JP4558681B2 - Waste water treatment apparatus and waste water treatment method - Google Patents

Waste water treatment apparatus and waste water treatment method Download PDF

Info

Publication number
JP4558681B2
JP4558681B2 JP2006165182A JP2006165182A JP4558681B2 JP 4558681 B2 JP4558681 B2 JP 4558681B2 JP 2006165182 A JP2006165182 A JP 2006165182A JP 2006165182 A JP2006165182 A JP 2006165182A JP 4558681 B2 JP4558681 B2 JP 4558681B2
Authority
JP
Japan
Prior art keywords
tank
waste water
gas
inorganic flocculant
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006165182A
Other languages
Japanese (ja)
Other versions
JP2007330887A (en
Inventor
久人 竹田
昭仁 井端
昌文 三井
俊彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2006165182A priority Critical patent/JP4558681B2/en
Publication of JP2007330887A publication Critical patent/JP2007330887A/en
Application granted granted Critical
Publication of JP4558681B2 publication Critical patent/JP4558681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は排水処理装置及び排水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method.

従来、生ごみ等の有機性廃棄物は、メタン発酵により処理され、発生した消化汚泥は脱水機で脱水されて汚泥処理装置に供給されると共に、脱水分離液は被処理水として排水処理装置に供給される。   Conventionally, organic waste such as garbage is treated by methane fermentation, and the generated digested sludge is dehydrated by a dehydrator and supplied to a sludge treatment device. Supplied.

排水処理装置に供給された被処理水は、生物脱窒処理され、汚泥を分離した後に処理水として系外に排出される。汚泥を分離する方法としては、例えば、特許文献1のように、アルミ系や鉄系等の無機凝集剤を添加することによって汚泥を凝集させて分離する凝集分離が用いられる。
特開平11−277096号公報
The treated water supplied to the wastewater treatment device is subjected to biological denitrification treatment, and after sludge is separated, it is discharged out of the system as treated water. As a method for separating sludge, for example, as in Patent Document 1, agglomeration separation in which sludge is agglomerated and separated by adding an inorganic aggregating agent such as aluminum or iron is used.
Japanese Patent Laid-Open No. 11-277096

しかしながら、生物脱窒処理等の活性汚泥処理を処された処理水には、多量の炭酸ガスが含まれており、凝集分離のために無機凝集剤を添加しても脱炭酸に消費されてしまうため、理論値よりも多量の無機凝集剤を添加しなければならない。この無機凝集剤の過剰の添加は、凝集汚泥の発生量の増大を招来する。   However, the treated water that has been subjected to activated sludge treatment such as biological denitrification treatment contains a large amount of carbon dioxide gas, and even if an inorganic flocculant is added for coagulation separation, it will be consumed for decarboxylation. Therefore, a larger amount of inorganic flocculant than the theoretical value must be added. Excessive addition of this inorganic flocculant leads to an increase in the amount of aggregated sludge generated.

本発明は、上記課題を鑑みてなされたものであり、凝集分離のための無機凝集剤の添加量を十分に低減可能な排水処理装置及び排水処理方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the waste water treatment apparatus and waste water treatment method which can fully reduce the addition amount of the inorganic flocculant for agglomeration separation.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、排水に対する無機凝集剤の添加に先立ち、排水に硫化水素含有ガスを接触させることで上記課題が解決されることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above problem can be solved by bringing the hydrogen sulfide-containing gas into contact with the wastewater prior to the addition of the inorganic flocculant to the wastewater. The present invention has been completed.

すなわち、本発明の排水処理装置は、排水を凝集分離する排水処理装置であって、排水に硫化水素含有ガスを接触させるガス接触手段と、ガス接触手段からの排水に無機凝集剤を添加する無機凝集剤添加手段と、無機凝集剤の添加により排水に生じる凝集汚泥を固液分離する固液分離手段と、を備えることを特徴とする。   That is, the wastewater treatment apparatus of the present invention is a wastewater treatment apparatus that agglomerates and separates wastewater, and includes a gas contact means for bringing a hydrogen sulfide-containing gas into contact with wastewater, and an inorganic flocculant added to the wastewater from the gas contact means. It comprises a flocculant addition means and a solid-liquid separation means for solid-liquid separation of the agglomerated sludge generated in the waste water by the addition of the inorganic flocculant.

本発明の排水処理装置が備えるガス接触手段によって、無機凝集剤が添加される前の排水と硫化水素含有ガスとが接触する。排水と硫化水素含有ガスとが接触すると、硫化水素は排水に吸収され、硫黄酸化反応が進行する。この硫黄酸化反応によって排水は酸性側に移行し、排水の脱炭酸が促進される。このため、硫化水素含有ガスとの接触が行われた排水に対して無機凝集剤を添加すれば、脱炭酸に無機凝集剤が消費されることを抑制することができ、添加した無機凝集剤によって効率的な凝集汚泥の形成が可能となる。よって、排水に添加する無機凝集剤の量を十分に低減することができ、ひいては凝集汚泥の発生量の増加が十分に抑制される。   The waste water before the inorganic flocculant is added and the hydrogen sulfide-containing gas are brought into contact with each other by the gas contact means provided in the waste water treatment apparatus of the present invention. When the waste water and the hydrogen sulfide-containing gas come into contact with each other, the hydrogen sulfide is absorbed into the waste water and the sulfur oxidation reaction proceeds. By this sulfur oxidation reaction, the wastewater moves to the acidic side, and decarboxylation of the wastewater is promoted. For this reason, if an inorganic flocculant is added to the wastewater that has been contacted with the hydrogen sulfide-containing gas, consumption of the inorganic flocculant during decarboxylation can be suppressed. Efficient coagulation sludge can be formed. Therefore, the amount of the inorganic flocculant added to the waste water can be sufficiently reduced, and as a result, the increase in the amount of the generated sludge is sufficiently suppressed.

本発明では、無機凝集剤が添加された排水の水素イオン濃度を調整する水素イオン濃度調整手段を更に備えることが好ましい。無機凝集剤が溶解している排水の水素イオン濃度(pH)を調整することで排水に含まれる浮遊物質やコロイダル物質をより効率的に凝集させることができる。   In the present invention, it is preferable to further include hydrogen ion concentration adjusting means for adjusting the hydrogen ion concentration of the wastewater to which the inorganic flocculant is added. By adjusting the hydrogen ion concentration (pH) of the wastewater in which the inorganic flocculant is dissolved, floating substances and colloidal substances contained in the wastewater can be more efficiently aggregated.

本発明においては、ガス接触手段に供給される硫化水素含有ガスは、有機物をメタン発酵することによって発生するバイオガスであることが好ましい。有機物をメタン発酵処理することで得られるバイオガスは、硫化水素を数百〜数千体積ppm含有するものであり、ガス接触手段に供給される硫化水素含有ガスとして好適である。また、ガス接触手段に供給される排水は、メタン発酵により発生した消化汚泥の活性汚泥処理を経て得られるものであることが好ましい。   In the present invention, the hydrogen sulfide-containing gas supplied to the gas contact means is preferably a biogas generated by subjecting organic matter to methane fermentation. Biogas obtained by subjecting organic matter to methane fermentation contains hydrogen sulfide of several hundred to several thousand volume ppm, and is suitable as a hydrogen sulfide-containing gas supplied to the gas contact means. Moreover, it is preferable that the waste_water | drain supplied to a gas contact means is obtained through the activated sludge process of the digested sludge generated by methane fermentation.

なお、本発明では、ガス接触手段において、メタン発酵により発生したバイオガスと、当該メタン発酵により発生した消化汚泥の脱水処理及び当該脱水処理で分離された脱水分離液の活性汚泥処理を経て得られる排水とを接触させることが好ましい。これにより、例えば、有機物をメタン発酵処理する廃棄物処理装置から生じる排水を処理するにあたり、バイオガスを十分に有効利用することが可能である。   In the present invention, in the gas contact means, the biogas generated by methane fermentation and the digested sludge generated by the methane fermentation are obtained through dehydration treatment and the activated sludge treatment of the dehydrated separation liquid separated by the dehydration treatment. It is preferable to contact the waste water. Thereby, for example, in treating waste water generated from a waste treatment apparatus that performs methane fermentation treatment of organic matter, it is possible to sufficiently effectively use biogas.

本発明の排水処理方法は、排水を凝集分離する排水処理方法であって、排水に硫化水素含有ガスを接触させるガス接触工程と、ガス接触工程からの排水に無機凝集剤を添加する無機凝集剤添加工程と、無機凝集剤添加工程後の排水に生じる凝集汚泥を固液分離する固液分離工程と、を備えることを特徴とする。   The wastewater treatment method of the present invention is a wastewater treatment method for aggregating and separating wastewater, a gas contact step for bringing hydrogen sulfide-containing gas into contact with the wastewater, and an inorganic flocculant for adding an inorganic flocculant to the wastewater from the gas contact step An addition step; and a solid-liquid separation step for solid-liquid separation of the aggregated sludge generated in the waste water after the inorganic flocculant addition step.

本発明の排水処理方法によれば、ガス接触工程を行うことで排水と硫化水素含有ガスとを接触させることができる。排水と硫化水素含有ガスとが接触すると、硫化水素は排水に吸収され、硫黄酸化反応が進行する。この硫黄酸化反応によって排水が酸性側に移行するため排水の脱炭酸が促進される。このため、排水に添加する無機凝集剤の量を十分に低減することができ、ひいては凝集汚泥の発生量の増加が十分に抑制される。   According to the waste water treatment method of the present invention, the waste water and the hydrogen sulfide-containing gas can be brought into contact with each other by performing a gas contact step. When the waste water and the hydrogen sulfide-containing gas come into contact with each other, the hydrogen sulfide is absorbed into the waste water and the sulfur oxidation reaction proceeds. This sulfur oxidation reaction promotes decarboxylation of the wastewater because the wastewater moves to the acidic side. For this reason, the quantity of the inorganic flocculant added to waste water can fully be reduced, and the increase in the generation amount of agglomerated sludge is fully suppressed by extension.

本発明によれば、凝集分離のための無機凝集剤の添加量を十分に低減可能な排水処理装置及び排水処理方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the waste water treatment apparatus and waste water treatment method which can fully reduce the addition amount of the inorganic flocculant for agglomeration separation are provided.

以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。図1は、本発明に係る排水処理装置の好適な実施形態を備える廃棄物処理施設の概略構成図である。図1に示す廃棄物処理設備は、廃棄物処理装置10と、排水処理装置20とを備えている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a waste treatment facility including a preferred embodiment of a waste water treatment apparatus according to the present invention. The waste treatment facility shown in FIG. 1 includes a waste treatment device 10 and a waste water treatment device 20.

廃棄物処理装置10は、生ごみ等の有機性廃棄物をメタン発酵処理するメタン発酵槽1と、メタン発酵により生じた消化汚泥を貯留する消化汚泥貯槽2と、消化汚泥を脱水して脱水汚泥と脱水分離液(排水)とに分離する脱水機3とを備えている。   The waste treatment apparatus 10 includes a methane fermentation tank 1 for treating methane fermentation of organic waste such as garbage, a digested sludge storage tank 2 for storing digested sludge generated by methane fermentation, and dewatered sludge by dewatering the digested sludge. And a dehydrator 3 for separating into a dehydrated separation liquid (drainage).

排水処理装置20は、廃棄物処理装置10からの脱水分離液を貯留する脱水分離液貯槽11と、脱水分離液の脱窒処理及び硝化処理(活性汚泥処理)をそれぞれ行う脱窒槽12及び硝化槽13と、硝化脱窒処理後の活性汚泥混合液を固液分離する沈殿槽14と、沈殿槽14からの沈殿分離液にメタン発酵槽1からのバイオガス(硫化水素含有ガス)を接触させるガス接触槽(ガス接触手段)15と、ガス接触槽15からのガス接触液と無機凝集剤等とを混和し浮遊物質やコロイダル物質などを凝集させて除去する混和凝集装置16とを備えている。なお、ガス接触槽15及び混和凝集装置16の構成について、その概略を図2に示す。   The waste water treatment apparatus 20 includes a dehydration / separation liquid storage tank 11 that stores the dehydration / separation liquid from the waste treatment apparatus 10, and a denitrification tank 12 and a nitrification tank that perform denitrification treatment and nitrification treatment (activated sludge treatment), respectively. 13, a precipitation tank 14 for solid-liquid separation of the activated sludge mixed liquid after nitrification denitrification treatment, and a gas for bringing the biogas (hydrogen sulfide-containing gas) from the methane fermentation tank 1 into contact with the precipitation separation liquid from the precipitation tank 14 A contact tank (gas contact means) 15 and a mixing and aggregating device 16 for mixing the gas contact liquid from the gas contact tank 15 with an inorganic flocculant and aggregating and removing floating substances and colloidal substances are provided. In addition, about the structure of the gas contact tank 15 and the mixing aggregation apparatus 16, the outline is shown in FIG.

メタン発酵槽1は、嫌気性微生物により有機性廃棄物をメタンガスや炭酸ガス等に分解するためのものである。メタン発酵槽1としては、あらゆるメタン発酵槽が適用可能であり、その型式は竪型又は横型のいずれであってもよく、連続式又は回分式のいずれであってもよい。また、処理条件に応じて、乾式又は湿式のいずれのものを採用してもよい。   The methane fermentation tank 1 is for decomposing organic waste into methane gas, carbon dioxide gas, or the like by anaerobic microorganisms. As the methane fermenter 1, any methane fermenter can be applied, and the type thereof may be either a vertical type or a horizontal type, and may be either a continuous type or a batch type. Moreover, you may employ | adopt either a dry type or a wet type according to process conditions.

メタン発酵槽1には、有機性廃棄物を導入するラインL1が接続されている。また、メタン発酵槽1には、メタン発酵により生じた消化汚泥を消化汚泥貯槽2に移送するラインL2及びバイオガスをガス接触槽15に移送するラインL10が接続されている。   A line L1 for introducing organic waste is connected to the methane fermentation tank 1. The methane fermentation tank 1 is connected to a line L2 for transferring digested sludge generated by methane fermentation to the digested sludge storage tank 2 and a line L10 for transferring biogas to the gas contact tank 15.

消化汚泥貯槽2は、脱水機3に移送する前に消化汚泥を一旦貯留するための槽である。消化汚泥貯槽2には、消化汚泥を脱水機3に導入するラインL3が接続されている。ラインL3は消化汚泥に対して凝集剤などの脱水助剤を添加することができる構成となっている。   The digested sludge storage tank 2 is a tank for temporarily storing the digested sludge before being transferred to the dehydrator 3. A line L3 for introducing the digested sludge into the dehydrator 3 is connected to the digested sludge storage tank 2. The line L3 has a configuration in which a dehydrating aid such as a flocculant can be added to the digested sludge.

脱水機3は、消化汚泥を脱水処理して脱水分離液と脱水汚泥とに分離するための装置である。脱水機3としては、あらゆる脱水機が適用可能であり、例えば、スクリュープレス脱水機、遠心脱水機、多重円板型脱水機、ベルトプレス脱水機、フィルタープレス脱水機、ロータリープレス脱水機などが挙げられる。これらの脱水機は1種を単独もしくは複数で又は2種以上を組み合わせて用いてもよい。脱水機3には、脱水分離液を脱水分離液貯槽11に移送するラインL4及び脱水汚泥を汚泥処理設備へと移送するラインL11が接続されている。   The dehydrator 3 is a device for dehydrating the digested sludge to separate it into a dehydrated separation liquid and a dehydrated sludge. Any dehydrator can be used as the dehydrator 3, for example, a screw press dehydrator, a centrifugal dehydrator, a multi-disc dehydrator, a belt press dehydrator, a filter press dehydrator, a rotary press dehydrator, or the like. It is done. These dehydrators may be used alone or in combination of two or more. The dehydrator 3 is connected to a line L4 for transferring the dehydrated separated liquid to the dehydrated separated liquid storage tank 11 and a line L11 for transferring the dehydrated sludge to the sludge treatment facility.

脱水分離液貯槽11は、脱窒槽12に移送する前に脱水分離液を一旦貯留するための槽である。脱水分離液貯槽11は、脱水分離液を脱窒槽12に導入するラインL5が接続されている。   The dehydrated separation liquid storage tank 11 is a tank for temporarily storing the dehydrated separation liquid before being transferred to the denitrification tank 12. The dehydrated separation liquid storage tank 11 is connected to a line L5 for introducing the dehydrated separation liquid into the denitrification tank 12.

脱窒槽12は、溶存酸素がない状態で脱水分離液中の硝酸塩又は亜硝酸塩を窒素ガスに還元して除去するための槽である。硝化槽13は、好気状態でアンモニア性窒素を亜硝酸塩又は硝酸塩に酸化するための槽である。これらの槽内においては、脱水分離液と活性汚泥とが混合された状態(活性汚泥混合液)となる。図示していないが、硝化槽13は空気又は酸素を曝気する曝気装置を備えている。硝化槽13には槽内の活性汚泥混合液の一部を脱窒槽12に返送するラインL12及び脱窒処理後の活性汚泥混合液を沈殿槽14に移送するラインL6が接続されている。   The denitrification tank 12 is a tank for reducing and removing nitrate or nitrite in the dehydrated separation liquid to nitrogen gas in the absence of dissolved oxygen. The nitrification tank 13 is a tank for oxidizing ammonia nitrogen to nitrite or nitrate in an aerobic state. In these tanks, the dehydrated separation liquid and activated sludge are mixed (activated sludge mixed liquid). Although not shown, the nitrification tank 13 is provided with an aeration device for aeration of air or oxygen. The nitrification tank 13 is connected to a line L12 for returning a part of the activated sludge mixed liquid in the tank to the denitrification tank 12, and a line L6 for transferring the activated sludge mixed liquid after the denitrification treatment to the precipitation tank 14.

沈殿槽14は、脱窒処理後の活性汚泥混合液に含まれる浮遊物質を沈殿させて除去するための槽である。図示していないが、沈殿槽14は底部に沈殿した汚泥を掻き寄せるための汚泥掻寄機を備えている。沈殿槽14は掻き寄せられた汚泥を引抜くためのラインL13が接続されており、引抜かれた汚泥をラインL13aを通じて脱窒槽12に、あるいはラインL13bを通じてメタン発酵槽1に、返送可能な構成となっている。また、沈殿槽14には浮遊物質が除去された沈殿分離液をガス接触槽15に移送するラインL7が接続されている。なお、活性汚泥混合液に含まれる浮遊物質を分離できるものであれば、特に沈殿槽に限定されず、加圧浮上槽、膜分離装置などを用いてもよい。   The sedimentation tank 14 is a tank for precipitating and removing suspended solids contained in the activated sludge mixed liquid after the denitrification treatment. Although not shown, the sedimentation tank 14 is provided with a sludge scraping machine for scraping the sludge deposited on the bottom. The sedimentation tank 14 is connected to a line L13 for extracting the sewed sludge, and the extracted sludge can be returned to the denitrification tank 12 through the line L13a or to the methane fermentation tank 1 through the line L13b. It has become. The precipitation tank 14 is connected to a line L7 for transferring the precipitate separation liquid from which suspended substances have been removed to the gas contact tank 15. In addition, if it can isolate | separate the suspended | floating substance contained in an activated sludge liquid mixture, it will not specifically limit to a sedimentation tank, You may use a pressurized flotation tank, a membrane separation apparatus, etc.

ガス接触槽15は、沈殿槽14からの沈殿分離液にラインL10を介して導入されるバイオガスを接触させるための槽である。ガス接触槽15にはバイオガス接触後の沈殿分離液(以下、「ガス接触液」という。)を混和凝集装置16に移送するラインL8及び接触処理後のバイオガスを移送するラインL14が接続されている。   The gas contact tank 15 is a tank for bringing the biogas introduced through the line L10 into contact with the precipitate separation liquid from the settling tank 14. Connected to the gas contact tank 15 are a line L8 for transferring the precipitate separation liquid after contact with biogas (hereinafter referred to as “gas contact liquid”) to the mixing and aggregating apparatus 16, and a line L14 for transferring biogas after the contact treatment. ing.

ガス接触槽15は、図2に示すようにバイオガスを液中に吹き込むための装置15aを備えている。また、バイオガスが漏洩することを防止する観点からバイオガスを含有するガス接触槽15内の気相部分は外部と遮断されていることが好ましい。気相部分を外部と遮断するためには、沈殿槽14とガス接触槽15との間及びガス接触槽15と混和凝集装置16との間を水封することで遮断すればよい。例えば、ラインL7及びラインL8にU字形状の部分を設け、その内部に脱水分離液を滞留させることで水封する構成とすればよい。   As shown in FIG. 2, the gas contact tank 15 includes a device 15a for blowing biogas into the liquid. Moreover, it is preferable that the gas phase part in the gas contact tank 15 containing the biogas is blocked from the outside from the viewpoint of preventing the biogas from leaking. In order to block the gas phase portion from the outside, it is only necessary to block between the precipitation tank 14 and the gas contact tank 15 and between the gas contact tank 15 and the mixing and aggregating device 16 by water sealing. For example, a U-shaped portion may be provided in the line L7 and the line L8, and the water-sealed structure may be formed by retaining the dehydrated separation liquid therein.

ガス接触槽15の水深は浅いことが好ましく、その有効水深は1m程度とすることが好ましい。炭酸ガスが水に溶解する量は水深と比例するため、ガス接触槽15の水深が深いと脱炭酸が困難となる傾向にあることに加え、バイオガスに含まれる炭酸ガスが溶解するおそれがある。また、ガス接触槽15の水深が深いと、ガス接触槽15の底部からバイオガスを吹き込むためにはバイオガスの圧力を高める必要があり、メタン発酵槽1内も加圧されてしまう。また、ガス接触槽15の容量は、バイオガスの空間速度が200h−1以下となるように設計することが好ましい。 The water depth of the gas contact tank 15 is preferably shallow, and the effective water depth is preferably about 1 m. Since the amount of carbon dioxide dissolved in water is proportional to the water depth, carbon dioxide contained in biogas may be dissolved in addition to the tendency for decarbonation to be difficult when the water depth of the gas contact tank 15 is deep. . Moreover, when the water depth of the gas contact tank 15 is deep, in order to blow biogas from the bottom part of the gas contact tank 15, it is necessary to raise the pressure of biogas, and the inside of the methane fermentation tank 1 will also be pressurized. The capacity of the gas contact tank 15 is preferably designed so that the space velocity of the biogas is 200 h −1 or less.

混和凝集装置16は、ガス接触槽15からのガス接触液に含まれる浮遊物質やコロイダル物質などを凝集させ、これらを高度に除去するための装置である。混和凝集装置16は、ガス接触液に対して無機凝集剤及びpH調整剤を添加して溶解させる混和槽(混和手段)17と、凝集汚泥を分離する凝集槽(固液分離手段)18とを備えている。混和槽17の後段に凝集槽18が配置されており、これらはラインL16で接続されている。   The mixing and aggregating device 16 is a device for aggregating suspended substances and colloidal substances contained in the gas contact liquid from the gas contact tank 15 and removing them to a high degree. The mixing and aggregating apparatus 16 includes a mixing tank (mixing means) 17 for adding and dissolving an inorganic flocculant and a pH adjuster to the gas contact liquid, and a coagulating tank (solid-liquid separation means) 18 for separating the agglomerated sludge. I have. A coagulation tank 18 is disposed at the subsequent stage of the mixing tank 17 and these are connected by a line L16.

混和槽17は、ガス接触液に対して無機凝集剤を添加する無機凝集剤供給器(無機凝集剤添加手段)W1、pH調整剤を添加するpH調整剤供給器W2及び混和槽17内のガス接触液のpHを測定するpH測定器X1を備えている。pH測定器X1の測定値に基づき、pH調整剤供給器W2の供給量を制御できるようになっている。pH調整剤供給器W2及びpH測定器X1により水素イオン濃度調整手段が構成されている。また、混和槽17は、攪拌機17aを備えており、ガス接触液と無機凝集剤及びpH調整剤とを混合攪拌できる構成となっている。   The mixing tank 17 includes an inorganic flocculant supplier (inorganic flocculant adding means) W1 for adding an inorganic flocculant to the gas contact liquid, a pH adjuster supplier W2 for adding a pH adjuster, and a gas in the mixing tank 17. A pH measuring device X1 for measuring the pH of the contact liquid is provided. Based on the measured value of the pH measuring device X1, the supply amount of the pH adjusting agent supply device W2 can be controlled. The pH adjuster supply device W2 and the pH measuring device X1 constitute a hydrogen ion concentration adjusting means. The mixing tank 17 includes a stirrer 17a and is configured to mix and stir the gas contact liquid, the inorganic flocculant, and the pH adjuster.

無機凝集剤供給器W1は、供給する無機凝集剤が粉体又は液体であるかに応じて好適な構成のものを用いればよい。無機凝集剤が、粉体である場合は定量フィーダ及び重量計などを、液体である場合はレベル計、重量計及び流量計などを用いることができる。また、pH調整剤供給器W2としては、レベル計、重量計及び流量計などを用いることができる。   The inorganic flocculant supply device W1 may have a suitable configuration depending on whether the inorganic flocculant to be supplied is powder or liquid. When the inorganic flocculant is a powder, a quantitative feeder and a weight meter can be used, and when the inorganic flocculant is a liquid, a level meter, a weight meter and a flow meter can be used. Moreover, a level meter, a weight meter, a flow meter, etc. can be used as pH adjuster supply device W2.

凝集槽18は、底部に沈殿した凝集汚泥を掻き寄せるための掻寄機18aを備えている。凝集槽18には、凝集処理された処理水を排出するラインL9と、掻き寄せられた凝集汚泥を引抜くためのラインL15が接続されており、引抜かれた凝集汚泥をラインL15を通じてメタン発酵槽1に返送可能な構成となっている。   The coagulation tank 18 includes a scraper 18a for scraping the coagulated sludge precipitated on the bottom. The agglomeration tank 18 is connected to a line L9 for discharging the agglomerated treated water and a line L15 for extracting the agglomerated sludge, and the extracted agglomerated sludge is passed through the line L15 to the methane fermentation tank. 1 can be returned.

なお、混和槽17と凝集槽18の間に、高分子凝集剤を添加する手段を更に設けてもよい。また、ガス接触液に対し、無機凝集剤を添加して混和する槽とpH調整剤を添加して混和する槽をそれぞれ別々に設けてもよい。また、ラインL9から排出される処理水に対し、更に砂濾過、活性炭吸着及び消毒といった処理を行うための処理装置を凝集槽18の後段に配置してもよい。   A means for adding a polymer flocculant may be further provided between the mixing tank 17 and the coagulation tank 18. In addition, a tank for adding and mixing an inorganic flocculant and a tank for adding and mixing a pH adjuster may be separately provided for the gas contact liquid. Moreover, you may arrange | position the processing apparatus for performing processing, such as sand filtration, activated carbon adsorption | suction, and disinfection, to the treated water discharged | emitted from the line L9 in the back | latter stage of the aggregation tank 18. FIG.

ガス接触槽15から排出されるバイオガスは、未だ若干の硫化水素を含有している場合がある。そのため、ガス接触槽15の後段には脱硫装置を設置することが好ましい。脱硫装置としては、酸化鉄を用いた乾式脱硫装置、水もしくはアルカリ溶液による湿式脱硫装置及び生物による生物脱硫装置などが挙げられる。   The biogas discharged from the gas contact tank 15 may still contain some hydrogen sulfide. Therefore, it is preferable to install a desulfurization device in the subsequent stage of the gas contact tank 15. Examples of the desulfurization apparatus include a dry desulfurization apparatus using iron oxide, a wet desulfurization apparatus using water or an alkaline solution, and a biological desulfurization apparatus using a living organism.

次に、この実施形態の動作、つまり、本発明に係る排水処理方法について具体的に説明する。   Next, the operation of this embodiment, that is, the waste water treatment method according to the present invention will be specifically described.

メタン発酵槽1では、有機性廃棄物の有機性成分が槽内の嫌気性微生物によって有機性成分がメタンガス・炭酸ガス等に分解される。このとき、有機性廃棄物に含まれる硫黄分は以下の硫酸還元反応によって硫化水素又は固形硫黄分へと分解される。
SO 2−+4H→S2−+4H
SO 2−+3H→S+2HO+2OH
In the methane fermentation tank 1, the organic component of the organic waste is decomposed into methane gas, carbon dioxide gas, etc. by the anaerobic microorganisms in the tank. At this time, the sulfur content contained in the organic waste is decomposed into hydrogen sulfide or solid sulfur content by the following sulfuric acid reduction reaction.
SO 4 2− + 4H 2 → S 2− + 4H 2 O
SO 4 2− + 3H 2 → S 0 + 2H 2 O + 2OH

メタン発酵処理後の消化汚泥はラインL2を通して消化汚泥貯槽2へと送られる。一方、メタン発酵槽1で発生したバイオガスはラインL10を通してガス接触槽15へと導入される。   The digested sludge after the methane fermentation treatment is sent to the digested sludge storage tank 2 through the line L2. On the other hand, the biogas generated in the methane fermentation tank 1 is introduced into the gas contact tank 15 through the line L10.

メタン発酵槽1においては、有機性廃棄物のメタン発酵により硫化水素を含有するバイオガス(硫化水素含有ガス)が発生する。バイオガスは、硫化水素を数百〜数千体積ppm含有するものであり、主成分はメタン(50〜65体積%)及び炭酸ガス(35〜50体積%)である。   In the methane fermentation tank 1, a biogas containing hydrogen sulfide (hydrogen sulfide-containing gas) is generated by methane fermentation of organic waste. Biogas contains several hundred to several thousand ppm of hydrogen sulfide, and the main components are methane (50 to 65% by volume) and carbon dioxide (35 to 50% by volume).

消化汚泥貯槽2に一旦貯留された消化汚泥は、ラインL3にて凝集剤などの脱水助剤の添加後、脱水機3に移送される。消化汚泥は脱水機3による脱水処理によって脱水分離液と脱水汚泥とに分離される。脱水処理によって分離された脱水分離液はラインL4を介して脱水分離液貯槽11に移送される。他方、消化汚泥から分離された脱水汚泥はラインL11を介して汚泥処理設備に移送される。汚泥処理設備において脱水汚泥の堆肥化や炭化又は焼却といった処理が行われる。   The digested sludge once stored in the digested sludge storage tank 2 is transferred to the dehydrator 3 after addition of a dehydrating aid such as a flocculant in the line L3. The digested sludge is separated into a dehydrated separation liquid and a dehydrated sludge by a dehydration process by the dehydrator 3. The dehydrated separation liquid separated by the dehydration process is transferred to the dehydrated separation liquid storage tank 11 via the line L4. On the other hand, the dewatered sludge separated from the digested sludge is transferred to the sludge treatment facility via the line L11. Processing such as composting, carbonization or incineration of dewatered sludge is performed in the sludge treatment facility.

脱水分離液貯槽11に一旦貯留された脱水分離液は、ラインL5を通じて脱窒槽12に移送される。脱窒槽12では、溶存酸素がない状態において、脱窒菌により硝酸性窒素(亜硝酸イオン、硝酸イオン)が窒素ガスへと還元される。一方、硝化槽13では、好気状態でアンモニア性窒素が亜硝酸塩又は硝酸塩へと酸化される。これらの反応は以下の通りである。
(亜硝酸型脱窒の場合)
NH +3/2O→NO +2H+H
2NO +3H→N+2OH+2H
(硝酸型脱窒の場合)
NH +2O→NO +2H+H
2NO +5H→N+2OH+4H
The dehydrated separation liquid once stored in the dehydrated separation liquid storage tank 11 is transferred to the denitrification tank 12 through the line L5. In the denitrification tank 12, nitrate nitrogen (nitrite ions, nitrate ions) is reduced to nitrogen gas by denitrifying bacteria in the absence of dissolved oxygen. On the other hand, in the nitrification tank 13, ammoniacal nitrogen is oxidized to nitrite or nitrate in an aerobic state. These reactions are as follows.
(Nitrite-type denitrification)
NH 4 + + 3 / 2O 2 → NO 2 + 2H + + H 2 O
2NO 2 + 3H 2 → N 2 + 2OH + 2H 2 O
(Nitrate-type denitrification)
NH 4 + + 2O 2 → NO 3 + 2H + + H 2 O
2NO 3 + 5H 2 → N 2 + 2OH + 4H 2 O

上記のように亜硝酸型脱窒及び硝酸型脱窒のいずれの場合においても、NH 1モルを硝化すると2モルのHが生じ、NO もしくはNO 1モルを脱窒すると1モルのOHが生じる。従って、生物脱窒反応が良好に行われている場合は、NO もしくはNO 1モルの脱窒につき、H1モル分酸性側に移行する。 In either case the nitrite type denitrification and nitrate type denitrification as described above also, NH 4 + 1 when the molar the nitrifying 2 moles H + is generated in, NO 2 - or NO 3 - 1 mol of the denitrification 1 mol of OH is produced. Therefore, if the biological denitrification is performed satisfactorily, NO 2 - or NO 3 - per mole of denitrification, the process proceeds to H + 1 mole fraction acidic side.

硝化槽13の活性汚泥混合液をラインL12により脱窒槽12へと返送し、脱窒槽12と硝化槽13との間で循環させることにより、脱水分離液に含まれていた硝酸性窒素とアンモニア性窒素の両方を最終的に窒素ガスへと分解して除去する。循環を繰り返して窒素分が十分に除去された活性汚泥混合液はラインL6を通じて沈殿槽14に移送される。   The activated sludge mixed liquid in the nitrification tank 13 is returned to the denitrification tank 12 through the line L12 and is circulated between the denitrification tank 12 and the nitrification tank 13, thereby allowing nitrate nitrogen and ammoniacal contained in the dehydration separation liquid to be circulated. Both nitrogens are eventually decomposed and removed to nitrogen gas. The activated sludge mixed liquid from which the nitrogen content has been sufficiently removed by repeating the circulation is transferred to the settling tank 14 through the line L6.

沈殿槽14において、活性汚泥混合液に含まれる浮遊物質などを沈降及び濃縮させる。沈殿槽14の底部の沈殿物は、ラインL13及びラインL13aを通じて脱窒槽12に、あるいはラインL13及びラインL13bを通じてメタン発酵槽1に返送される。一方、沈殿物が除去された沈殿分離液はラインL7を通じてガス接触槽15に移送される。   In the sedimentation tank 14, suspended substances and the like contained in the activated sludge mixed solution are settled and concentrated. The sediment at the bottom of the sedimentation tank 14 is returned to the denitrification tank 12 through the lines L13 and L13a, or returned to the methane fermentation tank 1 through the lines L13 and L13b. On the other hand, the precipitate separation liquid from which the precipitate is removed is transferred to the gas contact tank 15 through the line L7.

ガス接触槽15において、バイオガスと沈殿分離液とを接触させることで、バイオガスに含まれる硫化水素が沈殿分離液に吸収される(ガス接触工程)。沈殿分離液に硫化水素が吸収されると、硫黄酸化反応によって沈殿分離液が酸性側に移行するため、脱炭酸が行われる。なお、脱水分離液の生物脱窒処理においては、脱水分離液に炭酸ガスが溶解するおそれがある。ガス接触槽15におけるガス接触工程によれば、生物脱窒処理を経た沈殿分離液であっても、これを効果的に脱炭酸することができるため、凝集汚泥を生じさせる際に使用する無機凝集剤の量を十分に抑制することができる。   In the gas contact tank 15, by bringing the biogas and the precipitate separation liquid into contact with each other, hydrogen sulfide contained in the biogas is absorbed by the precipitation separation liquid (gas contact step). When hydrogen sulfide is absorbed into the precipitate separation liquid, the precipitation separation liquid moves to the acidic side by the sulfur oxidation reaction, and therefore decarboxylation is performed. In the biological denitrification treatment of the dehydrated separation liquid, carbon dioxide gas may be dissolved in the dehydrated separation liquid. According to the gas contact process in the gas contact tank 15, even a precipitate separation liquid that has undergone biological denitrification treatment can be effectively decarboxylated, so that the inorganic agglomeration used when producing agglomerated sludge is produced. The amount of the agent can be sufficiently suppressed.

沈殿分離液と接触したバイオガスは硫化水素の含有量が低減化する。硫化水素が低減したバイオガスは、ラインL14を通じて脱硫設備へと送られる。脱硫設備に導入されるバイオガスは、メタン発酵槽1から排出された時点に比較して硫化水素濃度が低減されているため、このバイオガスが直接導入される場合と比べて脱硫設備での設備を小型化することができ、薬品等を使用する場合も、その使用量を少なくすることができる。このため、脱硫処理に必要なランニングコストが少なくてすむという利点がある。   The biogas in contact with the precipitate separation liquid has a reduced hydrogen sulfide content. The biogas with reduced hydrogen sulfide is sent to the desulfurization facility through the line L14. The biogas introduced into the desulfurization facility has a reduced hydrogen sulfide concentration compared to the time when it was discharged from the methane fermentation tank 1, so that the equipment in the desulfurization facility is compared to the case where this biogas is directly introduced. Can be reduced in size, and even when chemicals are used, the amount used can be reduced. For this reason, there is an advantage that the running cost required for the desulfurization process is reduced.

脱硫後のバイオガスを気体分離膜、PSA、高圧水吸収法などのガス精製装置によりメタン濃度を高めることも可能である。このようにして精製されたバイオガスはガスホルダを経て、ガスエンジン、ガスタービンおよび燃料電池などによる発電や自動車燃料等として利用される。なお、資源化に際して低濃度の硫化水素を含んでいても構わない場合には、脱硫設備を要しない形式とすることができる。   It is also possible to increase the methane concentration of the biogas after desulfurization using a gas purification device such as a gas separation membrane, PSA, or high-pressure water absorption method. The biogas purified in this way passes through the gas holder, and is used as power generation by a gas engine, a gas turbine, a fuel cell, etc., automobile fuel, or the like. In addition, when it may contain low concentration hydrogen sulfide at the time of resource utilization, it can be set as the format which does not require desulfurization equipment.

混和凝集装置16の混和槽17において、ガス接触液に対して無機凝集剤を添加する(無機凝集剤添加工程)。ここで使用する無機凝集剤として、例えば、第一鉄又は第二鉄の塩化物、硫酸塩、硝酸塩及び有機酸塩、あるいは、アルミニウムの塩化物、硫酸塩、硝酸塩及び有機酸塩が挙げられる。これらは1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。   In the mixing tank 17 of the mixing and aggregating apparatus 16, an inorganic flocculant is added to the gas contact liquid (inorganic flocculant adding step). Examples of the inorganic flocculant used here include ferrous or ferric chlorides, sulfates, nitrates and organic acid salts, or aluminum chlorides, sulfates, nitrates and organic acid salts. These may be used singly or in combination of two or more.

また、混和槽17においては、ガス接触液に対してpH調整剤を添加し、ガス接触液のpHを凝集に適した値となるように調整する(水素イオン濃度調整工程)。ここで使用するpH調整剤としては、一般に水酸化ナトリウム等のアルカリ剤が挙げられる。pH調整剤を添加することで水酸化鉄や水酸化アルミニウムの生成に適した中性付近(pHが約5〜9)に調整することが好ましい。更に、水酸化鉄や水酸化アルミニウムを含んだ凝集汚泥を強固にするために高分子凝集剤を併用することもできる。なお、沈殿槽の代わりに膜分離装置を使用する場合は、高分子凝集剤の添加は不要である。   Further, in the mixing tank 17, a pH adjusting agent is added to the gas contact liquid, and the pH of the gas contact liquid is adjusted to a value suitable for aggregation (hydrogen ion concentration adjusting step). As the pH adjuster used here, an alkali agent such as sodium hydroxide is generally used. It is preferable to adjust to near neutrality (pH is about 5 to 9) suitable for the production of iron hydroxide or aluminum hydroxide by adding a pH adjusting agent. Further, a polymer flocculant can be used in combination to strengthen the coagulated sludge containing iron hydroxide or aluminum hydroxide. In addition, when using a membrane separator instead of a precipitation tank, addition of a polymer flocculant is unnecessary.

凝集槽18の底部に掻き寄せられた凝集汚泥をラインL15によって引抜き、ガス接触液から除去する(固液分離工程)。ラインL15によって引抜かれた凝集汚泥はメタン発酵槽1に移送され、再びメタン発酵処理に供される。   The agglomerated sludge scraped to the bottom of the agglomeration tank 18 is extracted by a line L15 and removed from the gas contact liquid (solid-liquid separation step). The agglomerated sludge extracted by the line L15 is transferred to the methane fermentation tank 1 and again subjected to the methane fermentation treatment.

以上の説明では、脱窒槽と硝化槽とを別に設ける場合を例に説明したが、本発明はこのような設備に限定されるものではない。例えば、脱窒槽と硝化槽とが溢水可能な隔壁、膜等により仕切られている構造のものや、同一の槽内で曝気条件を変えることで交互に脱窒と硝化を行う施設や、オキシデーションディッチのように、処理水を流動させ、流路内に好気条件を満たす領域と嫌気条件を満たす領域を併存させる施設においても本発明は好適に適用可能である。   In the above description, the case where the denitrification tank and the nitrification tank are provided separately has been described as an example, but the present invention is not limited to such equipment. For example, a structure in which the denitrification tank and the nitrification tank are separated by a partition wall that can overflow, a membrane, etc., a facility that performs denitrification and nitrification alternately by changing aeration conditions in the same tank, and oxidation The present invention can be suitably applied to facilities such as a ditch where the treated water is flowed and the region satisfying the aerobic condition and the region satisfying the anaerobic condition coexist in the flow path.

本発明に係る排水処理装置の好適な実施形態を備える廃棄物処理施設の概略構成図である。It is a schematic block diagram of a waste disposal facility provided with suitable embodiment of the waste water treatment equipment concerning the present invention. ガス接触槽15及び混和凝集装置16の好適な形態を示す概略図である。It is the schematic which shows the suitable form of the gas contact tank 15 and the mixing aggregation apparatus 16. FIG.

符号の説明Explanation of symbols

1…メタン発酵槽、2…消化汚泥貯槽、3…脱水機、11…脱水分離液貯槽、12…脱窒槽、13…硝化槽、14…沈殿槽、15…ガス接触槽(ガス接触手段)、16…混和凝集装置、17…混和槽、18…凝集槽(固液分離手段)、W1…無機凝集剤供給器(無機凝集剤添加手段)、W2…pH調整剤供給器、X1…pH測定器、10…廃棄物処理装置、20…排水処理装置。   DESCRIPTION OF SYMBOLS 1 ... Methane fermentation tank, 2 ... Digested sludge storage tank, 3 ... Dehydrator, 11 ... Dehydration separation liquid storage tank, 12 ... Denitrification tank, 13 ... Nitrification tank, 14 ... Precipitation tank, 15 ... Gas contact tank (gas contact means), DESCRIPTION OF SYMBOLS 16 ... Mixing and aggregation apparatus, 17 ... Mixing tank, 18 ... Coagulating tank (solid-liquid separation means), W1 ... Inorganic flocculant supply device (inorganic flocculant addition means), W2 ... pH adjuster supply device, X1 ... pH measuring device DESCRIPTION OF SYMBOLS 10 ... Waste-treatment apparatus, 20 ... Waste water treatment apparatus.

Claims (5)

排水を凝集分離する排水処理装置であって、
前記排水に硫化水素含有ガスを接触させるガス接触手段と、
前記ガス接触手段からの前記排水に無機凝集剤を添加する無機凝集剤添加手段と、
前記無機凝集剤の添加により前記排水に生じる凝集汚泥を固液分離する固液分離手段と、
を備えることを特徴とする排水処理装置。
A wastewater treatment device for aggregating and separating wastewater,
Gas contact means for bringing hydrogen sulfide-containing gas into contact with the waste water;
An inorganic flocculant addition means for adding an inorganic flocculant to the waste water from the gas contact means;
Solid-liquid separation means for solid-liquid separation of the coagulated sludge generated in the wastewater by the addition of the inorganic flocculant;
A wastewater treatment apparatus comprising:
前記無機凝集剤が添加された前記排水の水素イオン濃度を調整する水素イオン濃度調整手段を更に備えることを特徴とする請求項1に記載の排水処理装置。   The waste water treatment apparatus according to claim 1, further comprising hydrogen ion concentration adjusting means for adjusting a hydrogen ion concentration of the waste water to which the inorganic flocculant is added. 前記ガス接触手段に供給される硫化水素含有ガスは、有機物をメタン発酵することによって発生するバイオガスであることを特徴とする請求項1又は2に記載の排水処理装置。   The wastewater treatment apparatus according to claim 1 or 2, wherein the hydrogen sulfide-containing gas supplied to the gas contact means is a biogas generated by methane fermentation of an organic substance. 前記ガス接触手段に供給される排水は、メタン発酵により発生した消化汚泥の活性汚泥処理を経て得られるものであることを特徴とする請求項1〜3のいずれか一項に記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 3, wherein the wastewater supplied to the gas contact means is obtained through an activated sludge treatment of digested sludge generated by methane fermentation. . 排水を凝集分離する排水処理方法であって、
前記排水に硫化水素含有ガスを接触させるガス接触工程と、
前記ガス接触工程からの前記排水に無機凝集剤を添加する無機凝集剤添加工程と、
前記無機凝集剤添加工程後の前記排水に生じる凝集汚泥を固液分離する固液分離工程と、
を備えることを特徴とする排水処理方法。
A wastewater treatment method for coagulating and separating wastewater,
A gas contact step of bringing hydrogen sulfide-containing gas into contact with the waste water;
An inorganic flocculant addition step of adding an inorganic flocculant to the waste water from the gas contact step;
A solid-liquid separation step for solid-liquid separation of the coagulated sludge generated in the waste water after the inorganic flocculant addition step;
A wastewater treatment method comprising:
JP2006165182A 2006-06-14 2006-06-14 Waste water treatment apparatus and waste water treatment method Expired - Fee Related JP4558681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165182A JP4558681B2 (en) 2006-06-14 2006-06-14 Waste water treatment apparatus and waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165182A JP4558681B2 (en) 2006-06-14 2006-06-14 Waste water treatment apparatus and waste water treatment method

Publications (2)

Publication Number Publication Date
JP2007330887A JP2007330887A (en) 2007-12-27
JP4558681B2 true JP4558681B2 (en) 2010-10-06

Family

ID=38930868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165182A Expired - Fee Related JP4558681B2 (en) 2006-06-14 2006-06-14 Waste water treatment apparatus and waste water treatment method

Country Status (1)

Country Link
JP (1) JP4558681B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050856A (en) * 2009-09-02 2011-03-17 Hitachi Zosen Corp Treatment method for methane fermentation wastewater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189398A (en) * 1988-01-20 1989-07-28 Kubota Ltd Treatment of waste water
JP2001047089A (en) * 1999-08-06 2001-02-20 Nkk Corp Method and apparatus for treating sewage
JP2002126784A (en) * 2000-10-30 2002-05-08 Sumitomo Heavy Ind Ltd Method and apparatus for treating beans wastewater
JP2003290751A (en) * 2002-04-01 2003-10-14 Sumitomo Heavy Ind Ltd Device and method for methane fermentation treatment
JP2003290793A (en) * 2002-03-29 2003-10-14 Japan Organo Co Ltd Method for preventing odor development from flocculated sludge
JP2004016841A (en) * 2002-06-12 2004-01-22 Chugai Ro Co Ltd Method of separating and recovering methane from digested gas of organic waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189398A (en) * 1988-01-20 1989-07-28 Kubota Ltd Treatment of waste water
JP2001047089A (en) * 1999-08-06 2001-02-20 Nkk Corp Method and apparatus for treating sewage
JP2002126784A (en) * 2000-10-30 2002-05-08 Sumitomo Heavy Ind Ltd Method and apparatus for treating beans wastewater
JP2003290793A (en) * 2002-03-29 2003-10-14 Japan Organo Co Ltd Method for preventing odor development from flocculated sludge
JP2003290751A (en) * 2002-04-01 2003-10-14 Sumitomo Heavy Ind Ltd Device and method for methane fermentation treatment
JP2004016841A (en) * 2002-06-12 2004-01-22 Chugai Ro Co Ltd Method of separating and recovering methane from digested gas of organic waste

Also Published As

Publication number Publication date
JP2007330887A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
CN104163539B (en) A kind of processing method of coal chemical industrial waste water
CN103288236B (en) Treatment method for salt-containing wastewater
CN105439374A (en) Acidic high sulfate organic wastewater treatment process and apparatus
CN110272158A (en) A kind of high salt, high organic matter and high rigidity wastewater treatment method
RU2480423C1 (en) Combined method of treating waste water containing organic contaminants
CZ291141B6 (en) Method for anaerobic removal of a sulfur compound from waste water
JP3653422B2 (en) Waste water treatment method and waste water treatment equipment
CN105561755B (en) A kind of clean flue gas biological desulphurization method of denitration and device
CN101700949B (en) Waste leachate purification process method
JP2005288371A (en) Wastewater treatment method
CN103030231A (en) Recovery system and recovery technology of desulfuration seawater
CN104986898B (en) A kind of method and device of normal temperature ferrite circular treatment heavy metal containing sewage
WO2000073220A1 (en) A disposal method for pig ordure
KR101023684B1 (en) Method for treating organic waste
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
JP3653427B2 (en) Tofu drainage treatment method and equipment
JP4558681B2 (en) Waste water treatment apparatus and waste water treatment method
CN101343129A (en) Pretreatment technique for decolorization of wastewater at middle plate of paper-making pulping
JP2001000831A (en) Treatment of absorbed liquid slurry and flue gas desulfurization system
JP5143358B2 (en) Organic waste treatment method and apparatus
KR101278475B1 (en) Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor
KR101018636B1 (en) Sewage and wastewater phosphorus removal system and method
CN209081622U (en) A kind of landfill leachate pretreatment unit
KR100503632B1 (en) Method and apparatus for treating metal finishing waste which contains high nitrogen and phosphorus
CN110668619A (en) Lead-zinc industrial mineral processing wastewater treatment device and treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Ref document number: 4558681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees