be compensated by adding water.
[0015]
Materials that satisfy this condition may be selected from the following group and combined.
Zn raw material: zinc not contained, zinc oxide, zinc fluoride tetrahydrate,
Anhydrous zinc fluoride borofluoride raw materials: BF 3 (gas), BF 3 .H 2 O, 2BF 3 .3H 2 O,
BF 3 · 2H 2 O, CH 3 OH · BF 3 , C 2 H 5 OH · BF 3 ,
(CH 3 ) 2 O · BF 3 , (C 2 H 5 ) 2 O · BF 3
[0016]
Several examples of these combinations are illustrated by chemical formulas.
Figure 0004559570
[0017]
As a raw material for Zn, zinc fluoride tetrahydrate and anhydrous zinc fluoride obtained by heating and dehydrating this compound at 110 ° C. are suitable for obtaining a high purity product.
[0018]
In the method of synthesizing zinc fluoride with zinc powder or zinc oxide and hydrofluoric acid and adding boron trifluoride to this to obtain zinc borofluoride, the reaction is slow, and the purity is higher than the above method This product is difficult to obtain.
[0019]
The fluoroboric compound raw material, addition of boron trifluoride gas, BF 3 · H 2 O, 2BF 3 · 3H 2 O, water complex salts such as BF 3 · 2H 2 O are preferred.
[0020]
Although boron trifluoride complex salts such as alcohol and ether react well with zinc fluoride, alcohol and ether are released after releasing BF 3 . A large amount of zinc borofluoride can be dissolved in the by-produced alcohol or ether, so to obtain crystalline zinc borofluoride hexahydrate, it is necessary to evaporate, concentrate and cool the alcohol and ether to crystallize. It is not preferable.
[0021]
The present inventor examined in detail the influence of water when preparing zinc borofluoride hexahydrate.
[0022]
In preparing 1 mol of zinc borofluoride hexahydrate by reacting anhydrous zinc fluoride obtained by dehydrating zinc fluoride tetrahydrate with boron trifluoride water complex salt having the composition of 2BF 3 · 3H 2 O As a result of examining the influence by changing the abundance of water in the range of 5 mol to 6.25 mol by 0.25 mol, it was as shown in Table 1.
[0023]
The formation reaction of zinc borofluoride hexahydrate greatly depends on the excess or deficiency of water. If water is insufficient, the reaction does not proceed completely, and gas is actively generated from the product. The degree increases with less water.
[0024]
[Table 1]
Effect of excess and deficiency of water during preparation of zinc borofluoride hexahydrate
Figure 0004559570
[0025]
If this product is supplemented with a deficient amount of water, it reacts immediately and becomes a normal powder product. Although heat is generated at this time, this heat is presumed to be heat of hydration. Products with incomplete hydration are considered unstable and susceptible to gasification.
[0026]
On the other hand, if there is excess water, the crystals dissolve in the water and partly form a syrup and become wet, making it difficult to obtain a powdery product even after drying.
[0027]
As described above, the key point for obtaining high purity zinc borofluoride hexahydrate is the management of water. The total amount of water present in the reaction system, such as water contained in the raw material and reaction product water, is preferably 5.5 to 6.25 mol, more preferably 5.75 to 6 mol with respect to 1 mol of zinc borofluoride. Control.
[0028]
The production method of the present invention eliminates time-consuming operations such as dissolution, filtration purification, and recrystallization, and provides a method for obtaining a high-purity product in one step. Although it is at most 1.5%, it contains ethyl alcohol insoluble matter. As a result of X-ray diffraction analysis, this insoluble matter was confirmed to be zinc fluoride.
[0029]
This ethyl alcohol insoluble matter was found to be gradually reduced by storing and curing the product. The storage curing conditions are accelerated in a shorter time if kept at a temperature of about 60 ° C. However, since the cost is increased, it is sufficient at room temperature. An example of an ethyl alcohol insoluble matter reduction test result conducted at room temperature is shown in FIG. The storage curing is preferably performed with the product placed in a bottle or the like and covered. Zinc borofluoride hexahydrate has a high affinity with water and has a high hygroscopic property, so that it is stored and cured in a state where it is put in a container such as a bottle and covered so as to be shielded from an atmosphere containing moisture.
[0030]
According to this result, the ethyl alcohol insoluble matter that was around 1% on the day of preparation is rapidly reduced by the aging and aging, further decreases after 3 days, and gradually decreases thereafter. Approximately 3 days is sufficient even at room temperature to finish the zinc borofluoride soluble in ethyl alcohol to a high purity of 99.5% or more.
[0031]
【Example】
The method of the present invention will be specifically disclosed with reference to the following examples.
[0032]
Example 1
12.5 g of anhydrous zinc fluoride obtained by dehydrating zinc fluoride tetrahydrate was placed in a 1 L (liter) PFA bottle, and 13.0 g of pure water was added to form a suspension.
[0033]
When 16.5 g of boron trifluoride gas was added, a vigorous exothermic reaction occurred, and the temperature rose to 112 ° C. A slight amount of boron trifluoride gas remained and was purged with nitrogen gas. The product was powdery crystals and the yield was 41.8 g, which was equal to the theoretical value.
[0034]
Analysis of the product revealed an ethanol insoluble content of 0.62% and a content (from Zn) of 99.8%.
[0035]
(Example 2)
31.6 g of zinc fluoride tetrahydrate and 25.9 g of anhydrous zinc fluoride obtained by dehydrating zinc fluoride tetrahydrate in a 1 liter PFA bottle have a composition of 2BF 3 .3H 2 O When 191.5 g of boron fluoride aqueous complex salt was added, it reacted vigorously to generate heat, and the temperature was raised to 80 ° C. The reaction was further promoted by shaking well to obtain 348.3 g of a solid powdery product after 1 hour (yield 99.8%). The content (from Zn) was 100.2%.
[0036]
A similar analysis after aging at room temperature for 7 days revealed an ethanol insoluble content of 0.20% and a content (from Zn) of 100.6%.
[0037]
(Example 3)
When 103.8 g of anhydrous zinc fluoride obtained by dehydrating zinc fluoride tetrahydrate is put into a 1 L PFA bottle, 171 g of boron trifluoride water complex salt having the composition of BF 3 · H 2 O is gradually added. After a short reaction, the temperature was raised to 70 ° C. When 72 g of pure water was added little by little to this mixture and mixed and reacted, it reacted vigorously and generated heat, and the temperature was raised to 117 ° C. When analyzed 8 hours after the reaction, the ethanol-insoluble content was 1.35% and the content (from Zn) was 101.8%.
[0038]
As a result of storing and curing for 7 days at room temperature, it was 0.16% insoluble in ethanol and 101.3% in content (from Zn).
[0039]
Example 4
830.4 g of anhydrous zinc fluoride obtained by dehydrating zinc fluoride tetrahydrate was put into a 5 L PFA bottle, and 1532 g of boron trifluoride water complex salt having a composition of 2BF 3 .3H 2 O was added to the temperature. The slurry became 60 ° C. When 418 g of pure water was gradually added to this mixture and mixed and stirred, it reacted vigorously and the temperature was raised to 125 ° C. 2773 g (99.8% yield) of product was obtained. Analysis after 8 hours revealed an ethanol insoluble content of 1.16% and a content (from Zn) of 101.1%. After aging at room temperature for 7 days, analysis in the same manner revealed that the ethanol-insoluble content was 0.1% and the content (from Zn) was 100.0%.
[0040]
(Example 5)
209.5 g of boron trifluoride water complex salt having the composition of BF 3 · H 2 O was mixed with 103.8 g of anhydrous zinc fluoride obtained by dehydrating zinc fluoride tetrahydrate. When mixed, it reacted slightly and the temperature reached 65 ° C.
[0041]
When 36 g of water was added to this mixture and mixed well, it reacted vigorously to generate heat, and the temperature was raised to 112 ° C.
[0042]
Analysis after 8 hours revealed an ethanol insoluble content of 1.45% and a content (from Zn) of 100.6%.
[0043]
After aging at room temperature for 7 days, the same analysis revealed that the ethanol-insoluble content was 0.32% (from Zn) 100.9%.
[0044]
(Comparative Example 1)
When 175.4 g of zinc fluoride tetrahydrate was placed in a 1 L PFA bottle and 191.5 g of boron trifluoride water complex salt having a composition of 2BF 3 .3H 2 O was added, the reaction caused heat generation and the temperature was raised to 85%. . The reaction product was syrupy.
[0045]
Although it processed for 5 hours through nitrogen gas on a 80 degreeC hot water bath, the dry solid product was not obtained.
[0046]
(Comparative Example 2)
175.4 g of zinc fluoride tetrahydrate was placed in a 1 L PFA bottle, and 191 g of boron trifluoride water complex salt having a composition of 2BF 3 .3H 2 O was added and reacted. Warm up.
[0047]
This was added with 200 ml of ethanol and filtered.
[0048]
Unreacted zinc fluoride solid was filtered off to obtain a clear filtrate.
[0049]
The filtrate was concentrated on a 100 ° C. water bath with nitrogen flowing for 8 hours.
[0050]
Crystals crystallized after cooling were filtered off to obtain wet crystals containing ethyl alcohol.
[0051]
When this was dried on a 100 ° C. hot water bath while passing nitrogen gas, 211 g of zinc borofluoride hexahydrate was obtained. The yield was 60.8%. The product was analyzed and found to have an ethanol insoluble content of 0.22% and a content (from Zn) of 100.0%.
[0052]
In this production method, filtration, concentration and drying are troublesome, and expensive alcohol is used as a solvent, and the yield is low.
[0053]
(Comparative Example 3)
An alcohol complex salt of boron trifluoride is reacted with anhydrous zinc fluoride obtained by dehydrating zinc fluoride tetrahydrate to obtain zinc borofluoride hexahydrate. The reaction is carried out according to the following reaction formula.
[0054]
Figure 0004559570
[0055]
Anhydrous zinc fluoride 51.8 g and boron trifluoride methanol complex salt 130.4 g having a BF 3 content of 52% were mixed.
[0056]
When 54.0 g of pure water was added to this mixture and mixed and stirred, it reacted vigorously to generate heat, and the temperature was raised to 95 ° C.
[0057]
The obtained reaction product is a transparent liquid, and all the generated zinc borofluoride is dissolved in by-produced methanol. To obtain crystals, it is necessary to further evaporate and concentrate methanol and ethanol.
[0058]
(Comparative Example 4)
A boron borofluoride hexahydrate is obtained by reacting an ether complex of boron trifluoride with anhydrous zinc fluoride obtained by dehydrating zinc fluoride tetrahydrate. The reaction is carried out according to the following reaction formula.
[0059]
Figure 0004559570
[0060]
To 22.0 g of anhydrous zinc fluoride, 59.5 g of boron trifluoride ethyl ether complex having a BF 3 content of 48.3% was added and mixed.
[0061]
When 22.9 g of pure water was added to this mixture and mixed and stirred, about half of the ethyl ether produced as a by-product was volatilized by the reaction heat generated by vigorous reaction. Zinc borofluoride was dissolved to obtain a liquid product.
In order to obtain crystals, the remaining ether must be evaporated to dryness.
[0062]
(Comparative Example 5)
32.7 g of non-zinc, 40 g of 50% hydrofluoric acid and 7 g of pure water were mixed.
The reaction proceeded only gradually and was allowed to react for 2 hours on a hot water bath, but unreacted zinc remained. To this mixture, 95.8 g of an aqueous boron trifluoride complex salt having a composition of 2BF 3 .3H 2 O was added. This reaction has a relationship as shown in the following equation.
Figure 0004559570
[0063]
Analysis after standing for 24 hours revealed that the ethanol-insoluble content was 3.8% and the content (from Zn) was 86.1%, and a product that would be very practical could not be obtained.
[0064]
(Comparative Example 6)
After mixing 20.35 g of zinc oxide and 20.0 g of 50% hydrofluoric acid, 47.4 g of a boron trifluoride aqueous complex salt having a composition of 2BF 3 .3H 2 O was reacted.
[0065]
This reaction has a relationship as shown in the following equation.
Figure 0004559570
[0066]
This reaction hardly proceeded as expected, and after 10 hours of reaction on a 60 ° C. hot water bath, analysis revealed that the ethanol-insoluble content was 3.23% and the content (from Zn) was 81.5%. The purity was low and could not be put to practical use.
[0067]
【The invention's effect】
For example, a solid product of zinc borofluoride hexahydrate used as an epoxy resin curing agent for resin coating on the inner surface of the can can be prepared and supplied easily and at low cost by a stoichiometric means.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between curing time and ethyl alcohol insoluble matter.

Claims (9)

亜鉛または亜鉛化合物とホウフッ化物とを反応させることによりホウフッ化亜鉛6水塩を製造するホウフッ化亜鉛6水塩の製造方法において、
原料に含まれる水分と反応生成水の和がホウフッ化亜鉛1モルに対して5.5〜6モルとすることを特徴とする高純度ホウフッ化亜鉛6水塩の製造方法。
In the method for producing zinc borofluoride hexahydrate, which produces zinc borofluoride hexahydrate by reacting zinc or a zinc compound with borofluoride,
A method for producing high-purity zinc borofluoride hexahydrate , characterized in that the sum of water and reaction product water contained in the raw material is 5.5 to 6 moles per mole of zinc borofluoride.
前記亜鉛化合物がフッ化亜鉛4水塩および/または無水フッ化亜鉛であることを特徴とする請求項1記載の高純度ホウフッ化亜鉛6水塩の製造方法。  The method for producing a high purity zinc borofluoride hexahydrate according to claim 1, wherein the zinc compound is zinc fluoride tetrahydrate and / or anhydrous zinc fluoride. 無水フッ化亜鉛はフッ化亜鉛4水塩を脱水して得られる無水フッ化亜鉛であることを特徴とする請求項1または2に記載の高純度ホウフッ化亜鉛6水塩の製造方法。  3. The method for producing high purity zinc borofluoride hexahydrate according to claim 1, wherein the anhydrous zinc fluoride is anhydrous zinc fluoride obtained by dehydrating zinc fluoride tetrahydrate. 前記ホウフッ化物は三フッ化ホウ素および/または三フッ化ホウ素錯塩であることを特徴とする請求項1ないし3のいずれか1項に記載の高純度ホウフッ化亜鉛6水塩の製造方法。The fluoroborate product manufacturing method of high purity zinc borofluoride hexahydrate according to any one of claims 1 to 3, characterized in that the boron trifluoride and / or boron trifluoride complexes. 前記三フッ化ホウ素水錯塩はBF3・H2O,2BF3・3H2O,BF3・2H2Oであることを請求項4記載の高純度ホウフッ化亜鉛6水塩の製造方法。The method for producing a high purity zinc borofluoride hexahydrate according to claim 4, wherein the boron trifluoride water complex salt is BF 3 · H 2 O, 2BF 3 · 3H 2 O, or BF 3 · 2H 2 O. 反応系に存在する水の総量がホウフッ化亜鉛1モルに対し、5.5モル以上6.25モル未満であることを特徴とする請求項1ないし5のいずれか1項記載の高純度ホウフッ化亜鉛6水塩の製造方法。  The high-purity borofluoride according to any one of claims 1 to 5, wherein the total amount of water present in the reaction system is 5.5 mol or more and less than 6.25 mol with respect to 1 mol of zinc borofluoride. A method for producing zinc hexahydrate. 反応系に存在する水の総量がホウフッ化亜鉛1モルに対し、5.75モル以上6モル以下であることを特徴とする請求項6に記載の高純度ホウフッ化亜鉛6水塩の製造方法。  The method for producing a high purity zinc borofluoride hexahydrate according to claim 6, wherein the total amount of water present in the reaction system is 5.75 mol or more and 6 mol or less with respect to 1 mol of zinc borofluoride. 請求項1〜7のいずれか1項に記載の方法で得たホウフッ化亜鉛6水塩をさらに、60℃以下で3日以上保管熟成してエチルアルコール不溶解分0.5%以下の高純度ホウフッ化亜鉛6塩を得ることを特徴とするホウフッ化亜鉛6水塩の製造方法。The zinc borofluoride hexahydrate obtained by the method according to any one of claims 1 to 7 is further stored and aged at 60 ° C or lower for 3 days or longer, and has a high purity of 0.5% or less insoluble in ethyl alcohol. method for producing a zinc fluoroborate hexahydrate, characterized in that to obtain a zinc fluoroborate hexahydrate. 常温で保管熟成することを特徴とする請求項8記載の高純度ホウフッ化亜鉛6水塩の製造方法。  9. The method for producing high purity zinc borofluoride hexahydrate according to claim 8, wherein the storage aging is performed at room temperature.
JP35083999A 1999-12-09 1999-12-09 Method for producing high purity zinc borofluoride hexahydrate Expired - Fee Related JP4559570B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP35083999A JP4559570B2 (en) 1999-12-09 1999-12-09 Method for producing high purity zinc borofluoride hexahydrate
TW089124088A TW496788B (en) 1999-12-09 2000-11-14 Production process of high purity zinc borofluoride hexahydrate
KR1020000074892A KR100673874B1 (en) 1999-12-09 2000-12-09 The method of preparing high purity ZnBF42 6H2O

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35083999A JP4559570B2 (en) 1999-12-09 1999-12-09 Method for producing high purity zinc borofluoride hexahydrate

Publications (2)

Publication Number Publication Date
JP2001163618A JP2001163618A (en) 2001-06-19
JP4559570B2 true JP4559570B2 (en) 2010-10-06

Family

ID=18413243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35083999A Expired - Fee Related JP4559570B2 (en) 1999-12-09 1999-12-09 Method for producing high purity zinc borofluoride hexahydrate

Country Status (3)

Country Link
JP (1) JP4559570B2 (en)
KR (1) KR100673874B1 (en)
TW (1) TW496788B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151023A (en) * 1984-12-25 1986-07-09 Hashimoto Kasei Kogyo Kk Purification of lithium fluoride complex salt

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB226491A (en) * 1923-12-20 1925-11-02 Albert Fritz Meyerhofer Process of producing metal compounds
JPS6133791A (en) * 1984-07-24 1986-02-17 Hitachi Ltd Flux for brazing
JPS61151024A (en) * 1984-12-25 1986-07-09 Hashimoto Kasei Kogyo Kk Production of high purity lithium fluoride complex salt
JP3569536B2 (en) * 1993-09-20 2004-09-22 関東電化工業株式会社 Production method of inorganic fluoride gas at room temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151023A (en) * 1984-12-25 1986-07-09 Hashimoto Kasei Kogyo Kk Purification of lithium fluoride complex salt

Also Published As

Publication number Publication date
TW496788B (en) 2002-08-01
KR100673874B1 (en) 2007-01-25
JP2001163618A (en) 2001-06-19
KR20010062292A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
US7674911B2 (en) Method for the production of hydrogen-bis (chelato) borates and alkali metal-bis (chelato) borates
JP4559570B2 (en) Method for producing high purity zinc borofluoride hexahydrate
JP4404570B2 (en) Method for producing inorganic iodine compound
JP3004291B2 (en) Method for producing crystalline layered phosphoric acid compound
JPS6296315A (en) Production of lithium borate
JP3211216B2 (en) Method for producing silver-containing crystalline zirconium phosphate
JPS62123163A (en) Production of methylol urea liquid
JPH1095609A (en) Lithium borofluoride monohydrofluoride and its production and production of anhydrous lithium borofluoride using the same
Dey et al. Water Soluble Na [Nb (O2) 3]• 2H2O as a New Molecular Precursor for Synthesis of Sodium Niobate
JPH04261189A (en) Production of tin trifluoromethanesulfonate
CN112574105B (en) Green synthesis method of oxine-copper technical
JPS58134061A (en) Production of glycine metal complex
US4640827A (en) Trihydrated potassium triborate and process for reacting two borates in the solid state
USH649H (en) Preparing titanium nitride powder
US5098682A (en) Dehydration of plutonium or neptunium trichloride hydrate
JPS6133178A (en) Manufacture of 3_amino_1,2,4_triazole
SU875794A1 (en) Method of obtaining phthalimides of alkali metals
CN112047312A (en) Preparation method of hydrazine sulfate
JP2000302438A (en) Synthesis of calcium aluminate gel and anion scavenger
JPH0665656B2 (en) Aluminum lactate manufacturing method
CN116924365A (en) Method for preparing ferric phosphate dihydrate by decomplexing ferric phosphate complex
JP2001019697A (en) Production of 2,4-pentanedionatodicarbonyl rhodium (i)
JPS6126495B2 (en)
CA1057933A (en) Hafnium-titanium-calcium-oxygen product
SU1386571A1 (en) Method of producing pentafluorobismuthate (iii) of alkali metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees