JPS61151023A - Purification of lithium fluoride complex salt - Google Patents

Purification of lithium fluoride complex salt

Info

Publication number
JPS61151023A
JPS61151023A JP28009184A JP28009184A JPS61151023A JP S61151023 A JPS61151023 A JP S61151023A JP 28009184 A JP28009184 A JP 28009184A JP 28009184 A JP28009184 A JP 28009184A JP S61151023 A JPS61151023 A JP S61151023A
Authority
JP
Japan
Prior art keywords
fluoride
complex salt
lithium
lithium fluoride
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28009184A
Other languages
Japanese (ja)
Other versions
JPH0416406B2 (en
Inventor
Masahiro Miki
三木 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HASHIMOTO KASEI KOGYO KK
Original Assignee
HASHIMOTO KASEI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HASHIMOTO KASEI KOGYO KK filed Critical HASHIMOTO KASEI KOGYO KK
Priority to JP28009184A priority Critical patent/JPS61151023A/en
Publication of JPS61151023A publication Critical patent/JPS61151023A/en
Publication of JPH0416406B2 publication Critical patent/JPH0416406B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To improve the purity of lithium fluoride complex salt to the level enabling the use as an electrolyte of high-energy battery, catalyst for organic synthetic reaction, catalyst for polymerization reaction, etc., and to decrease the water-content of the salt, by contacting a crude lithium fluoride complex salt with fluorine gas in an inert gas. CONSTITUTION:A crude complex salt composed of a fluoride of a group III-V element and lithium fluoride is made to contact with fluorine gas at -10-+100 deg.C in an inert gas. The fluoride of the group III-V element of the periodic table is preferably one or more fluorides of B, Si, Ti, Ge, Zr, Sn, P, V, As, Nb, Sb, Ta or Bi. The inert gas is preferably one or more gases selected from hydrogen fluoride, helium, neon, argon, nitrogen, carbon tetrafluoride, sulfur hexafluoride, oxygen difluoride, boron fluoride, nitrogen trifluoride and chlorine pentafluoride.

Description

【発明の詳細な説明】 本発明はフツ化リチウム錯塩の′N製法に関するもので
あって、本発明の方法によって得られる高純屁フッ化リ
チウム錯塩紘高エネルギーバッテリーの電解質、有機合
成反応における触媒、重合反応における触媒、半導体材
料のドーピング剤等としであるいはこれらの原料物質と
して工業上重要なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing lithium fluoride complex salts. It is industrially important as a catalyst in polymerization reactions, a doping agent for semiconductor materials, or as a raw material for these materials.

本発明者らはフツ化リチウム錯塩の精製法に閥してこれ
まで多数の研究を行なってきたが、上記した用途に用い
るKあたり最大の欠点はフツ化リチウム錯塩が吸湿性に
富み、製造工程上からあるいは保管取扱い上から不純物
として混入してくる水分等による品質の低下があること
であつtoこの水分量に関しては操作条件によっても異
なるが、粗フツ化リチウム錯塩が結晶状、塊状、粉状の
ごとき固体である場合には、大体α05〜1α00%の
水分を結晶水もしくは付着水の形で含んでおり、これら
の水分は各種の用途に供するにあたって嫌悪すべき欠点
である。
The present inventors have conducted numerous studies on purification methods for lithium fluoride complex salts, but the biggest drawback of K used in the above-mentioned applications is that lithium fluoride complex salts are highly hygroscopic, and the manufacturing process The quality of the crude lithium fluoride complex salt is degraded due to water entering as impurities from above or during storage and handling.The amount of water varies depending on the operating conditions, but the crude lithium fluoride complex salt may be in the form of crystals, lumps, or powder. When it is a solid, it contains approximately α05 to 1α00% of water in the form of crystallization water or adhering water, and this water is an unpleasant disadvantage when used for various purposes.

ここにおいて本発明者らは高純度フッ化リチウム錯塩の
割目すべき新規な製造法′f、開発するに至りtのであ
る。
Here, the present inventors have developed a novel method for producing a high purity lithium fluoride complex salt.

すなわち本発明者らは周期律表3〜5族元素のフツ化物
とフツ化リチウムとよりなる構造の粗錯塩を不活性ガス
中で、−10〜+100℃においてフッ素と接触させる
ことによって容易に且り経済的にツツ化リチウム錯塩を
精選しうろことを見出し九のである。
That is, the present inventors easily and easily reacted by contacting a crude complex salt having a structure consisting of a fluoride of a group 3 to 5 element of the periodic table and lithium fluoride with fluorine at -10 to +100°C in an inert gas. It was discovered that lithium complex salts can be economically selected.

周期律表3〜5族元素のフッ化物とはホウ素。The fluoride of elements from groups 3 to 5 of the periodic table is boron.

ケイ素、チタニウム、ジルコニウム、ゲルマニウム、ス
ズ、りン、バナジウム、ヒ素、ニオブ、アンチモノ、タ
ンタルおよびビスマスの単独IL<は混合物のフツ化物
であるが、本発明の上記した用途に必要な成分として主
九るフッ化物はフッ化ホウ素、フッ化チタニウム、フッ
化ジルコニウム。
Individual ILs of silicon, titanium, zirconium, germanium, tin, phosphorus, vanadium, arsenic, niobium, antimono, tantalum, and bismuth are fluorides of mixtures, but the main nine are necessary components for the above-mentioned uses of the present invention. The fluorides used are boron fluoride, titanium fluoride, and zirconium fluoride.

フッ化スズ、フッ化リン、フッ化ヒ素、フツ化アンチモ
ン等である。なお周期律表5〜5族元素のフッ化物とフ
ッ化すテクムとよりなる構造の錯塩の種類には、各種の
錯塩が存在するが、それらの中で代表的なものを例えば
ホウ素、チタニウム。
These include tin fluoride, phosphorus fluoride, arsenic fluoride, and antimony fluoride. There are various kinds of complex salts having a structure consisting of a fluoride of a group 5 or 5 element of the periodic table and a fluorinated techum, and representative ones among them include boron and titanium.

ジルコエフ人、スズ、リン、ヒ素、アンチモンの化合物
についてその無水物の形で化学式で示すと次のよう((
なる。
The chemical formula of Zirkoev, tin, phosphorus, arsenic, and antimony compounds in their anhydride form is as follows ((
Become.

ホウ素化合物 ; LiBF4 チタニウム化合物; LiTiFs、Lj−*TiFs
、1.+1sTiFyジルコニウム化合物; LiZr
Fs、Li5bFa、LiaZrFyスズ化合物 ; 
Li5nF3. Llz 5nFa、 Li5nFs 
Boron compound; LiBF4 Titanium compound; LiTiFs, Lj-*TiFs
, 1. +1sTiFy zirconium compound; LiZr
Fs, Li5bFa, LiaZrFy tin compound;
Li5nF3. Llz5nFa, Li5nFs
.

LixSnFa l Lit 5nThリン化合物 ;
 Li5bFa、 Liarsヒ素化合物 HLiAs
F5a、 LiA−sFsアンチモノ化合物; Li5
bF a # L12SbF5 e Lis 5bFs
 。
LixSnFa l Lit 5nTh phosphorus compound;
Li5bFa, Liars arsenic compound HLiAs
F5a, LiA-sFs antimono compound; Li5
bF a # L12SbF5 e Lis 5bFs
.

Li5bsFy 、 Ia&5bFs 、 IaaSz
Fs。
Li5bsFy, Ia&5bFs, IaaSz
Fs.

Li5bFa、Li超’bF7 、 Li5bsFsx
Li5bFa, Li super'bF7, Li5bsFsx
.

LizSbFls、LiaSbsFo。LizSbFls, LiaSbsFo.

Li5bF!1g これに対して本発明の目的とする高純度フッ化リチウム
錯塩というのは下記のような化学式で表わされる化合物
である。
Li5bF! 1g On the other hand, the high purity lithium fluoride complex salt targeted by the present invention is a compound represented by the following chemical formula.

LiBFa、 LixSiFs、 LitTiFa、 
Li5bFa。
LiBFa, LixSiFs, LitTiFa,
Li5bFa.

LizGeFs、 Li、5nFs、 LiPFa、 
LiVFa、 LiAsF5゜Li5bFas、 Li
5bFa、 LiTaF5. LiB1.Fs、 Li
、zVFy。
LizGeFs, Li, 5nFs, LiPFa,
LiVFa, LiAsF5゜Li5bFas, Li
5bFa, LiTaF5. LiB1. Fs, Li
,zVFy.

LizNbFy、 LizSbFy、 LizTaFy
 、およびLizBiFy前者の化学式と後者の化学式
とを比べて見ると、いる。仁のような低次フッ素化合物
は高次フッ素化合物の不#!I″jI!lJとして前記
の水分ならびにオキシフッ素化合物等とともに粗フツ化
リチウム錯塩(粗錯塩)に含まれていることが多い。し
かしながら本発明にいう粗細塩中のこれら不純物の総量
は該錯塩中10重量−以下であることが必要であり、不
純物量が10重tgbより異常に多くなると本発朋にい
うフッ素との接触の際の発熱くよって反応温度−10〜
+100℃が保持し難くなシ、操作上危険を伴なうばか
りか、フッ素の損失を伴ない工業的に有利でなくなるの
である。
LizNbFy, LizSbFy, LizTaFy
, and LizBiFy. Comparing the chemical formula of the former and the latter, there is. Low-order fluorine compounds like nits are not compatible with higher-order fluorine compounds! I''jI!lJ is often contained in crude lithium fluoride complex salts (coarse complex salts) together with the above-mentioned water and oxyfluorine compounds. However, the total amount of these impurities in the coarse salts referred to in the present invention is If the amount of impurities is abnormally greater than 10 weight Tgb, the reaction temperature will be lower than -10 to
It is difficult to maintain a temperature of +100°C, which is not only operationally dangerous, but also causes loss of fluorine, which is not industrially advantageous.

この反応温に一10〜+100℃は不活性ガス中でフッ
素を用いて上記した目的物九る高次フッ素化合物を二次
的に分解させることなく高純度品として取得できる温度
である。即ち一10℃以下ではフッ素化反応が非常に遅
くなって実質的に不純物の減少処理が困薙となり、ま九
十100℃以上では上記の高次フッ素化合物中の揮発性
の成分の一部が放散するような副反応を惹起して製品の
純度が却って低下する傾向を示すのである。粗細塩中の
不純物とフッ素との反応については次のような反応が総
合して起るものである。
This reaction temperature ranges from -10°C to +100°C, which is the temperature at which high-purity products can be obtained using fluorine in an inert gas without secondary decomposition of the target higher-order fluorine compound. That is, at temperatures below -10°C, the fluorination reaction becomes extremely slow, making it virtually impossible to reduce impurities, and at temperatures above 9100°C, some of the volatile components in the above-mentioned higher fluorine compounds are removed. This tends to cause side reactions such as dissipation, and to the contrary, the purity of the product decreases. Regarding the reaction between impurities in the coarse salt and fluorine, the following reactions occur collectively.

(リ 上記の低次フッ素化合物とフッ素とは付加反応を
起して高次フッ素化合物の含i′t−向上させる。
(I) The above-mentioned lower fluorine compound and fluorine cause an addition reaction to improve the content of the higher fluorine compound.

(2)  金属オキシフツ化物、金ti4酸化物、塩基
性金属フッ化物はフッ素化反応によって消去できる。例
えばMf:金属元素とするとMOF。
(2) Metal oxyfluorides, gold Ti4 oxides, and basic metal fluorides can be eliminated by fluorination reactions. For example, Mf: MOF is a metal element.

MOF!、 MOF3のごときオキシフッ化物はMOF
n + 2 F 2−〉1vLFrl+ 2−1− O
F2の如く反応し、111素含vftが減少する。
MOF! , Oxyfluoride such as MOF3 is MOF
n + 2 F 2-〉1vLFrl+ 2-1- O
It reacts like F2, and the vft containing 111 elements decreases.

(3)  水分(付着水ま几は結晶水)とは次のように
反応してこれを除去することができる。
(3) Moisture (adhered water is crystallized water) can be removed by reacting with it as follows.

HzO+ 2F!−〉2HF + OF2酸素のフッ化
物は低沸点気体(OFgはbp、−145゜0.01F
雪はbp、−57℃)であり、これは容易に除去できる
HzO+ 2F! ->2HF + OF2 Oxygen fluoride is a low boiling point gas (OFg is bp, -145°0.01F
snow is bp, -57°C), which can be easily removed.

本発明の方法は粗錯塩とフッ素とを接触させるに轟り、
反応源ct”−io〜+100℃に制御する必要がある
九め、フッ素を不活性ガスで希釈して適当な速さで固体
−気体間の反応を行なうtのである。不活性ガスとして
は、ヘリウム、ネオン、アルゴン、フッ化氷菓、六フッ
化イオウ、四フツ化炭素、六フツ化エタン、三フツ化窒
*、窒素、二フツ化酸素、フッ化ホウ素、五フツ化塩素
等である。
The method of the present invention involves contacting a crude complex salt with fluorine,
The reaction source must be controlled at ct''-io to +100°C.Ninth, fluorine is diluted with an inert gas to carry out the solid-gas reaction at an appropriate rate.As the inert gas, These include helium, neon, argon, fluoride ice cream, sulfur hexafluoride, carbon tetrafluoride, ethane hexafluoride, nitrogen trifluoride*, nitrogen, oxygen difluoride, boron fluoride, and chlorine pentafluoride.

本発明の方法は、減圧、常圧もしくは加圧下でいずれの
場合にも固体−気体の反応が行なわれるのであシ、その
様式は単なる流通方式とか充填方式のほか流動床方式、
流動方式、固体の機械的攪拌方式もしくは固体の回転式
攪拌方式の反応器を用いることによって行なうことがで
きる0本発明の方法に:よる反応操作はフッ素の使用量
とか濃度、不活性ガスの種類と性質および反応条件にも
よるが、回分式反応であるならば数秒〜数十時間内で達
成される。反応終了後未反応のフッ素は不活性ガスを反
応系に流通させることによって除去できる。以上に示し
た方法□は回分法のみならず連続法でも実施できるもの
であり、特に固体−気体を接触させる本発明の方法は連
続法に適しているのである。
In the method of the present invention, solid-gas reactions are carried out under reduced pressure, normal pressure, or increased pressure, and the method is not only a simple flow method or a filling method, but also a fluidized bed method,
The method of the present invention, which can be carried out using a fluidized reactor, a solid mechanical stirring method, or a solid rotary stirring reactor, depends on the amount and concentration of fluorine used, and the type of inert gas. Depending on the properties and reaction conditions, a batch reaction can be achieved within several seconds to several tens of hours. After the reaction is completed, unreacted fluorine can be removed by passing an inert gas through the reaction system. The method □ shown above can be carried out not only in a batch method but also in a continuous method, and the method of the present invention in which a solid and a gas are brought into contact is particularly suitable for a continuous method.

本発明の方法にぶつて精製され友高純度ツツ化リチウム
錯塩は前記したごとく、純度の高−而も高次フッ素化さ
れたフツ化リチウム錯塩であり、その製品はいずれも美
しいさらさらした白色の結晶状あるいは粉末状である。
As mentioned above, the highly purified lithium fluoride complex salt purified by the method of the present invention is a highly purified lithium fluoride complex salt, which is highly fluorinated. It is in crystalline or powder form.

この製品は爾後の取扱いに対して充分な配慮をすれば製
品中の水分は(L02−以下、とくに多くの場合は[1
00001〜α01−の範囲であり実質的に無水の製品
として用途の広いものである。製品中の水分の分析はカ
ールフッシャー法のほか機械分析によって定量できる。
If this product is handled with sufficient care, the moisture in the product will be (L02- or less, especially in many cases [1
It is in the range of 00001 to α01- and has a wide range of uses as a substantially anhydrous product. Moisture in products can be quantified by mechanical analysis as well as the Karl Fuscher method.

さらに製造工程中において容器、その他取扱い機器等か
ら混入する不純物がなく、正常な合成方法忙よって製造
され次原料粗錯塩を用いる場合には目的物の純度が99
−以上、とくに多くの場合には99.5〜100%に7
)化リチウム錯塩が取得できる。
Furthermore, if there are no impurities mixed in from containers or other handling equipment during the manufacturing process, and if the product is manufactured using a normal synthetic method and the next raw material crude complex salt is used, the purity of the target product will be 99%.
- more than 7, especially in many cases 99.5 to 100%
) lithium complex salt can be obtained.

次に本発明の方法に関する技術的内容を実施例について
さらに具体的に説明する仁とにする。
Next, the technical content regarding the method of the present invention will be explained in more detail with reference to Examples.

本発明の方法はその趣旨と精神とを逸脱せざる限り、そ
の実施態様を任意に変更して実施しうることは当然でI
h5、以下の実施例のみに限定して解釈されるべきでな
いのは当然である。
It goes without saying that the method of the present invention can be carried out by arbitrarily changing its embodiments without departing from the spirit and spirit thereof.
h5. It goes without saying that the present invention should not be interpreted as being limited to the following examples.

実施例1 テトラフルオロエチレン製容器にフッ化リチウム545
ft入れ、ついでフッ化水素5000jFt−入れて溶
解させる。この痔液に三フッ化ホウ素(BF3)ガスを
やや加圧して流通させる。ホウフツ化リチウムの結晶が
充分く析出し次のち加温してフッ化水素金留去する。得
られた粗ホウフッ化リチウムは1200fで、このもの
線水分’j’0.1%含んでい友、このものを回転臘混
合器の中に入れ、温度50〜50℃でアルゴン−窒素ガ
スで希釈したフッ素ガ、X (F210%)’t 10
1/hrで4時間流通させた後、更に乾燥窒素ガスt−
10j/hrで50分流通させ未反応のフッ素ガスを追
い出す。ついで結晶を精製窒素気流中で粉砕して、ポリ
テトラフルオロエチレン製瓶に密封する。このようにし
て得られたホラクツ化リチウムの純度は99.85 %
で、不純物としての水はs ppmである高純度品であ
った。
Example 1 Lithium fluoride 545 in a tetrafluoroethylene container
ft, and then 5000jFt of hydrogen fluoride to dissolve it. Boron trifluoride (BF3) gas is passed through the hemorrhoid fluid under slight pressure. Crystals of lithium borofluoride are sufficiently precipitated, and then the gold hydrogen fluoride is distilled off by heating. The obtained crude lithium fluoroborate was 1200 f and contained 0.1% linear moisture. It was placed in a rotary mixer and heated with argon-nitrogen gas at a temperature of 50 to 50°C. Diluted fluorine gas, X (F210%)'t 10
After flowing at 1/hr for 4 hours, dry nitrogen gas t-
It is circulated at 10j/hr for 50 minutes to drive out unreacted fluorine gas. The crystals are then ground in a stream of purified nitrogen and sealed in polytetrafluoroethylene bottles. The purity of the lithium holactide obtained in this way is 99.85%.
The water as an impurity was a high purity product with sp ppm.

実施例2 無水リン酸とフッ化水素との反応によって作つ九65〜
70%のへキサフルオロリン散液2000 fに水酸化
リチウム525ft−水冷下に攪拌しつつ投入する。投
入終了後約2時間攪拌を続は友後、反応混合物tp遇し
、炉液を減圧11縮するとペースト状物が得られた。こ
のペースト状物を白金皿に移し、高真空下で乾燥すると
白色結晶塊として、粗ヘキサフルオ四リン酸リチウム(
Li、PFa )が1500〜1401N’得られた。
Example 2 965- produced by reaction of phosphoric anhydride and hydrogen fluoride
525 ft of lithium hydroxide was added to 2000 ft of 70% hexafluoroline dispersion while stirring while cooling with water. After stirring for about 2 hours after the addition was complete, the reaction mixture was poured into the reactor and the furnace solution was compressed under reduced pressure to obtain a paste. This paste-like material is transferred to a platinum dish and dried under high vacuum to form a white crystal mass (crude lithium hexafluorotetraphosphate (
Li, PFa) was obtained from 1500 to 1401 N'.

このものは不純物としてLiJ’OzF 2α1チ、 
HzOQ、2係が含まれていた。このものを粉砕し、円
筒式攪拌混合型反応器に投入し、アルゴンで希釈したフ
ッ素ガス(F261) t”時間あ九シ10〜15jで
9時間流通させ、その錬、乾燥窒素ガス′t−10!通
して未反応F2ガスを除去する。このようにして得られ
九六フツ化りン絨リチウムはu雪o appmt″含む
高純度へキサフルオロリン酸リチウムであつ友。
This product contains LiJ'OzF 2α1 as an impurity,
HzOQ, 2nd section was included. This material was pulverized, put into a cylindrical stirring and mixing reactor, and passed through fluorine gas (F261) diluted with argon for 9 hours at 10 to 15J for 9 hours. 10! to remove unreacted F2 gas.The thus obtained lithium fluoride is a high-purity lithium hexafluorophosphate containing 96 fluoride appmt''.

実施例3 ヘキサフルオロヒ酸水洛准と水酸化リチウムとより常法
によって作られたヘキサフルオロヒ酸すテクム含水塩(
Li5bF@・5HzO) t 50〜70℃で減圧乾
燥すれば、水分[11%の粗錯塩が得られる。この粗錯
塩を構製攪拌式反応器に入れ、攪拌しながらヘリウムで
希釈したフッ素ガス(F2t5%)を通じて実施例2と
同じように処理すると、HzOが2゜ppmの高純度へ
キサフルオロヒ酸リチウムが得られ比。
Example 3 Hexafluoroarsenic acid TECUM hydrate prepared from hexafluoroarsenic acid hydrate and lithium hydroxide by a conventional method (
Li5bF@・5HzO) t When dried under reduced pressure at 50 to 70°C, a crude complex salt containing 11% of water is obtained. When this crude complex salt was placed in a stirred reactor and treated in the same manner as in Example 2 by passing fluorine gas (F2t 5%) diluted with helium while stirring, high purity lithium hexafluoroarsenate with HzO of 2 ppm was produced. Obtained ratio.

実施例4 三フッ化アンチそンとフッ化カリウムとの錯塩(KSb
F4)の水溶液に過塩素酸リチウムまたはホウフッ化す
テクムの水amを加えて複分解を行なわせて、テトラフ
ルオロアンチモン酸リチウムの水浴液を作夛、ついでこ
れを減圧濃縮して、粗テト2フルオロアンチモン酸リチ
ウム(Li5bF4) 1i一つくる。このものは若干
の塩基性塩等ならびに水分をα2%含んでいた。仁のも
のt−501とって、回転方式の反応器に入れ、実施例
2と同じように処理する。この処理によってアンチ七ン
化合物はヘキサフルオロアンチモン酸リチウムに変化す
ると共に水分は除去される。得られ九へキサフルオロア
ンチモン酸リチウムはLi5bF@とじて99.819
6 Hzo 50ppmの純度を有していた。
Example 4 Complex salt of antisone trifluoride and potassium fluoride (KSb
Add lithium perchlorate or Tecum water am to fluoroborate to the aqueous solution of F4) to perform double decomposition to prepare a water bath solution of lithium tetrafluoroantimonate, which is then concentrated under reduced pressure to obtain crude tetrafluoroantimony. Bring 1i of lithium oxide (Li5bF4). This product contained some basic salts and water at α2%. The kernel T-501 was put into a rotary reactor and treated in the same manner as in Example 2. Through this treatment, the anti-septane compound is converted into lithium hexafluoroantimonate, and at the same time, water is removed. The obtained lithium hexafluoroantimonate is 99.819 as Li5bF@
It had a purity of 6 Hzo 50 ppm.

このように低次フツ化物から高次フツ化物へ、また同時
に不純物除去をも行ない高純度フッ化リチウム錯塩をう
る方法KS本発明の方法が便利に適用できるものである
As described above, the method of the present invention, which converts a lower fluoride to a higher fluoride and simultaneously removes impurities to obtain a highly purified lithium fluoride complex salt, can be conveniently applied.

Claims (3)

【特許請求の範囲】[Claims] (1)周期律表3〜5族元素のフツ化物とフツ化リチウ
ムとよりなる構造の粗錯塩を不活性ガス中でフツ素ガス
と−10〜+100℃において接触させることを特徴と
するフツ化リチウム錯塩の精製法
(1) Fluorization characterized by contacting a crude complex salt with a structure consisting of a fluoride of a group 3 to 5 element of the periodic table and lithium fluoride with fluorine gas at -10 to +100°C in an inert gas. Purification method of lithium complex salt
(2)周期律表3〜5族元素のフツ化物がホウ素、ケイ
素、チタニウム、ゲルマニウム、ジルコニウム、スズ、
リン、バナジウム、ヒ素、ニオブ、アンチモン、タンタ
ルおよびビスマスのフツ化物よりなる群からえらばれた
少なくとも一つのフツ化物である特許請求の範囲(1)
記載のフツ化リチウム錯塩の精製法
(2) Fluorides of elements from groups 3 to 5 of the periodic table include boron, silicon, titanium, germanium, zirconium, tin,
Claim (1) which is at least one fluoride selected from the group consisting of fluorides of phosphorus, vanadium, arsenic, niobium, antimony, tantalum, and bismuth.
Purification method of lithium fluoride complex salt described
(3)不活性ガスはフツ化水素ガス、ヘリウム、ネオン
、アルゴン、窒素、四フツ化炭素、六フツ化イオウ、二
フツ化酸素、フツ化ホウ素、三フツ化窒素および五フツ
化塩素よりなる群からえらばれた少なくとも一つの不活
性ガスである特許請求の範囲(1)記載のフツ化リチウ
ム錯塩の精製法
(3) The inert gas consists of hydrogen fluoride gas, helium, neon, argon, nitrogen, carbon tetrafluoride, sulfur hexafluoride, oxygen difluoride, boron fluoride, nitrogen trifluoride, and chlorine pentafluoride. A method for purifying a lithium fluoride complex salt according to claim (1), wherein at least one inert gas selected from the group
JP28009184A 1984-12-25 1984-12-25 Purification of lithium fluoride complex salt Granted JPS61151023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28009184A JPS61151023A (en) 1984-12-25 1984-12-25 Purification of lithium fluoride complex salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28009184A JPS61151023A (en) 1984-12-25 1984-12-25 Purification of lithium fluoride complex salt

Publications (2)

Publication Number Publication Date
JPS61151023A true JPS61151023A (en) 1986-07-09
JPH0416406B2 JPH0416406B2 (en) 1992-03-24

Family

ID=17620188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28009184A Granted JPS61151023A (en) 1984-12-25 1984-12-25 Purification of lithium fluoride complex salt

Country Status (1)

Country Link
JP (1) JPS61151023A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227306A (en) * 1985-07-26 1987-02-05 Morita Kagaku Kogyo Kk Method for synthesizing fluoride
EP0539892A1 (en) * 1991-10-31 1993-05-05 Solvay Fluor und Derivate GmbH Separation of water and/or hydrocarbons from hydrogen fluoride
JP2001163618A (en) * 1999-12-09 2001-06-19 Stella Chemifa Corp Production process of high purity zinc borofluoride hexahydrate
WO2000007937A3 (en) * 1998-08-06 2001-08-16 Basf Ag Method for producing highly pure libf¿4?
JP2009215138A (en) * 2008-03-12 2009-09-24 Stella Chemifa Corp Method of purification of metal fluoride
JP2012030984A (en) * 2010-07-28 2012-02-16 Ube Industries Ltd Water/organic solvent mixed solution of perfluoro inorganic acid lithium, and method of manufacturing the same
CN104310421A (en) * 2014-10-20 2015-01-28 多氟多化工股份有限公司 Preparation method of high-purity lithium tetrafluoroborate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227306A (en) * 1985-07-26 1987-02-05 Morita Kagaku Kogyo Kk Method for synthesizing fluoride
EP0539892A1 (en) * 1991-10-31 1993-05-05 Solvay Fluor und Derivate GmbH Separation of water and/or hydrocarbons from hydrogen fluoride
US5585085A (en) * 1991-10-31 1996-12-17 Solvay Fluor Und Derivate Gmbh Removal of water and/or hydrocarbons from hydrogen fluoride
WO2000007937A3 (en) * 1998-08-06 2001-08-16 Basf Ag Method for producing highly pure libf¿4?
US6537512B1 (en) 1998-08-06 2003-03-25 Basf Aktiengesellschaft Method for producing highly pure LiBF4
JP2001163618A (en) * 1999-12-09 2001-06-19 Stella Chemifa Corp Production process of high purity zinc borofluoride hexahydrate
JP4559570B2 (en) * 1999-12-09 2010-10-06 ステラケミファ株式会社 Method for producing high purity zinc borofluoride hexahydrate
JP2009215138A (en) * 2008-03-12 2009-09-24 Stella Chemifa Corp Method of purification of metal fluoride
JP2012030984A (en) * 2010-07-28 2012-02-16 Ube Industries Ltd Water/organic solvent mixed solution of perfluoro inorganic acid lithium, and method of manufacturing the same
CN104310421A (en) * 2014-10-20 2015-01-28 多氟多化工股份有限公司 Preparation method of high-purity lithium tetrafluoroborate

Also Published As

Publication number Publication date
JPH0416406B2 (en) 1992-03-24

Similar Documents

Publication Publication Date Title
US4543242A (en) Process of preparing nitrogen trifluoride by gas-solid reaction
Christe et al. On the syntheses and properties of some hexafluorobismuthate (V) salts and their in the metathetical synthesis of NF+ 4 salts
JP3798560B2 (en) Purification method of lithium hexafluorophosphate
US6645451B1 (en) Method of preparing inorganic pentafluorides
JPS61151023A (en) Purification of lithium fluoride complex salt
US2836622A (en) Preparation of carbonyl fluoride
MX2010013596A (en) Bromine-facilitated synthesis of fluoro-sulfur compounds.
CA1094291A (en) Commercial production of transition metal sulfides from their halides
JPS61151024A (en) Production of high purity lithium fluoride complex salt
Clark et al. SOME REACTIONS OF CHROMIUM TETRAFLUORIDE
JP2009512622A (en) Preparation method of electrolyte
EP2628709A1 (en) Method for producing phosphorus pentafluoride
EP0816288A1 (en) Preparation of lithiumhexafluorometallates
US3848064A (en) Production of sulfur tetrafluoride from sulfur chlorides and fluorine
JP4197783B2 (en) Method for producing fluorinated halogen compound
JP2001122605A (en) Method for production of high purity lithium hexafluorophosphate
JP3494344B2 (en) Method for producing lithium hexafluorophosphate
US4374108A (en) Process of preparing alkali monofluorophosphate
Lau et al. The reaction of chlorine monofluoride with selenium dioxide, tetrachloride and sulphur tetrachloride
JPS60251109A (en) Manufacture of lithium hexafluorophosphate
AT284787B (en) Process for the production of metal nitrides
JPS58181710A (en) Manufacture of alkali monofluorophosphate
JPH0640710A (en) Production of high-purity phosphorus
JPS611662A (en) Manufacture of (trifluoromethyl)pyridine
US4034069A (en) Method of preparing arsenic trifluoride

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term