JP4559472B2 - Turbo fan, air conditioner - Google Patents

Turbo fan, air conditioner Download PDF

Info

Publication number
JP4559472B2
JP4559472B2 JP2007511737A JP2007511737A JP4559472B2 JP 4559472 B2 JP4559472 B2 JP 4559472B2 JP 2007511737 A JP2007511737 A JP 2007511737A JP 2007511737 A JP2007511737 A JP 2007511737A JP 4559472 B2 JP4559472 B2 JP 4559472B2
Authority
JP
Japan
Prior art keywords
runner
blade
hub
resin
main plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007511737A
Other languages
Japanese (ja)
Other versions
JPWO2007040236A1 (en
Inventor
尚史 池田
敦史 枝吉
一隆 鈴木
勝己 柴山
中島  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2007040236A1 publication Critical patent/JPWO2007040236A1/en
Application granted granted Critical
Publication of JP4559472B2 publication Critical patent/JP4559472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Description

この発明は、熱可塑性樹脂にて成形されるターボファン及びターボファンを搭載した空気調和機に関するものである。   The present invention relates to a turbo fan molded from a thermoplastic resin and an air conditioner equipped with the turbo fan.

従来の熱可塑性樹脂にて成形されるターボファンは、注入した樹脂の湯道で構成されるリブによってターボファンの剛性を確保することで、肉厚を薄くして軽量化を図るものがあった(例えば、特許文献1参照)。
また、翼と主板の交差部に凹所を設けることで材料を低減し、コスト低減を図るものもあった(例えば、特許文献2参照)。
また、複数の翼の断面形状をシュラウドから主板へ向け徐々に肉厚が厚く拡大される相似形状とし、各翼の隣接距離をシュラウドから主板へ向け徐々に狭くすることで、ターボファンの吹出口にてシュラウドから主板で吹出流れの放出渦に時間差を生じさせ、騒音共振等を防止し低騒音化を図るものもあった(例えば、特許文献3参照)。
また、羽根を中空で翼厚の大きな翼形として、成形時の冷却硬化時間の短縮と冷却硬化時の変形歪み防止し、且つ、プラスチック材料の削減を図るものもあった(例えば、特許文献4参照)。
Some conventional turbofans molded from thermoplastic resin are designed to reduce the thickness and weight by securing the rigidity of the turbofan with ribs made of injected resin runners. (For example, refer to Patent Document 1).
Moreover, there existed some which reduced material by providing a recess in the intersection part of a wing | blade and a main plate, and aimed at cost reduction (for example, refer patent document 2).
In addition, the cross-sectional shape of multiple blades is a similar shape that gradually increases in thickness from the shroud to the main plate, and the adjacent distance of each blade is gradually narrowed from the shroud to the main plate, so that the blower outlet of the turbofan In some cases, a time difference is generated in the discharge vortex of the blown flow from the shroud to the main plate to prevent noise resonance and the like (for example, see Patent Document 3).
In addition, there are some blades that are hollow and have a large blade thickness to shorten the cooling and hardening time during molding, prevent deformation distortion during cooling and hardening, and reduce plastic materials (for example, Patent Document 4). reference).

特許第3131625号公報(第3、4頁、図1、図3)Japanese Patent No. 3131625 (3rd, 4th page, FIG. 1, FIG. 3) 実開平4−116698号公報(第1頁、図1)Japanese Utility Model Publication No. 4-116698 (first page, FIG. 1) 特許第3544325号公報(第7〜9頁、図5、図6)Japanese Patent No. 3544325 (7th to 9th pages, FIGS. 5 and 6) 実開平4−116699号公報(第1頁、図1)Japanese Utility Model Publication No. 4-116699 (first page, FIG. 1)

従来の特許文献1によるターボファンでは、主板の薄肉化のための補強と樹脂の湯道を兼ねて成形性を向上するリブを設けているのであるが、成形時にリブから流れ出た樹脂が合流する樹脂合流部の強度は弱くなる。即ち、隣り合うリブからほぼ同じ距離のところが樹脂合流部となり、この部分で強度が弱い。この従来装置では、ブレードの先端部の近傍を通り径方向に伸びるブレード先端側リブと、ブレードの後端部の近傍を通り径方向に伸びるブレード後端側リブと、ブレード先端側リブとブレード後端側リブとを連結する連結リブと、ブレード補強リブを設け、これらのリブに対して1つの樹脂注入口から樹脂を注入する構成である。
樹脂注入口から注入された樹脂が各リブに流れる際、ブレード先端側リブ及びブレード後端側リブでは回転中心側と外周側の径方向で2方向に流れ、連結リブでは径方向成分と周方向成分とを有する方向に流れ、ブレード補強リブでは連結リブと反対の方向に流れる。即ち、1つの注入口から注入された樹脂は、径方向に伸びる複数のリブを流れ、このリブから流れ出た樹脂が互いに当接して樹脂合流部を形成することになる。樹脂合流部は、隣接する樹脂注入口から流れ出た樹脂との間にも形成されるため、ターボファン全体として樹脂合流部が数多くできてしまい、ターボファンの強度の向上に限界があった。また、通常、回転軸近くの主板の凸部に複数のモータ冷却用の穴が設けられるのであるが、樹脂合流部が強度の低い開口部であるモータ冷却穴を通る場合には、さらに強度が低くなってしまう。例えば、輸送時などにターボファンに対して回転軸に平行な方向の衝撃が付加されるとモータ冷却穴やその周辺の樹脂合流部で亀裂を生じ、この強度の低い部分が連結していると、生じた亀裂が広がるという問題点があった。また、この湯道の構成では樹脂合流部がファンの外周端にまで伸びる部分もあり、樹脂合流部で生じた亀裂が外周端にまで伸びて破断しやすく、製品品質が低下するという問題点があった。
In the conventional turbofan according to Patent Document 1, ribs that improve the moldability by providing reinforcement for thinning the main plate and the runner of the resin are provided, but the resin that flows out from the ribs at the time of molding merges. The strength of the resin junction is weakened. That is, the resin joining portion is located at substantially the same distance from adjacent ribs, and the strength is weak at this portion. In this conventional apparatus, a blade front end rib that extends in the radial direction through the vicinity of the blade front end, a blade rear end rib that extends in the radial direction through the vicinity of the rear end of the blade, a blade front end rib, and a blade rear A connection rib for connecting the end ribs and a blade reinforcing rib are provided, and resin is injected into these ribs from one resin injection port.
When the resin injected from the resin injection port flows to each rib, the blade leading end rib and the blade trailing end rib flow in two directions in the radial direction on the rotation center side and the outer peripheral side, and the connecting rib has a radial component and a circumferential direction. The blade reinforcing rib flows in the direction opposite to the connecting rib. That is, the resin injected from one injection port flows through a plurality of ribs extending in the radial direction, and the resins flowing out from the ribs come into contact with each other to form a resin joining portion. Since the resin merging portion is also formed between the resin flowing out from the adjacent resin inlet, a large number of resin merging portions are formed in the entire turbofan, and there is a limit to improving the strength of the turbofan. Usually, a plurality of motor cooling holes are provided in the convex portion of the main plate near the rotating shaft. However, when the resin confluence portion passes through the motor cooling hole, which is an opening having a low strength, the strength is further increased. It will be lower. For example, if an impact in the direction parallel to the rotation axis is applied to the turbo fan during transportation, etc., cracks will occur in the motor cooling hole and the resin junction around it, and this low strength part is connected There was a problem that the cracks that occurred were spread. In addition, in this runner configuration, there is a part where the resin merge part extends to the outer peripheral edge of the fan, and cracks generated at the resin merge part easily extend to the outer peripheral edge and break, resulting in a problem that the product quality deteriorates. there were.

また、翼と主板の交差部に凹所を設けた特許文献2に示された構成では、ターボファンが回転する際に主板表面に沿った流れが生じ、この主板表面の流れが凹所の上流側端のコーナRを離脱後、下流側端のコーナRに衝突し、圧力変動より異音を発生するという問題点があった。   Further, in the configuration shown in Patent Document 2 in which a recess is provided at the intersection of the blade and the main plate, a flow along the main plate surface is generated when the turbofan rotates, and the flow on the main plate surface is upstream of the recess. After leaving the corner R at the side end, it collided with the corner R at the downstream end, and abnormal noise was generated due to pressure fluctuation.

また、特許文献3に示されたターボファンでは、翼が中空構造ではなく、さらに翼の各所で大幅に厚さの差があるので、成形時に翼各所で温度差が生じてしまう。このため、湯回りムラによって空洞発生や肉厚の局所的な薄肉化(以下、ヒケと称する)が発生し、成形性が悪化するという問題点があった。また、翼全体が樹脂で形成されるので、中空形状の翼と比較すると多くの樹脂が必要でありファン重量及びコストが高くなる。さらに、これにつれて搭載される空気調和機も重くなり、作業者の運搬性が悪いという問題点があった。   Further, in the turbofan disclosed in Patent Document 3, since the blades are not hollow, and there are significant differences in thickness at each part of the blades, a temperature difference occurs at each part of the blades during molding. For this reason, there has been a problem that the occurrence of cavities or local thinning of the wall thickness (hereinafter referred to as sink) occurs due to unevenness of the hot water, and the moldability deteriorates. In addition, since the entire blade is formed of resin, a larger amount of resin is required as compared with a hollow blade, which increases the fan weight and cost. Furthermore, the air conditioner mounted becomes heavier along with this, and there is a problem that the transportability of workers is poor.

また、特許文献4に掲載された遠心ファンは、翼厚の大きい中空羽根としているが、翼厚が厚すぎるとファンの空気の通過面積が縮小するため、通過風速の増加により騒音が大きくなる可能性がある。また、回転軸に垂直な翼断面がすべて同じであり、射出成形する際の成形型から翼を抜く場合に抜き勾配がなく、樹脂が成形型に着いて割れてしまう恐れがあるという問題点があった。   The centrifugal fan described in Patent Document 4 is a hollow blade having a large blade thickness. However, if the blade thickness is too thick, the air passage area of the fan is reduced, so that noise may increase due to an increase in the passing wind speed. There is sex. In addition, the blade cross-sections perpendicular to the rotating shaft are all the same, there is no draft when the blade is pulled out from the mold during injection molding, and there is a possibility that the resin may come into the mold and break. there were.

この発明は上述のような問題点を解消するためになされたもので、熱可塑性樹脂にて成形するターボファンの成形性の向上と強度向上を図ることで、運搬時などの破断を防止でき、信頼性の高いターボファン及びターボファンを搭載した空気調和機を得ることを目的とする。
また、低騒音化を図ることのできるターボファン及びターボファンを搭載した空気調和機を得ることを目的とする。
This invention was made to solve the above problems, and by improving the moldability and strength of the turbofan molded with thermoplastic resin, it can prevent breakage during transportation, The purpose is to obtain a highly reliable turbo fan and an air conditioner equipped with the turbo fan.
It is another object of the present invention to provide a turbo fan capable of reducing noise and an air conditioner equipped with the turbo fan.

この発明に係るターボファンは、円盤状の主板と、前記主板の中央部を回転軸方向に突出させて成る凸状のハブと、前記主板の外周側平板部を基部とし前記ハブの突出方向に立設する複数の翼と、前記ハブに複数設けられ、前記ハブが囲む凸状の空間に配置されるモータを冷却するモータ冷却穴と、前記ハブに放射状に設けられ成形時に熱可塑性樹脂を流入させることで前記ハブを形成する複数のハブ用湯道と、前記成形時に隣り合う前記ハブ用湯道から流れ出た前記熱可塑性樹脂が当接して形成される樹脂合流部と、を備え、前記モータ冷却穴は前記樹脂合流部を避けるように配置されたことを特徴とするものである。   A turbofan according to the present invention includes a disc-shaped main plate, a convex hub formed by projecting a central portion of the main plate in the direction of the rotation axis, and a base plate portion on the outer peripheral side of the main plate in the protruding direction of the hub. A plurality of wings standing upright, a plurality of wings provided on the hub, motor cooling holes for cooling a motor disposed in a convex space surrounded by the hub, and a thermoplastic resin radially provided in the hub and injecting thermoplastic resin during molding And a plurality of hub runners that form the hub, and a resin merging portion formed by contacting the thermoplastic resin that has flowed out of the adjacent runner for the hub during the molding, and the motor The cooling hole is arranged so as to avoid the resin joining portion.

この発明によれば、樹脂合流部がモータ冷却穴に連結しないので、衝撃に対してファンが破断するのを防ぐことができる。このため強度を向上でき、信頼性の高いターボファンが得られる効果がある。   According to this invention, since the resin joining portion is not connected to the motor cooling hole, it is possible to prevent the fan from breaking against an impact. As a result, the strength can be improved, and a highly reliable turbofan can be obtained.

この発明の実施の形態1に係るターボファンを示す平面図(図1(a))、及び側面から見た説明図(図1(b))である。It is the top view (Drawing 1 (a)) which shows the turbo fan concerning Embodiment 1 of this invention, and the explanatory view (Drawing 1 (b)) seen from the side. この発明の実施の形態1に係るターボファンを示す斜視図である。It is a perspective view which shows the turbo fan which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るターボファンを示す説明図である。It is explanatory drawing which shows the turbo fan which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るターボファンを拡大して示す説明図である。It is explanatory drawing which expands and shows the turbo fan which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係り、図4のH1−H2線断面を示す説明図である。FIG. 5 is an explanatory diagram showing a cross section taken along line H1-H2 of FIG. 4 according to the first embodiment of the present invention. この発明の実施の形態1に係り、図1(b)のO−O1−O2−O3での断面を拡大して示す説明図である。It is explanatory drawing which expands and shows the cross section in O-O1-O2-O3 of FIG.1 (b) regarding Embodiment 1 of this invention. この発明の実施の形態1に係り、ファンの成形工程を示すフローチャートである。6 is a flowchart illustrating a fan forming process according to the first embodiment of the present invention. この発明の実施の形態1に係り、ハブ用湯道9aの最大肉厚t1と主板2の他の部分の最小肉厚t0との比率t1/t0に対する成形時間(樹脂注入から冷却し取出しまでの時間)を示すグラフである。According to the first embodiment of the present invention, the molding time (from resin injection to cooling to removal) with respect to the ratio t1 / t0 between the maximum thickness t1 of the runner 9a for the hub and the minimum thickness t0 of the other part of the main plate 2 is determined. It is a graph which shows (time). この発明の実施の形態1に係り、翼用湯道9bの最大肉厚t2と主板2の他の部分の最小肉厚t0との比率t2/t0に対する成形時間(樹脂注入から冷却し取出しまでの時間)を示すグラフである。According to the first embodiment of the present invention, the molding time (from resin injection to cooling to removal) with respect to the ratio t2 / t0 between the maximum wall thickness t2 of the blade runner 9b and the minimum wall thickness t0 of the other part of the main plate 2 is concerned. It is a graph which shows (time). この発明の実施の形態1に係る翼を示す説明図であり、ファンの翼1枚を示す側面(図10(a))、図10(a)のZ−Z線における横断面(図10(b))を示す。It is explanatory drawing which shows the wing | blade which concerns on Embodiment 1 of this invention, the side surface (FIG. 10 (a)) which shows one wing | blade of a fan, and the cross section in the ZZ line of FIG. b)). この発明の実施の形態1に係る翼を示す説明図であり、図10(b)のY−Y線における縦断面を示す。It is explanatory drawing which shows the wing | blade which concerns on Embodiment 1 of this invention, and shows the longitudinal cross-section in the YY line of FIG.10 (b). 翼の外側と中空内側の立設面を中空内側に回転軸に対して傾斜角度θで傾斜させ、傾斜角度θを変化させたときのファンの成形時間(sec)と騒音値(dB)を示すグラフである。The fan forming time (sec) and noise value (dB) when the standing surface of the outer side of the blade and the inner side of the wing are inclined to the inner side of the wing at the inclination angle θ with respect to the rotation axis and the inclination angle θ is changed are shown. It is a graph. この発明の実施の形態1によるターボファンに係り、他の湯道構成で成形されたターボファンを示す下面図である。It is a bottom view which shows the turbo fan which concerns on the turbo fan by Embodiment 1 of this invention, and was shape | molded by the other runner structure. この発明の実施の形態1によるターボファンに係り、さらに他の湯道構成で成形されたターボファンを示す下面図である。It is a bottom view which shows the turbo fan by which it was related with the turbo fan by Embodiment 1 of this invention, and was shape | molded by still another runner structure. この発明の実施の形態1に係り、別の構成例のターボファンを下面から見た斜視図である。It is the perspective view which looked at the turbo fan of another structural example from the lower surface according to Embodiment 1 of this invention. この発明の実施の形態1に係り、ターボファンの一部を拡大して示す部分斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial perspective view showing an enlarged part of a turbofan according to Embodiment 1 of the present invention. この発明の実施の形態1に係る翼を示す説明図であり、ファンの翼1枚を示す側面(図17(a))、図17(a)のZ−Z線における横断面(図17(b))を示す。It is explanatory drawing which shows the blade | wing which concerns on Embodiment 1 of this invention, and is the side surface (FIG. 17 (a)) which shows one blade of a fan, and the cross section in the ZZ line of FIG. b)). この発明の実施の形態1に係る翼を示す説明図であり、図17(b)のY−Y線における縦断面(図18(a))及び図18(a)の一部を拡大して示す説明図(図18(b))である。It is explanatory drawing which shows the wing | blade which concerns on Embodiment 1 of this invention, and expands the longitudinal cross-section (FIG. 18 (a)) and the part of FIG. 18 (a) in the YY line of FIG. It is explanatory drawing shown (FIG.18 (b)). この発明の実施の形態1に係り、ターボファンの下面の一部を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 of this invention and shows a part of lower surface of a turbofan. この発明の実施の形態1に係り、中空構造の翼開口部3bの最大開口幅直径Fに対する翼前方湯道9baと翼後方湯道9bbとの高さの差△tの比と同一風量における騒音値の関係を示したグラフである。According to the first embodiment of the present invention, the ratio of the height difference Δt between the blade front runner 9ba and the blade rear runner 9bb to the maximum opening width diameter F of the hollow blade opening 3b and the noise at the same air flow It is the graph which showed the relationship of the value. この発明の実施の形態1に係り、設置した部屋から見た空気調和機の斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an air conditioner viewed from an installed room according to Embodiment 1 of the present invention. この発明の実施の形態1に係り、空気調和機を示す縦断面図である。1 is a longitudinal sectional view showing an air conditioner according to Embodiment 1 of the present invention. この発明の実施の形態1に係り、空気調和機を示す水平断面図である。1 is a horizontal sectional view showing an air conditioner according to Embodiment 1 of the present invention.

符号の説明Explanation of symbols

1 ターボファン、2 主板、2a ハブ、2b ファン内周側側面、2c ボス、2d ハブ上部厚肉部、3 翼、5 モータ冷却穴、8 モータ、9 湯道、9a ハブ用湯道、9b 翼用湯道、9ba 翼前方湯道、9bb 翼後方湯道、9c 連結湯道、9d 冷却穴用湯道、10 樹脂注入口、12 空気調和機本体、15 熱交換器、A 樹脂合流部、B 成形時の樹脂流動方向、C 翼開口部近傍での気流、D ファン回転方向、E1,E2 気流、F 翼開口部3bの最大開口幅(主板面における開口の内接円の直径)、G ハブ用湯道によりモータ冷却穴へ向け導風される気流、O 回転中心。   1 turbo fan, 2 main plate, 2a hub, 2b fan inner peripheral side surface, 2c boss, 2d hub upper thick wall part, 3 blade, 5 motor cooling hole, 8 motor, 9 runner, 9a runner for hub, 9b blade Runway, 9ba Wing forward runner, 9bb Wing rear runner, 9c Connecting runner, 9d Cooling hole runner, 10 Resin inlet, 12 Air conditioner body, 15 Heat exchanger, A Resin junction, B Resin flow direction during molding, C airflow near blade opening, D fan rotation direction, E1, E2 airflow, F maximum opening width of blade opening 3b (diameter of inscribed circle of opening on main plate surface), G hub The airflow that is guided to the motor cooling hole by the runner, O rotation center.

実施の形態1.
以下、この発明の実施の形態1に係るターボファン(以下、単にファンと称する)を図に基づいて説明する。
図1(a)はこの実施の形態に係るファンをシュラウド側から見た平面図で、一部シュラウドを切り欠いて翼を示す。図1(b)は図1(a)の側面からみた説明図であり、図に向かって左半分は側面、右半分は図1(a)のO−O1−O2−O3での縦断面を示す。また、図2はこの実施の形態に係るファンの下面、即ちシュラウドと反対側から見た斜視図である。
Embodiment 1 FIG.
Hereinafter, a turbofan (hereinafter simply referred to as a fan) according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1A is a plan view of the fan according to this embodiment as viewed from the shroud side, and shows a blade with a part of the shroud cut away. FIG. 1B is an explanatory diagram viewed from the side of FIG. 1A, where the left half is a side surface and the right half is a longitudinal section taken along O-O1-O2-O3 of FIG. Show. FIG. 2 is a perspective view of the fan according to this embodiment as viewed from the lower surface, that is, the side opposite to the shroud.

図1及び図2に示すように、ファン1は円盤状の主板2で構成され、主板2の中央部は回転軸方向に突出した凸形状を成し、凸部で囲まれた空間にモータ(図示せず)が配置される。この凸部をハブ2aと称する。また、ハブ2aの中心部、即ち主板2の中心部にはボス2cが形成され、この部分にモータのシャフトが固定される。モータが設置される部分を主板2のファン外部側と称し、これとは反対側のファン内部側の外周側平板部には複数枚、例えば7枚の翼3が設けられる。主板2のボス2cに接続する部分は強度を確保するためにハブ上部厚肉部2dを設け、ハブ2aの傾斜面の肉厚t0より厚肉とする。   As shown in FIGS. 1 and 2, the fan 1 is composed of a disk-shaped main plate 2, the central portion of the main plate 2 has a convex shape protruding in the direction of the rotation axis, and a motor ( (Not shown). This convex portion is referred to as a hub 2a. A boss 2c is formed at the center of the hub 2a, that is, at the center of the main plate 2, and the motor shaft is fixed to this portion. The portion where the motor is installed is referred to as the fan outer side of the main plate 2, and a plurality of, for example, seven blades 3 are provided on the outer peripheral side flat plate portion on the opposite side of the fan inside. The portion connected to the boss 2c of the main plate 2 is provided with a hub upper thick portion 2d in order to ensure strength, and is thicker than the thickness t0 of the inclined surface of the hub 2a.

また、翼3は主板2の外周側平板部を基部とし、この基部の翼開口部3bからハブ2aの突出方向に立設する袋状の中空形状である。基部において、翼内周側端部3aと翼外周側端部3cの間に翼開口部3bが位置し、翼開口部3bの中心線3a−3cと主板2の半径とは所定角度、例えば45°程度の角度で交わるように配設される。そして、図1(a)のように複数の翼3を、回転軸に対して周方向取付ピッチ角度σ1、σ2、σ3、…σ7が少なくとも一部異なる不等ピッチとなるように配置する。図1(a)では例えばσ1=σ4<σ3=σ6=σ7<σ2=σ5とした。   The wing 3 has a bag-like hollow shape in which the outer peripheral side flat plate portion of the main plate 2 is used as a base, and is erected in the protruding direction of the hub 2a from the wing opening 3b of the base. At the base, the blade opening 3b is located between the blade inner circumferential end 3a and the blade outer circumferential end 3c, and the center line 3a-3c of the blade opening 3b and the radius of the main plate 2 are at a predetermined angle, for example 45 It is arranged to intersect at an angle of about °. Then, as shown in FIG. 1A, the plurality of blades 3 are arranged such that the circumferential mounting pitch angles σ1, σ2, σ3,. In FIG. 1A, for example, σ1 = σ4 <σ3 = σ6 = σ7 <σ2 = σ5.

ファン1はモータによって駆動され、回転中心Oを中心に矢印D方向に回転する。シュラウド4は図1(b)に示すようにファン1の外周に設けられ、図1(b)における上方から各翼3に固着されている。   The fan 1 is driven by a motor and rotates around the rotation center O in the direction of arrow D. The shroud 4 is provided on the outer periphery of the fan 1 as shown in FIG. 1 (b), and is fixed to each blade 3 from above in FIG. 1 (b).

ハブ2a近傍にはシュラウド4と主板2に挟まれてファン内部風路6が形成され、モータが配置される側のハブ2aにはファン外部側風路7が構成される。ハブ2aには回転中心Oの回りに、回転中心Oからほぼ等距離の位置に複数の開口からなるモータ冷却穴5を有し、ファン内部風路6とファン外部側風路7を連通する。図1(a)においてモータ冷却穴5は例えば7個設け、それぞれ1つの翼内周側端部3aと回転中心Oを結ぶ直線O−3a上に配設されている。ここで、複数のモータ冷却穴5の周方向取付ピッチ角度γ1、γ2、γ3、…γ7も翼3と同様、少なくとも一部異なる不等ピッチとなるように形成されている。ここではモータ冷却穴5の周方向取付ピッチ角度γ1、γ2、γ3、…γ7を、翼3の周方向取付ピッチ角度σと同様、例えばγ1=γ4<γ3=γ6=γ7<γ2=γ5とした。   A fan internal air passage 6 is formed in the vicinity of the hub 2a between the shroud 4 and the main plate 2, and a fan external air passage 7 is formed in the hub 2a on the side where the motor is disposed. The hub 2a has a motor cooling hole 5 formed of a plurality of openings around the rotation center O at a position substantially equidistant from the rotation center O, and the fan internal air passage 6 and the fan external side air passage 7 communicate with each other. In FIG. 1A, for example, seven motor cooling holes 5 are provided, and each is arranged on a straight line O-3a connecting one blade inner circumferential end 3a and the rotation center O. Here, the circumferential mounting pitch angles γ 1, γ 2, γ 3,... Γ 7 of the plurality of motor cooling holes 5 are also formed to be at least partially different unequal pitches, similarly to the blade 3. Here, the circumferential mounting pitch angles γ1, γ2, γ3,... Γ7 of the motor cooling holes 5 are set to, for example, γ1 = γ4 <γ3 = γ6 = γ7 <γ2 = γ5, similarly to the circumferential mounting pitch angle σ of the blade 3. .

主板2と翼3は、例えばABSやASGなどの熱可塑性樹脂(以下、単に樹脂と記す)にて一体成形される。図2において、10は主板2及び翼3を成形する時、樹脂を注入するために用いた樹脂注入口の跡であり、主板2のハブ2aと平坦部との間の折り曲げ部近傍で、且つ平坦部の翼内周側端部3a近傍にあり、ここでは、樹脂注入口10と称する。また、ファンには成形時に樹脂の通り道となる湯道9が形成され、成形型では樹脂が通り易いように主板2の主な部分よりも厚さ方向に大きな空間となっている部分であるが、完成品であるファンでは湯道9の樹脂が固まって残り、主板2の湯道以外の部分の最小肉厚t0よりも肉厚が厚くなっている。   The main plate 2 and the blades 3 are integrally formed of a thermoplastic resin (hereinafter simply referred to as resin) such as ABS or ASG. In FIG. 2, 10 is a mark of a resin injection port used for injecting resin when the main plate 2 and the blade 3 are molded, in the vicinity of a bent portion between the hub 2a and the flat portion of the main plate 2, and In the vicinity of the blade inner peripheral end 3a of the flat portion, it is referred to as a resin injection port 10 here. The fan is formed with a runner 9 that becomes a passage for resin during molding, and the mold has a space that is larger in the thickness direction than the main portion of the main plate 2 so that the resin can easily pass therethrough. In the finished fan, the resin in the runner 9 is solidified and remains thicker than the minimum thickness t0 of the main plate 2 other than the runner.

湯道9の1つは成形時にハブを形成するハブ用湯道9aである。このハブ用湯道9aは、例えばハブ2aに放射状に7本設けられており、樹脂注入口10から回転中心Oへ向かって伸び、ファン半径方向にモータ冷却穴5近傍まで他の湯道と交差することなく直線状に延出する。ハブ用湯道9aはハブ2aの傾斜面での最小肉厚t0よりも厚くし、所定肉厚t1(>t0)とする。また、ハブ用湯道9aのファン中心側端部近傍にはモータ冷却穴5を配置し、他方のハブ用湯道9aのファン外周側端部近傍には翼3の翼内周側端部3aが配置されるように構成する。さらに、直線状のハブ用湯道9aの幅方向中心線11はモータ冷却穴5上を通過するように配置し、翼の内周側端部3a、樹脂注入部10、ハブ用湯道9a、及びモータ冷却穴5が、回転中心Oを始点とした径方向に延びる略直線上に位置するようにそれぞれ配設する。この実施の形態では翼3の周方向の取付ピッチ角度σを不等ピッチとしたので、モータ冷却穴5、ハブ用湯道9a、及び樹脂注入口10も同様に回転中心Oに対して不等ピッチで構成される。なお、翼3の取付ピッチ角度σが等ピッチの場合には、モータ冷却穴5、ハブ用湯道9a、及び樹脂注入口10の周方向取付ピッチ角度も同様に等ピッチとなる。   One of the runners 9 is a hub runner 9a that forms a hub during molding. The hub runners 9a are provided, for example, in a radial manner on the hub 2a. The hub runners 9a extend from the resin injection port 10 toward the rotation center O and intersect with other runners in the fan radial direction to the vicinity of the motor cooling hole 5. It extends straight without doing. The hub runner 9a is made thicker than the minimum wall thickness t0 on the inclined surface of the hub 2a to a predetermined wall thickness t1 (> t0). Further, the motor cooling hole 5 is disposed in the vicinity of the fan center side end of the hub runner 9a, and the blade inner peripheral end 3a of the blade 3 is provided in the vicinity of the fan outer peripheral end of the other hub runner 9a. Is configured to be arranged. Further, the center line 11 in the width direction of the straight hub runner 9a is disposed so as to pass over the motor cooling hole 5, and the inner peripheral end 3a of the blade, the resin injection portion 10, the hub runner 9a, The motor cooling holes 5 are disposed so as to be positioned on substantially straight lines extending in the radial direction starting from the rotation center O. In this embodiment, since the mounting pitch angle σ in the circumferential direction of the blades 3 is an unequal pitch, the motor cooling hole 5, the hub runner 9a, and the resin injection port 10 are also unequal with respect to the rotation center O. Composed of pitch. When the mounting pitch angle σ of the blades 3 is equal, the circumferential mounting pitch angles of the motor cooling hole 5, the hub runner 9a, and the resin inlet 10 are also equal.

また、中空形状の翼3の基部である主板2の外周側平板部には、翼開口部3bの周囲に翼用湯道9bを形成する。翼用湯道9bは成形時に樹脂を流入させることで翼3を形成する湯道であり、ハブ用湯道9aと同様、主板2の外周側平板部の肉厚t0よりも厚くし、所定肉厚t2(>t0)とする。連結湯道9cはハブ用湯道9aと翼用湯道9bとを連結する湯道である。連結湯道9cは、例えばハブ用湯道9aと同様の肉厚t1で構成し、幅はハブ用湯道9a及び翼用湯道9bよりも小さい湯道とする。   Further, a blade runner 9b is formed around the blade opening 3b on the outer peripheral side flat plate portion of the main plate 2 which is the base of the hollow blade 3. The blade runner 9b is a runner that forms the blade 3 by injecting resin during molding. Like the hub runner 9a, the blade runner 9b is thicker than the wall thickness t0 of the outer peripheral side plate portion of the main plate 2, and has a predetermined thickness. The thickness is t2 (> t0). The connecting runner 9c is a runner that connects the hub runner 9a and the blade runner 9b. The connecting runner 9c has a wall thickness t1 similar to that of the hub runner 9a, for example, and is smaller than the hub runner 9a and the blade runner 9b.

ファン1がD方向に回転すると、シュラウド4によって周囲の空気が翼3へ誘導されてシュラウド4の内側に吸込まれ、ファン内部風路6を通って図2の矢印E1に示すようにファン外周の翼3の間から吹出す。この時、ファン内部風路6はモータが取り付けられるファン外部風路7に比べて負圧となる。そこで、図1(b)、図2に示すように、ファン内部風路6とファン外部風路7間を連通するモータ冷却穴5を通って、ファン1から吹出された流れの一部E2がハブ2aとの摩擦により旋回しながらファン外部風路7に流れ込む。そして、モータ冷却穴5を通って負圧のファン内部風路6へ流れる。ハブ2aに囲まれたファン外部風路7側にはボス2cでファン1と固定されてモータが配設されており、気流E2によってモータは冷却される。   When the fan 1 rotates in the direction D, the surrounding air is guided to the blades 3 by the shroud 4 and sucked into the shroud 4, passes through the fan internal air passage 6, and as shown by the arrow E 1 in FIG. Blow out from between wings 3. At this time, the fan internal air passage 6 has a negative pressure compared to the fan external air passage 7 to which the motor is attached. Therefore, as shown in FIGS. 1B and 2, a part E2 of the flow blown out from the fan 1 passes through the motor cooling hole 5 communicating between the fan internal air passage 6 and the fan external air passage 7. It flows into the fan external air passage 7 while turning due to friction with the hub 2a. Then, the air flows through the motor cooling hole 5 to the negative pressure fan internal air passage 6. A motor is disposed on the fan external air passage 7 side surrounded by the hub 2a and is fixed to the fan 1 by a boss 2c. The motor is cooled by the airflow E2.

このような構成のターボファンを樹脂で一体成形する際、ファン形状の空間を有する成形型に、複数の樹脂注入口10から樹脂を注入する。樹脂注入口10から注入された樹脂は、肉厚が厚い部分である湯道9に導かれ、ファン全体に流れて主板2及び翼3は一体に形成される。図3はファンを下面から見た説明図である。ハブ用湯道9aは中心側端部9a1からファン外周側端部9a2間に設けられた湯道であり、モータ冷却穴5がファン中心側端部9a1の近傍に配置され、翼内周側端部3aがファン外周側端部9a2の近傍に配置される。
樹脂の一部はハブ用湯道9aを流動したのち、主板のハブ2aに流れてこの部分を形成する。また、他の一部は連結湯道9cから翼用湯道9bに流れ、翼3及び翼3周辺の主板2に流れてこの部分を形成する。このときの樹脂の流れを図3の矢印Bに示す。それぞれの湯道9を通って矢印Bのように樹脂が成形型に流れ出し、隣り合う湯道9から流れ出た樹脂は、湯道9からほぼ等距離の樹脂合流部で当接して合流する。この樹脂合流部を点線Aで示す。
When the turbo fan having such a configuration is integrally formed of resin, resin is injected from a plurality of resin injection ports 10 into a mold having a fan-shaped space. The resin injected from the resin injection port 10 is guided to the runner 9 which is a thick part and flows to the entire fan, so that the main plate 2 and the blade 3 are integrally formed. FIG. 3 is an explanatory view of the fan as seen from below. The hub runner 9a is a runner provided between the central end 9a1 and the fan outer peripheral end 9a2. The motor cooling hole 5 is disposed in the vicinity of the fan central end 9a1, and the blade inner peripheral end. The portion 3a is disposed in the vicinity of the fan outer peripheral side end portion 9a2.
Part of the resin flows through the hub runner 9a and then flows to the hub 2a of the main plate to form this part. The other part flows from the connecting runner 9c to the blade runner 9b, and then flows to the blade 3 and the main plate 2 around the blade 3 to form this portion. The flow of the resin at this time is shown by an arrow B in FIG. The resin flows into the mold as indicated by arrow B through each runner 9, and the resin that has flowed out from the adjacent runners 9 abuts at the resin junction at an approximately equal distance from the runner 9. This resin joining portion is indicated by a dotted line A.

樹脂注入口10から注入されてハブ用湯道9aに導かれる樹脂は、径方向に回転中心Oに向かって一方向にスムーズに流れる。さらにハブ用湯道9aを流れる樹脂は隣り合うハブ用湯道9aに向かって流れて、隣り合うハブ用湯道9aの間に樹脂合流部Aが形成される。モータ冷却穴5は樹脂合流部Aを避けるように配置されているので、モータ冷却穴5の近傍にできる樹脂合流部Aは、モータ冷却穴5に連結して形成されるのではなく、隣り合うモータ冷却穴5の間に形成される。
衝撃に対し強度が低い開口であるモータ冷却穴5に樹脂合流部Aが連結していないので、モータ冷却穴5と樹脂合流部Aに接続した亀裂が生じるのを防止でき、成形されたファン1の強度を向上することができる。従って、輸送時などにファン1の回転軸方向、例えば図1(b)の上下方向に衝撃が付加されモータ冷却穴5の周辺に万一亀裂を生じても、生じた亀裂が主板2の径方向に伸びるのを防止できる。このことで、ファン1が破断してしまうのを防止でき、ファン1の衝撃に対する信頼性を向上できる。
特に、この実施の形態では、ハブ用湯道9aの延長線上にモータ冷却穴5を設けることで、確実にモータ冷却穴5の近くに樹脂合流部Aが形成されるのを避けることができる。
The resin injected from the resin injection port 10 and guided to the hub runner 9a smoothly flows in one direction toward the rotation center O in the radial direction. Further, the resin flowing through the hub runner 9a flows toward the adjacent hub runner 9a, and a resin junction A is formed between the adjacent hub runners 9a. Since the motor cooling hole 5 is arranged so as to avoid the resin merging portion A, the resin merging portion A formed in the vicinity of the motor cooling hole 5 is not formed by being connected to the motor cooling hole 5, but is adjacent. It is formed between the motor cooling holes 5.
Since the resin merging portion A is not connected to the motor cooling hole 5 which is an opening having low strength against impact, it is possible to prevent a crack connected to the motor cooling hole 5 and the resin merging portion A, and the molded fan 1 The strength of can be improved. Therefore, even if an impact is applied in the direction of the rotation axis of the fan 1 during transportation, for example, in the vertical direction of FIG. 1B and a crack is generated around the motor cooling hole 5, the generated crack is the diameter of the main plate 2. It can be prevented from extending in the direction. As a result, the fan 1 can be prevented from being broken, and the reliability of the fan 1 against the impact can be improved.
In particular, in this embodiment, by providing the motor cooling hole 5 on the extension line of the hub runner 9a, it is possible to reliably prevent the resin junction A from being formed near the motor cooling hole 5.

また、湯道9が複雑に分岐した構成ではなく、樹脂注入口10でハブ用湯道9aと連結湯道9cの2方向に分岐し、連結湯道9cと翼用湯道9bの接続部で2方向の翼用湯道9bに分岐する。前述のように樹脂合流部Aでは強度が弱いので、形成される樹脂合流部Aの数や長さを極力少なくまた短くするのが好ましい。この実施の形態による湯道9の構成では、1つの樹脂注入口10から注入される樹脂同士で樹脂合流部Aを形成することはなく、隣り合う樹脂注入口10から注入される樹脂と当接する部分で樹脂合流部Aが形成される。このため、全体として樹脂合流部Aの数を少なくできる。このように、湯道9を比較的単純に構成しており、樹脂が湯道9に沿って流れやすくなり、ヒケの発生を低減して成形性を向上できる。   In addition, the runner 9 is not configured to branch in a complicated manner, but is branched in two directions of the hub runner 9a and the connecting runner 9c at the resin inlet 10, and at the connection portion between the runner 9c and the blade runner 9b. It branches to the two-way wing runner 9b. As described above, since the strength at the resin joining portion A is weak, it is preferable to reduce the number and length of the resin joining portions A to be formed as much as possible. In the configuration of the runner 9 according to this embodiment, the resin merging portion A is not formed by the resins injected from one resin injection port 10, and abuts on the resin injected from the adjacent resin injection port 10. The resin joining portion A is formed at the portion. For this reason, the number of the resin joining part A can be decreased as a whole. In this manner, the runner 9 is relatively simple, and the resin can easily flow along the runner 9, reducing the occurrence of sink marks and improving moldability.

さらに、この実施の形態に係るファンでは、樹脂合流部Aは点線で示すように、一端はボス2cに当接し、隣り合うモータ冷却穴5の間を通って径方向に伸び、他端は翼3の中央に当接している。従来のように樹脂合流部Aがそのまま外周端に伸びる構成では、樹脂合流部Aに沿って亀裂が生じた場合に、亀裂はファン1の外周端まで伸び、分割切断される可能性もあった。これに対し、この実施の形態では主板2に形成される樹脂合流部Aの外周側端部が翼用湯道9bに当接するように構成される。このため、主板2に形成される樹脂合流部Aを短くでき、強度の弱い個所を短くできることで、強度的に信頼性の高いファン1が得られる。また、輸送時などに、樹脂合流部A付近に亀裂を生じ、万一樹脂合流部Aに沿って亀裂が拡大したとしても、樹脂合流部Aの外周側端部が肉厚の厚い翼用湯道9bに当接しているので、この部分で亀裂が止まる。さらには翼用湯道9bで亀裂が止まらなかった場合、翼用湯道9bに接続して軸方向に高さを有する翼3全体が強度部材になる。このため、ファン1が完全に分割切断されてしまうのを防止でき、衝撃に対する信頼性を向上できる。   Furthermore, in the fan according to this embodiment, as shown by the dotted line, the resin joining portion A has one end abutting against the boss 2c, extending between the adjacent motor cooling holes 5 in the radial direction, and the other end being a blade. 3 is in contact with the center. In the configuration in which the resin joining portion A extends as it is to the outer peripheral end as in the conventional case, when a crack occurs along the resin joining portion A, the crack may extend to the outer peripheral end of the fan 1 and may be divided and cut. . On the other hand, in this embodiment, the outer peripheral side end portion of the resin joining portion A formed on the main plate 2 is configured to abut on the blade runner 9b. For this reason, the resin joining part A formed in the main plate 2 can be shortened, and the weak portion can be shortened, whereby the fan 1 having high strength and reliability can be obtained. Further, even when a crack is generated in the vicinity of the resin confluence portion A during transportation and the crack expands along the resin confluence portion A, the outer peripheral side end of the resin confluence portion A is thick. Since it is in contact with the road 9b, the crack stops at this portion. Further, when the crack does not stop in the blade runner 9b, the entire blade 3 connected to the blade runner 9b and having a height in the axial direction becomes a strength member. For this reason, it is possible to prevent the fan 1 from being completely divided and cut, and to improve the reliability with respect to impact.

樹脂合流部Aと湯道9の構成について、以下にさらに詳しく述べる。翼3の枚数・形状・半径に対する角度、湯道9の形状・構成、樹脂注入口10の位置、モータ冷却穴5の形状・位置などを、上記のように、樹脂合流部Aの一端をボス2cに当接し、隣り合うモータ冷却穴5の間を通って径方向に伸び、他端は翼3の中央に当接するように構成すれば、衝撃に対して信頼性の高いファン1が得られる。
図4は図3の一部を拡大して示す説明図、図5は図4のH1−H2線断面図を示す説明図である。樹脂注入口10は、例えばハブ用湯道9aの連結湯道9cに近い位置に設けられており、ここで、例えば2つの隣り合う樹脂注入口10m、10nについて述べる。樹脂注入口10mはハブ用湯道9am、翼用湯道9bm、連結湯道9cmに接続し、ここから樹脂を注入して翼3m及びこの周辺の主板2を成形する。一方、樹脂注入口10nはハブ用湯道9an、翼用湯道9bn、連結湯道9cnに接続し、ここから樹脂を注入して翼3n及びこの周辺の主板2を成形する。主板2に立設する翼3の肉厚は所定肉厚t3(>t0)とし、翼3の全体でほぼ均等とする。
The configuration of the resin junction A and the runway 9 will be described in more detail below. The angle of the blade 3 with respect to the number, shape and radius, the shape and configuration of the runner 9, the position of the resin inlet 10, the shape and position of the motor cooling hole 5, etc. If it is configured to abut against 2c, extend radially between adjacent motor cooling holes 5, and abut the other end to the center of blade 3, fan 1 having high reliability against impact can be obtained. .
4 is an explanatory view showing a part of FIG. 3 in an enlarged manner, and FIG. 5 is an explanatory view showing a cross-sectional view taken along line H1-H2 of FIG. The resin injection port 10 is provided, for example, at a position near the connecting runner 9c of the hub runner 9a. Here, for example, two adjacent resin injection ports 10m and 10n will be described. The resin injection port 10m is connected to a hub runner 9am, a blade runner 9bm, and a connecting runner 9cm, from which resin is injected to mold the blade 3m and the main plate 2 around it. On the other hand, the resin injection port 10n is connected to the hub runner 9an, the blade runner 9bn, and the connecting runner 9cn, and resin is injected therefrom to form the blade 3n and the main plate 2 around this. The thickness of the wing 3 standing on the main plate 2 is set to a predetermined thickness t3 (> t0), and the entire wing 3 is substantially uniform.

翼3mは翼3nよりもファン回転方向(矢印D方向)の前方に位置するとした場合、2つの翼3m、3nの間にできる樹脂合流部Aがファン外周端に接続しないようにするには、領域Lの部分を形成する樹脂を樹脂注入口10nから注入された樹脂で成形するように構成すればよい。特に、翼3mの翼外周側端部の平板部3cmt付近を形成する樹脂を樹脂注入口10mで注入された樹脂ではなく樹脂注入口10nで注入された樹脂とすれば、ハブ用湯道9an、9am間に形成される樹脂合流部Aは確実に翼3mに当接する。そのためには、翼外周側端部の平板部3cmtに流れてくる樹脂の流路長さにおいて、樹脂注入口10mからの距離よりも樹脂注入口10nからの距離の方が短くなるように、湯道9を構成すればよい。   When the blade 3m is positioned in front of the blade 3n in the fan rotation direction (arrow D direction), in order to prevent the resin joining portion A formed between the two blades 3m and 3n from being connected to the fan outer peripheral end, What is necessary is just to comprise so that resin which forms the part of the area | region L may be shape | molded with the resin inject | poured from the resin injection port 10n. In particular, if the resin forming the vicinity of the flat plate portion 3 cmt at the blade outer peripheral side end of the blade 3 m is not the resin injected at the resin injection port 10 m but the resin injected at the resin injection port 10 n, the hub runner 9an, The resin joining portion A formed between 9 am surely contacts the blade 3m. For this purpose, the length of the resin flow path flowing to the flat plate portion 3 cmt at the blade outer peripheral end is such that the distance from the resin injection port 10 n is shorter than the distance from the resin injection port 10 m. A road 9 may be configured.

具体的には、翼3の枚数・形状、湯道9の形状・構成、樹脂注入口10の位置、モータ冷却穴5の形状・位置、樹脂注入速度などを設定して、例えばシミュレーションすることで、成形する際にファンのどの部分に樹脂合流部Aができるかを検討できる。そして、シミュレーションで得られた樹脂合流部Aが、一端はボス2cに当接し、隣合うモータ冷却穴5間のハブ2aを通り、他端は翼用湯道9bに当接するように構成すればよい。   Specifically, the number and shape of the blades 3, the shape and configuration of the runner 9, the position of the resin injection port 10, the shape and position of the motor cooling hole 5, the resin injection speed, etc. are set and simulated, for example, It is possible to examine which part of the fan the resin joining part A is formed when molding. If the resin joining portion A obtained by the simulation is configured so that one end contacts the boss 2c, passes through the hub 2a between the adjacent motor cooling holes 5, and the other end contacts the blade runner 9b. Good.

上記のように、円盤状の主板2と、主板2の中央部を回転軸方向に突出させて成る凸状のハブ2aと、主板2の外周側平板部を基部としハブ2aの突出方向に立設する複数の翼3と、ハブ2aに複数設けられ、ハブ2aが囲む凸状の空間に配置されるモータを冷却するモータ冷却穴5と、ハブ2aに放射状に設けられ成形時に樹脂を流入させることでハブ2aを形成する複数のハブ用湯道9aと、成形時に隣り合うハブ用湯道9aから流れ出た樹脂が当接して形成される樹脂合流部Aと、を備え、モータ冷却穴5は樹脂合流部Aを避けるように配置されたことにより、衝撃に対して信頼性の高いターボファンが得られる効果がある。   As described above, the disc-shaped main plate 2, the convex hub 2 a formed by projecting the central portion of the main plate 2 in the direction of the rotation axis, and the outer peripheral side flat plate portion of the main plate 2 as the base stand in the protruding direction of the hub 2 a. A plurality of blades 3 to be provided, a plurality of blades 3 provided in the hub 2a, motor cooling holes 5 for cooling a motor disposed in a convex space surrounded by the hub 2a, and a radially provided hole in the hub 2a for injecting resin during molding Thus, the motor cooling hole 5 is provided with a plurality of hub runners 9a forming the hub 2a and a resin joining portion A formed by abutting the resin flowing out from the adjacent hub runner 9a during molding. By arranging so as to avoid the resin joining portion A, there is an effect that a turbo fan having high reliability with respect to impact can be obtained.

また、ハブ2aに複数設けられるモータ冷却穴5は、ハブ用湯道9aを回転中心O側へ延長した部分に配置されたことで、衝撃に対し強度が低いモータ冷却穴5と樹脂合流部Aとが連結することが確実にないように構成でき、衝撃に対する信頼性の高いファンが得られる。   The plurality of motor cooling holes 5 provided in the hub 2a are disposed in a portion where the runner 9a for the hub is extended to the rotation center O side, so that the motor cooling hole 5 and the resin joining portion A having low strength against impact are provided. And a fan with high reliability against impact can be obtained.

また、ハブ用湯道9aを回転中心Oの回りに放射状に直線で形成したことで、回転中心周辺のボス2cまで樹脂を流れやすくでき、成形性を向上できる。   In addition, since the hub runner 9a is formed linearly around the rotation center O, the resin can easily flow to the boss 2c around the rotation center, and the moldability can be improved.

また、樹脂の通り道となる湯道9を、ハブ用湯道9aと翼用湯道9bに分離して形成し、この湯道9a、9bを連結する連結湯道9cを設け、さらに湯道9a、9b、9cのいずれか1箇所に設けた樹脂注入口10から樹脂を注入する構成である。即ち、ハブ用湯道9aと翼用湯道9bに流入する樹脂の少なくとも一方は連結湯道9cを介して流れることになる。このため、連結湯道9cの幅や肉厚の設定に応じて、ハブ用湯道9aに流れる樹脂の量と翼用湯道9bに流れる樹脂の量のバランスを調整できる。このハブ用湯道9aと翼用湯道9bに流れる樹脂の注入量をうまく調整することで、湯回りムラによる空洞発生や肉厚の局所的な薄肉化を防止しでき、強度悪化を防止できる。
この実施の形態では、樹脂注入口10をハブ用湯道9aに直接設けているが、翼用湯道9bに樹脂注入口10を設けてもよい。また、連結湯道9cに設けてもよい。連結湯道9cに樹脂注入口10を設ける場合には、樹脂注入口10とハブ用湯道9aの間の湯道の肉厚や幅と、樹脂注入口10と翼用湯道9bの間の湯道の肉厚や幅とを必要とする樹脂の流量に応じて差をつけることにより、樹脂の量のバランスを調整できる。
Further, the runner 9 serving as a resin passage is formed by separating the runner 9a for the hub and the runner 9b for the blade, and a connecting runner 9c for connecting the runners 9a, 9b is provided. , 9b, 9c, the resin is injected from the resin injection port 10 provided at any one position. That is, at least one of the resins flowing into the hub runner 9a and the blade runner 9b flows through the connecting runner 9c. For this reason, the balance between the amount of resin flowing in the hub runner 9a and the amount of resin flowing in the blade runner 9b can be adjusted according to the setting of the width and thickness of the connecting runner 9c. By properly adjusting the injection amount of the resin flowing into the hub runner 9a and the blade runner 9b, it is possible to prevent the occurrence of cavities and local thinning of the wall thickness due to unevenness of the hot water runoff, and to prevent deterioration in strength. .
In this embodiment, the resin inlet 10 is directly provided in the hub runner 9a. However, the resin inlet 10 may be provided in the blade runner 9b. Moreover, you may provide in the connection runway 9c. When the resin inlet 10 is provided in the connecting runner 9c, the thickness and width of the runner between the resin inlet 10 and the hub runner 9a, and the gap between the resin inlet 10 and the blade runner 9b. The balance of the amount of resin can be adjusted by making a difference according to the flow rate of the resin that requires the thickness and width of the runner.

また、翼3を中空形状とし、開口3bの周囲に翼用湯道9bを設けたので、中空形状によって軽量化できると共に、翼3を成形する際に樹脂が成形型全体に回りやすくなることで翼3の薄肉化も可能となり、さらに軽量化できる。軽量化によりファン1の回転中心に対しファン外周部での重量が軽量化されることから、回転時の遠心力が軽減され翼3の基部である主板付け根に付加される応力が低減される。この結果、ファン1の強度向上が可能であり、回転時の破損を防止できる。また、翼用湯道9bの部分は樹脂として成形体に残るので、応力集中する翼3と主板2の接合部の肉厚が翼用湯道9bによって増加できる。このように、翼用湯道9bによって樹脂流動性を向上して成形性を向上でき、且つターボファンの強度を向上できる。   Further, since the blade 3 has a hollow shape and the blade runner 9b is provided around the opening 3b, the weight can be reduced by the hollow shape, and the resin can easily flow around the entire mold when the blade 3 is molded. Thinning of the wing 3 is also possible, further reducing the weight. The weight reduction reduces the weight at the outer periphery of the fan 1 relative to the rotation center of the fan 1, so that the centrifugal force during rotation is reduced and the stress applied to the base of the main plate that is the base of the blade 3 is reduced. As a result, the strength of the fan 1 can be improved and damage during rotation can be prevented. Further, since the portion of the blade runner 9b remains as a resin in the molded body, the thickness of the joint portion between the blade 3 and the main plate 2 where stress concentrates can be increased by the blade runner 9b. In this manner, the resin fluidity can be improved by the blade runner 9b to improve the moldability, and the strength of the turbofan can be improved.

また、上記のように、ハブ2aに放射状に複数設けられ、成形時に樹脂を流入してハブ2aを形成するハブ用湯道9aと、翼3各々の基部の周囲に設けられ、成形時に樹脂を流入して翼3を形成する翼用湯道9bと、ハブ用湯道9a各々とその近くに位置する翼用湯道9bを連結する連結湯道9cと、を備えたことで、湯道9が、回転中心側から径方向に主板2の外周まで連結して形成される。このため、樹脂注入口10から注入された樹脂の主な流動方向において、回転中心に向かう樹脂と外周側に向かう樹脂とに分かれた後は、逆方向に流れることなく、湯道9を流れながら周辺の主板2に流れていく。
このように、樹脂の流れ方向が比較的単純になるので、樹脂合流部Aが形成される部分を明確に予測できる。また、スムーズに樹脂を流すことができ、成形性を向上でき信頼性の高いファン1が得られる効果がある。さらに、樹脂合流部Aの距離を短くでき、ターボファンの強度悪化を防止できる。
Further, as described above, a plurality of radials are provided in the hub 2a, and are provided around the bases of the hub runners 9a for forming the hub 2a by flowing in the resin at the time of molding and the wings 3, and the resin at the time of molding. The runner 9b includes a runner 9b for forming a blade 3 by flowing in, and a connecting runner 9c for connecting each of the runners 9a for a hub and the runner 9b for a blade located in the vicinity thereof. Is formed by being connected from the rotation center side to the outer periphery of the main plate 2 in the radial direction. For this reason, in the main flow direction of the resin injected from the resin injection port 10, the resin flows toward the rotation center and the resin toward the outer peripheral side, and then flows through the runner 9 without flowing in the opposite direction. It flows to the surrounding main plate 2.
Thus, since the flow direction of resin becomes comparatively simple, the part where the resin confluence | merging part A is formed can be estimated clearly. In addition, there is an effect that the resin can flow smoothly, the moldability can be improved, and the highly reliable fan 1 can be obtained. Furthermore, the distance of the resin joining part A can be shortened and the strength deterioration of the turbofan can be prevented.

また、従来のように一つの樹脂注入口から注入した樹脂によっても樹脂合流部が形成される構成に比べ、この実施の形態では樹脂合流部Aの数を少なくでき型設計が簡易化できるとともに、湯回りムラによる空洞発生や肉厚の局所的な薄肉化を防止できる。   In addition, as compared with the configuration in which the resin merge portion is formed by the resin injected from one resin injection port as in the prior art, in this embodiment, the number of the resin merge portions A can be reduced and the mold design can be simplified. It is possible to prevent the generation of cavities and local thinning of the wall thickness due to unevenness in the hot water.

図6は図1(b)の一部を拡大して示す説明図である。図に示すように、この実施の形態に係るファンでは、ファン外部風路7のハブ2aを構成する壁面には、肉厚t1であるハブ用湯道9aが肉厚t0であるハブ2aから、ファン外部風路7側へ肉厚差(t1−t0)だけ突出している。そして、ハブ用湯道9aの回転中心側の延長線上にモータ冷却穴5が配置されている。このため、ハブ用湯道9aが導風板として働き、モータ冷却穴5へ向かう気流Gを誘起する。ハブ用湯道9aが気流Gに対して導風板となることで、ハブ2aで囲まれた部分に配設されるモータの表面に流れる空気流を増加させ、モータの冷却を促進する。通常、モータの温度上昇に対し、ある温度以上になるとモータへの通電を停止するという温度保護制御がなされているが、モータの冷却を促進することで温度保護制御が実行されることなく効率よく運転できる。さらにモータが高温になることによるモータの破損も防止できる。   FIG. 6 is an explanatory view showing a part of FIG. As shown in the figure, in the fan according to this embodiment, the hub runner 9a having the wall thickness t1 is provided on the wall surface constituting the hub 2a of the fan external air passage 7 from the hub 2a having the wall thickness t0. It projects by a thickness difference (t1-t0) toward the fan external air passage 7 side. And the motor cooling hole 5 is arrange | positioned on the extension line | wire by the side of the rotation center of the runner 9a for hubs. For this reason, the runner 9a for the hub functions as an air guide plate and induces an airflow G toward the motor cooling hole 5. Since the hub runner 9a serves as a wind guide plate for the airflow G, the airflow flowing on the surface of the motor disposed in the portion surrounded by the hub 2a is increased and the cooling of the motor is promoted. Normally, temperature protection control is performed to stop energization of the motor when the temperature rises above a certain temperature with respect to the temperature rise of the motor. However, by promoting motor cooling, the temperature protection control is efficiently executed. I can drive. Further, the motor can be prevented from being damaged due to the high temperature of the motor.

このように、ハブ用湯道9aは、ハブ2aの主板2の面からモータ配置側であるファン外部風路7側に突出していることにより、モータの表面に流れる空気流を増加してモータの冷却を促進でき、信頼性の高いターボファンが得られる効果がある。   Thus, the runner 9a for the hub protrudes from the surface of the main plate 2 of the hub 2a to the fan external air passage 7 side which is the motor arrangement side, thereby increasing the air flow flowing on the surface of the motor. Cooling can be promoted, and a highly reliable turbo fan can be obtained.

また、この実施の形態に係るファンの形状は、翼3と翼用湯道9bとハブ用湯道9aと連結湯道9cとモータ冷却穴5で構成した組を回転軸Oを中心として放射状に複数組設けている。即ち、一つの翼3に対して、樹脂注入口10、ハブ用湯道9a、翼用湯道9b、連結湯道9c、モータ冷却穴5の配置が、ファン1を構成する全ての翼3に対してほぼ同等である。従って、複数の樹脂注入口10からほぼ同量の樹脂を注入すれば、円盤状のファン1全体にわたって同様の方向に樹脂が流れて同様の成形条件で成形できる。このため、成形によって完成したファンは、全体として湯回りムラによる空洞発生や肉厚の局所的な薄肉化を防止でき、強度的に信頼性の高いターボファンが得られる効果がある。
また、例えば周方向ピッチを変化させたりしたことで、翼3と翼用湯道9bとハブ用湯道9aと連結湯道9cとモータ冷却穴5で構成した組ごとに必要な樹脂の量が異なる場合には、その量に応じて樹脂注入口10から注入する樹脂の量を変化させれば、同様の成形条件で成形でき、上記と同様の効果を奏する。
Further, the fan according to this embodiment is configured such that a set including the blade 3, the blade runner 9b, the hub runner 9a, the connecting runner 9c, and the motor cooling hole 5 is radially formed around the rotation axis O. Several sets are provided. That is, the arrangement of the resin inlet 10, the runner 9 a for the hub, the runner 9 b for the blade, the connecting runner 9 c, and the motor cooling hole 5 with respect to one blade 3 is provided in all the blades 3 constituting the fan 1. It is almost equivalent. Therefore, if substantially the same amount of resin is injected from the plurality of resin injection ports 10, the resin flows in the same direction throughout the disk-shaped fan 1 and can be molded under the same molding conditions. For this reason, the fan completed by molding can prevent the occurrence of cavities and local thinning of the wall thickness due to unevenness of hot water as a whole, and has an effect of obtaining a highly reliable turbo fan.
Further, for example, by changing the circumferential pitch, the amount of resin required for each set constituted by the blade 3, the blade runner 9b, the hub runner 9a, the connecting runner 9c, and the motor cooling hole 5 is reduced. If they are different, if the amount of resin injected from the resin injection port 10 is changed according to the amount, it can be molded under the same molding conditions, and the same effect as described above can be obtained.

また、モータ冷却穴5とハブ用湯道9aを同数設けたことで、モータ冷却穴5に対する翼3の配置関係を、ファン1を構成するモータ冷却穴5に対してほぼ同様にできる。このため、ファン外部風路7からファン内部風路6へモータ冷却穴5を通り流出する乱れた流れE2が、そのモータ冷却穴5に最も近いハブ用湯道9aと連結している翼用湯道9bで形成される翼3の後方に流れていく。即ち、モータ冷却穴5から流出する乱れた流れE2のそれぞれは、翼3と翼3の間に流れ、互いに直接衝突することがないので、圧力変動を大きく受けることなく、低騒音化可能なターボファンが得られる。
なお、ここでは、モータ冷却穴5とハブ用湯道9aを同数設けているが、モータ冷却穴5の数がハブ用湯道9aより少なくてもよい。例えば全てのハブ用湯道9aの回転中心O側にモーター冷却穴5を設けていなくてもよい。モータ冷却穴5をハブ2aの樹脂合流部Aを避ける位置で、かつ回転中心Oに対して均等な位置に設けることで、強度的に信頼性が高く、且つ、ある程度均等な成形条件で成形でき、全体として湯回りムラによる空洞発生や肉厚の局所的な薄肉化を防止できるターボファンが得られる。もちろん、モータ冷却穴5とハブ用湯道9aを同数設けたことで、さらに均等な成形条件で成形できることにより、信頼性の高いターボファンが得られる。
Further, by providing the same number of motor cooling holes 5 and hub runners 9 a, the positional relationship of the blades 3 with respect to the motor cooling holes 5 can be made substantially the same as that of the motor cooling holes 5 constituting the fan 1. For this reason, the turbulent flow E2 flowing out from the fan external air passage 7 to the fan internal air passage 6 through the motor cooling hole 5 is connected to the hub runner 9a closest to the motor cooling hole 5. It flows behind the wing 3 formed by the road 9b. In other words, each of the turbulent flows E2 flowing out from the motor cooling hole 5 flows between the blades 3 and 3 and does not directly collide with each other. A fan is obtained.
Although the same number of motor cooling holes 5 and hub runners 9a are provided here, the number of motor cooling holes 5 may be smaller than that of hub runners 9a. For example, the motor cooling holes 5 may not be provided on the rotation center O side of all the hub runners 9a. By providing the motor cooling hole 5 at a position that avoids the resin joining portion A of the hub 2a and at an equal position with respect to the rotation center O, it is highly reliable in strength and can be molded under uniform molding conditions to some extent. As a whole, it is possible to obtain a turbofan capable of preventing the occurrence of cavities due to unevenness of hot water and local thinning of the wall thickness. Of course, by providing the same number of motor cooling holes 5 and runners 9a for the hub, a highly reliable turbo fan can be obtained because molding can be performed under even molding conditions.

また、このファンの形状は図1に示したように、翼3と翼用湯道9bとハブ用湯道9aと連結湯道9cとモータ冷却穴5で構成した組を回転軸Oを中心として放射状に複数組設け、隣り合う組との成す角度のうち少なくとも1つの角度を他の角度と異なるように構成している。これにより、モータ冷却穴5から外部へ放出される乱れE2及び翼3から吹出される流れE1が周期性を持つことを防ぐ。このためファンの回転数に起因する騒音を防止でき、聴感上静粛が保たれる。   Further, as shown in FIG. 1, the shape of the fan is a group composed of the blade 3, the blade runner 9b, the hub runner 9a, the connecting runner 9c, and the motor cooling hole 5, with the rotation axis O as the center. A plurality of sets are provided radially, and at least one of the angles formed by the adjacent sets is configured to be different from the other angles. This prevents the turbulence E2 discharged to the outside from the motor cooling hole 5 and the flow E1 blown from the blade 3 from having periodicity. For this reason, noise caused by the rotational speed of the fan can be prevented, and quietness is maintained in terms of hearing.

このように、翼3と翼用湯道9bとハブ用湯道9aと連結湯道9cとモータ冷却穴5で構成した組を回転軸を中心として放射状に複数組設けたことにより、一つの翼3に対して、樹脂注入口10、ハブ用湯道9a、翼用湯道9b、モータ冷却穴5の配置がほぼ同等であるので、成形条件が同等にでき、湯回りムラによる空洞発生や肉厚の局所的な薄肉化を防止でき、強度的に信頼性の高いターボファンが得られる。
また、翼3と翼用湯道9bとハブ用湯道9aと連結湯道9cとモータ冷却穴5で構成した組において、隣り合う組との成す角度のうち少なくとも1つの角度を他の角度と異なるように構成したことにより、騒音を低減できる効果が得られる。
Thus, by providing a plurality of sets each including the blade 3, the blade runner 9 b, the hub runner 9 a, the connecting runner 9 c, and the motor cooling hole 5 radially about the rotation axis, one blade 3, the resin injection port 10, the runner 9 a for hub, the runner 9 b for blades, and the motor cooling hole 5 are almost the same, so that the molding conditions can be made equivalent, and the occurrence of cavities and meat due to unevenness in the runner It is possible to prevent the thickness from being thinned locally, and to obtain a turbo fan with high strength and reliability.
Further, in the group constituted by the blade 3, the blade runner 9 b, the hub runner 9 a, the connecting runner 9 c, and the motor cooling hole 5, at least one of the angles formed by adjacent groups is set as another angle. By configuring differently, an effect of reducing noise can be obtained.

また、モータ冷却穴5をハブ用湯道9aと同じ数だけ設ければ、モータ冷却穴5と翼3の配置関係を同等にでき、ファン外部風路7からファン内部風路6へモータ冷却穴5を通って流出する流れE2を、スムーズに翼間を通って外部に流すことができ、騒音を低減でき、さらに成形性がよいという効果を奏する。   If the same number of motor cooling holes 5 as the runners 9a for the hub are provided, the arrangement relationship between the motor cooling holes 5 and the blades 3 can be made equal, and the motor cooling holes from the fan external air passage 7 to the fan internal air passage 6 can be obtained. The flow E2 flowing out through 5 can smoothly flow between the blades to the outside, noise can be reduced, and the moldability is good.

ここで、図7に基づいてファンの成形工程について説明する。図7はファンの成形工程を示すフローチャートである。図1〜図6に示す形状のファン1を成形する成形型を固定し(ST1)、熱可塑性樹脂を樹脂注入口10から注入する(ST2)。注入された樹脂は、ハブ用湯道9a、連結湯道9c、翼用湯道9bを流れ、さらに湯道9から主板2や翼3に広がって流れる。樹脂はほぼ数msecでファン全体に充填される。次に冷却して熱可塑性樹脂を硬化させ(ST3)、完全に硬化した後、離型して成形したファン1を取り出す(ST4)。この後、ファン1の吸込み側にシュラウド4を固着する(ST5)。さらにこの後モータのシャフトを取り付けるなどの工程に進む。   Here, the fan forming step will be described with reference to FIG. FIG. 7 is a flowchart showing a fan molding process. A molding die for molding the fan 1 having the shape shown in FIGS. 1 to 6 is fixed (ST1), and a thermoplastic resin is injected from the resin injection port 10 (ST2). The injected resin flows through the hub runner 9 a, the connecting runner 9 c, and the blade runner 9 b, and further flows from the runner 9 to the main plate 2 and the blade 3. The resin fills the entire fan in approximately several milliseconds. Next, the thermoplastic resin is cured by cooling (ST3), and after completely cured, the fan 1 molded by mold release is taken out (ST4). Thereafter, the shroud 4 is fixed to the suction side of the fan 1 (ST5). Furthermore, it progresses to processes, such as attaching the shaft of a motor after this.

次にファン1を構成する樹脂の各部の肉厚について説明する。
図5、図6に示すように、主板2の湯道9を除く部分の最小肉厚をt0、ハブ用湯道9aの肉厚をt1、中空形状の翼開口部3bの周囲に形成した翼用湯道9bの肉厚をt2、中空形状の翼3の肉厚をt3とする。少なくとも肉厚t1、t2、t3を肉厚t0よりも厚くする。湯道9は、成形時の誤差や角部分がRを有する形状になったりする場合もあるが、肉厚が最大の部分を湯道9の肉厚とする。また、湯道9の肉厚は図に示すように主板2の肉厚と主板面から突出した部分を含んだ部分とする。
図8はハブ用湯道9aの肉厚t1と主板2の湯道以外の部分の最小肉厚t0の比率t1/t0に対する成形時間を示すグラフであり、横軸にt1/t0、縦軸に成形時間(sec)を示す。ここで、形成時間とは図7に示すフローチャートにおけるST2〜ST4にかかった時間を示し、樹脂注入から冷却後、取り出しまでの時間である。
Next, the thickness of each part of the resin constituting the fan 1 will be described.
As shown in FIGS. 5 and 6, the minimum thickness of the portion excluding the runner 9 of the main plate 2 is t0, the thickness of the hub runner 9a is t1, and the blade formed around the hollow blade opening 3b. The wall thickness of the runner 9b is t2, and the wall thickness of the hollow blade 3 is t3. At least the thicknesses t1, t2, and t3 are made thicker than the thickness t0. The runner 9 may have a shape with an error at the time of molding or a corner portion having R, but the portion with the largest wall thickness is the thickness of the runner 9. The thickness of the runner 9 is a portion including the thickness of the main plate 2 and a portion protruding from the main plate surface as shown in the figure.
FIG. 8 is a graph showing the molding time with respect to the ratio t1 / t0 of the thickness t1 of the hub runner 9a and the minimum thickness t0 of the main plate 2 other than the runner, where the horizontal axis is t1 / t0 and the vertical axis is The molding time (sec) is shown. Here, the formation time indicates the time taken from ST2 to ST4 in the flowchart shown in FIG. 7, and is the time from resin injection to cooling to removal.

図8のグラフに示すように、t1/t0が1.0以下、即ちハブ用湯道9aの肉厚t1が主板2の湯道以外の部分の最小肉厚t0と同等以下の場合には、湯道9aの方が薄肉で樹脂の回りが悪く、樹脂が成形型全体に回るのに時間がかかり成形時間が増加してしまう。また、t1/t0が2.0より大きく、即ちハブ用湯道9aの肉厚t1を主板2の湯道以外の部分の最小肉厚t0の2倍よりも厚くした場合には、樹脂の冷却に時間がかかり取出しまでの時間が長くなる。その結果、1.1≦t1/t0≦2の範囲であれば、少なくとも同一肉厚(t1/t0=1.0)の場合に比べて成形時間を短縮することができる。成形時間を短縮することで、生産量を増加でき、さらに成形機でかかる電気代の低減も可能となり、省エネルギー化を図ることができる。   As shown in the graph of FIG. 8, when t1 / t0 is 1.0 or less, that is, the thickness t1 of the hub runner 9a is equal to or less than the minimum thickness t0 of the portion other than the runner of the main plate 2, The runner 9a is thinner and the resin is less rotated, and it takes time for the resin to travel to the entire mold, and the molding time increases. When t1 / t0 is greater than 2.0, that is, when the thickness t1 of the hub runner 9a is greater than twice the minimum thickness t0 of the portion other than the runner of the main plate 2, the resin cooling is performed. It takes time to take out and the time to take out becomes long. As a result, in the range of 1.1 ≦ t1 / t0 ≦ 2, the molding time can be shortened compared to at least the same thickness (t1 / t0 = 1.0). By shortening the molding time, the production amount can be increased, and further, the electricity cost required by the molding machine can be reduced, and energy saving can be achieved.

図9は翼用湯道9bの肉厚t2と主板2の湯道以外の部分の最小肉厚t0の比率t2/t0に対する成形時間を示すグラフであり、横軸にt2/t0、縦軸に成形時間(sec)を示す。ここで、形成時間とは図7に示すフローチャートにおけるST2〜ST4にかかった時間を示し、樹脂注入から冷却後、取り出しまでの時間である。
図9のグラフに示すように、t2/t0が1.0以下、即ち翼用湯道9bの肉厚t2が主板2の湯道以外の部分の最小肉厚t0と同等以下の場合には、湯道9bの方が薄肉で樹脂の回りが悪く、樹脂が成形型全体に回るのに時間がかかり成形時間が増加してしまう。また、t2/t0が2.0より大きく、即ち翼用湯道9bの肉厚t2を主板2の湯道以外の部分の最小肉厚t0の2倍よりも厚くした場合には、樹脂の冷却に時間がかかり取り出しまでの時間が長くなる。その結果、1.1≦t2/t0≦2の範囲であれば、少なくとも同一肉厚(t2/t0=1.0)の場合に比べて成形時間を短縮することができる。成形時間を短縮することで、生産量を増加でき、さらに成形機でかかる電気代の低減も可能となり、省エネルギー化を図ることができる。
FIG. 9 is a graph showing the molding time with respect to the ratio t2 / t0 of the wall thickness t2 of the blade runner 9b and the minimum thickness t0 of the portion other than the runner of the main plate 2, where the horizontal axis is t2 / t0 and the vertical axis is The molding time (sec) is shown. Here, the formation time indicates the time taken from ST2 to ST4 in the flowchart shown in FIG. 7, and is the time from resin injection to cooling to removal.
As shown in the graph of FIG. 9, when t2 / t0 is 1.0 or less, that is, when the thickness t2 of the blade runner 9b is equal to or less than the minimum thickness t0 of the portion other than the runner of the main plate 2, The runner 9b is thinner and the resin does not rotate well, and it takes time for the resin to travel to the entire mold, and the molding time increases. When t2 / t0 is larger than 2.0, that is, when the thickness t2 of the blade runner 9b is larger than twice the minimum thickness t0 of the portion other than the runner of the main plate 2, the cooling of the resin is performed. Takes a long time and takes a long time to take out. As a result, in the range of 1.1 ≦ t2 / t0 ≦ 2, the molding time can be shortened compared to at least the same thickness (t2 / t0 = 1.0). By shortening the molding time, the production amount can be increased, and further, the electricity cost required by the molding machine can be reduced, and energy saving can be achieved.

従って、ハブ用湯道9aの肉厚t1と主板2の湯道9を除く部分の最小肉厚t0との比率t1/t0を1.1≦t1/t0≦2の範囲とすれば、同一肉厚(t1/t0=1)で構成した場合に比べ、成形時間を短縮できる効果がある。また、翼用湯道9bの肉厚t2と主板2の湯道9を除く部分の最小肉厚t0との比率t2/t0を1.1≦t2/t0≦2の範囲とすれば、同一肉厚(t2/t0=1)で構成した場合に比べ、成形時間が短縮できる効果がある。特に、湯道9の肉厚t1、t2を主板2の最小肉厚t0の2倍以下として湯道9の肉厚に上限を設けることで、成形時間を短くできると共に、樹脂の量を少なくできファン1の軽量化及びコストダウンも図ることができる。
ここでは、ハブ用湯道9aの肉厚t1と翼用湯道9bの肉厚t2について別々に記載したが、どちらか一方を満足するように構成にしてもいいし、共に満足する構成としてもよい。共に満足する構成にすれば、成形時間を多く短縮でき、効果的である。
Therefore, if the ratio t1 / t0 between the thickness t1 of the hub runner 9a and the minimum thickness t0 of the portion excluding the runner 9 of the main plate 2 is in the range of 1.1 ≦ t1 / t0 ≦ 2, the same thickness Compared to the case where the thickness (t1 / t0 = 1) is used, the molding time can be shortened. Further, if the ratio t2 / t0 between the wall thickness t2 of the wing runner 9b and the minimum thickness t0 of the main plate 2 excluding the runner 9 is in the range of 1.1 ≦ t2 / t0 ≦ 2, the same thickness Compared to the case where the thickness (t2 / t0 = 1) is used, the molding time can be shortened. In particular, by setting the thicknesses t1 and t2 of the runner 9 to be not more than twice the minimum thickness t0 of the main plate 2 and providing an upper limit on the thickness of the runner 9, the molding time can be shortened and the amount of resin can be reduced. The fan 1 can be reduced in weight and cost.
Here, the thickness t1 of the hub runner 9a and the thickness t2 of the blade runner 9b are separately described. However, either one may be configured to satisfy either, or both may be satisfied. Good. If both are satisfied, the molding time can be shortened and it is effective.

このように、ハブ用湯道9aの肉厚及び翼用湯道9bの肉厚のうちの少なくとも一方の肉厚をtとし、主板2の湯道9を除く部分の最小の肉厚をt0としたとき、比率t/t0を1.1≦t/t0≦2の範囲とすれば、同一の肉厚(t/t0=1)で構成した場合に比べ、成形時間が短縮できる効果がある。   Thus, t is the thickness of at least one of the thickness of the runner 9a for the hub and the thickness of the runner 9b for the blades, and the minimum thickness of the portion excluding the runner 9 of the main plate 2 is t0. When the ratio t / t0 is in the range of 1.1 ≦ t / t0 ≦ 2, there is an effect that the molding time can be shortened as compared with the case where the ratio is configured with the same thickness (t / t0 = 1).

以下、翼3の形状について記述する。
1枚の翼3の構成を図10及び図11に示す。図10及び図11はこの実施の形態に係る翼3を示す説明図であり、図10(a)は翼1枚の側面、図10(b)は図10(a)のZ−Z線における横断面を示し、図11は図10(b)のY−Y線における縦断面を示す。
図10(a)に示すように、翼中空部3dの翼内周側中空部3dc、翼外周側中空部3ddは回転軸に平行な直線Xに対し、任意角度θ1、θ2で主板2に設けられた翼開口部3bを基部として翼吸込側端部3eに向かって中空形状の内側に傾斜する構成である。翼3の肉厚はほぼ均等としているので、翼内周側端部3aと翼外周側端部3cも回転軸に平行な直線Xに対して任意角度θ1、θ2で翼開口部3bから翼吸込側端部3eに向かって中空形状の内側に傾斜している。
また、図11に示すように、翼3の回転方向Dに対して翼前方中空部3daと翼3の反回転方向側面の翼後方中空部3dbは回転軸に平行な直線Xに対し、任意角度θ3、θ4で翼開口部3bから翼吸込側端部3eに向かって中空形状の内側に傾斜する構成である。翼3の肉厚はほぼ均等としているので、翼前方側部3fと翼後方側部3gも回転軸に平行な直線Xに対して任意角度θ3、θ4で翼開口部3bから翼吸込側端部3eに向かって中空形状の内側に傾斜している。
Hereinafter, the shape of the blade 3 will be described.
The configuration of one blade 3 is shown in FIGS. FIG.10 and FIG.11 is explanatory drawing which shows the wing | blade 3 which concerns on this embodiment, FIG.10 (a) is the side surface of one wing | blade, FIG.10 (b) is in the ZZ line of Fig.10 (a). A cross section is shown, and FIG. 11 shows the vertical cross section in the YY line of FIG.10 (b).
As shown in FIG. 10A, the blade inner peripheral hollow portion 3dc and the blade outer peripheral hollow portion 3dd of the blade hollow portion 3d are provided on the main plate 2 at arbitrary angles θ1 and θ2 with respect to the straight line X parallel to the rotation axis. The blade opening 3b is used as a base and is inclined inward toward the blade suction side end 3e toward the inside of the hollow shape. Since the thickness of the blade 3 is substantially uniform, the blade inner circumferential end 3a and the blade outer circumferential end 3c are also sucked from the blade opening 3b at arbitrary angles θ1 and θ2 with respect to the straight line X parallel to the rotation axis. It inclines inside the hollow shape toward the side end 3e.
Further, as shown in FIG. 11, the blade front hollow portion 3da and the blade rear hollow portion 3db on the side opposite to the rotation direction of the blade 3 are at an arbitrary angle with respect to the straight line X parallel to the rotation axis. It is the structure which inclines inside hollow shape toward the blade | wing suction side edge part 3e from the blade opening part 3b by (theta) 3 and (theta) 4. Since the thickness of the blade 3 is substantially uniform, the blade front side portion 3f and the blade rear side portion 3g are also at arbitrary angles θ3 and θ4 with respect to the straight line X parallel to the rotation axis from the blade opening 3b to the blade suction side end portion. It inclines inside hollow shape toward 3e.

即ち、翼3及び翼中空部3dが主板2からシュラウド4に向けて、所定角度θ1、θ2、θ3、θ4で中空内側に傾斜した勾配を有する先細り形状で構成している。このため、成形型をファン成形体から回転軸方向に抜く際に、傾斜によってスムーズに樹脂と成形型とを離型することができ、翼3が成形型に付着して翼3が破損するのを防止でき、成形性を向上できる。樹脂の冷却硬化終了時には成形型は、中空形状の翼3の外側の立設面3a、3c、3f、3gでファン成形体に密着していると共に、中空内側の立設面3dc、3dd、3da、3dbでファン成形体に密着している。ここでは外側と中空内側のどちらの立設面も基部から立設方向に向かって先細り形状としている。このため、翼3の外側で容易に離型できると共に翼3の中空内側で容易に離型できる。
これに加えて、翼3を中空形状としたことで、中空形状ではないものと比較して軽量化できる。また、翼3の肉厚が不均等の場合には、樹脂の冷却硬化時間ムラによる成形不具合が発生し、成形性が悪いという問題があったが、翼3の肉厚を略均等としたので、樹脂の冷却硬化時間をほぼ均等にでき、成形不具合を防止でき、成形性を向上できる。
That is, the blade 3 and the blade hollow portion 3d are formed in a tapered shape having a gradient inclined toward the hollow inside at a predetermined angle θ1, θ2, θ3, θ4 from the main plate 2 toward the shroud 4. For this reason, when the mold is removed from the fan molded body in the direction of the rotation axis, the resin and the mold can be smoothly released by the inclination, and the blade 3 adheres to the mold and the blade 3 is damaged. Can be prevented, and moldability can be improved. At the end of the cooling and curing of the resin, the mold is in close contact with the fan molded body at the standing surfaces 3a, 3c, 3f, and 3g on the outer side of the hollow blade 3, and the standing surfaces 3dc, 3dd, and 3da on the hollow side. It is in close contact with the fan molded body at 3 db. Here, both of the standing surfaces on the outer side and the hollow side are tapered from the base toward the standing direction. For this reason, it can be easily released from the outside of the blade 3 and can be easily released from the inside of the hollow of the blade 3.
In addition, since the blade 3 has a hollow shape, the weight can be reduced as compared with a hollow shape. Further, when the thickness of the blade 3 is uneven, there is a problem that molding failure due to uneven cooling and hardening time of the resin occurs and the moldability is poor, but the thickness of the blade 3 is made substantially uniform. The cooling and curing time of the resin can be made almost uniform, molding defects can be prevented, and moldability can be improved.

このように、円盤状の主板2と、主板2の中央部を回転軸方向に突出させて成る凸状のハブ2aと、主板2の外周側平板部を基部としハブ2aの突出方向に立設すると共に基部に開口3bを有する中空形状の複数の翼3と、を備え、中空形状の翼3の外側の立設面3a、3g、3c、3fと中空内側の立設面3da、3db、3dc、3ddを中空内側に傾斜させ、翼3の外側と中空内側を基部から先細り形状としたことにより、成形型を容易に離型でき、成形型に翼3が付着することによる翼3の破損を防止できる。
さらに、翼3の肉厚をほぼ均等としたことにより、樹脂の冷却硬化時間を均等にでき、成形性がよいターボファンが得られる。
さらにまた、翼3を中空形状としたので、ファン1全体を軽量化できる。
In this way, the disc-shaped main plate 2, the convex hub 2a formed by projecting the central portion of the main plate 2 in the direction of the rotation axis, and the outer peripheral side flat plate portion of the main plate 2 as the base portion are erected in the projecting direction of the hub 2a. A plurality of hollow wings 3 having openings 3b at the base, and outer standing surfaces 3a, 3g, 3c, 3f and hollow inner standing surfaces 3da, 3db, 3dc of the hollow wing 3 3dd is inclined to the inside of the hollow, and the outer side and the inner side of the blade 3 are tapered from the base so that the molding die can be easily released, and damage to the blade 3 due to the attachment of the blade 3 to the molding die. Can be prevented.
Furthermore, by making the thickness of the blades 3 substantially uniform, the cooling and hardening time of the resin can be made uniform, and a turbofan with good moldability can be obtained.
Furthermore, since the blade 3 has a hollow shape, the entire fan 1 can be reduced in weight.

図12は、翼内周側端部3aの回転軸に対する角度θ1と、翼外周側端部3cの回転軸に対する角度θ2と、翼翼前方中空部3daの回転軸に対する傾斜角度θ3と、翼後方中空部3dbの回転軸に対する傾斜角度θ4の全てを同一の角度θで傾斜させ、傾斜角度θを変化させたときのファンの成形時間(sec)と騒音値(dB)を示すグラフであり、横軸に傾斜角度θ、縦軸に成形時間(sec)と騒音値(dB)を示す。この騒音値(dB)はファンから2m直下に離れた地点で計測したものである。また、成形時間は、図7に示す成形工程を示すフローチャートではST2〜ST4の時間である。   FIG. 12 shows an angle θ1 with respect to the rotation axis of the blade inner circumferential end 3a, an angle θ2 with respect to the rotation axis of the blade outer circumferential end 3c, an inclination angle θ3 with respect to the rotation axis of the blade blade front hollow portion 3da, and the blade rear hollow 6 is a graph showing the fan forming time (sec) and noise value (dB) when the inclination angle θ is changed by inclining all the inclination angles θ4 with respect to the rotation axis of the part 3db, and the horizontal axis Represents the tilt angle θ, and the vertical axis represents the molding time (sec) and the noise value (dB). This noise value (dB) was measured at a point 2 m below the fan. Further, the molding time is ST2 to ST4 in the flowchart showing the molding process shown in FIG.

図12に示すグラフに基づいて成形時間について説明する。
傾斜角度θ<0°の場合、翼3は主板2側からシュラウド4側に向かって広がった形状になるので、成形型が離型できず不可能な構成となる。θ=0°の場合、即ち回転軸に対して傾斜していない場合には、翼3と成形型との摩擦が大きく、ゆっくりと離型しないと成形型に翼3が付着して破損してしまうため、長い成形時間が必要となる。これに対して傾斜角度θをつけることで、離型が容易になって離型時間を短縮でき、さらに翼3の表面積が大きくなって冷却面積が大きくなるので、冷却時間が短縮化される。このため、傾斜角度θをつけることで成形時間を短くできる。傾斜角度θは1°であれば、成形時間は傾斜角度0°の場合と比較して1/2程度になる。従って、傾斜角度θは少なくとも1°以上であれば、成形時間が短くなって成形性が高い。
The molding time will be described based on the graph shown in FIG.
In the case of the inclination angle θ <0 °, the blade 3 has a shape that expands from the main plate 2 side toward the shroud 4 side. When θ = 0 °, that is, when it is not inclined with respect to the rotation axis, the friction between the blade 3 and the mold is large, and if the mold is not released slowly, the blade 3 adheres to the mold and breaks. Therefore, a long molding time is required. On the other hand, by providing the inclination angle θ, it is easy to release the mold, and the release time can be shortened. Further, since the surface area of the blade 3 is increased and the cooling area is increased, the cooling time is shortened. For this reason, forming time can be shortened by giving inclination-angle (theta). If the inclination angle θ is 1 °, the molding time is about ½ compared to the case of the inclination angle 0 °. Therefore, if the inclination angle θ is at least 1 ° or more, the molding time is shortened and the moldability is high.

次に、図12に示すグラフに基づいて騒音値について説明する。
傾斜角度θと騒音値の関係において、傾斜角度θが大きすぎると隣り合う翼3と翼3の間の流路が狭くなり、通過風速が上昇することから騒音が増加してしまう。図12の計測結果によれば、傾斜角度θが3°よりも大きく傾斜させると、騒音が大きくなっている。このため、傾斜角度θを1°≦θ≦3°の範囲に構成すれば、良好な騒音値を保持できる。
以上の結果より、傾斜角度θを1°≦θ≦3°の範囲とすることで、騒音変化が小さく、且つ成形性の高いターボファンが得られる。
Next, a noise value is demonstrated based on the graph shown in FIG.
In the relationship between the inclination angle θ and the noise value, if the inclination angle θ is too large, the flow path between the adjacent blades 3 and the blades 3 becomes narrow, and the passing wind speed increases, resulting in an increase in noise. According to the measurement result of FIG. 12, when the tilt angle θ is tilted larger than 3 °, the noise is increased. For this reason, if the inclination angle θ is configured in the range of 1 ° ≦ θ ≦ 3 °, a good noise value can be maintained.
From the above results, by setting the inclination angle θ in the range of 1 ° ≦ θ ≦ 3 °, a turbo fan with small noise change and high moldability can be obtained.

このように、中空形状の翼3の外側の立設面3a、3g、3c、3fと中空内側の立設面3da、3db、3dc、3ddを中空内側に傾斜させ、所定の傾斜角度θのそれぞれを1°≦θ≦3°の範囲としたことにより、騒音変化が小さく、成形性の高いターボファンが得られる効果がある。   In this way, the outer standing surfaces 3a, 3g, 3c, and 3f and the hollow inner standing surfaces 3da, 3db, 3dc, and 3dd of the hollow wing 3 are inclined toward the hollow inner side, and predetermined inclination angles θ are respectively set. Is in the range of 1 ° ≦ θ ≦ 3 °, there is an effect of obtaining a turbo fan with small noise change and high moldability.

なお、ここでは翼の翼内周側中空部3dc、翼外周側中空部3dd、翼前方中空部3da、及び翼後方中空部3dbのすべてを回転軸に対し同一の傾斜角度θで中空内側に傾斜させているが、それぞれを互いに異なる角度で傾斜させても、同様の効果を奏する。
また、翼内周側端部3a、翼外周側端部3c、翼吸込側端部3e、翼の回転方向に対し前方の翼前方側部3f、後方の翼後方側部3gの各肉厚は翼3全体でほぼ均等な肉厚としたが、これに限るものではなく、成形誤差などによって多少異なっていてもよい。翼内周側端部3aや翼外周側端部3cでは、回転方向の幅が小さくこの部分で肉厚を同一に構成するのは困難である。ある程度の変動を有する範囲で翼3の肉厚をほぼ均等にすればよい。肉厚を均等に構成することで、樹脂が均等に注入されると共に均等に冷却されるので、良好な成形体を得ることができる。
Here, all of the blade inner peripheral hollow portion 3dc, the blade outer peripheral hollow portion 3dd, the blade front hollow portion 3da, and the blade rear hollow portion 3db are inclined inwardly at the same inclination angle θ with respect to the rotation axis. However, the same effect can be obtained even if each is inclined at a different angle.
Further, the thicknesses of the blade inner peripheral side end 3a, the blade outer peripheral side end 3c, the blade suction side end 3e, the front blade front side portion 3f, and the rear blade rear side portion 3g with respect to the rotation direction of the blade are as follows: Although the thickness of the blade 3 is almost uniform, it is not limited to this, and may be slightly different depending on a molding error. In the blade inner peripheral end 3a and the blade outer peripheral end 3c, the width in the rotational direction is small, and it is difficult to configure the same thickness in this portion. What is necessary is just to make the thickness of the wing | blade 3 substantially uniform in the range which has a certain amount of fluctuation | variation. By configuring the wall thickness uniformly, the resin is uniformly injected and cooled uniformly, so that a good molded body can be obtained.

また、この実施の形態では、翼3の中心部が主板2の基部からハブ2aの突出方向に垂直に立設した構成とし、翼3の外側と中空内側の立設面を中空内側に傾斜させることで、上記のような効果を得るものである。この構成では、成形型を回転軸方向で、且つ回転軸に平行に離すことで離形される。これに対し、例えば成形型を回転軸方向で、且つ回転軸を中心として多少回転させながら離すことで離型する様に構成してもよい。回転して離形する場合には、翼3の中心部が主板2の基部からハブ2aの突出方向に垂直に立設した構成ではなく、翼3の中心部が主板2の基部から翼吸込側端部3eに向かって回転離型方向に所定角度傾いた形状となる。このように翼3が傾いた構成とした場合でも、翼3の外側と中空内側の立設面を中空内側に傾斜させることで、離型を容易にでき、上記と同様の効果を奏する。   Further, in this embodiment, the central portion of the wing 3 is erected vertically from the base portion of the main plate 2 in the protruding direction of the hub 2a, and the erected surfaces of the wing 3 and the hollow inner side are inclined toward the hollow inner side. Thus, the effects as described above are obtained. In this configuration, the mold is released by separating in the direction of the rotation axis and parallel to the rotation axis. On the other hand, for example, the mold may be configured to be released by rotating in the direction of the rotation axis and releasing it while rotating a little around the rotation axis. In the case of rotating and separating, the central part of the blade 3 is not configured to stand vertically from the base part of the main plate 2 in the protruding direction of the hub 2a, but the central part of the blade 3 is from the base part of the main plate 2 to the blade suction side. The shape is inclined at a predetermined angle in the rotational release direction toward the end 3e. Even in the case where the blade 3 is inclined as described above, it is possible to easily release the mold by inclining the standing surface on the outer side and the hollow inner side of the blade 3 toward the hollow inner side, and the same effect as described above can be obtained.

次に、湯道9を別の構成として成形されたターボファン1について記載する。図13は他の湯道構成で成形されたターボファン1を示す下面図である。図中、図3と同一符号は同一、又は相当部分を示す。
図において、モータ冷却穴5の周囲を囲むように形成された冷却穴用湯道9dを設け、この冷却穴用湯道9dとハブ用湯道9aとを連結して一体の湯道として構成している。
Next, the turbo fan 1 formed with the runway 9 as another configuration will be described. FIG. 13 is a bottom view showing a turbofan 1 molded with another runner configuration. In the figure, the same reference numerals as those in FIG. 3 denote the same or corresponding parts.
In the figure, a cooling hole runner 9d formed so as to surround the motor cooling hole 5 is provided, and the cooling hole runner 9d and the hub runner 9a are connected to form an integrated runner. ing.

このように構成されたターボファンにおいて、成形時に樹脂注入口10から注入された樹脂の一部は、ハブ用湯道9aから冷却穴用湯道9dへ向かって流れ、さらにハブ2aやボス2cへ向かって流れる。この時、ハブ用湯道9aを流れる樹脂は、冷却穴用湯道9dで2方向に分かれ、モータ冷却穴5の周囲に設けられた冷却穴用湯道9dを流れる。そしてモータ冷却穴5の周囲を流れた後、即ちモータ冷却穴5のボス2c側で確実に再合流し、ボス2cへ向かって流れる。このように、冷却穴用湯道9dを設けることで、モータ冷却穴5の周辺の樹脂流動性向上により、成形性を向上できる。
また、モータ冷却穴5の外周に冷却穴用湯道9dを設けたことで、開口であるモータ冷却穴5の周囲は冷却穴用湯道9dが固まって残り、肉厚に構成される。このため、開口で強度低下しやすいモータ冷却穴5周囲の強度を向上でき、衝撃がかかっても破断に対して耐久性を有するターボファンが得られる。
In the turbofan configured as described above, a part of the resin injected from the resin injection port 10 during molding flows from the hub runner 9a toward the cooling hole runner 9d, and further to the hub 2a and the boss 2c. It flows toward. At this time, the resin flowing through the hub runner 9 a is divided into two directions by the cooling hole runner 9 d and flows through the cooling hole runner 9 d provided around the motor cooling hole 5. Then, after flowing around the motor cooling hole 5, that is, at the boss 2 c side of the motor cooling hole 5, it reliably rejoins and flows toward the boss 2 c. Thus, by providing the cooling hole runner 9d, the moldability can be improved by improving the resin fluidity around the motor cooling hole 5.
Further, by providing the cooling hole runner 9d on the outer periphery of the motor cooling hole 5, the cooling hole runner 9d remains solid around the motor cooling hole 5 which is an opening, and is configured to be thick. Therefore, it is possible to improve the strength around the motor cooling hole 5 where the strength is likely to decrease at the opening, and a turbofan having durability against breakage can be obtained even when an impact is applied.

図14はさらに他の湯道の構成で成形されたターボファン1を示す下面図である。図中、図3と同一符号は同一、又は相当部分を示す。
図において、直線状のハブ用湯道9aはモータ冷却穴5の周囲の冷却穴用湯道9dに接続し、さらにハブ上部厚肉部2dに連結する。モータ冷却穴5の回転中心側はハブ上部厚肉部2dとなっており、主板2の湯道以外の主な部分の肉厚よりも肉厚が厚い部分である。
FIG. 14 is a bottom view showing a turbofan 1 molded with still another runner configuration. In the figure, the same reference numerals as those in FIG. 3 denote the same or corresponding parts.
In the figure, the straight hub runner 9a is connected to the cooling hole runner 9d around the motor cooling hole 5 and further connected to the hub upper thick portion 2d. The rotation center side of the motor cooling hole 5 is a hub upper thick portion 2d, which is a portion thicker than the main portion of the main plate 2 other than the runner.

このように構成されたターボファンにおいて、成形時に樹脂注入口10から流入した樹脂の一部は、ハブ用湯道9aから冷却穴用湯道9dへ向かって流れ、さらにハブ上部肉厚部2dを流れてこの部分を形作る。図13に示した構成と同様、ハブ用湯道9aを流れる樹脂は、冷却穴用湯道9dで2方向に分かれ、モータ冷却穴5の周囲に設けられた冷却穴用湯道9dを流れる。そして、モータ冷却穴5の周囲を流れた後、これに接続するハブ上部肉厚部2dへ向かって流れ、この部分を成形する。   In the turbofan configured as described above, a part of the resin flowing from the resin inlet 10 at the time of molding flows from the hub runner 9a toward the cooling hole runner 9d, and further passes through the hub upper thick portion 2d. Flow to form this part. Similar to the configuration shown in FIG. 13, the resin flowing through the hub runner 9 a is divided into two directions by the cooling hole runner 9 d and flows through the cooling hole runner 9 d provided around the motor cooling hole 5. Then, after flowing around the motor cooling hole 5, it flows toward the hub upper thick portion 2d connected to the motor cooling hole 5, and this portion is molded.

図13の構成と同様、モータ冷却穴5の外周に冷却穴用湯道9dを設けたことで、開口であるモータ冷却穴5の周囲は冷却穴用湯道9dが固まって残り、肉厚に構成され、開口で強度低下しやすいモータ冷却穴5周囲の強度を向上できる。このように、冷却穴用湯道9dを設けることで、モータ冷却穴5の周辺の樹脂流動性向上による成形性の向上と強度向上を図ることができ、衝撃がかかっても破断に対して耐久性を有するターボファンが得られる。
さらにこの構成では、冷却穴用湯道9dがそのままハブ傾斜面の肉厚より厚いボス近傍のハブ上部厚肉部2dに連結している。このため、樹脂がハブ上部厚肉部2dまでスムーズに流れ、冷却穴用湯道9dを流れる樹脂は、モータ冷却穴5の樹脂流動方向前方、即ちモータ冷却穴5のボス2c側でさらに確実に再合流してハブ上部厚肉部2dへ流れる。従って、開口であるモータ冷却穴5の周囲に確実に冷却穴用湯道9dの肉厚分で樹脂を注入でき、開口で強度低下しやすいモータ冷却穴5周囲の強度向上を図ることができる。
As in the configuration of FIG. 13, by providing the cooling hole runner 9d on the outer periphery of the motor cooling hole 5, the cooling hole runner 9d remains solid around the motor cooling hole 5 which is an opening, and the wall thickness is increased. Thus, the strength around the motor cooling hole 5 can be improved. Thus, by providing the cooling hole runner 9d, it is possible to improve moldability and strength by improving the resin fluidity around the motor cooling hole 5, and it is durable against breakage even when an impact is applied. A turbofan having characteristics can be obtained.
Further, in this configuration, the cooling hole runner 9d is directly connected to the hub upper thick portion 2d in the vicinity of the boss that is thicker than the thickness of the hub inclined surface. For this reason, the resin flows smoothly to the hub upper thick portion 2d, and the resin flowing through the cooling hole runner 9d is more reliably forward of the motor cooling hole 5 in the resin flow direction, that is, on the boss 2c side of the motor cooling hole 5. It rejoins and flows to the hub upper thick part 2d. Accordingly, the resin can be reliably injected around the motor cooling hole 5 that is the opening with the thickness of the cooling hole runner 9d, and the strength around the motor cooling hole 5 where the strength is likely to decrease at the opening can be improved.

このように、ハブ用湯道9aに連結され、モータ冷却穴5の周囲を囲むように形成された冷却穴用湯道9dを備えたことにより、モータ冷却穴5の周辺の樹脂流動性向上による成形性を向上できると共に強度を向上できるターボファンが得られる。   Thus, by providing the cooling hole runner 9d connected to the hub runner 9a and surrounding the motor cooling hole 5, the resin fluidity around the motor cooling hole 5 is improved. A turbofan that can improve moldability and strength can be obtained.

次に、翼用湯道9bについて詳しく説明する。図15はこの実施の形態に係り、別の構成例によるターボファンを下面から見た斜視図、図16は図15の一部を拡大して示す部分斜視図、図17、図18は1枚の翼3を示す説明図であり、図17(a)は翼3の側面を示し、図17(b)は図17(a)のZ−Z線での横断面を示す。また、図18(a)は図17(b)のY−Y線での断面を示し、図18(b)は図18(a)の丸Mの部分を拡大して示す。図19はターボファン1の下面の一部を示す説明図である。   Next, the wing runner 9b will be described in detail. FIG. 15 is a perspective view of a turbo fan according to another configuration example as seen from below, FIG. 16 is a partial perspective view showing a part of FIG. 15 in an enlarged manner, and FIGS. FIG. 17A shows a side surface of the blade 3, and FIG. 17B shows a cross section taken along the line ZZ of FIG. 17A. FIG. 18A shows a cross section taken along line YY of FIG. 17B, and FIG. 18B shows an enlarged portion of a circle M in FIG. FIG. 19 is an explanatory view showing a part of the lower surface of the turbofan 1.

ここで示すターボファンの構成は、翼3の基部に形成される翼開口部3bの周囲に設けた翼用湯道9bに関する別の構成例を示すものである。
例えば、図15〜図18に示すように中空形状の翼3の開口の周囲に翼用湯道9bを設け、翼回転方向前方側の翼用湯道9bを翼前方湯道9ba、翼回転方向後方側の翼用湯道9bを翼後方湯道9bbとする。そして、翼前方湯道9baの主板2の面からの突出高さと翼後方湯道9bbの主板2の面からの突出高さに差を付け、翼前方湯道9baの回転軸方向の突出高さを翼後方湯道9bbの突出高さよりも所定高さだけ高くして、ファン外部側へ突出させる。
The configuration of the turbofan shown here shows another configuration example related to the blade runner 9b provided around the blade opening 3b formed at the base of the blade 3.
For example, as shown in FIGS. 15 to 18, a blade runner 9 b is provided around the opening of the hollow blade 3, and the blade runner 9 b on the front side in the blade rotation direction is used as the blade front runner 9 ba and the blade rotation direction. The wing runner 9b on the rear side is referred to as a wing rear runner 9bb. Then, a difference is made between the protrusion height of the blade front runner 9ba from the surface of the main plate 2 and the protrusion height of the blade rear runner 9bb from the surface of the main plate 2, and the protrusion height of the blade front runner 9ba in the rotation axis direction. Is made higher than the protruding height of the blade rear runner 9bb by a predetermined height, and protrudes to the outside of the fan.

翼開口部3bにおける主板2近傍において、ファン1がD方向に回転する際に生じる気流Cは、翼前方湯道9baにぶつかって外側に湾曲し、放物線を描いて翼後方湯道9b側で再び主板2に近づくように流れる。この様子を図16に拡大して示す。ここで、翼前方湯道9baと翼後方湯道9bbとを同じ高さとした場合には、ファン回転時に主板2近傍の流れが翼前方湯道9ba離脱後、翼後方湯道9bbの角に衝突し、圧力変動を生じ狭帯域での騒音発生するという問題点があった。   In the vicinity of the main plate 2 in the blade opening 3b, the airflow C generated when the fan 1 rotates in the direction D hits the blade front runner 9ba and curves outward, draws a parabola, and again on the blade rear runner 9b side. It flows so as to approach the main plate 2. This is shown in an enlarged manner in FIG. Here, when the blade front runner 9ba and the blade rear runner 9bb are at the same height, the flow in the vicinity of the main plate 2 collides with the corner of the blade rear runner 9bb after the blade front runner 9ba leaves when the fan rotates. However, there is a problem that noise is generated in a narrow band due to pressure fluctuation.

これに対し、図18(b)に示すように翼前方湯道9baを翼後方湯道9bbに比べ所定高さだけ高くすると、翼開口部3b近傍での流れは図18(a)における矢印Cのように流れる。即ち、翼前方湯道9baを離脱後の流れは主板2の外側に湾曲する放物線を描き、翼後方湯道9bbの回転方向後方で再び主板2に近づく。翼前方湯道9baを高くすると、気流Cが主板2の表面から外側に湾曲する際の主板2からの距離が大きくなる。この結果、気流Cの再付着点が翼後方開口部3bの後方に移動する。このように気流Cを翼後方開口部3bの後方に滑らかに再付着させることで、気流Cが翼後方湯道9bbの角に衝突するのを防止でき、低騒音化を図ることができる。
また、翼用前方湯道9baの肉厚が厚くなるので、翼3へ樹脂がさらに流れやすくなりヒケの防止が可能で、しかも翼前方湯道9baでの強度も向上するので、ファンの強度も向上する。
On the other hand, when the blade front runner 9ba is made higher than the blade rear runner 9bb by a predetermined height as shown in FIG. 18 (b), the flow in the vicinity of the blade opening 3b is indicated by the arrow C in FIG. 18 (a). It flows like. That is, the flow after leaving the blade front runner 9ba draws a parabola that curves outward from the main plate 2, and approaches the main plate 2 again at the rear in the rotational direction of the blade rear runner 9bb. When the blade front runner 9ba is increased, the distance from the main plate 2 when the airflow C curves outward from the surface of the main plate 2 increases. As a result, the reattachment point of the airflow C moves to the rear of the blade rear opening 3b. By smoothly reattaching the airflow C to the rear of the blade rear opening 3b in this manner, the airflow C can be prevented from colliding with the corner of the blade rear runner 9bb, and noise can be reduced.
Further, since the thickness of the front runner 9ba for the blade is increased, the resin can more easily flow to the blade 3 to prevent the sink, and the strength at the front runner 9ba of the blade is improved, and the strength of the fan is also improved. improves.

このように、翼前方湯道9baを翼後方湯道9bbに比べ、所定高さだけ高く構成してファン外部側へ突出するように構成することで、軽量で強度が高く回転時および輸送時でもファンの破損が防止でき、高信頼性で低騒音なターボファンを得られる。   In this way, the blade front runner 9ba is configured to be higher by a predetermined height than the blade rear runner 9bb and protrudes to the outside of the fan, so that it is lightweight and strong and can be rotated and transported. The fan can be prevented from being damaged, and a highly reliable and low noise turbo fan can be obtained.

ここで、図19に示す中空構造の翼開口部3bの最大開口直径Fに対し、翼3の周囲を囲むように形成された翼用湯道9bの翼前方湯道9baと翼後方湯道9bbとの高さの差Δt(図18(b)に示す)についてさらに説明する。ここで、最大開口幅Fは開口の主板2の面における内接円の直径とし、△tを翼前方湯道9baの高さと翼後方湯道9bbの高さの差とする。
高さの差Δtが小さいと、翼前方湯道9baを離れる流れは充分な高さのある放物線にはならずに、翼後方湯道9bbの角に衝突することになる。このため、翼開口部3bでの圧力変動による騒音が発生する。逆に翼前方湯道9baが高すぎる、即ち差Δtが大きすぎると、翼前方湯道9baで流れが剥離し、回転数に起因するピーク音が発生してしまう。このように翼前方湯道9baと翼後方湯道9bbとの高さの差Δtには、望ましい範囲が存在する。
Here, the blade front runner 9ba and the blade rear runner 9bb of the blade runner 9b formed so as to surround the periphery of the blade 3 with respect to the maximum opening diameter F of the blade opening portion 3b having a hollow structure shown in FIG. The height difference Δt (shown in FIG. 18B) will be further described. Here, the maximum opening width F is the diameter of the inscribed circle on the surface of the main plate 2 of the opening, and Δt is the difference between the height of the blade front runner 9ba and the height of the blade rear runner 9bb.
When the height difference Δt is small, the flow leaving the blade front runner 9ba does not become a sufficiently high parabola, but collides with the corner of the blade rear runner 9bb. For this reason, noise is generated due to pressure fluctuations at the blade opening 3b. On the other hand, if the blade front runner 9ba is too high, that is, if the difference Δt is too large, the flow is separated in the blade front runner 9ba, and a peak sound due to the rotational speed is generated. Thus, there is a desirable range in the height difference Δt between the blade front runner 9ba and the blade rear runner 9bb.

ただし、翼開口部3bを横切る流れは、翼前方湯道9baと翼後方湯道9bbとの高さの差Δtのみではなく、翼開口部3bの最大開口直径Fにも関係する。そこで、翼開口部3bの最大開口直径Fに対する翼前方湯道9baと翼後方湯道9bbとの高さの差Δtの比率(Δt/F)を計算する。図20は比率(Δt/F)%と同一風量における騒音値(dB)の関係を示すグラフであり、横軸に比率Δt/F(%)、縦軸に騒音値(dB)を示す。この騒音値は、ファンの直下で、ファンから2m程度離れたところで測定した。   However, the flow across the blade opening 3b is related not only to the height difference Δt between the blade front runner 9ba and the blade rear runner 9bb but also to the maximum opening diameter F of the blade opening 3b. Therefore, the ratio (Δt / F) of the height difference Δt between the blade front runner 9ba and the blade rear runner 9bb with respect to the maximum opening diameter F of the blade opening 3b is calculated. FIG. 20 is a graph showing the relationship between the ratio (Δt / F)% and the noise value (dB) at the same air volume, with the horizontal axis indicating the ratio Δt / F (%) and the vertical axis indicating the noise value (dB). The noise level was measured at a position directly under the fan and about 2 m away from the fan.

図20に示す計測結果から、少なくとも4%≦△t/F≦22%の範囲になるように構成することで、翼前方湯道9baと翼後方湯道9bbの主板2の面からの突出高さが同じ、即ち△t=0(△t/F=0)のときに比べ低騒音であるターボファンが得られる。
Δt/F<4%の場合には、最大開口直径Fに対して湯道の差Δtが小さく、翼前方湯道9baを離れた流れが翼後方湯道9bbの角に衝突する可能性が高くなって、圧力変動を生じ狭帯域で騒音を発生する。一方、22%<Δt/Fの場合には、最大開口直径Fに対して湯道の突出高さの差Δtが大きく、翼前方湯道9baを離れた流れが剥離して、回転数に起因するピーク音によって騒音が大きくなる。
From the measurement result shown in FIG. 20, the projecting height from the surface of the main plate 2 of the blade front runner 9ba and the blade rear runner 9bb is configured to be at least 4% ≦ Δt / F ≦ 22%. Therefore, a turbo fan with lower noise than that when Δt = 0 (Δt / F = 0) can be obtained.
When Δt / F <4%, the difference Δt of the runner with respect to the maximum opening diameter F is small, and there is a high possibility that the flow leaving the blade front runner 9ba collides with the corner of the blade rear runner 9bb. Thus, pressure fluctuation occurs and noise is generated in a narrow band. On the other hand, in the case of 22% <Δt / F, the difference Δt in the protrusion height of the runner with respect to the maximum opening diameter F is large, and the flow away from the blade front runner 9ba is separated, resulting in the rotational speed. Noise increases due to peak sound.

このように、翼開口部3bの最大開口直径Fに対する翼前方湯道9baと翼後方湯道9bbとの突出高さの差を、4%≦△t/F≦22%の範囲になる様に構成すれば、ファン回転時に、主板2近傍の流れが翼前方湯道9ba離脱後、翼後方湯道9bbの角にて衝突し圧力変動を生じ狭帯域で騒音を発生することを抑制できる。そして、翼前方湯道9ba離脱後の流れが翼後方湯道9bbの回転方向後方への再付着点を、翼後方開口部3gの後方に移動させて、滑らかに再付着させることができる。また、翼前方湯道9baの突出高さが高すぎて、翼前方湯道9baにて流れが剥離することなく、回転数に起因するピーク音の発生を抑制し騒音悪化防止が図れる。これらのことから、低騒音化が図れる。   In this way, the difference in protrusion height between the blade front runner 9ba and the blade rear runner 9bb with respect to the maximum opening diameter F of the blade opening 3b is set to a range of 4% ≦ Δt / F ≦ 22%. If configured, it is possible to suppress the flow in the vicinity of the main plate 2 from colliding at the corner of the blade rear runner 9bb, causing pressure fluctuations, and generating noise in a narrow band during fan rotation. Then, the flow after the blade front runner 9ba is detached can be reattached smoothly by moving the reattachment point of the blade rear runner 9bb to the rear in the rotation direction to the rear of the blade rear opening 3g. In addition, since the protrusion height of the blade front runner 9ba is too high, the flow does not separate in the blade front runner 9ba, and the generation of peak sound due to the rotational speed can be suppressed and noise deterioration can be prevented. For these reasons, noise can be reduced.

従って、ターボファンは中空構造の翼開口部3bの最大開口直径Fに対する翼前方湯道9baと翼後方湯道9bbとの突出高さの差△tの比率△t/Fで、4%≦△t/F≦22%の範囲になるように構成することにより、低騒音化が図れる。   Therefore, the turbofan has a ratio Δt / F of the difference Δt / F in the protrusion height between the blade front runner 9ba and the blade rear runner 9bb with respect to the maximum opening diameter F of the blade opening 3b having a hollow structure. By configuring so that t / F ≦ 22%, the noise can be reduced.

もちろんこの翼開口部3bと翼用湯道9bの構成に加え、上記のファンの構成を兼ね備えることで、更なる効果を得ることができる、
例えば、樹脂合流部を避けてモータ冷却穴5を設けることで、強度的に信頼性の高いターボファンが得られる。また、ハブ用湯道9aを設けたことで、樹脂が主板2の頂上付近のボス2cまで流れやすく、主板全体での樹脂流動性を向上できる。また、翼3が中空構造のためターボファン全体で軽量化できる。さらに、翼中空部3dが主板2からシュラウド4に向け所定角度θで傾斜した成形抜き勾配を有する先細り形状のため、成形型の離型がしやすく型に翼3が付着し翼の破損を防止でき成形性が高い。また、翼3の肉厚を略均等としたため、冷却硬化時間が均等にできるので、冷却硬化時間の不均一であることで生じるムラによる成形不具合の発生をある程度防止できる。
Of course, in addition to the configuration of the blade opening 3b and the blade runner 9b, by combining the above-described fan configuration, further effects can be obtained.
For example, by providing the motor cooling hole 5 while avoiding the resin joining portion, a highly reliable turbo fan can be obtained. Further, by providing the hub runner 9a, the resin can easily flow to the boss 2c near the top of the main plate 2, and the resin fluidity in the entire main plate can be improved. Further, since the blades 3 are hollow, the entire turbofan can be reduced in weight. Further, since the blade hollow portion 3d has a tapering shape having a forming draft angle inclined from the main plate 2 toward the shroud 4 at a predetermined angle θ, the blade 3 is easily attached to the mold to prevent the blade from being damaged. High moldability. Further, since the thickness of the blades 3 is made substantially uniform, the cooling and hardening time can be made uniform, so that it is possible to prevent the occurrence of molding defects due to unevenness caused by the non-uniform cooling and hardening time.

なお、この実施の形態では、複数の翼3を7枚で構成し、これに合わせて、湯道9及びモータ冷却穴5を7個設けたファンについて記載したが、翼3の枚数、湯道9の数、モータ冷却穴5の数はこれに限るものではなく、いくつでもよい。
また、モータ冷却穴5の数をハブ用湯道9aの数と同じに構成したが、前述したようにモータ冷却穴5の数をハブ用湯道9aの数よりも少なくしてもよい。ただし、モータ冷却穴5をハブ用湯道9aの延長線上に配置すれば、モータ冷却穴5と樹脂合流部とが連結することなく強度の高いものが得られる。このため、モータ冷却穴5の数をハブ用湯道9aの数よりも少なくした場合でも、モータ冷却穴5をハブ用湯道9aの延長線上に配置するのが好ましい。モータ冷却穴5の数を少なくすれば、モータを冷却する機能は低下するが、ファンのハブ2aの強度を高くすることができる。
In this embodiment, a fan having seven blades 3 and seven motor cooling holes 5 corresponding to the number of blades 3 is described. The number of 9 and the number of motor cooling holes 5 are not limited to this, and may be any number.
The number of motor cooling holes 5 is the same as the number of hub runners 9a. However, as described above, the number of motor cooling holes 5 may be smaller than the number of hub runners 9a. However, if the motor cooling hole 5 is arranged on the extension line of the hub runner 9a, the motor cooling hole 5 and the resin merging portion are not connected, and a high strength can be obtained. For this reason, even when the number of motor cooling holes 5 is smaller than the number of hub runners 9a, it is preferable to arrange the motor cooling holes 5 on the extension line of the hub runner 9a. If the number of motor cooling holes 5 is reduced, the function of cooling the motor is reduced, but the strength of the fan hub 2a can be increased.

図21〜図23は、この実施の形態で記載したターボファン1のいずれかを空気調和機に搭載した構成例を示すもので、図21は空気調和機を天井に設置した状態で、部屋から見た空気調和機を示す斜視図、図22は空気調和機を示す縦断面図、図23は空気調和機を示す水平断面図である。ここではターボファン1を例えば天井埋込型空気調和機に搭載した例を示す。   FIG. 21 to FIG. 23 show a configuration example in which any one of the turbofans 1 described in this embodiment is mounted on an air conditioner. FIG. 21 shows a state in which the air conditioner is installed on the ceiling, FIG. 22 is a longitudinal sectional view showing the air conditioner, and FIG. 23 is a horizontal sectional view showing the air conditioner. Here, an example in which the turbo fan 1 is mounted on, for example, a ceiling-embedded air conditioner is shown.

図21に示す空気調和機は天井の上側に埋め込まれ、略四角形状の化粧パネル13で部屋19に面している。化粧パネル13の中央付近には、空気調和機本体への空気の吸込口である吸込グリル13aと吸込グリル13a通過後の空気を除塵するフィルタ20が配設されている。また、化粧パネル13の各辺に沿って形成されたパネル吹出口13bを有し、さらに各パネル吹出口13bには風向ベーン13cを備えている。   The air conditioner shown in FIG. 21 is embedded on the upper side of the ceiling and faces the room 19 with a substantially rectangular decorative panel 13. Near the center of the decorative panel 13, a suction grill 13a, which is an air suction port for the air conditioner main body, and a filter 20 for removing dust after passing through the suction grill 13a are disposed. Moreover, it has the panel blower outlet 13b formed along each edge | side of the decorative panel 13, and is further provided with the wind direction vane 13c in each panel blower outlet 13b.

また、図22に示すように、空気調和機本体12は部屋19に対し上方に天板12cとなる向きに設置され、天板12cの周りには側板12dが取り付けられ部屋19に向けて下側が開口するように設置される。空気調和機本体12の下面中央部に配置した本体吸込口12aは、化粧パネル13の吸込グリル13aに連通するように配置される。また、本体吸込口12aの周囲に配置した本体吹出口12bは、パネル吹出口13bに連通するように配置される。空気調和機本体12の内部にはファン1、ターボファンの吸込風路を形成するベルマウス14、ファン1を回転駆動するモータ8を有する。   In addition, as shown in FIG. 22, the air conditioner main body 12 is installed in a direction to be a top plate 12 c upward with respect to the room 19, and a side plate 12 d is attached around the top plate 12 c and the lower side toward the room 19 is Installed to open. The main body suction port 12 a disposed at the center of the lower surface of the air conditioner main body 12 is disposed so as to communicate with the suction grille 13 a of the decorative panel 13. Moreover, the main body outlet 12b arrange | positioned around the main body inlet 12a is arrange | positioned so that it may connect with the panel outlet 13b. The air conditioner main body 12 includes a fan 1, a bell mouth 14 that forms a suction air passage for the turbo fan, and a motor 8 that rotationally drives the fan 1.

また、ファン1の気流吹出し部分である翼間からパネル吹出口13bまでの吹出風路には熱交換器15を配置する。熱交換器15はアルミフィン15aと伝熱管15bとを有し、空気調和機本体12の高さ方向即ち垂直方向に伸びた長方形形状のアルミフィン15aを複数枚所定間隔で積層し、これに積層方向から伝熱管15bを複数段、貫通させた構成である。
そして、図23に示すように、熱交換器15はターボファン1の外周側を囲むように略C字形状に形成される。この略C字形状の熱交換器15の2つの端部の一方の伝熱管15bには各伝熱管15bへの冷媒量を調整するヘッダー16や分配器17と室外機との接続配管18が取り付けられている。伝熱管15b内には例えば二酸化炭素などの冷媒を循環させる。
Moreover, the heat exchanger 15 is arrange | positioned in the blowing air path from between the blade | wings which are the airflow blowing parts of the fan 1 to the panel blower outlet 13b. The heat exchanger 15 has aluminum fins 15a and heat transfer tubes 15b, and a plurality of rectangular aluminum fins 15a extending in the height direction, that is, the vertical direction of the air conditioner main body 12 are laminated at a predetermined interval, and laminated on this. It is the structure which penetrated the heat exchanger tube 15b in multiple steps from the direction.
And as shown in FIG. 23, the heat exchanger 15 is formed in a substantially C shape so that the outer peripheral side of the turbofan 1 may be enclosed. A header 16 for adjusting the amount of refrigerant to each heat transfer tube 15b and a connection pipe 18 for connecting the outdoor unit to the distributor 17 are attached to one heat transfer tube 15b at two ends of the substantially C-shaped heat exchanger 15. It has been. A refrigerant such as carbon dioxide is circulated in the heat transfer tube 15b.

このように構成された空気調和機により、ターボファン1が回転方向Dで回転すると部屋19の空気が化粧パネル13の吸込グリル13a、フィルタ20を通過して除塵され、本体吸込口12a、ベルマウス14を通過後ターボファン1に吸込まれる。そして、その後ターボファン1の翼3の間を通り、熱交換器15へ向けて吹出される。室内空気は、熱交換器15を通過する際に伝熱管15b内を流れる冷媒と熱交換することで、暖房、冷房等の熱交換や除湿される。その後、本体吹出口12b、パネル吹出口13bから部屋19へ向けて吹出される際に、風向ベーン13cにより風向制御される。   When the turbo fan 1 rotates in the rotation direction D by the air conditioner configured as described above, the air in the room 19 passes through the suction grill 13a and the filter 20 of the decorative panel 13 and is removed, and the main body suction port 12a and the bell mouth are removed. After passing through 14, it is sucked into the turbofan 1. Then, it passes between the blades 3 of the turbofan 1 and blows out toward the heat exchanger 15. The indoor air is heat-exchanged and dehumidified, such as heating and cooling, by exchanging heat with the refrigerant flowing in the heat transfer tube 15b when passing through the heat exchanger 15. Then, when it blows out toward the room 19 from the main body blower outlet 12b and the panel blower outlet 13b, wind direction control is carried out by the wind direction vane 13c.

この空気調和機を輸送する時は、通常、ターボファン1の回転軸方向が垂直、つまりファンモータ8の回転軸が垂直となるように保持される。即ち、本体天板12cが下面または空気調和機本体12のベルマウス14側が下面となる状態で空気調和機本体12がトラック等へ積込まれ運搬される。   When the air conditioner is transported, the turbo fan 1 is usually held so that the rotation axis direction of the turbo fan 1 is vertical, that is, the rotation axis of the fan motor 8 is vertical. That is, the air conditioner main body 12 is loaded and transported on a truck or the like with the main body top plate 12c being the lower surface or the bell mouth 14 side of the air conditioner main body 12 being the lower surface.

この実施の形態に係るターボファン1を、図21〜図23に示した天井埋込型空気調和機に搭載することで、以下のような効果を奏する。
即ち、ターボファン1の成形性の向上により、薄肉化して軽量化でき、製品全体の重量を軽量化できる。また、強度信頼性を向上できたので、ターボファン1が輸送時の振動等の衝撃によって破壊するのを防止でき、空気調和機としても製品信頼性を向上できる。
また、モータ冷却穴5や翼3を不等ピッチとしたターボファン1では、モータ冷却穴5からターボファン1の外部へ放出される気流の乱れ及び翼3から吹出される気流に周期性を持たないので、ファンの回転数に起因する騒音を低減でき、低騒音化を図ることができた。このファン1を空気調和機に搭載することで、ファン1から流出してパネル吹出口13bに流れる気流の乱れも低減されるので、ファン1の騒音低減に加え、空気調和機としてさらに騒音を低くでき、静粛な空気調和機が得られる。また、気流の乱れが低減された状態で熱交換器15で冷媒と熱交換するので、効率の良い空気調和機が得られる。
By mounting the turbo fan 1 according to this embodiment on the ceiling-embedded air conditioner shown in FIGS. 21 to 23, the following effects can be obtained.
That is, by improving the moldability of the turbofan 1, the thickness can be reduced and the weight of the entire product can be reduced. Further, since the strength reliability can be improved, the turbo fan 1 can be prevented from being broken by an impact such as vibration during transportation, and the product reliability can be improved as an air conditioner.
Further, in the turbo fan 1 in which the motor cooling holes 5 and the blades 3 are unequal pitches, the turbulence of the air flow discharged from the motor cooling holes 5 to the outside of the turbo fan 1 and the air flow blown from the blades 3 have periodicity. As a result, the noise caused by the rotation speed of the fan could be reduced and the noise could be reduced. Since the fan 1 is mounted on the air conditioner, the turbulence of the airflow flowing out of the fan 1 and flowing to the panel outlet 13b is also reduced. Therefore, in addition to the noise reduction of the fan 1, the noise is further reduced as an air conditioner. A quiet air conditioner can be obtained. Further, since heat exchange with the refrigerant is performed by the heat exchanger 15 in a state where the turbulence of the airflow is reduced, an efficient air conditioner can be obtained.

なお、図21〜図23に示した天井埋込型空気調和機に限るものではない。ここでは天井の4方向にパネル吹出口13bのあるものを示したが、2つのパネル吹出口13bが向かい合うように2方向に設けられていてもよい。また、天井に空気調和機本体をすべて埋め込む構成ではなく、天井から突出した状態で設置されていてもよい。また、天井に設置するものに限らず、壁面に設置するものでもよい。ターボファンを搭載した他の構成の空気調和機にこの実施の形態によるターボファンを適用することで、上記と同様、製品輸送時のファン破断防止ができ、低騒音で製品品質が高く静粛で軽量で運搬性も高い空気調和機が得られる。   The ceiling-embedded air conditioner shown in FIGS. 21 to 23 is not limited. Here, the panel outlets 13b are shown in the four directions on the ceiling, but the two panel outlets 13b may be provided in two directions so as to face each other. Moreover, it is not the structure which embeds all the air conditioner main bodies in a ceiling, You may install in the state which protruded from the ceiling. Moreover, it is not restricted to what is installed in a ceiling, What is installed in a wall surface may be used. By applying the turbo fan according to this embodiment to the air conditioner with other configurations equipped with a turbo fan, it is possible to prevent fan breakage during product transport, low noise, high product quality, quietness and light weight as above. And an air conditioner with high transportability can be obtained.

このように、この実施の形態で記載した少なくともいずれか1つによって構成されたターボファンと、熱交換器とを備え、前記ターボファンによって吸込口から吸込んだ空気を前記熱交換器で冷媒と熱交換して吹出口から吹出すように構成したことにより、強度的に信頼性が高く、軽量で騒音を低減できる空気調和機が得られる。
また、空気調和機に限るものではなく、ターボファンを搭載した換気扇や空気清浄器に適用することもでき、上記と同様の効果を得ることができる。
As described above, the turbo fan configured by at least one of the embodiments described in this embodiment and a heat exchanger are provided, and the air sucked from the suction port by the turbo fan is used as the refrigerant and heat by the heat exchanger. By exchanging and configuring to blow out from the outlet, an air conditioner that is highly reliable in strength, lightweight, and capable of reducing noise can be obtained.
Moreover, it is not restricted to an air conditioner, It can apply also to the ventilation fan and air cleaner which mounted the turbo fan, and can obtain the effect similar to the above.

また、この発明によれば、以下のような効果が得られる。
即ち、樹脂注入口10に連続し主板のハブ2aの斜め傾斜面の肉厚より厚くファン半径方向に直線状に延出した複数のハブ用湯道9aを主板2のモータ側側面に所定間隔で有し、前記ハブ用湯道9aから成形時ハブ傾斜面の肉厚より厚いボス近傍のハブ上部肉厚部2dへ向け樹脂が流動した際、樹脂合流部Aが衝撃に対し強度が低い開口であるモータ冷却穴5に連結せずモータ冷却穴5の間に形成されるので、ボス2cまで流れやすく成形性が向上するとともに、主板2に生成される樹脂合流部を短くできるので、輸送時などターボファン1の軸方向(図1(b)の上下方向)に衝撃が付加され万一亀裂を生じても、ターボファンが破断しづらく、成形性の向上とターボファンの衝撃に対する信頼性を高くできる。
Moreover, according to this invention, the following effects are acquired.
That is, a plurality of hub runners 9a that are continuous with the resin injection port 10 and that are thicker than the thickness of the obliquely inclined surface of the hub 2a of the main plate and extend linearly in the fan radial direction are formed at predetermined intervals on the side surface of the main plate 2 on the motor side. When the resin flows from the hub runner 9a toward the hub upper thick part 2d near the boss that is thicker than the thickness of the hub inclined surface at the time of molding, the resin joining part A is an opening having low strength against impact. Since it is formed between the motor cooling holes 5 without being connected to a certain motor cooling hole 5, it is easy to flow up to the boss 2c and the moldability is improved, and the resin joining portion generated in the main plate 2 can be shortened. Even if an impact is applied in the axial direction of the turbo fan 1 (vertical direction in FIG. 1B) and a crack occurs, the turbo fan is difficult to break, improving the moldability and increasing the reliability of the turbo fan against the impact. it can.

また、ハブ用湯道9aのファン中心側端部9a1近傍それぞれにモータ冷却穴5を配設し、少なくともモータ冷却穴5とハブ用湯道9aの数が同じで、さらに前記ハブ用湯道9aのファン外周側端部9a2近傍には翼内周側端部3aが配設され、前記ハブ用湯道9aと翼3の開口部3bの周囲を囲むように形成された翼用湯道9bとが連結湯道9cにより連結されているので、ハブ用湯道9aから流れ出た樹脂の樹脂合流部Aが確実にモータ冷却穴5同士の間に生成される。その結果、輸送時などターボファン1の軸方向(図1(b)の上下方向)に衝撃が付加され万一亀裂を生じてもターボファンが破断しづらく、成形性の向上とターボファンの衝撃に対する信頼性を高くできる。またハブ用湯道9aと翼用湯道9bを一体で形成していないので、ハブ用湯道9aと翼用湯道9bとの樹脂注入口10から注入され流れる樹脂の注入量を調整でき、湯回りムラによる空洞発生や肉厚の局所的な薄肉化を防止しでき、強度悪化を防止できる。さらに翼用湯道9bにより、樹脂が周りやすくなるため翼3の薄肉化も可能となるとともに、応力集中する翼3と主板2の接合部の肉厚が増加でき、樹脂流動性向上による成形性向上とターボファンの強度向上の両立が可能である。   Further, motor cooling holes 5 are provided in the vicinity of the fan center side end portion 9a1 of the hub runner 9a, and at least the number of the motor cooling holes 5 and the hub runners 9a is the same. In the vicinity of the fan outer peripheral end portion 9a2, a blade inner peripheral end portion 3a is disposed, and a blade runner 9b formed so as to surround the hub runner 9a and the opening 3b of the blade 3 is provided. Are connected by the connecting runner 9c, the resin junction A of the resin flowing out from the hub runner 9a is reliably generated between the motor cooling holes 5. As a result, an impact is applied in the axial direction of the turbo fan 1 during transportation (vertical direction in FIG. 1 (b)), and even if a crack occurs, the turbo fan is difficult to break, improving moldability and impact of the turbo fan. Can be highly reliable. Further, since the hub runner 9a and the blade runner 9b are not integrally formed, the injection amount of the resin injected from the resin inlet 10 between the hub runner 9a and the blade runner 9b can be adjusted, Generation of cavities and local thinning of the wall thickness due to unevenness of hot water can be prevented, and deterioration of strength can be prevented. Furthermore, the wing runner 9b makes it easier to surround the resin, so that the wing 3 can be made thinner, and the thickness of the joint between the stress-concentrated wing 3 and the main plate 2 can be increased. It is possible to improve both the improvement and the strength of the turbofan.

また、隣り合う直線状のハブ用湯道9a同士はお互い重ならないように形成されているので、従来のように一つの樹脂注入口10に対し湯道を形成するリブが多岐にわたる場合に比べ、樹脂の主流方向が半径方向となり流動方向が複雑にならず樹脂合流部Aが明確にでき、かつ樹脂合流部Aの数を少なくでき型設計が簡易化できるとともに、湯回りムラによる空洞発生や肉厚の局所的な薄肉化を防止でき、ターボファンの強度悪化を防止できる。   Also, since the adjacent straight runners 9a for the hub are formed so as not to overlap each other, compared to the case where the ribs forming the runners for one resin inlet 10 are diverse as in the prior art, The main flow direction of the resin is the radial direction, the flow direction is not complicated, the resin merge part A can be clarified, the number of the resin merge parts A can be reduced, the mold design can be simplified, and the occurrence of cavities and Local thickness reduction of the thickness can be prevented, and deterioration of the strength of the turbofan can be prevented.

また、ハブ用湯道9aは主板のファン外部風路7側へ突出して形成されているので、ハブ用湯道9aによりモータ冷却穴5へ向かう流れGを誘起する導風板を兼ねることができる。これによりハブ2aのファン外部風路7側へ配設されボス2cにてターボファン1と固定されるファンモータ8の表面に流れる空気が増加しモータ冷却がしやすくなる。よって、モータ温度上昇のため温度保護制御が係らなくでき、さらに高温によるモータの破損も抑制できる。   Further, since the hub runner 9a is formed so as to protrude toward the fan external air passage 7 side of the main plate, it can also serve as a wind guide plate for inducing a flow G toward the motor cooling hole 5 by the hub runner 9a. . As a result, the air flowing on the surface of the fan motor 8 that is disposed on the fan external air passage 7 side of the hub 2a and is fixed to the turbo fan 1 by the boss 2c increases, and the motor can be easily cooled. Therefore, the temperature protection control can be performed independently because the motor temperature rises, and further, the motor can be prevented from being damaged due to a high temperature.

また、翼内周側端部近傍に設けられた樹脂注入口と中空構造の翼の主板外部側開口部の周囲を囲むように形成された翼用湯道と連結湯道により連結され、翼中空部の翼内周側中空部および翼外周側中空部および翼前方中空部表面、翼後方中空部表面は回転軸に対し共に任意角度θの傾斜面で、翼内周側端部、翼外周側端部、翼吸込側端部、翼の回転方向に対し前方の翼前方側部、後方の翼後方側部の各肉厚は翼全体でほぼ同一肉厚となるように形成され、主板からシュラウド側へ向け翼および翼中空部は先細り形状となるように形成したものであるので、翼が中空構造のため翼が軽量化でき、肉厚が略均一のため翼の肉厚が不均一の場合に発生しうる樹脂の冷却硬化時間ムラによる成形不具合が発生しづらく成形性が良い。また翼および翼中空部が主板からシュラウドに向け所定角度傾斜した成形抜き勾配を有する先細り形状のため、成形型の離型がしやすく型に翼が付着し翼の破損を防止でき成形性が高い。   In addition, the resin inlet provided near the blade inner peripheral end and the blade runner formed so as to surround the periphery of the opening on the main plate outer side of the blade having a hollow structure are connected by a connecting runner, and the blade hollow The blade inner peripheral hollow part, the blade outer peripheral hollow part, the blade front hollow part surface, and the blade rear hollow part surface are inclined at an arbitrary angle θ with respect to the rotation axis, the blade inner peripheral end part, and the blade outer peripheral side. The thickness of the end, the blade suction side end, the front blade front side and the rear blade rear side with respect to the blade rotation direction are formed so that the thickness of the entire blade is substantially the same. Since the wing and the wing hollow section toward the side are formed to have a tapered shape, the wing has a hollow structure, so the wing can be reduced in weight and the thickness is almost uniform, so the wing thickness is not uniform Molding defects due to unevenness of the cooling and curing time of the resin that can occur are difficult to occur and the moldability is good. In addition, since the blade and the blade hollow part have a tapering shape with a forming draft inclined at a predetermined angle from the main plate toward the shroud, the mold can be easily released from the mold, and the blade can be prevented from being damaged and the moldability is high. .

また、中央部にモータを覆うように形成された凸状のハブにモータとファン内部を連通する複数のモータ冷却穴を有し、かつ前記ハブの中央部にモータの回転軸との固定部であるボスを有する円盤状の主板と、複数枚の翼と前記複数枚の翼を連結し吸込み導風壁を形成するシュラウドを有する熱可塑性樹脂で成形されるターボファンにおいて、翼内周側端部近傍の主板平坦部に設けられた樹脂注入口に連続し主板の斜め傾斜面の肉厚より厚くファン半径方向に直線状に延出した複数のハブ用湯道を主板のモータ側側面に所定間隔で有し、隣り合うハブ用湯道の間に生成される樹脂合流部は少なくともモータ冷却穴に連結しないように湯道を形成し、翼中空部の翼内周側中空部および翼外周側中空部および翼前方中空部表面、翼後方中空部表面は回転軸に対し共に任意角度θの傾斜面で、翼内周側端部、翼外周側端部、翼吸込側端部、翼の回転方向に対し前方の翼前方側部、後方の翼後方側部の各肉厚は翼全体でほぼ同一肉厚となるように形成され、主板からシュラウド側へ向け翼および翼中空部は先細り形状となるように形成したものであるので、ハブ用湯道によりハブ、主板での樹脂流動性が高く成形性が高く、また樹脂合流部が少なくともモータ冷却穴に連通しないようにハブ用湯道を形成しているので輸送時の衝撃等によるファンの破損を防止し、翼が中空構造のためターボファン全体で軽量化でき、肉厚が略均一のため翼の肉厚が不均一の場合発生しうる樹脂の冷却硬化時間ムラによる成形不具合が発生しづらく成形性が良い。また翼および翼中空部が主板からシュラウドに向け所定角度傾斜した成形抜き勾配を有する先細り形状のため、成形型の離型がしやすく型に翼が付着し翼の破損を防止でき成形性が高い。
さらに、翼の軽量化によりターボファンの回転中心に対しターボファン外周部での重量が軽量化されることから回転時の遠心力が軽減され翼の主板付け根に付加される応力が低減され強度向上が可能で、回転時のターボファンの破損を防止できる。以上の結果、軽量で成形性および強度が高く高信頼性のターボファンを得られる。
In addition, a convex hub formed so as to cover the motor at the center has a plurality of motor cooling holes for communicating the motor and the fan, and a fixing portion for the motor rotation shaft is provided at the center of the hub. In a turbofan formed of a thermoplastic resin having a disk-shaped main plate having a certain boss, a plurality of blades and a shroud connecting the plurality of blades to form a suction air guide wall, an end portion on the blade inner peripheral side A plurality of hub runners that are continuous with the resin inlet provided in the flat part of the main plate in the vicinity and that are thicker than the thickness of the obliquely inclined surface of the main plate and extend linearly in the fan radial direction on the motor side surface of the main plate at a predetermined interval The resin confluence formed between adjacent runners for the hub is formed with a runner so that it is not connected to at least the motor cooling hole, and the blade inner peripheral hollow portion and the blade outer peripheral hollow portion of the blade hollow portion are formed. Front and blade front hollow surface, blade rear hollow surface The blades are inclined at an arbitrary angle θ with respect to the rotation axis, the blade inner peripheral end, the blade outer peripheral end, the blade suction side end, the front blade front side with respect to the blade rotation direction, and the rear blade rear side. The thickness of each part is formed so that the entire wing has almost the same thickness, and the wing and the wing hollow part are tapered from the main plate toward the shroud side. The hub and main plate have high resin flowability and high moldability, and the hub junction is formed so that the resin junction does not communicate with at least the motor cooling hole, preventing damage to the fan due to impact during transportation. However, because the blades have a hollow structure, the entire turbofan can be reduced in weight, and since the thickness is almost uniform, molding defects due to uneven cooling and hardening time of the resin that can occur when the blade thickness is uneven are difficult to form. Is good. In addition, since the blade and the blade hollow part have a tapering shape with a forming draft inclined at a predetermined angle from the main plate toward the shroud, the mold can be easily released from the mold, and the blade can be prevented from being damaged and the moldability is high. .
Furthermore, the weight of the blades reduces the weight at the outer periphery of the turbofan relative to the center of rotation of the turbofan, reducing the centrifugal force during rotation and reducing the stress applied to the root of the main plate of the blade, improving the strength. It is possible to prevent damage to the turbofan during rotation. As a result, it is possible to obtain a highly reliable turbo fan that is lightweight, has high moldability and high strength.

また、翼中空部の翼内周側中空部および翼外周側中空部および翼前方中空部表面、翼後方中空部表面は回転軸に対し共に傾斜角度θ=1〜3°の間の傾斜面で、翼内周側端部、翼外周側端部、翼吸込側端部、翼の回転方向に対し前方の翼前方側部、後方の翼後方側部の各肉厚は翼全体でほぼ同一肉厚となるように形成され、主板からシュラウド側へ向け翼および翼中空部は先細り形状となるように形成したものであるので、翼が中空構造のため軽量化でき、肉厚が略均一のため翼の肉厚が不均一の場合発生しうる樹脂の冷却硬化時間ムラによる成形不具合が発生しづらく成形性が良い。また翼および翼中空部が主板からシュラウドに向け所定角度傾斜した成形抜き勾配を有する先細り形状のため、成形型の離型がしやすく型に翼が付着し翼の破損を防止でき成形性が高い。また、少なくとも騒音変化が小さく悪化しない。以上の結果より、少なくとも傾斜角度θが1°〜3°であれば騒音変化が小さく、成形性の高いターボファンを得られる。   In addition, the blade inner hollow portion, the blade outer peripheral hollow portion, the blade front hollow portion surface, and the blade rear hollow portion surface are inclined surfaces with an inclination angle θ = 1-3 ° with respect to the rotation axis. The thickness of the blade inner peripheral end, the blade outer peripheral end, the blade suction side end, the front blade front side, and the rear blade rear side with respect to the rotational direction of the blade are substantially the same for the entire blade. Since the wing and the wing hollow part are formed in a tapered shape from the main plate to the shroud side, the wing can be reduced in weight and the wall thickness is almost uniform. Molding defects due to uneven cooling and curing time of the resin that can occur when the blade thickness is uneven are less likely to occur and the moldability is good. In addition, since the blade and the blade hollow part have a tapering shape with a forming draft inclined at a predetermined angle from the main plate toward the shroud, the mold can be easily released from the mold, and the blade can be prevented from being damaged and the moldability is high. . In addition, at least the noise change is small and does not deteriorate. From the above results, if the inclination angle θ is at least 1 ° to 3 °, a change in noise is small, and a turbofan with high moldability can be obtained.

また、翼3の周方向取付ピッチ角度σが不等ピッチで配設されると同時にモータ冷却穴5の周方向ピッチ角度γは翼3と相対して不等ピッチ角度で、かつファン回転中心Oから半径方向へ直線状に延びるハブ用湯道9aも翼3、モータ冷却穴5と相対して不等ピッチで一つの樹脂注入口10、ハブ用湯道9a、翼用湯道9b、モータ冷却穴5の配置がほぼ同等であるので、成形条件が変化しづらく湯回りムラによる空洞発生や肉厚の局所的な薄肉化を防止しでき、ターボファンの強度悪化を防止できる。またモータ冷却穴5と翼3の配置関係が同じなのでファン外部風路7からファン内部風路6へモータ冷却穴5を通り流出する乱れた流れE2が翼3と直接衝突しないため、圧力変動を大きく受けず低騒音化可能なターボファンを得られる。   Further, the circumferential mounting pitch angle σ of the blade 3 is arranged at an unequal pitch, and at the same time, the circumferential pitch angle γ of the motor cooling hole 5 is an unequal pitch angle relative to the blade 3 and the fan rotation center O The hub runner 9a that extends linearly in a radial direction from the blade 3 and the motor cooling hole 5 is also unequal to one resin injection port 10, the hub runner 9a, the blade runner 9b, and the motor cooling. Since the arrangement of the holes 5 is almost the same, it is difficult to change the molding conditions, and it is possible to prevent the occurrence of cavities and local thinning of the wall thickness due to unevenness of the hot water run, and the strength deterioration of the turbofan can be prevented. Since the arrangement relationship between the motor cooling hole 5 and the blade 3 is the same, the turbulent flow E2 flowing out from the fan external air passage 7 to the fan internal air passage 6 through the motor cooling hole 5 does not directly collide with the blade 3, so that the pressure fluctuation is reduced. A turbo fan capable of reducing noise without being greatly affected can be obtained.

また、樹脂注入口10から流れ出た樹脂がハブ用湯道9aから冷却穴用湯道9dへ向かいボス2cへ向け流れる。その際モータ冷却穴5外周に冷却穴用湯道9dがあり、樹脂流入後モータ冷却穴の樹脂流動方向後方で確実に再合流しボス2cへ向かい流れるため、従来のように冷却穴の周囲に冷却穴用湯道がなく冷却穴の樹脂流動方向後方で再合流しづらくなる可能性が低く、開口で強度低下しやすいモータ冷却穴5周囲の強度向上が図れる。その結果、モータ冷却穴周辺の樹脂流動性向上による成形性の向上と強度向上を図り、衝撃がかかっても破断しづらいターボファンを得られる。   Further, the resin flowing out from the resin injection port 10 flows from the hub runner 9a toward the cooling hole runner 9d toward the boss 2c. At this time, there is a cooling hole runner 9d on the outer periphery of the motor cooling hole 5, and after the resin flows in, the reflow of the motor cooling hole is ensured to rejoin and flow toward the boss 2c. There is no runner for the cooling hole, and it is unlikely that it will be difficult to rejoin the cooling hole in the resin flow direction, and the strength around the motor cooling hole 5 that tends to decrease the strength at the opening can be improved. As a result, it is possible to improve the moldability and strength by improving the resin fluidity around the motor cooling hole, and to obtain a turbofan that is not easily broken even when an impact is applied.

また、ハブ用湯道9aと翼用湯道9bそれぞれの最大肉厚t1、t2と主板2の他の部分の最小肉厚t0との比率t1/t2=1.1〜2、t2/t0=1.1〜2の範囲であれば少なくとも同一肉厚(t1/t0、t2/t0=)の場合に比べ成形時間が短縮でき、同一時間で生産量が増加できるとともに成形機でかかる電気代の低減も可能で省エネである。   Further, the ratio of the maximum thickness t1, t2 of the hub runner 9a and the blade runner 9b to the minimum thickness t0 of the other portion of the main plate 2 t1 / t2 = 1.1-2, t2 / t0 = In the range of 1.1 to 2, the molding time can be shortened compared to the case of at least the same wall thickness (t1 / t0, t2 / t0 =), the production amount can be increased in the same time, and the electric cost of the molding machine can be increased. Reduction is also possible and energy saving.

また、中空構造の翼の主板外部側開口部の周囲を囲むように形成された翼用湯道の翼回転方向側面相当部の翼前方湯道は翼回転方向逆側面相当部の翼後方湯道に比べ高く、ファン外部へ突出するように形成されたものであるので、回転時主板近傍の流れが翼前方湯道離脱後、翼後方湯道の角にて衝突し圧力変動を生じ狭帯域で騒音発生することを抑制し、翼前方湯道離脱後の流れの翼後方湯道の回転方向後方への再付着点を翼開口部後方に移動させなめらかに付着させることから低騒音化が図れる。   Further, the blade front runner corresponding to the blade rotation direction side surface of the blade runner formed so as to surround the opening on the outer side of the main plate of the hollow blade is the blade rear runway corresponding to the blade rotation direction opposite side surface. Since it is formed so as to protrude outside the fan, the flow near the main plate during rotation collides at the corner of the runner after the blade forward runway, causing pressure fluctuations in a narrow band. Generation of noise is suppressed, and the reattachment point of the flow after the blade front runner detachment to the rear in the rotational direction of the blade rear runner is moved to the rear of the blade opening so that the noise can be reduced.

また、中央部にモータを覆うように形成された凸状のハブにモータとファン内部を連通する複数のモータ冷却穴を有し、かつ前記ハブの中央部にモータの回転軸との固定部であるボスを有する円盤状の主板と、複数枚の翼と前記複数枚の翼を連結し吸込み導風壁を形成するシュラウドを有する熱可塑性樹脂で成形されるターボファンにおいて、翼内周側端部近傍の主板平坦部に設けられた樹脂注入口に連続し主板の斜め傾斜面の肉厚より厚くファン半径方向に直線状に延出した複数のハブ用湯道を主板のモータ側側面に所定間隔で有し、隣り合うハブ用湯道の間に生成される樹脂合流部は少なくともモータ冷却穴に連結しないように湯道を形成し、翼中空部の翼内周側中空部および翼外周側中空部および翼前方中空部表面、翼後方中空部表面は回転軸に対し共に任意角度θの傾斜面で、翼内周側端部、翼外周側端部、翼吸込側端部、翼の回転方向に対し前方の翼前方側部、後方の翼後方側部の各肉厚は翼全体でほぼ同一肉厚となるように形成され、主板からシュラウド側へ向け翼および翼中空部は先細り形状となるように形成し、前記中空構造の翼の主板外部側開口部の周囲を囲むように形成された翼用湯道と連結湯道にて連結され、前記翼用湯道の翼回転方向側面相当部の翼前方湯道は翼回転方向逆側面相当部の翼後方湯道に比べ高く、ファン外部へ突出するように形成されたものであるので、ハブ用湯道によりハブ、主板での樹脂流動性が高く成形性が高く樹脂合流部が少なくともモータ冷却穴に連通しないようにハブ用湯道を形成しているので輸送時の衝撃等によるファンの破損を防止しできる。また翼が中空構造のためターボファン全体で軽量化でき、肉厚が略均一のため翼の肉厚が不均一の場合発生しうる樹脂の冷却硬化時間ムラによる成形不具合が発生しづらく成形性が良い。また翼および翼中空部が主板からシュラウドに向け所定角度傾斜した成形抜き勾配を有する先細り形状のため、成形型の離型がしやすく型に翼が付着し翼の破損を防止でき成形性が高い。そして回転時主板近傍の流れが翼前方湯道離脱後、翼後方湯道の角にて衝突し圧力変動を生じ狭帯域で騒音発生することを抑制し、翼前方湯道離脱後の流れの翼後方湯道の回転方向後方への再付着点を翼後方開口部後方に移動させなめらかに再付着させることから低騒音化が図れる。また、翼用前方湯道の肉厚が厚くなるので、成形時翼へ樹脂がさらに流れやすくなりヒケの防止が可能で、しかも翼前方湯道での強度も向上しさらにターボファンの強度も向上する。以上の結果より、軽量で強度が高く回転時および輸送時でもファンの破損が防止でき、低騒音なターボファンを得られる。   In addition, a convex hub formed so as to cover the motor at the center has a plurality of motor cooling holes for communicating the motor and the fan, and a fixing portion for the motor rotation shaft is provided at the center of the hub. In a turbofan formed of a thermoplastic resin having a disk-shaped main plate having a certain boss, a plurality of blades and a shroud connecting the plurality of blades to form a suction air guide wall, an end portion on the blade inner peripheral side A plurality of hub runners that are continuous with the resin inlet provided in the flat part of the main plate in the vicinity and that are thicker than the thickness of the obliquely inclined surface of the main plate and extend linearly in the fan radial direction on the motor side surface of the main plate at a predetermined interval The resin confluence formed between adjacent runners for the hub is formed with a runner so that it is not connected to at least the motor cooling hole, and the blade inner peripheral hollow portion and the blade outer peripheral hollow portion of the blade hollow portion are formed. Front and blade front hollow surface, blade rear hollow surface The blades are inclined at an arbitrary angle θ with respect to the rotation axis, the blade inner peripheral end, the blade outer peripheral end, the blade suction side end, the front blade front side with respect to the blade rotation direction, and the rear blade rear side. The thickness of each part of the wing is formed so that the entire wing has almost the same thickness, and the wing and the wing hollow part are tapered from the main plate toward the shroud side. The blade runner is connected to the blade runner formed so as to surround the periphery of the opening, and the blade front runner of the blade rotation direction side portion of the blade runner is the blade rotation direction opposite side equivalent portion. Since it is higher than the runner behind the blade and protrudes to the outside of the fan, the hub runner has high resin flowability at the hub and main plate, high moldability, and at least the motor junction is at the motor cooling hole. Since the hub runway is formed so as not to communicate with the fan, the fan breaks due to impact during transportation. Loss can be prevented. In addition, since the blades have a hollow structure, the entire turbofan can be reduced in weight, and since the wall thickness is approximately uniform, molding defects due to uneven cooling and hardening time of the resin that can occur when the blade thickness is uneven are less likely to occur. good. In addition, since the blade and the blade hollow part have a tapering shape with a forming draft inclined at a predetermined angle from the main plate toward the shroud, the mold can be easily released from the mold, and the blade can be prevented from being damaged and the moldability is high. . In addition, the flow near the main plate during rotation is prevented from colliding at the corner of the runner behind the blade and causing pressure fluctuations to generate noise in a narrow band. Since the reattachment point to the rear of the rear runner in the rotational direction is moved to the rear of the blade rear opening and smoothly reattached, the noise can be reduced. In addition, since the thickness of the front runner for the wing is increased, the resin can flow more easily into the wing during molding, and it is possible to prevent sink marks. In addition, the strength at the front runner is improved, and the strength of the turbo fan is improved To do. From the above results, it is possible to obtain a low-noise turbofan that is light and strong, can prevent damage to the fan even during rotation and transportation.

また、ターボファンは中空構造の翼開口部3bの最大開口直径Fと翼前方湯道9baと翼後方湯道9bbとの高さの差△tの比率△t/F=4〜22%であるように形成されたもので、回転時主板近傍の流れが翼前方湯道離脱後、翼後方湯道の角にて衝突し圧力変動を生じ狭帯域で騒音発生することを抑制し、翼前方湯道離脱後の流れの翼後方湯道の回転方向後方への再付着点を翼後方開口部後方に移動させなめらかに再付着させることから低騒音化が図れる。また、翼前方湯道の厚さが高すぎ翼前方湯道にて流れが剥離し回転数に起因するピーク音の発生を抑制し騒音悪化防止が図れ低騒音化可能である。   Further, the turbofan has a ratio Δt / F = 4 to 22% of a difference Δt between the maximum opening diameter F of the blade opening 3b having a hollow structure and the height of the blade front runner 9ba and the blade rear runner 9bb. In this way, the flow near the main plate during rotation collides at the corner of the runner after the blade forward runoff, causing pressure fluctuations and noise generation in a narrow band. Noise can be reduced because the reattachment point of the flow after leaving the road is reattached smoothly by moving the reattachment point to the rear of the blade rear runner in the rotational direction. In addition, the thickness of the runner front runner is too high, and the flow is separated in the runner front runner to suppress the generation of peak sound due to the rotational speed, thereby preventing noise deterioration and reducing noise.

また、実施の形態1で記載したいずれか1つの構成のターボファン1を搭載し熱交換器をターボファンの吸込側または吹出側に配設した空気調和機で、ターボファン1の成形性向上により薄肉化可能なため軽量化でき、さらに強度信頼性が高いので、輸送後設置する際ターボファン1が輸送時の振動等の衝撃により破壊しているようなことがなく製品信頼性が高い。またターボファン1が軽量になった分、製品重量も軽量化できる。   Further, the turbo fan 1 having any one of the configurations described in the first embodiment is mounted, and the heat exchanger is disposed on the suction side or the discharge side of the turbo fan. Since the thickness can be reduced, the weight can be reduced and the strength reliability is high. Therefore, when installed after transportation, the turbo fan 1 is not broken by an impact such as vibration during transportation, and the product reliability is high. In addition, the weight of the product can be reduced as the turbo fan 1 becomes lighter.

また、空気調和機本体の側板、天板は板金部材で形成され、かつ側板および少なくとも天板の一部の空気調和機本体内側は断熱材により風路壁面を構成し、前記空気調和機本体の内部中央付近にモータと、実施の形態1で記載したいずれか1つの構成のターボファン1を搭載し、前記空気調和機本体の下面中央部には前記ターボファンの吸込口でかつ本体吸込口を構成するベルマウスが配設され、また前記ターボファン外周を囲むように熱交換器を立設し、前記熱交換器の下部には発泡材で形成されたドレンパンを配設し、前記本体吸込口の周囲で空気調和機本体側板に略沿う位置に本体吹出口を有し、前記本体吸込口と前記本体吹出口とそれぞれ連通するパネル吸込口、パネル吹出口を有する化粧パネルが本体下面に取り付けられた天井埋込型空気調和機としたことにより、ターボファン1の成形性向上により薄肉化可能なため軽量化でき、さらに強度信頼性が高いので、輸送後設置する際ターボファン1が輸送時の振動等の衝撃により破壊しているようなことがなく製品信頼性が高い。またターボファン1が軽量になった分、製品重量も軽量化できる。   Further, the side plate and the top plate of the air conditioner main body are formed of a sheet metal member, and the side plate and at least a part of the air conditioner main body inside the top plate constitute an air passage wall surface with a heat insulating material, A motor and the turbo fan 1 having any one of the configurations described in the first embodiment are mounted near the center of the interior, and a suction port of the turbo fan and a main body suction port are provided at the center of the lower surface of the air conditioner body. A bell mouth is disposed, and a heat exchanger is erected so as to surround the outer periphery of the turbofan, and a drain pan formed of a foam material is disposed at a lower portion of the heat exchanger, and the main body suction port A decorative panel having a main body outlet and a panel inlet and a panel outlet that communicate with the main body outlet and the main body outlet, respectively, is attached to the lower surface of the main body. Buried ceiling By adopting a type air conditioner, it is possible to reduce the thickness by improving the moldability of the turbofan 1 and to reduce the weight. Furthermore, since the strength reliability is high, the turbofan 1 is subjected to shocks such as vibration during transportation after installation. The product reliability is high because there is no destruction. In addition, the weight of the product can be reduced as the turbo fan 1 becomes lighter.

Claims (13)

円盤状の主板と、前記主板の中央部を回転軸方向に突出させて成る凸状のハブと、前記主板の外周側平板部を基部とし前記ハブの突出方向に立設する複数の翼と、前記ハブに複数設けられ、前記ハブが囲む凸状の空間に配置されるモータを冷却するモータ冷却穴と、前記ハブに放射状に設けられ成形時に熱可塑性樹脂を流入させることで前記ハブを形成する複数のハブ用湯道と、前記成形時に隣り合う前記ハブ用湯道から流れ出た前記熱可塑性樹脂が当接して形成される樹脂合流部と、を備え、前記モータ冷却穴は前記樹脂合流部を避けるように配置されたことを特徴とするターボファン。  A disc-shaped main plate, a convex hub formed by projecting the central portion of the main plate in the direction of the rotation axis, and a plurality of wings erected in the projecting direction of the hub using the outer peripheral side flat plate portion of the main plate as a base, The hub is formed by a plurality of motor cooling holes provided in the hub and cooling motors arranged in a convex space surrounded by the hub, and a thermoplastic resin that is provided radially in the hub and injects a thermoplastic resin during molding. A plurality of hub runners, and a resin joining portion formed by contacting the thermoplastic resin flowing out from the adjacent hub runner at the time of molding, and the motor cooling hole includes the resin joining portion. A turbofan characterized by being arranged to avoid. 前記翼は前記基部に開口を有する中空形状とし前記翼各々の前記基部の周囲に設けられ、前記翼を形成する翼用湯道と、前記ハブ用湯道各々とその近くに位置する前記翼用湯道を連結する連結湯道と、を備え、前記ハブ用湯道及び前記連結湯道及び前記翼用湯道のいずれか1つの湯道に設けた注入口から前記熱可塑性樹脂を注入し前記湯道のすべてに流入させて成形したことを特徴とする請求項1記載のターボファン。  The wing has a hollow shape having an opening in the base, and is provided around the base of each of the wings. The wing runner that forms the wing, each of the hub runners, and the wing A connecting runner connecting the runners, and injecting the thermoplastic resin from an inlet provided in any one of the runner for the hub, the connecting runner, and the runner for the wing, The turbofan according to claim 1, wherein the turbofan is formed by flowing into all of the runners. 円盤状の主板と、前記主板の中央部を回転軸方向に突出させて成る凸状のハブと、前記主板の外周側平板部を基部とし前記ハブの突出方向に立設すると共に前記基部に開口を有する中空形状の複数の翼と、前記ハブに放射状に複数設けられ、成形時に熱可塑性樹脂を流入して前記ハブを形成するハブ用湯道と、前記翼各々の前記基部の周囲に設けられ、前記成形時に前記熱可塑性樹脂を流入して前記翼を形成する翼用湯道と、前記ハブ用湯道各々とその近くに位置する前記翼用湯道を連結する連結湯道と、を備えたことを特徴とするターボファン。  A disk-shaped main plate, a convex hub formed by projecting the central portion of the main plate in the direction of the rotation axis, and an outer side flat plate portion of the main plate as a base portion and standing in the projecting direction of the hub and open to the base portion A plurality of hollow wings, a plurality of wings provided radially to the hub, and a hub runner for forming the hub by injecting a thermoplastic resin during molding, and provided around the base of each of the wings. A blade runner that flows the thermoplastic resin during the molding to form the blade, and a connecting runner that connects each of the hub runners and the blade runner located in the vicinity thereof. A turbofan characterized by that. 前記ハブに複数設けられるモータ冷却穴は、前記ハブ用湯道を回転中心側へ延長した部分に配置されたことを特徴とする請求項1または請求項2または請求項3記載のターボファン。  4. The turbo fan according to claim 1, wherein a plurality of motor cooling holes provided in the hub are arranged in a portion extending the runner for the hub toward the rotation center. 前記モータ冷却穴と前記ハブ用湯道を同数設けたことを特徴とする請求項4記載のターボファン。  The turbo fan according to claim 4, wherein the same number of motor cooling holes and hub runners are provided. 前記ハブ用湯道は、前記ハブの前記主板の面から前記モータ配置側に突出することを特徴とする請求項1乃至請求項5のいずれか1項に記載のターボファン。  The turbofan according to claim 1, wherein the runner for the hub protrudes from the surface of the main plate of the hub toward the motor arrangement side. 前記翼と前記翼用湯道と前記ハブ用湯道と前記連結湯道と前記モータ冷却穴で構成した組を回転軸を中心として放射状に複数組設けたことを特徴とする請求項2及び請求項4乃至請求項6のいずれか1項に記載のターボファン。  3. A plurality of sets each including the blade, the blade runner, the hub runner, the connecting runner, and the motor cooling hole are provided radially around the rotation axis. The turbofan according to any one of claims 4 to 6. 隣り合う前記組との成す角度のうち少なくとも1つの角度を他の角度と異なるように構成したことを特徴とする請求項7記載のターボファン。  8. The turbo fan according to claim 7, wherein at least one of the angles formed by the adjacent groups is different from the other angles. 前記ハブ用湯道に連結され、前記モータ冷却穴の周囲を囲むように形成された冷却穴用湯道を備えたことを特徴とする請求項1及び請求項2及び請求項4乃至請求項8のいずれか1項に記載のターボファン。  9. A cooling hole runner connected to the hub runner and formed so as to surround the motor cooling hole is provided, and the cooling hole runner is provided. The turbo fan according to any one of the above. 前記ハブ用湯道の肉厚及び前記翼用湯道の肉厚のうちの少なくとも一方の肉厚をtとし、前記主板の前記湯道を除く部分の最小の肉厚をt0としたとき、比率t/t0を1.1≦t/t0≦2の範囲としたことを特徴とする請求項2乃至請求項9のいずれか1項に記載のターボファン。  When the thickness of at least one of the thickness of the runner for the hub and the thickness of the runner for the wing is t, and the minimum thickness of the portion excluding the runner of the main plate is t0, the ratio 10. The turbo fan according to claim 2, wherein t / t 0 is in a range of 1.1 ≦ t / t 0 ≦ 2. 円盤状の主板と、前記主板の中央部を回転軸方向に突出させて成る凸状のハブと、前記主板の外周側平板部を基部とし前記ハブの突出方向に立設すると共に前記基部に開口を有する中空形状の複数の翼と、前記開口の周囲に前記主板から前記翼の立設方向と反対の方向に突出するように設けた翼用湯道と、を備え、前記開口の回転方向前方の周囲に位置する前記翼用湯道の突出高さを、前記開口の回転方向後方の周囲に位置する前記翼用湯道の突出高さよりも高くしたことを特徴とするターボファン。  A disk-shaped main plate, a convex hub formed by projecting the central portion of the main plate in the direction of the rotation axis, and an outer side flat plate portion of the main plate as a base portion and standing in the projecting direction of the hub and open to the base portion A plurality of hollow wings having wings, and wing runners provided around the openings so as to protrude from the main plate in a direction opposite to the erection direction of the wings. A turbofan characterized in that a protrusion height of the blade runner positioned around the blade is higher than a protrusion height of the blade runner positioned around the rear of the opening in the rotation direction. 前記開口の前記主板の面における内接円の直径を最大開口幅Fとし、△tを前記開口の回転方向前方の周囲に位置する前記翼用湯道の突出高さと前記開口の回転方向後方の周囲に位置する前記翼用湯道の突出高さとの差とした時、△t/Fを、0.04≦△t/F≦0.22の範囲としたことを特徴とする請求項11記載のターボファン。  The diameter of the inscribed circle on the surface of the main plate of the opening is defined as a maximum opening width F, and Δt is the protrusion height of the runner for the blades located around the front of the opening in the rotation direction and the rear of the opening in the rotation direction. The Δt / F is in a range of 0.04 ≦ Δt / F ≦ 0.22 when the difference from the protruding height of the wing runner positioned around is set to be 0.04 ≦ Δt / F ≦ 0.22. Turbo fan. 請求項1乃至請求項12のいずれか1項に記載のターボファンと、熱交換器とを備え、前記ターボファンによって吸込口から吸込んだ空気を前記熱交換器で冷媒と熱交換して吹出口から吹出すように構成したことを特徴とする空気調和機。The turbofan according to any one of claims 1 to 12, and a heat exchanger, wherein the air sucked from the suction port by the turbofan is heat-exchanged with the refrigerant by the heat exchanger, and the blowout port An air conditioner characterized by being configured to blow out from the air.
JP2007511737A 2005-10-06 2006-10-04 Turbo fan, air conditioner Active JP4559472B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005293705 2005-10-06
JP2005293705 2005-10-06
PCT/JP2006/319832 WO2007040236A1 (en) 2005-10-06 2006-10-04 Turbo fan and air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010140391A Division JP5121887B2 (en) 2005-10-06 2010-06-21 Turbo fan, air conditioner

Publications (2)

Publication Number Publication Date
JPWO2007040236A1 JPWO2007040236A1 (en) 2009-04-16
JP4559472B2 true JP4559472B2 (en) 2010-10-06

Family

ID=37906277

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007511737A Active JP4559472B2 (en) 2005-10-06 2006-10-04 Turbo fan, air conditioner
JP2010140391A Active JP5121887B2 (en) 2005-10-06 2010-06-21 Turbo fan, air conditioner

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010140391A Active JP5121887B2 (en) 2005-10-06 2010-06-21 Turbo fan, air conditioner

Country Status (5)

Country Link
EP (2) EP2980414B1 (en)
JP (2) JP4559472B2 (en)
CN (1) CN100559031C (en)
ES (2) ES2800055T3 (en)
WO (1) WO2007040236A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960150B (en) * 2008-04-18 2014-04-02 三菱电机株式会社 Turbofan and air conditioner
UA107094C2 (en) 2009-11-03 2014-11-25 CENTRAL CEILING FAN
JP2012052439A (en) * 2010-08-31 2012-03-15 Mitsubishi Heavy Ind Ltd Impeller
TWI410564B (en) * 2010-12-29 2013-10-01 Delta Electronics Inc Fan and impeller thereof
CN103195752B (en) * 2013-04-03 2015-11-18 宁波朗迪叶轮机械有限公司 A kind of impeller on air-conditioning
WO2015104837A1 (en) * 2014-01-10 2015-07-16 三菱電機株式会社 Fan, centrifugal fan, and air conditioning device
JP5905517B2 (en) * 2014-06-23 2016-04-20 三菱重工業株式会社 Impeller
JP5905518B2 (en) * 2014-06-23 2016-04-20 三菱重工業株式会社 Impeller
CN104456883B (en) * 2014-10-31 2017-05-24 广东美的制冷设备有限公司 Air duct system, air supply method thereof and fan and air conditioner with air duct system
JP6281714B2 (en) * 2016-01-18 2018-02-21 ダイキン工業株式会社 Centrifugal fan and air conditioner equipped with centrifugal fan
US11190079B2 (en) 2016-05-13 2021-11-30 Lg Innotekco., Ltd. Rotor and motor including same
CN106286386A (en) * 2016-08-30 2017-01-04 芜湖美智空调设备有限公司 Centrifugal wind wheel and air-conditioner
CN106369798A (en) * 2016-08-30 2017-02-01 芜湖美智空调设备有限公司 Centrifugal wind wheel and cabinet air conditioner
BR112019007618A2 (en) 2016-10-18 2019-07-02 Carrier Corp fan assembly
US11041502B2 (en) 2018-01-30 2021-06-22 Carrier Corporation Double inlet backward curved blower
JP7467025B2 (en) * 2018-03-26 2024-04-15 東芝キヤリア株式会社 Blower and indoor unit of air conditioner
CN108661929B (en) * 2018-04-28 2021-05-14 青岛海信日立空调系统有限公司 Centrifugal fan and ceiling embedded air conditioner indoor unit
CN109945425A (en) * 2019-03-11 2019-06-28 广东美的制冷设备有限公司 The noise control method of air conditioner and air conditioner with it
WO2021118208A1 (en) * 2019-12-09 2021-06-17 엘지전자 주식회사 Blower
KR20220033352A (en) * 2020-09-09 2022-03-16 삼성전자주식회사 Fan, air conditioner having fan, and menufacturing method of fan
EP4166792A4 (en) * 2020-09-28 2023-12-06 GD Midea Air-Conditioning Equipment Co., Ltd. Centrifugal wind wheel and air treatment device having same
CN113685371A (en) * 2021-09-26 2021-11-23 中车株洲电机有限公司 Motor fan impeller
US11781441B2 (en) 2021-12-30 2023-10-10 Hamilton Sundstrand Corporation Air cycle machine with separate compressor and turbine and fan and turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3589243B2 (en) * 2002-04-03 2004-11-17 ダイキン工業株式会社 Centrifugal fan rotor and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3144204A (en) * 1962-08-24 1964-08-11 Acme Engineering And Mfg Corp Centrifugal blower wheel
JPH04116698U (en) 1991-03-27 1992-10-19 三菱重工業株式会社 centrifugal fan
JPH04116699U (en) 1991-03-27 1992-10-19 三菱重工業株式会社 centrifugal fan
JP3131625B2 (en) 1994-12-06 2001-02-05 ダイキン工業株式会社 Turbo fan
JPH11235722A (en) * 1998-02-20 1999-08-31 Hitachi Ltd Centrifugal blower, its molding mold, and molding method
FR2785836B1 (en) * 1998-11-12 2000-12-15 Snecma PROCESS FOR PRODUCING THIN CERAMIC CORES FOR FOUNDRY
JP3544325B2 (en) 1999-11-10 2004-07-21 三菱電機株式会社 Centrifugal blower impeller and air conditioner
JP3757802B2 (en) * 2001-02-09 2006-03-22 三菱電機株式会社 Turbofan, and blower and air conditioner using turbofan
KR100460587B1 (en) * 2002-04-19 2004-12-09 삼성전자주식회사 Turbofan and mold for manufacturing the same
JP2004034398A (en) * 2002-07-01 2004-02-05 Mitsubishi Electric Corp Method for manufacturing centrifugal fan, mold for injection-molding centrifugal fan, and centrifugal fan
FR2848620A1 (en) * 2002-12-13 2004-06-18 Valeo Systemes Dessuyage Fan for cooling motor of automobile car, has several blades distributed regularly around bowl which is moved in axial rotation where each blade is partially hollow at part situated directly near leading edge
JP4821084B2 (en) * 2003-10-22 2011-11-24 パナソニック株式会社 Turbofan and turbofan manufacturing method
CN101960150B (en) * 2008-04-18 2014-04-02 三菱电机株式会社 Turbofan and air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3589243B2 (en) * 2002-04-03 2004-11-17 ダイキン工業株式会社 Centrifugal fan rotor and manufacturing method thereof

Also Published As

Publication number Publication date
CN100559031C (en) 2009-11-11
JP5121887B2 (en) 2013-01-16
WO2007040236A1 (en) 2007-04-12
ES2800055T3 (en) 2020-12-23
ES2589903T3 (en) 2016-11-17
CN101099044A (en) 2008-01-02
EP2980414B1 (en) 2020-05-27
JPWO2007040236A1 (en) 2009-04-16
EP1933040B1 (en) 2016-08-10
EP1933040A1 (en) 2008-06-18
EP1933040A4 (en) 2015-03-18
JP2010216486A (en) 2010-09-30
EP2980414A1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP4559472B2 (en) Turbo fan, air conditioner
US8007240B2 (en) Impeller of centrifugal fan and centrifugal fan disposed with the impeller
JP4725678B2 (en) Cross flow fan and air conditioner equipped with the same
US9528374B2 (en) Turbofan, and air-conditioning apparatus
JP6394409B2 (en) Blower
JP5689538B2 (en) Outdoor cooling unit for vehicle air conditioner
WO2009139422A1 (en) Centrifugal fan
JPWO2008111368A1 (en) Centrifugal fan, air conditioner
JP2002156128A (en) Turbo fan for air conditioner
JP6381811B2 (en) Blower and air conditioner
JPH0979601A (en) Cross flow blower
JP3668782B2 (en) Blower fan and manufacturing method thereof
JP5574841B2 (en) Turbofan and air conditioner using the same
JP2007040617A (en) Air conditioning indoor unit
JP5633546B2 (en) Blower
JP5465021B2 (en) Turbo fan and air conditioner equipped with the turbo fan
JP2009127875A (en) Air conditioner
EP3406911B1 (en) Centrifugal fan, and air conditioner provided with centrifugal fan
JPS62360B2 (en)
JP2009250112A (en) Impeller of centrifugal blower
KR100535679B1 (en) Turbo fan
JP2009203890A (en) Centrifugal blower
JP5269025B2 (en) Centrifugal fan and air conditioner indoor unit equipped with the same
JP2017053301A (en) Propeller fan and outdoor unit of air conditioner
JP6550909B2 (en) Air blower

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100722

R150 Certificate of patent or registration of utility model

Ref document number: 4559472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250