JP4557814B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP4557814B2
JP4557814B2 JP2005169116A JP2005169116A JP4557814B2 JP 4557814 B2 JP4557814 B2 JP 4557814B2 JP 2005169116 A JP2005169116 A JP 2005169116A JP 2005169116 A JP2005169116 A JP 2005169116A JP 4557814 B2 JP4557814 B2 JP 4557814B2
Authority
JP
Japan
Prior art keywords
gas supply
hole
plate member
end surface
insulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005169116A
Other languages
Japanese (ja)
Other versions
JP2006344766A (en
Inventor
彰三 渡邉
浩海 朝倉
尚吾 置田
宏之 鈴木
清郎 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005169116A priority Critical patent/JP4557814B2/en
Publication of JP2006344766A publication Critical patent/JP2006344766A/en
Application granted granted Critical
Publication of JP4557814B2 publication Critical patent/JP4557814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ドライエッチング装置、スパッタ装置、及びCVD装置等のプラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus such as a dry etching apparatus, a sputtering apparatus, and a CVD apparatus.

特許文献1には、基板サセプタと基板下面の間の熱伝導性を向上し、基板温度の均一化と、基板温度の制御の高精度化を図るために、基板サセプタ側に設けた供給口から基板下面と基板サセプタの隙間にヘリウム等の伝熱ガスを導入するプラズマ処理装置が開示されている。   In Patent Document 1, in order to improve the thermal conductivity between the substrate susceptor and the lower surface of the substrate, to make the substrate temperature uniform and to increase the accuracy of control of the substrate temperature, a supply port provided on the substrate susceptor side is disclosed. A plasma processing apparatus is disclosed in which a heat transfer gas such as helium is introduced into a gap between a substrate lower surface and a substrate susceptor.

また、特許文献2には、基板下面と基板サセプタの隙間に導入される伝熱ガスの供給口を多孔質セラミック等の多孔質絶縁物としたプラズマ処理装置が開示されている。伝熱ガスの供給口を多孔質絶縁物とすることにより、基板と基板サセプタの間の電気的絶縁性が向上し、基板と基板サセプタとの間での局所的な異常放電の発生が防止される。   Patent Document 2 discloses a plasma processing apparatus in which a supply port for a heat transfer gas introduced into a gap between a substrate lower surface and a substrate susceptor is a porous insulator such as a porous ceramic. By using a porous insulator as the heat transfer gas supply port, electrical insulation between the substrate and the substrate susceptor is improved, and local abnormal discharge between the substrate and the substrate susceptor is prevented. The

多孔質物質で伝熱ガスの供給口を構成した場合、互いに連通する多数の微小孔が伝熱ガスの流路を構成する。しかし、多数の微小孔からなる伝熱ガスの流路は流路径が不均一であり、それに起因して流路(微小孔)の壁面間で異常放電が発生しやすい。以下、その理由を詳述する。   When the heat transfer gas supply port is formed of a porous material, a large number of micropores communicating with each other form a heat transfer gas flow path. However, the flow path of the heat transfer gas composed of a large number of micro holes has a non-uniform flow path diameter, and as a result, abnormal discharge is likely to occur between the wall surfaces of the flow paths (micro holes). The reason will be described in detail below.

対向する2つの電極間での放電に関するパッシェン(Pashen)の法則が知られている。パッシェンの法則によれば、2つの電極間で放電が始まる電圧(放電開始電圧)は、電極間の気体の圧力と電極間の距離の関数である。図12のグラフは、パッシェンの法則を概念的に示す。圧力Pと電極間の距離dの積を横軸、放電開始電圧Vを縦軸とすると、両者の関係は極値Pdを有する下向きに凸の曲線となる。従って、圧力Pと距離dの積P×dが極値Pdよりも小さい場合、距離dが大きいほど放電開始電圧Vは低くなり、放電が発生しやすくなる。逆に、圧力Pと距離dの積P×dが極値Pdよりも大きい場合、距離dが大きいほど放電開始電圧Vは高くなり、放電が発生しにくくなる。 Pashen's law is known for the discharge between two opposing electrodes. According to Paschen's law, the voltage at which discharge begins between two electrodes (discharge start voltage) is a function of the gas pressure between the electrodes and the distance between the electrodes. The graph of FIG. 12 conceptually shows Paschen's law. The horizontal axis the product of the distance d between the pressure P and the electrode, when the discharge start voltage V s to the longitudinal axis, the relationship between the two becomes downwardly convex curve having an extreme value Pd e. Therefore, when the product P × d of the pressure P and the distance d is smaller than the extreme value Pd e , the discharge start voltage V s becomes lower as the distance d is larger, and discharge is more likely to occur. Conversely, if the product P × d of the pressure P and the distance d is greater than the extreme value Pd e, the distance d becomes larger as the discharge starting voltage V s is increased, the discharge does not easily occur.

多孔質物質中の伝熱ガスの流路径は一般に平均値30〜400μm程度であり、対向する流路壁を電極とみなすと、圧力Pと距離dの積Pdは極値Pdよりも小さい。しかし、多孔質物質の微小孔からなる流路は、流路間の流路径のばらつきが大きく、流路径が400〜1500μm程度に達する流路もある。平均値よりも流路径が大きい流路については、圧力Pと電極間距離dの積Pdの値が大きくなるので(図12の矢印A1参照)、放電開始電圧Vが低くなる。そのため、多孔質物質からなる伝熱ガスの供給口では、流路径が平均値よりも大きい流路内で異常放電が発生しやすい。 Passage diameter of the heat transfer gas in the porous substance is generally averages about 30~400Myuemu, when the opposing channel walls regarded as electrodes, the product Pd 1 of the pressure P and the distance d is smaller than the extremum Pd e . However, the flow path composed of the micropores of the porous material has a large variation in the flow path diameter between the flow paths, and there is a flow path that reaches about 400 to 1500 μm. For the flow path channel diameter is larger than the average value, the value of the product Pd 1 of the pressure P and the inter-electrode distance d is increased (see arrow A1 in FIG. 12), the discharge starting voltage V s decreases. Therefore, abnormal discharge is likely to occur in the flow path having a larger diameter than the average value at the heat transfer gas supply port made of a porous material.

基板下面側で発生する異常放電は、基板損傷の原因となり、プラズマ処理装置による処理品質に顕著に影響する。従って、前述の基板と基板サセプタとの間の異常放電のみでなく、伝熱ガスの流路壁間の異常放電も防止する必要がある。また、基板下面側の他の箇所についても、異常放電の発生を確実に防止する必要がある。   Abnormal discharge generated on the lower surface side of the substrate causes damage to the substrate and significantly affects the processing quality of the plasma processing apparatus. Therefore, it is necessary to prevent not only the abnormal discharge between the substrate and the substrate susceptor but also the abnormal discharge between the flow path walls of the heat transfer gas. Also, it is necessary to reliably prevent the occurrence of abnormal discharge at other locations on the lower surface side of the substrate.

ドライエッチング装置の場合、被エッチング材が難エッチング性の材料であると電極に高電圧を印加する必要がある。このような高電圧下では、前述の基板下面側での種々の異常放電が発生しやすく、異常放電が発生した場合の基板の損傷も著しい。詳細には、反応性イオンエッチング装置の電極間に印加される高周波電圧は、被エッチング材がシリコン等の一般的な材料であれば、周波数が13.5〜6MHzで電圧は300〜900Vである。これに対し、被エッチング材がプラチナ、金、インジウム、ニッケル等の貴金属のような難エッチング性の材料である場合、周波数は500kHz程度で電圧は3〜4kV程度に達する。   In the case of a dry etching apparatus, it is necessary to apply a high voltage to the electrode if the material to be etched is a material that is difficult to etch. Under such a high voltage, various abnormal discharges are easily generated on the lower surface side of the substrate, and the substrate is significantly damaged when the abnormal discharge occurs. Specifically, the high-frequency voltage applied between the electrodes of the reactive ion etching apparatus has a frequency of 13.5 to 6 MHz and a voltage of 300 to 900 V if the material to be etched is a general material such as silicon. . On the other hand, when the material to be etched is a material that is difficult to etch such as noble metals such as platinum, gold, indium and nickel, the frequency is about 500 kHz and the voltage reaches about 3 to 4 kV.

特開平11−330215号公報JP-A-11-330215 特開平11−238596号公報Japanese Patent Laid-Open No. 11-238596

本発明は、基板下面側に伝熱ガスを供給するプラズマ処理装置において、基板下面側での異常放電の発生を防止することを課題とする。   An object of the present invention is to prevent occurrence of abnormal discharge on the lower surface side of a substrate in a plasma processing apparatus that supplies a heat transfer gas to the lower surface side of the substrate.

第1の発明は、絶縁性材料からなり、基板を静電吸着して上面に保持するための電極が内部に配置され、かつ前記上面から下面まで貫通する第1の収容孔が形成された絶縁板部材と、金属材料からなり、上面に前記絶縁板部材が固定され、前記上面から下面まで貫通する前記第1の収容孔より孔寸法が大きい第2の収容孔が前記絶縁板部材の前記第1の収容孔と対応する位置に形成され、かつプラズマ発生のための高周波電圧が印加される金属板部材と、絶縁性材料からなり、前記絶縁板部材の前記第1の収容孔に収容され、上端面から下端面まで貫通する複数の第1のガス供給孔が形成され、かつ前記第1のガス供給孔の上端開口が前記絶縁板部材の前記上面で開口している、第1のガス供給部材と、絶縁性材料からなり、前記金属板部材の前記第2の収容孔に収容され、前記第1のガス供給孔よりも孔寸法が大きい第2のガス供給孔が上端面から下端面まで貫通するように形成され、前記第2のガス供給孔の下端開口から伝熱ガスが供給され、かつ前記伝熱ガスは前記第2のガス供給孔の上端開口から前記第1のガス供給孔の下端開口に流入し、前記第1のガス供給孔の前記上端開口から前記絶縁板部材の上面と前記基板の下面の間の隙間に供給される、第2のガス供給部材と、少なくとも前記第2のガス供給部材の上端面と前記絶縁板部材の下面との間に形成された絶縁性接着剤層とを備えることを特徴とする、プラズマ処理装置を提供する。   1st invention consists of an insulating material, the electrode for electrostatically adsorbing | sucking a board | substrate and hold | maintaining on an upper surface is arrange | positioned inside, and the insulation in which the 1st accommodation hole penetrated from the said upper surface to a lower surface was formed A plate member and a metal material, the insulating plate member is fixed on the upper surface, and a second receiving hole having a hole size larger than the first receiving hole penetrating from the upper surface to the lower surface is the first member of the insulating plate member. A metal plate member that is formed at a position corresponding to the one accommodation hole and to which a high-frequency voltage for plasma generation is applied, and made of an insulating material, and is accommodated in the first accommodation hole of the insulation plate member, A first gas supply in which a plurality of first gas supply holes penetrating from the upper end surface to the lower end surface are formed, and an upper end opening of the first gas supply hole is opened at the upper surface of the insulating plate member A metal plate member made of an insulating material A second gas supply hole accommodated in the second accommodation hole and having a hole size larger than the first gas supply hole is formed so as to penetrate from the upper end surface to the lower end surface, and the second gas supply hole The heat transfer gas is supplied from the lower end opening of the first gas supply port, and the heat transfer gas flows from the upper end opening of the second gas supply hole into the lower end opening of the first gas supply hole, A second gas supply member that is supplied from the upper end opening to a gap between the upper surface of the insulating plate member and the lower surface of the substrate, at least the upper end surface of the second gas supply member, and the lower surface of the insulating plate member And an insulating adhesive layer formed between the two. A plasma processing apparatus is provided.

本発明は、反応イオンエッチング型及び誘導結合プラズマ型を含むドライエッチング装置、スパッタ装置、及びCVD装置等の種々のプラズマ処理装置に適用できる。絶縁板部材、第1のガス供給部材、及び第2のガス供給部材は、例えばセラミックからなる。金属板部材は、例えばアルミニウムからなる。絶縁性接着剤層は例えばシリコン系接着剤からなる。伝熱ガスは、例えばヘリウムからなる。   The present invention can be applied to various plasma processing apparatuses such as a dry etching apparatus including a reactive ion etching type and an inductively coupled plasma type, a sputtering apparatus, and a CVD apparatus. The insulating plate member, the first gas supply member, and the second gas supply member are made of ceramic, for example. The metal plate member is made of, for example, aluminum. The insulating adhesive layer is made of, for example, a silicon-based adhesive. The heat transfer gas is made of helium, for example.

伝熱ガスは第2のガス供給部材に形成された第2のガス供給孔の下端開口に供給され、第2ガス供給孔、第2のガス供給孔の上端開口、複数の第1のガス供給孔の下端開口、第1のガス供給孔、及び第1のガス供給孔の上端開口を介して、絶縁板部材と基板との間の隙間に供給される。従って、絶縁板部材及び金属板部材と基板下面との間の熱伝導性が向上する。   The heat transfer gas is supplied to the lower end opening of the second gas supply hole formed in the second gas supply member, the second gas supply hole, the upper end opening of the second gas supply hole, and the plurality of first gas supplies. The gas is supplied to the gap between the insulating plate member and the substrate through the lower end opening of the hole, the first gas supply hole, and the upper end opening of the first gas supply hole. Therefore, the thermal conductivity between the insulating plate member and metal plate member and the lower surface of the substrate is improved.

また、隙間を介して基板の下面と対向する絶縁板部材と第1のガス供給部材はいずれも絶縁性材料からなる。従って、高周波電圧が印加される金属板部材と基板の下面との間の電気的絶縁性が高く、基板と絶縁板部材及び金属板部材との間での局所的な異常放電の発生を防止できる。   Further, both the insulating plate member and the first gas supply member facing the lower surface of the substrate through the gap are made of an insulating material. Therefore, electrical insulation between the metal plate member to which the high-frequency voltage is applied and the lower surface of the substrate is high, and local abnormal discharge between the substrate, the insulating plate member, and the metal plate member can be prevented. .

孔寸法が第2のガス供給部材の第2のガス供給孔よりも小さい第1のガス供給孔が絶縁性材料からなる第1のガス供給部材に複数個設けられ、これらの第1のガス供給孔から絶縁板部材と基板の隙間に伝熱ガス供給される。第1のガス供給孔は微小な孔寸法を有する。具体的には、前記第1のガス供給孔の孔寸法は50μm以上300μm以下であり、前記第2のガス供給孔の孔寸法は、300μm以上700μm以下である。   A plurality of first gas supply holes, each having a hole size smaller than the second gas supply hole of the second gas supply member, are provided in the first gas supply member made of an insulating material. Heat transfer gas is supplied from the hole to the gap between the insulating plate member and the substrate. The first gas supply hole has a minute hole size. Specifically, the hole size of the first gas supply hole is 50 μm or more and 300 μm or less, and the hole size of the second gas supply hole is 300 μm or more and 700 μm or less.

第1のガス供給孔は、絶縁性材料からなる第1のガス供給部材の上端面から下端面に貫通するように形成したものであるので、複数の第1のガス供給孔間で孔寸法のばらつきが少ない。従って、孔寸法のばらつきに起因する第1のガス供給孔の孔壁相互間での局所的な異常放電の発生を防止できる。   Since the first gas supply hole is formed so as to penetrate from the upper end surface to the lower end surface of the first gas supply member made of an insulating material, the first gas supply hole has a hole size between the plurality of first gas supply holes. There is little variation. Accordingly, it is possible to prevent the occurrence of local abnormal discharge between the hole walls of the first gas supply hole due to the variation in the hole size.

基板に対する静電吸着力を高める共に、第1のガス供給孔の孔壁間での異常放電の発生を防止するためには、第1のガス供給部材の上端面の面積が可能な限り小さく、第1のガス供給孔の孔寸法が可能な限り小さく、かつ第1のガス供給部材に可能な限り多数の第1のガス供給孔を形成することが好ましい。例えば、第1のガス供給部材の上端面の面積が11mm以上16mm以下である場合、前述のように孔寸法が50μm以上300μm以下の第1のガス供給孔を30個以上設けることが好ましい。しかし、端面の面積が小さい第1のガス供給部材に多数の第1のガス供給孔を設けると、これらの第1のガス供給孔のうち最も第1のガス供給部材の外周面側に形成されたものと第1のガス供給部材の外周面とが近接するので、金属板部材に高周波電圧が印加されているプラズマ発生中に、第1のガス供給部材の外周面が帯電する。特に、第1のガス供給部材の外周面のうち第1のガス供給部材の下端面と隣接する部位が強く帯電する。この部位と、導電体である金属板部材の上面の第2の収容孔に臨む部位との間で局所的な異常放電が発生しやすい。 In order to increase the electrostatic attraction force to the substrate and prevent the occurrence of abnormal discharge between the walls of the first gas supply hole, the area of the upper end surface of the first gas supply member is as small as possible, It is preferable that the hole size of the first gas supply hole is as small as possible, and as many first gas supply holes as possible are formed in the first gas supply member. For example, when the area of the upper end surface of the first gas supply member is 11 mm 2 or more and 16 mm 2 or less, it is preferable to provide 30 or more first gas supply holes having a hole size of 50 μm or more and 300 μm or less as described above. . However, if a large number of first gas supply holes are provided in the first gas supply member having a small end surface area, the first gas supply hole is formed on the outermost surface side of the first gas supply member. Therefore, the outer peripheral surface of the first gas supply member is charged during the generation of plasma in which a high frequency voltage is applied to the metal plate member. In particular, a portion of the outer peripheral surface of the first gas supply member that is adjacent to the lower end surface of the first gas supply member is strongly charged. Local abnormal discharge is likely to occur between this part and the part facing the second accommodation hole on the upper surface of the metal plate member that is a conductor.

第1の発明では、これらの部位をつなぐ経路の少なくとも一部を構成する第2のガス供給部材の上端面と絶縁板部材の下面との間に絶縁性接着剤層を設けている。この絶縁性接着剤層を設けることによりこれらの部位間の電位差が低減される。また、第2のガス供給部材の上端面と絶縁板部材の下面との間に伝熱ガスが侵入しない。よって、前述の部位間での異常放電の発生を防止できる。   In the first invention, an insulating adhesive layer is provided between the upper end surface of the second gas supply member and the lower surface of the insulating plate member that constitute at least a part of the path connecting these portions. By providing this insulating adhesive layer, the potential difference between these parts is reduced. Further, the heat transfer gas does not enter between the upper end surface of the second gas supply member and the lower surface of the insulating plate member. Therefore, generation | occurrence | production of abnormal discharge between the above-mentioned parts can be prevented.

さらに具体的には、前記絶縁板部材の下面と前記金属板部材の上面との間に、前記絶縁板部材と前記金属板部材を互いに固定する金属系接着剤層を備える。   More specifically, a metal-based adhesive layer that fixes the insulating plate member and the metal plate member to each other is provided between the lower surface of the insulating plate member and the upper surface of the metal plate member.

金属系接着剤層は、例えばインジウムを含有するロウ付け材料からなる。金属板部材と絶縁板部材の熱膨張の差を吸収するために、樹脂系接着剤と比較して変形性に富む金属系接着剤により絶縁板部材と金属板部材を固定する必要がある。しかし、金属系接着剤層は導電性が高いので、金属系接着剤層が存在することにより前述の2つの部位間での異常放電がより生じやすい。第1の発明では、前述の経路の一部を構成する第2のガス供給部材の上端面と絶縁板部材の下面との間に絶縁性接着剤層を設けているので、金属系接着剤層を設けているにもかかわらず、前述の部位間での異常放電の発生を防止できる。   The metal-based adhesive layer is made of, for example, a brazing material containing indium. In order to absorb the difference in thermal expansion between the metal plate member and the insulating plate member, it is necessary to fix the insulating plate member and the metal plate member with a metal adhesive that is more deformable than a resin adhesive. However, since the metal-based adhesive layer has high conductivity, the presence of the metal-based adhesive layer is more likely to cause abnormal discharge between the two parts. In the first invention, since the insulating adhesive layer is provided between the upper end surface of the second gas supply member and the lower surface of the insulating plate member constituting a part of the above-described path, the metal-based adhesive layer In spite of having provided, abnormal discharge between the above-mentioned parts can be prevented.

好ましくは、前記第1の収容孔は、前記絶縁板部材の上面側に配置され、前記第1のガス供給部材と対応する孔寸法を有し、前記第1のガス供給部材の少なくとも前記上端面側が収容される孔本体と、前記絶縁板部材の下面側に配置され、前記第2のガス供給部材と対応する孔径を有し、前記第2のガス供給部材の前記上端面側が収容される座ぐり部とを備え、かつ前記絶縁性接着剤層は、前記第2のガス供給部材の上端面と前記座ぐり部の底壁との間の空隙、前記第2のガス供給部材の上端面側の外周面と前記座ぐり部の周壁との間の空隙、及び前記第2のガス供給部材の上端面側の外周面と前記第2の収容孔の周壁との間の空隙に形成されている。   Preferably, the first accommodation hole is disposed on an upper surface side of the insulating plate member, has a hole size corresponding to the first gas supply member, and at least the upper end surface of the first gas supply member. A hole body in which the side is accommodated, a seat which is disposed on the lower surface side of the insulating plate member, has a hole diameter corresponding to the second gas supply member, and accommodates the upper end surface side of the second gas supply member And the insulating adhesive layer includes a gap between an upper end surface of the second gas supply member and a bottom wall of the counterbore portion, and an upper end surface side of the second gas supply member. Is formed in a gap between the outer peripheral surface of the second gas supply member and the peripheral wall of the counterbore part, and a gap between the outer peripheral surface on the upper end surface side of the second gas supply member and the peripheral wall of the second accommodation hole. .

座ぐり部を設けることにより、前述の2つの部位を結ぶ経路が折れ曲がって距離が長くなる。その結果、これら2つの部位間での異常放電をより確実に防止できる。   By providing the counterbore part, the path connecting the two parts is bent and the distance is increased. As a result, abnormal discharge between these two parts can be prevented more reliably.

また、好ましくは、前記第2のガス供給部材はその上端面に嵌合孔を有し、前記第1のガス供給部材の下端面側が前記嵌合孔に嵌め込まれている。   Preferably, the second gas supply member has a fitting hole at an upper end surface thereof, and a lower end surface side of the first gas supply member is fitted into the fitting hole.

この嵌合孔を設けることによっても、前述の2つの部位を結ぶ経路が長くなり、異常放電をより確実に防止できる。   Providing this fitting hole also lengthens the path connecting the two parts described above, and can more reliably prevent abnormal discharge.

第2の発明は、絶縁性材料からなり、基板を静電吸着して上面に保持するための電極が内部に配置され、かつ前記上面から下面まで貫通する第1の収容孔が形成され、前記第1の収容孔は、前記絶縁板部材の上面側に配置された孔本体と絶縁板部材の下面側に配置された前記孔本本体よりも孔寸法が大きい座ぐり部とを備える、絶縁板部材と、金属材料からなり、上面に前記絶縁板部材が固定され、かつ前記上面から下面まで貫通する第2の収容孔が前記絶縁板部材の前記第1の収容孔と対応する位置に形成され、かつプラズマ発生のための高周波電圧が印加される金属板部材と、絶縁性材料からなり、前記絶縁板部材の前記第1の収容孔の前記孔本体に上端面側が収容され、前記上端面から下端面まで貫通する複数の第1のガス供給孔が形成され、かつ前記第1のガス供給孔の上端開口が前記絶縁板部材の前記上面で開口している、第1のガス供給部材と、絶縁性材料からなり、前記第1のガス供給部材よりも外形寸法が大きく、前記金属板部材の前記第2の収容孔に収容されると共に、上端面側が前記絶縁板部材の前記第1の収容孔の前記座ぐり部に収容され、前記上端面に前記第1のガス供給部材の下端面側が嵌め込まれる嵌合孔が形成され、前記第1のガス供給孔よりも孔寸法が大きい第2のガス供給孔が前記上端面から下端面まで貫通するように形成され、前記第2のガス供給孔の下端開口から伝熱ガスが供給され、かつ前記伝熱ガスは前記第2のガス供給孔の上端開口から前記第1のガス供給孔の下端開口に流入して前記第1のガス供給孔の前記上端開口から前記絶縁板部材の上面と前記基板の下面の間の隙間に供給される、第2のガス供給部材と、少なくとも前記第2のガス供給部材の上端面と前記第1の収容孔の座ぐり部の底壁の間、前記第2のガス供給部材の外周面と前記第1の収容孔の座ぐり部の周壁との間、及び前記第2のガス供給部材の外周面と前記第2の収容孔の周壁の間に形成された絶縁性接着剤層とを備えることを特徴とする、プラズマ処理装置を提供する。   The second invention is made of an insulating material, an electrode for electrostatically adsorbing and holding the substrate on the upper surface is disposed inside, and a first accommodation hole penetrating from the upper surface to the lower surface is formed, The first accommodation hole includes a hole main body disposed on the upper surface side of the insulating plate member and a counterbore portion having a larger hole size than the main hole main body disposed on the lower surface side of the insulating plate member. The insulating plate member is fixed to the upper surface, and a second receiving hole penetrating from the upper surface to the lower surface is formed at a position corresponding to the first receiving hole of the insulating plate member. And a metal plate member to which a high-frequency voltage for generating plasma is applied, and an insulating material, and an upper end surface side is accommodated in the hole body of the first accommodation hole of the insulating plate member, and from the upper end surface A plurality of first gas supply holes penetrating to the lower end surface are formed. And an upper end opening of the first gas supply hole is opened at the upper surface of the insulating plate member, and is made of an insulating material, and is more than the first gas supply member. The outer dimension is large, and is accommodated in the second accommodation hole of the metal plate member, the upper end surface side is accommodated in the counterbore portion of the first accommodation hole of the insulating plate member, and the upper end surface is A fitting hole into which the lower end surface side of the first gas supply member is fitted is formed, and a second gas supply hole having a larger hole size than the first gas supply hole penetrates from the upper end surface to the lower end surface. The heat transfer gas is formed and supplied from the lower end opening of the second gas supply hole, and the heat transfer gas flows into the lower end opening of the first gas supply hole from the upper end opening of the second gas supply hole. The insulation from the upper end opening of the first gas supply hole A second gas supply member supplied to a gap between the upper surface of the member and the lower surface of the substrate; at least an upper end surface of the second gas supply member; and a bottom wall of a counterbore portion of the first accommodation hole Between the outer peripheral surface of the second gas supply member and the peripheral wall of the spot facing portion of the first accommodation hole, and the outer peripheral surface of the second gas supply member and the peripheral wall of the second accommodation hole And an insulating adhesive layer formed therebetween. A plasma processing apparatus is provided.

第3の発明は、絶縁性材料からなり、基板を静電吸着して上面に保持するための電極が内部に配置され、かつ前記上面から下面まで貫通する第1の収容孔が形成された絶縁板部材と、金属材料からなり、上面に前記絶縁板部材が固定され、前記第1の収容孔と同一孔寸法の第2の収容孔が前記絶縁板部材の前記第1の収容孔と対応する位置に前記上面から下面まで貫通するように形成され、かつプラズマ発生のための高周波電圧が印加される金属板部材と、絶縁性材料からなり、前記絶縁板部材の前記第1の収容孔内に収容され、上端面から下端面まで貫通する複数の第1のガス供給孔が形成され、かつ前記第1のガス供給孔の上端開口が前記絶縁板部材の前記上面で開口している、第1のガス供給部材と、絶縁性材料からなり、前記金属板部材の前記第2の収容孔に収容されると共に、上端面側が前記絶縁板部材の前記第1の収容孔に収容され、前記第1のガス供給孔よりも孔寸法が大きい第2のガス供給孔が前記上端面から下端面まで貫通するように形成され、前記第2のガス供給孔の下端開口から伝熱ガスが供給され、かつ前記伝熱ガスは前記第2のガス供給孔の上端開口から前記第1のガス供給孔の下端開口に流入して前記第1のガス供給孔の前記上端開口から前記絶縁板部材の上面と前記基板の下面の間の隙間に供給される、前記第1のガス供給部材と外形寸法が同一の第2のガス供給部材と、少なくとも前記第1のガス供給部材の外周面と前記第1の収容孔の周壁の間の空隙、前記第2のガス供給部材の外周面と前記第1の収容孔の周壁の間の空隙、及び前記第2のガス供給部材の外周面と前記第2の収容孔の周壁の間の空隙に形成された絶縁性接着剤層とを備えることを特徴とする、プラズマ処理装置を提供する。   The third invention is an insulating material made of an insulating material, in which an electrode for electrostatically adsorbing and holding the substrate on the upper surface is disposed inside, and a first accommodation hole penetrating from the upper surface to the lower surface is formed. A plate member and made of a metal material, the insulating plate member is fixed on the upper surface, and a second accommodation hole having the same hole size as the first accommodation hole corresponds to the first accommodation hole of the insulation plate member. A metal plate member formed so as to penetrate from the upper surface to the lower surface at a position and to which a high-frequency voltage for plasma generation is applied, and an insulating material, and in the first accommodation hole of the insulating plate member A plurality of first gas supply holes that are accommodated and penetrate from the upper end surface to the lower end surface are formed, and an upper end opening of the first gas supply hole opens at the upper surface of the insulating plate member. A gas supply member and an insulating material, the metal plate A second gas supply that is accommodated in the second accommodation hole of the material and whose upper end surface is accommodated in the first accommodation hole of the insulating plate member and has a hole size larger than that of the first gas supply hole. A hole is formed so as to penetrate from the upper end surface to the lower end surface, heat transfer gas is supplied from the lower end opening of the second gas supply hole, and the heat transfer gas is opened at the upper end of the second gas supply hole From the upper end opening of the first gas supply hole to the gap between the upper surface of the insulating plate member and the lower surface of the substrate. A second gas supply member having the same outer dimensions as the gas supply member, a gap between at least the outer peripheral surface of the first gas supply member and the peripheral wall of the first accommodation hole, the second gas supply member A gap between the outer peripheral surface of the first housing hole and the peripheral wall of the first receiving hole, and the second gas Characterized in that it comprises an insulating adhesive layer formed in the gap between the outer peripheral surface and the peripheral wall of the second housing hole of the supply member, to provide a plasma processing apparatus.

本発明のプラズマ処理装置によれば、絶縁板部材及び金属板部材と基板下面の隙間に伝熱ガスを供給することにより良好な熱伝導性を確保しつつ、基板下面側で発生する種々の異常放電、すなわち基板と絶縁板部材及び金属板部材間の異常放電、第1のガス供給孔の孔壁間の異常放電、及び第1のガス供給部材と金属板部材との間の異常放電をすべて防止できる。従って、基板下面側で発生する異常放電に起因する基板の損傷を防止して、プラズマ処理の安定性を向上できる。   According to the plasma processing apparatus of the present invention, various abnormalities that occur on the lower surface side of the substrate while ensuring good thermal conductivity by supplying heat transfer gas to the gap between the insulating plate member and the metal plate member and the lower surface of the substrate. All discharge, that is, abnormal discharge between the substrate and the insulating plate member and the metal plate member, abnormal discharge between the hole walls of the first gas supply hole, and abnormal discharge between the first gas supply member and the metal plate member Can be prevented. Therefore, it is possible to prevent damage to the substrate due to abnormal discharge occurring on the lower surface side of the substrate and improve the stability of the plasma processing.

次に、添付図面を参照して本発明の実施形態を詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(第1実施形態)
図1は本発明の第1実施形態に係るプラズマ処理装置である反応イオンエッチング型のドライエッチング装置1を示す。このドライエッチング装置1は、基板2上に形成されたプラチナ、金、インジウム、ニッケル等の貴金属のような難エッチング性の材料からなる層のエッチングに適している。
(First embodiment)
FIG. 1 shows a reactive ion etching type dry etching apparatus 1 which is a plasma processing apparatus according to a first embodiment of the present invention. The dry etching apparatus 1 is suitable for etching a layer made of a material that is difficult to etch, such as a noble metal such as platinum, gold, indium, or nickel, formed on the substrate 2.

ドライエッチング装置1は、その内部に基板2が配置される真空容器ないしはチャンバ3を備える。チャンバ3内の上部には上部電極4が配設されている。また、チャンバ3内の下部には、高周波電圧が印加される下部電極及び基板2の保持台として機能する基板サセプタ6が配設されている。上部電極4とチャンバ3は接地されている。一方、基板サセプタ6が備える後述の電極板24は、プラズマ発生のための高周波電源7に電気的に接続されている。難エッチング性の材料をエッチングするために、高周波電源7は高電圧を基板サセプタ6に印加する。詳細には、高周波電源7から基板サセプタ6に印加される電力の周波数は500kHz程度であり、印加される電圧は3〜4kV程度に達する。また、基板サセプタ6が備える後述の静電吸着用電極8A,8Bは、直流電源9A,9Bに電気的に接続されている。   The dry etching apparatus 1 includes a vacuum container or a chamber 3 in which a substrate 2 is disposed. An upper electrode 4 is disposed in the upper part of the chamber 3. A substrate susceptor 6 that functions as a lower electrode to which a high-frequency voltage is applied and a holder for the substrate 2 is disposed in the lower portion of the chamber 3. The upper electrode 4 and the chamber 3 are grounded. On the other hand, a later-described electrode plate 24 included in the substrate susceptor 6 is electrically connected to a high-frequency power source 7 for generating plasma. The high frequency power supply 7 applies a high voltage to the substrate susceptor 6 in order to etch a material that is difficult to etch. Specifically, the frequency of power applied from the high frequency power supply 7 to the substrate susceptor 6 is about 500 kHz, and the applied voltage reaches about 3 to 4 kV. Electrostatic chucking electrodes 8A and 8B described later included in the substrate susceptor 6 are electrically connected to DC power supplies 9A and 9B.

チャンバ3に設けられたエッチングガス流路入口3aには、エッチングガスを供給するためのエッチングガス供給装置11が接続されている。エッチングガス供給装置11はMFC(マスフローコントローラ)等を備え、エッチングガス流入口3aからチャンバ3内に所望の流量でエッチングガスを供給できる。また、チャンバには排気口3bが設けられている。この排気口3bには、真空ポンプ等を備える真空排気装置12が接続されている。さらに、チャンバ3には基板2の搬入及び搬出のためのゲート3cが設けられている。   An etching gas supply device 11 for supplying an etching gas is connected to an etching gas flow path inlet 3 a provided in the chamber 3. The etching gas supply device 11 includes an MFC (mass flow controller) or the like, and can supply an etching gas at a desired flow rate into the chamber 3 from the etching gas inlet 3a. The chamber is provided with an exhaust port 3b. A vacuum exhaust device 12 having a vacuum pump or the like is connected to the exhaust port 3b. Further, the chamber 3 is provided with a gate 3c for loading and unloading the substrate 2.

ドライエッチング装置1は、基板サセプタ6内に冷媒を供給して循環させる冷媒供給装置13を備える。また、ドライエッチング装置1は、ドライエッチング時に基板サセプタ6の上面と基板2の下面2aの隙間14(図4参照)にヘリウム等の伝熱ガスを供給し、かつドライエッチング終了後に隙間14から伝熱ガスを排気するための伝熱ガス給排装置16を備える。この伝熱ガス給排装置16の構成及び機能は後述する。   The dry etching apparatus 1 includes a refrigerant supply apparatus 13 that supplies and circulates a refrigerant into the substrate susceptor 6. Further, the dry etching apparatus 1 supplies a heat transfer gas such as helium to the gap 14 (see FIG. 4) between the upper surface of the substrate susceptor 6 and the lower surface 2a of the substrate 2 during dry etching, and transmits from the gap 14 after the dry etching is completed. A heat transfer gas supply / discharge device 16 for exhausting the hot gas is provided. The configuration and function of the heat transfer gas supply / discharge device 16 will be described later.

さらに、ドライエッチング装置1は、基板2の搬送時に基板サセプタ6の上面から基板2を突き上げるための突上げ装置17を備える。突上げ装置17は、上下方向に延びる4本の突上げピン18と、この突上げピン18の基端側が固定されたベース19を備える。ベース19は、チャンバ3の底部の外側に配置されたシリンダ21のロッド21aの先端に固定されている。シリンダ21のロッド21aはチャンバ3内と連通するが外部(大気)から遮断されたハウジング22内に収容されている。ロッド21aが突出位置となると突上げピン18の先端が基板サセプタ6の上面から突出して基板2を突き上げる。一方、ロッド21aが引き込み位置にあれば、突上げピン18の先端は基板サセプタ6内に格納される。   Further, the dry etching apparatus 1 includes a push-up device 17 for pushing up the substrate 2 from the upper surface of the substrate susceptor 6 when the substrate 2 is transported. The push-up device 17 includes four push-up pins 18 extending in the vertical direction and a base 19 to which the base end side of the push-up pins 18 is fixed. The base 19 is fixed to the tip of the rod 21 a of the cylinder 21 disposed outside the bottom of the chamber 3. The rod 21a of the cylinder 21 communicates with the inside of the chamber 3, but is accommodated in a housing 22 that is blocked from the outside (atmosphere). When the rod 21 a is in the protruding position, the tip of the push-up pin 18 protrudes from the upper surface of the substrate susceptor 6 and pushes up the substrate 2. On the other hand, if the rod 21 a is in the retracted position, the tip of the push-up pin 18 is stored in the substrate susceptor 6.

次に、図2から図5を参照して基板サセプタ6を説明する。図3に詳細に示すように、基板サセプタ6は、上面23aに基板2を静電吸着により保持する保持板(絶縁板部材)23と、上面24aに保持板23が固定された電極板(金属板部材)24とを備える。また、基板サセプタ6は、チャンバ3の底部に配置され、その上に保持板23及び電極板24が載置される台座部材26と、台座部材26に対して保持板23及び電極板24を固定するための枠体27,28とを備える。さらに、基板サセプタ6は、平面視で保持板23のみが露出するように電極板24と枠体27,28の上部を覆う環状板29を備える。   Next, the substrate susceptor 6 will be described with reference to FIGS. As shown in detail in FIG. 3, the substrate susceptor 6 includes a holding plate (insulating plate member) 23 that holds the substrate 2 on the upper surface 23a by electrostatic adsorption, and an electrode plate (metal) on which the holding plate 23 is fixed on the upper surface 24a. Plate member) 24. The substrate susceptor 6 is disposed at the bottom of the chamber 3, and a pedestal member 26 on which the holding plate 23 and the electrode plate 24 are placed, and the holding plate 23 and the electrode plate 24 are fixed to the pedestal member 26. Frame bodies 27 and 28 for carrying out. Further, the substrate susceptor 6 includes an annular plate 29 that covers the electrode plate 24 and the upper portions of the frame bodies 27 and 28 so that only the holding plate 23 is exposed in plan view.

保持板23は絶縁性材料であるセラミック製である。図3及び図4に模式的に示すように、保持板23内部の上面23a付近には静電吸着用電極8A,8Bが内蔵されている。図1に模式的に示すように、静電吸着用電極8A,8Bは直流電源9A,9Bに電気的に接続されている。   The holding plate 23 is made of ceramic which is an insulating material. As schematically shown in FIGS. 3 and 4, electrostatic adsorption electrodes 8 </ b> A and 8 </ b> B are built in the vicinity of the upper surface 23 a inside the holding plate 23. As schematically shown in FIG. 1, the electrostatic chucking electrodes 8A and 8B are electrically connected to DC power supplies 9A and 9B.

図2から図5を参照すると、保持板23には平面視での中心の位置、及びこの中心に対して点対称である4箇所に上面23aから下面23bまで貫通する上側収容孔(第1の収容孔)31が形成されている。従って、本実施形態では合計5個の上側収容孔31が保持板23に形成されている。図5に明瞭に示すように、上側収容孔31は、保持板23の上面23a側に位置する孔本体32と、下面23b側に位置する座ぐり部33とを備える。孔本体32は座ぐり部33はいずれも平面視で円形である。孔本体32の直径D1よりも座ぐり部33の直径D2が大きい。詳細には、孔本体32の直径D1が4mm以上6mm以下程度であるのに対して、座ぐり部33の直径D2は8mm以上10mm以下程度である。孔本体32の直径D1は、後述するノズル部材43の直径D3(図6B参照)に対応している。座ぐり部33の直径D2は、後述する入口部材47の直径D4(図7B参照)に対応している。   Referring to FIGS. 2 to 5, the holding plate 23 has a center position in plan view, and upper receiving holes (first first holes) penetrating from the upper surface 23a to the lower surface 23b at four positions that are point-symmetric with respect to the center. (Accommodating hole) 31 is formed. Accordingly, in the present embodiment, a total of five upper accommodation holes 31 are formed in the holding plate 23. As clearly shown in FIG. 5, the upper accommodation hole 31 includes a hole body 32 positioned on the upper surface 23 a side of the holding plate 23 and a counterbore portion 33 positioned on the lower surface 23 b side. The hole body 32 and the counterbore part 33 are all circular in plan view. The diameter D2 of the spot facing portion 33 is larger than the diameter D1 of the hole body 32. Specifically, the diameter D1 of the hole body 32 is about 4 mm to 6 mm, whereas the diameter D2 of the counterbore 33 is about 8 mm to 10 mm. The diameter D1 of the hole body 32 corresponds to a diameter D3 (see FIG. 6B) of a nozzle member 43 described later. The diameter D2 of the spot facing 33 corresponds to the diameter D4 (see FIG. 7B) of the inlet member 47 described later.

図2、図4、及び図5を参照すると、保持板23の上面23aには、外周縁付近を除いて上向きに突出する円柱状の微細な突起34が設けられている。突起34は上面23aにほぼ均一に配置されている。また、上面23aの外周縁付近には突起34と同一高さの囲み部36(図2にのみ図示する。)が設けられている。そのため、図4に示すように、保持板23に静電吸着によって保持された基板2と保持板23の上面23aとの間には、非常に微細な厚みの閉鎖された隙間14が存在する。   Referring to FIGS. 2, 4, and 5, the upper surface 23 a of the holding plate 23 is provided with a columnar fine protrusion 34 that protrudes upward except for the vicinity of the outer peripheral edge. The protrusions 34 are disposed substantially uniformly on the upper surface 23a. Further, a surrounding portion 36 (shown only in FIG. 2) having the same height as the protrusion 34 is provided in the vicinity of the outer peripheral edge of the upper surface 23a. Therefore, as shown in FIG. 4, a very fine closed gap 14 exists between the substrate 2 held on the holding plate 23 by electrostatic adsorption and the upper surface 23 a of the holding plate 23.

電極板24は導電性を有する金属材料であるアルミニウム製である。図1に模式的に示すように、電極板24はプラズマ発生のための高周波電源7に電気的に接続されている。また、図1に模式的に示すように、電極板24の内部には冷媒循環流路37が形成されている。冷媒循環流路37は冷媒流路38を介して冷媒供給装置13に接続されている。冷媒流路38を介して冷媒供給装置13から供給された冷媒が冷媒循環流路37内を循環し、それによって電極板24が冷却される。電極板24が冷却されることにより、保持板23に保持された基板2が冷却される。   The electrode plate 24 is made of aluminum, which is a conductive metal material. As schematically shown in FIG. 1, the electrode plate 24 is electrically connected to a high-frequency power source 7 for generating plasma. Further, as schematically shown in FIG. 1, a refrigerant circulation channel 37 is formed inside the electrode plate 24. The refrigerant circulation channel 37 is connected to the refrigerant supply device 13 via the refrigerant channel 38. The refrigerant supplied from the refrigerant supply device 13 through the refrigerant flow path 38 circulates in the refrigerant circulation flow path 37, whereby the electrode plate 24 is cooled. By cooling the electrode plate 24, the substrate 2 held by the holding plate 23 is cooled.

電極板24には保持板23の上側収容孔31と対応する位置に上面24aから下面24bまで貫通する下側収容孔(第2の収容孔)39が形成されている。本実施形態では、下側収容孔39は平面視で円形であり、直径D5は保持板23に形成された上側収容孔31の座ぐり部33の直径D2と同一である。座ぐり部33と同様に、下側収容孔39の直径D5は後述する入口部材47の直径D4(図7B参照)に対応している。   The electrode plate 24 is formed with a lower accommodation hole (second accommodation hole) 39 penetrating from the upper surface 24 a to the lower surface 24 b at a position corresponding to the upper accommodation hole 31 of the holding plate 23. In the present embodiment, the lower accommodation hole 39 is circular in plan view, and the diameter D5 is the same as the diameter D2 of the spot facing portion 33 of the upper accommodation hole 31 formed in the holding plate 23. Similar to the counterbore part 33, the diameter D5 of the lower receiving hole 39 corresponds to a diameter D4 (see FIG. 7B) of the inlet member 47 described later.

電極板24には絶縁性を付与するために表面にアルマイト処理が施されている。しかし、上面24aにはアルマイト処理は施されていない。図4に示すように、保持板23の下面23bと電極板24の上面24aとの間には導電性を有する金属系接着剤層41が形成されており、この金属系接着剤層41によって保持板23と電極板24が互いに固定されている。アルミニウム製の電極板24の熱膨張率はセラミック製の保持板23の熱膨張率よりも大きく、プラズマ処理中の温度上昇による電極板24の熱膨張ないしは延びは、保持板23よりも大きい。この熱膨張差を吸収するために、樹脂系接着剤と比較して変形性に富む金属系接着剤により保持板23と電極板24を固定する必要がある。本実施形態では、金属系接着剤層41を構成する金属系接着剤は、インジウムを含有するロウ付け材料からなる。   The electrode plate 24 is anodized on the surface in order to provide insulation. However, the upper surface 24a is not anodized. As shown in FIG. 4, a metal adhesive layer 41 having conductivity is formed between the lower surface 23 b of the holding plate 23 and the upper surface 24 a of the electrode plate 24, and the metal adhesive layer 41 holds the metal adhesive layer 41. The plate 23 and the electrode plate 24 are fixed to each other. The thermal expansion coefficient of the aluminum electrode plate 24 is larger than the thermal expansion coefficient of the ceramic holding plate 23, and the thermal expansion or extension of the electrode plate 24 due to the temperature rise during the plasma processing is larger than that of the holding plate 23. In order to absorb this difference in thermal expansion, it is necessary to fix the holding plate 23 and the electrode plate 24 with a metal adhesive that is more deformable than a resin adhesive. In the present embodiment, the metal adhesive constituting the metal adhesive layer 41 is made of a brazing material containing indium.

図3を参照すると、台座部材26には、保持板23の上側収容孔31及び電極板24の下側収容孔39と対応する位置に収容孔42が形成されている。収容孔42は台座部材26を上面から下面まで貫通している。   Referring to FIG. 3, the pedestal member 26 is formed with an accommodation hole 42 at a position corresponding to the upper accommodation hole 31 of the holding plate 23 and the lower accommodation hole 39 of the electrode plate 24. The accommodation hole 42 penetrates the base member 26 from the upper surface to the lower surface.

基板サセプタ6は、保持板23の5個の上側収容孔31にそれぞれ収容されたノズル部材(第1のガス供給部材)43を備える。ノズル部材43は、伝熱ガス給排装置16から供給される伝熱ガスの隙間14(図4参照)への供給口として機能する。   The substrate susceptor 6 includes nozzle members (first gas supply members) 43 respectively accommodated in the five upper accommodation holes 31 of the holding plate 23. The nozzle member 43 functions as a supply port to the gap 14 (see FIG. 4) of the heat transfer gas supplied from the heat transfer gas supply / discharge device 16.

ノズル部材43は絶縁性材料であるセラミック製である。図6A及び図6Bを併せて参照すると、ノズル部材43は全体として短い円柱状である。前述のようにノズル部材43は上側収容孔31の座ぐり部33の孔本体32の直径D1と対応する直径D3を有する。ノズル部材43の直径D3は高さ方向に一定である。   The nozzle member 43 is made of ceramic which is an insulating material. 6A and 6B, the nozzle member 43 has a short cylindrical shape as a whole. As described above, the nozzle member 43 has a diameter D3 corresponding to the diameter D1 of the hole body 32 of the counterbore portion 33 of the upper receiving hole 31. The diameter D3 of the nozzle member 43 is constant in the height direction.

ノズル部材43には上端面43aから下端面43bまで貫通する複数の上側ガス供給孔(第1のガス供給孔)44が形成されている。本実施形態では、上側ガス供給孔44は平面視で円形であり、直径d1は長手方向に一定である。例えばレーザ照射によりノズル部材43に上側ガス供給孔44が形成される。上側ガス供給孔44の上端開口44aは保持板23の上面23aで開口している。ノズル部材43の下端面43bには、平面視で円形の下端凹部46が形成されている。上側ガス供給孔44の下端開口44bは、この下端凹部46で開口している。   In the nozzle member 43, a plurality of upper gas supply holes (first gas supply holes) 44 penetrating from the upper end surface 43a to the lower end surface 43b are formed. In the present embodiment, the upper gas supply hole 44 is circular in plan view, and the diameter d1 is constant in the longitudinal direction. For example, the upper gas supply hole 44 is formed in the nozzle member 43 by laser irradiation. An upper end opening 44 a of the upper gas supply hole 44 opens at the upper surface 23 a of the holding plate 23. The lower end surface 43b of the nozzle member 43 is formed with a circular lower end recess 46 in plan view. The lower end opening 44 b of the upper gas supply hole 44 is opened by the lower end recess 46.

保持板23のノズル部材43が配置されている部分には静電吸着用電極8A,8Bを配置することができない。従って、基板2に作用する静電吸着力を高めるには、保持板23の上面23aの面積に対してノズル部材43の上端面43aの面積が小さいことが好ましい。図12を併せて参照すると、個々の上側ガス供給孔44内での伝熱ガスの圧力Pと電極間距離d(直径d1)の積は、極値Pdよりも小さい(図12の符号Pd参照)。従って、パッシェンの法則を考慮すると、異常放電発生防止の観点から、上側ガス供給孔44の直径d1を小さく設定して孔壁間の距離を縮小すると共に、ノズル部材43に多数の上側ガス供給孔44を形成して個々の上側ガス供給孔44内での伝熱ガスの圧力を低減する必要がある。また、上側ガス供給孔44の個数が多い程、保持板23と基板2の隙間14へ伝熱ガスを迅速に供給できる。逆に、微小な上側ガス供給孔44の数が少なくなると、上側ガス供給孔44内での伝熱ガスの圧力が上昇傾向にあり、保持板23と基板2の隙間14への伝熱ガスの迅速な供給が阻害される傾向がある。これらの理由より、ノズル部材43の上端面43aの面積が可能な限り小さく、上側ガス供給孔44の直径d1が可能な限り小さく、かつノズル部材43に可能な限り多数の上側ガス供給孔44が形成されていることが好ましい。本実施形態では、ノズル部材43の直径D3が4mm、上端面43aの面積が12.56mmであり、直径d1が200μmの上側ガス供給孔44が37個設けられている。上端面43aの面積が11mm以上16mm程度のノズル部材43の場合、直径d1が50μm以上300μm以下程度の上側ガス供給孔44を30個以上45個以下程度設けることが好ましい。 The electrostatic chucking electrodes 8A and 8B cannot be disposed on the portion of the holding plate 23 where the nozzle member 43 is disposed. Therefore, in order to increase the electrostatic attraction force acting on the substrate 2, the area of the upper end surface 43 a of the nozzle member 43 is preferably smaller than the area of the upper surface 23 a of the holding plate 23. Referring also to FIG. 12, the product of the pressure P of the heat transfer gas and the inter-electrode distance d (diameter d1) in each upper gas supply hole 44 is smaller than the extreme value Pd e (reference symbol Pd in FIG. 12). 1 ). Therefore, in consideration of Paschen's law, from the viewpoint of preventing the occurrence of abnormal discharge, the diameter d1 of the upper gas supply hole 44 is set small to reduce the distance between the hole walls, and the nozzle member 43 has a large number of upper gas supply holes. 44 must be formed to reduce the pressure of the heat transfer gas in each upper gas supply hole 44. Further, the larger the number of the upper gas supply holes 44, the faster the heat transfer gas can be supplied to the gap 14 between the holding plate 23 and the substrate 2. Conversely, when the number of minute upper gas supply holes 44 is reduced, the pressure of the heat transfer gas in the upper gas supply holes 44 tends to increase, and the heat transfer gas to the gap 14 between the holding plate 23 and the substrate 2 is increased. Rapid supply tends to be hindered. For these reasons, the area of the upper end surface 43a of the nozzle member 43 is as small as possible, the diameter d1 of the upper gas supply hole 44 is as small as possible, and the nozzle member 43 has as many upper gas supply holes 44 as possible. Preferably it is formed. In the present embodiment, the diameter D3 of the nozzle member 43 is 4 mm, the area is 12.56Mm 2 of the upper end surface 43a, the diameter d1 the upper gas supply hole 44 of 200μm is provided 37. In the case of the nozzle member 43 having an area of the upper end surface 43a of about 11 mm 2 to 16 mm 2, it is preferable to provide about 30 to 45 upper gas supply holes 44 having a diameter d1 of about 50 μm to 300 μm.

基板サセプタ(下部電極)6は、電極板24の5個の下側収容孔39にそれぞれ収容された入口部材(第2のガス供給部材)47を備える。入口部材47は、伝熱ガス給排装置16からの伝熱ガスがノズル部材43へ向かう流路として機能する。   The substrate susceptor (lower electrode) 6 includes inlet members (second gas supply members) 47 respectively accommodated in the five lower accommodation holes 39 of the electrode plate 24. The inlet member 47 functions as a flow path for the heat transfer gas from the heat transfer gas supply / exhaust device 16 toward the nozzle member 43.

入口部材47は絶縁性材料であるセラミック製である。図7A及び図7Bを併せて参照すると、入口部材47は全体として細長い円柱状である。入口部材47は、座ぐり部33及び下側収容孔39の直径D2,D5と対応する直径D4を有する。入口部材47の高さ方向中央よりも下側には直径D4を僅かに大きくした拡径部47cが設けられている。   The inlet member 47 is made of ceramic which is an insulating material. Referring to FIGS. 7A and 7B together, the inlet member 47 has a generally elongated cylindrical shape. The inlet member 47 has a diameter D4 corresponding to the diameters D2 and D5 of the spot facing portion 33 and the lower receiving hole 39. A diameter-expanded portion 47c having a slightly larger diameter D4 is provided below the center of the inlet member 47 in the height direction.

入口部材47には上端面47aから下端面47bまで貫通する1個の下側ガス供給孔(第2のガス供給孔)48が形成されている。本実施形態では、下側ガス供給孔48は平面視で円形であり、直径d2は長手方向に一定で500μmであるが、上側ガス供給孔44へ伝熱ガスを迅速に供給可能とするために直径d2は300μm以上700μm以下程度であることが好ましい。例えば、ドリル加工により入口部材47に下側ガス供給孔48が形成される。入口部材47の上端面47aには、平面視で円形の嵌合孔49が形成されている。下側ガス供給孔48の上端開口48aは、この嵌合孔49で開口している。一方、下側ガス供給孔48の下端開口48bは、入口部材47の下端面47bで開口している。   The inlet member 47 is formed with one lower gas supply hole (second gas supply hole) 48 penetrating from the upper end surface 47a to the lower end surface 47b. In the present embodiment, the lower gas supply hole 48 is circular in plan view, and the diameter d2 is constant in the longitudinal direction and is 500 μm. In order to enable rapid supply of heat transfer gas to the upper gas supply hole 44, The diameter d2 is preferably about 300 μm to 700 μm. For example, the lower gas supply hole 48 is formed in the inlet member 47 by drilling. A circular fitting hole 49 is formed in the upper end surface 47a of the inlet member 47 in a plan view. An upper end opening 48 a of the lower gas supply hole 48 is opened by the fitting hole 49. On the other hand, the lower end opening 48 b of the lower gas supply hole 48 opens at the lower end surface 47 b of the inlet member 47.

図3に示すように、基板サセプタ(下部電極)6は、台座部材26の5個の収容孔42にそれぞれ収容された両端開口の筒状体である流路部材51を備える。流路部材51の内部に形成された伝熱ガス流路51a(図4に図示する。)は、上端側が流路部材51の上端面で開口し、下端側が伝熱ガス給排装置16の伝熱ガス供給ライン56(図1に図示する。)に接続されている。   As shown in FIG. 3, the substrate susceptor (lower electrode) 6 includes a flow path member 51 that is a cylindrical body that is open at both ends and is accommodated in the five accommodation holes 42 of the base member 26. The heat transfer gas flow path 51a (illustrated in FIG. 4) formed inside the flow path member 51 has an upper end opened at the upper end surface of the flow path member 51 and a lower end side transferred by the heat transfer gas supply / discharge device 16. It is connected to a hot gas supply line 56 (shown in FIG. 1).

図4を参照すると、ノズル部材43は、上端面43a及び高さ方向の中央部分を含む大部分が保持板23に形成された上側収容孔31の孔本体32内に収容されている。しかし、ノズル部材43の下端面43b付近は、座ぐり部33内に突出している。入口部材47は、下端面47b及び高さ方向の中央部分を含む大部分が電極板24に形成された下側収容孔39内に収容されている。しかし、入口部材47の上端面47a付近は座ぐり部33に収容されている。入口部材47の上端面47aに形成された嵌合孔49に、ノズル部材43の下端面43b付近が嵌め込まれている。   Referring to FIG. 4, most of the nozzle member 43 including the upper end surface 43 a and the central portion in the height direction is accommodated in the hole body 32 of the upper accommodation hole 31 formed in the holding plate 23. However, the vicinity of the lower end surface 43 b of the nozzle member 43 protrudes into the spot facing portion 33. Most of the inlet member 47 is accommodated in a lower accommodation hole 39 formed in the electrode plate 24, including a lower end surface 47 b and a central portion in the height direction. However, the vicinity of the upper end surface 47 a of the inlet member 47 is accommodated in the spot facing portion 33. The vicinity of the lower end surface 43 b of the nozzle member 43 is fitted into a fitting hole 49 formed in the upper end surface 47 a of the inlet member 47.

ノズル部材43及び入口部材47を保持板23及び電極板24に対して固定する絶縁性接着剤層52が形成されている。詳細には、ノズル部材43の外周面43cと上側収容孔31の孔本体32の周壁32aとの空隙、入口部材47の上端面47aと上側収容孔31の座ぐり部33の底壁33aとの空隙、入口部材47の上端面47a側の外周面47dと座ぐり部33の周壁33bとの空隙、及び入口部材47の外周面47dと下側収容孔39の周壁39aとの空隙に、絶縁性接着剤層52が設けられている。本実施形態では、絶縁性接着剤層52はシリコン系接着剤からなる。絶縁性接着剤層52は、ノズル部材43及び入口部材47の固定に加え、後に詳述するように異常放電の発生を防止する絶縁材として機能を有する。   An insulating adhesive layer 52 that fixes the nozzle member 43 and the inlet member 47 to the holding plate 23 and the electrode plate 24 is formed. Specifically, the gap between the outer peripheral surface 43 c of the nozzle member 43 and the peripheral wall 32 a of the hole body 32 of the upper receiving hole 31, the upper end surface 47 a of the inlet member 47 and the bottom wall 33 a of the counterbore portion 33 of the upper receiving hole 31. The gap, the gap between the outer peripheral surface 47d on the upper end surface 47a side of the inlet member 47 and the peripheral wall 33b of the spot facing portion 33, and the gap between the outer peripheral surface 47d of the inlet member 47 and the peripheral wall 39a of the lower receiving hole 39 are insulated. An adhesive layer 52 is provided. In the present embodiment, the insulating adhesive layer 52 is made of a silicon-based adhesive. The insulating adhesive layer 52 functions as an insulating material for preventing the occurrence of abnormal discharge, as will be described in detail later, in addition to fixing the nozzle member 43 and the inlet member 47.

ノズル部材43の上側ガス供給孔44は、その上端開口44aが保持板23の上面23aで開口し、保持板23と基板2の隙間14に連通している。一方、上側ガス供給孔44の下端開口44bはノズル部材43の下端面43bの下端凹部46に開口し、この下端凹部46を介して入口部材47の下側ガス供給孔48の上端開口48aと連通している。また、下側ガス供給孔48の下端開口48bは、流路部材51の伝熱ガス流路51aを介して伝熱ガス給排装置16に接続されている。従って、伝熱ガス給排装置16からの伝熱ガスは、下側ガス供給孔48の下端開口48bに供給され、下側ガス供給孔48、下側ガス供給孔48の上端開口48a、下端凹部46、複数の上側ガス供給孔44の下端開口44b、上側ガス供給孔44、及び上側ガス供給孔44の上端開口44aを介して、保持板23と基板2の隙間14に供給される。   The upper gas supply hole 44 of the nozzle member 43 has an upper end opening 44 a that opens at the upper surface 23 a of the holding plate 23, and communicates with the gap 14 between the holding plate 23 and the substrate 2. On the other hand, the lower end opening 44 b of the upper gas supply hole 44 opens into the lower end recess 46 of the lower end surface 43 b of the nozzle member 43, and communicates with the upper end opening 48 a of the lower gas supply hole 48 of the inlet member 47 via the lower end recess 46. is doing. The lower end opening 48 b of the lower gas supply hole 48 is connected to the heat transfer gas supply / discharge device 16 via the heat transfer gas channel 51 a of the channel member 51. Therefore, the heat transfer gas from the heat transfer gas supply / discharge device 16 is supplied to the lower end opening 48b of the lower gas supply hole 48, and the lower gas supply hole 48, the upper end opening 48a of the lower gas supply hole 48, and the lower end recess. 46, the gas is supplied to the gap 14 between the holding plate 23 and the substrate 2 through the lower end opening 44 b of the plurality of upper gas supply holes 44, the upper gas supply hole 44, and the upper end opening 44 a of the upper gas supply hole 44.

図2及び図3を参照すると、保持板23には平面視での中心に対して点対称な位置に、上面23aから下面23bまで貫通する4個の収容孔81が設けられている。この収容孔81には全体として円筒状のガイド筒部材82の上端側が収容されている。また、電極板24には収容孔81と対応する位置に、上面24aから下面24bに貫通する収容孔83が設けられている。この収容孔83にはガイド筒部材82の下端側及び中央部分が収容されている。さらに、台座部材26には収容孔83と対応する位置に上面から下面に貫通する貫通孔84が設けられている。ガイド筒部材82には上端から下端まで貫通するガイド孔82aが形成されている。突上げ装置17の突上げピン18の先端側は、貫通孔84及びガイド孔82a内に上下方向に移動可能に収容されている。   2 and 3, the holding plate 23 is provided with four receiving holes 81 penetrating from the upper surface 23a to the lower surface 23b at a point-symmetrical position with respect to the center in plan view. The accommodation hole 81 accommodates the upper end side of a cylindrical guide cylinder member 82 as a whole. Further, the electrode plate 24 is provided with a receiving hole 83 penetrating from the upper surface 24 a to the lower surface 24 b at a position corresponding to the receiving hole 81. The accommodation hole 83 accommodates the lower end side and the center portion of the guide cylinder member 82. Further, the pedestal member 26 is provided with a through hole 84 penetrating from the upper surface to the lower surface at a position corresponding to the accommodation hole 83. The guide tube member 82 is formed with a guide hole 82a penetrating from the upper end to the lower end. The tip end side of the push-up pin 18 of the push-up device 17 is accommodated in the through hole 84 and the guide hole 82a so as to be movable in the vertical direction.

図1を参照して伝熱ガス給排装置16を説明する。伝熱ガス給排装置16は、流路部材51、入口部材47、及びノズル部材43を介して隙間14と連通する伝熱ガス供給ライン56と、同様に隙間14と連通する伝熱ガス排気ライン57を備える。伝熱ガス供給ライン56は、一端が伝熱ガス源58に接続され、他端が基板サセプタ6(下部電極)側に接続されている。また、伝熱ガス供給ライン56にはMFC59とカットオフバルブ61Aが設けられている。一方、伝熱ガス排気ライン57は一端が吸引用の真空ポンプ62に接続され、他端が基板サセプタ6(下部電極)側に接続されている。伝熱ガス排気ライン57には、カットオフバルブ61B、自動圧力制御バルブ63、及び真空計64が設けられている。さらに、伝熱ガス給排装置16は、カットオフバルブ61Aよりも基板サセプタ6(下部電極)側の伝熱ガス供給ライン56と、カットオフバルブ61Bよりも基板サセプタ6(下部電極)側の伝熱ガス排気ライン57とを接続するバイパスライン66を備える。このバイパスライン66にはカットオフバルブ61Cが設けられている。さらにまた、伝熱ガス給排装置16は、カットオフバルブ61Aよりも基板サセプタ6(下部電極)側の伝熱ガス供給ライン56と、自動圧力制御バルブ63よりも真空ポンプ62側の伝熱ガス排気ライン57とを接続するバイパスライン67を備える。バイパライン67にはカットオフバルブ61Dが設けられている。   The heat transfer gas supply / exhaust device 16 will be described with reference to FIG. The heat transfer gas supply / discharge device 16 includes a heat transfer gas supply line 56 that communicates with the gap 14 via the flow path member 51, the inlet member 47, and the nozzle member 43, and a heat transfer gas exhaust line that similarly communicates with the gap 14. 57. The heat transfer gas supply line 56 has one end connected to the heat transfer gas source 58 and the other end connected to the substrate susceptor 6 (lower electrode) side. The heat transfer gas supply line 56 is provided with an MFC 59 and a cut-off valve 61A. On the other hand, one end of the heat transfer gas exhaust line 57 is connected to the vacuum pump 62 for suction, and the other end is connected to the substrate susceptor 6 (lower electrode) side. In the heat transfer gas exhaust line 57, a cutoff valve 61B, an automatic pressure control valve 63, and a vacuum gauge 64 are provided. Furthermore, the heat transfer gas supply / discharge device 16 has a heat transfer gas supply line 56 closer to the substrate susceptor 6 (lower electrode) than the cut-off valve 61A, and a heat transfer gas supply closer to the substrate susceptor 6 (lower electrode) than the cut-off valve 61B. A bypass line 66 connecting the hot gas exhaust line 57 is provided. The bypass line 66 is provided with a cutoff valve 61C. Furthermore, the heat transfer gas supply / discharge device 16 includes a heat transfer gas supply line 56 closer to the substrate susceptor 6 (lower electrode) than the cut-off valve 61A, and a heat transfer gas closer to the vacuum pump 62 than the automatic pressure control valve 63. A bypass line 67 that connects the exhaust line 57 is provided. The bypass line 67 is provided with a cutoff valve 61D.

伝熱ガスの隙間14への供給開始時には、まずカットオフバルブ61A,61B,61Cが開弁し、カットオフバルブ61Dが閉弁する。これにより、伝熱ガス供給ライン56のみでなく、バイパスライン66及び伝熱ガス排気ライン57を介して伝熱ガス源58から隙間14に伝熱ガスが供給される。隙間14の伝熱ガスが所定圧力まで昇圧した後は、カットオフバルブ61Cが閉弁され、真空計64の検出圧力に応じて自動圧力制御バルブ63が隙間14を所定圧力に維持する。ドライエッチング処理の終了後は、カットオフバルブ61Aが閉弁する一方、カットオフバルブ61B〜61Dが開弁する。これにより伝熱ガス排気ライン57のみでなく、バイパスライン66,67及び伝熱ガス供給ライン56を介して隙間14の伝熱ガスが速やかに排気される。   When supply of the heat transfer gas to the gap 14 is started, the cutoff valves 61A, 61B, 61C are first opened, and the cutoff valve 61D is closed. Accordingly, the heat transfer gas is supplied from the heat transfer gas source 58 to the gap 14 through the bypass line 66 and the heat transfer gas exhaust line 57 as well as the heat transfer gas supply line 56. After the heat transfer gas in the gap 14 is increased to a predetermined pressure, the cutoff valve 61C is closed, and the automatic pressure control valve 63 maintains the gap 14 at the predetermined pressure according to the detected pressure of the vacuum gauge 64. After the dry etching process is completed, the cut-off valve 61A is closed, while the cut-off valves 61B to 61D are opened. Thus, the heat transfer gas in the gap 14 is quickly exhausted not only through the heat transfer gas exhaust line 57 but also through the bypass lines 66 and 67 and the heat transfer gas supply line 56.

図1にのみ模式的に示すコントローラ68は、エッチングガス供給装置11、真空排気装置12、冷媒供給装置13、伝熱ガス給排装置16、高周波電源7、直流電源9A,9B、及びシリンダ21を含むドライエッチング装置1全体の動作を制御する。   A controller 68 schematically shown only in FIG. 1 includes an etching gas supply device 11, an evacuation device 12, a refrigerant supply device 13, a heat transfer gas supply / discharge device 16, a high frequency power supply 7, DC power supplies 9 </ b> A and 9 </ b> B, and a cylinder 21. The operation of the entire dry etching apparatus 1 is controlled.

本実施形態のドライエッチング装置1の動作を説明する。まず、真空排気装置12によりチャンバ3内を真空排気し、ゲート3cからチャンバ3内に搬入した基板2を基板サセプタ(下部電極)6の保持板23上に載置する。また、直流電源9A,9Bから静電吸着用電極8A,8Bに直流電圧を印加し、静電吸着により基板2を保持板23上に保持する。   The operation of the dry etching apparatus 1 of this embodiment will be described. First, the inside of the chamber 3 is evacuated by the evacuation device 12, and the substrate 2 carried into the chamber 3 from the gate 3 c is placed on the holding plate 23 of the substrate susceptor (lower electrode) 6. Further, a DC voltage is applied from the DC power supplies 9A and 9B to the electrostatic chucking electrodes 8A and 8B, and the substrate 2 is held on the holding plate 23 by electrostatic chucking.

次に、伝熱ガス給排装置16により伝熱ガスを保持板23の上面23aと基板2の下面2aの隙間14に供給する。伝熱ガス給排装置16の伝熱ガス供給ライン56から流路部材51の伝熱ガス流路51aに流入した伝熱ガスは、下端開口48bから入口部材47の下側ガス供給孔48に流入し、下側ガス供給孔48の上端開口48aから下端凹部46を介してノズル部材43の個々の上側ガス供給孔44の下端開口44bに流入する。各上側ガス供給孔44に流入した伝熱ガスは上端開口44aから隙間14に流入する。前述のように伝熱ガス給排装置16によって、隙間14は所定圧力に維持される。   Next, the heat transfer gas supply / discharge device 16 supplies the heat transfer gas to the gap 14 between the upper surface 23 a of the holding plate 23 and the lower surface 2 a of the substrate 2. The heat transfer gas that has flowed from the heat transfer gas supply line 56 of the heat transfer gas supply / discharge device 16 into the heat transfer gas flow path 51a of the flow path member 51 flows into the lower gas supply hole 48 of the inlet member 47 from the lower end opening 48b. Then, the gas flows from the upper end opening 48 a of the lower gas supply hole 48 into the lower end openings 44 b of the individual upper gas supply holes 44 of the nozzle member 43 through the lower end recess 46. The heat transfer gas flowing into each upper gas supply hole 44 flows into the gap 14 from the upper end opening 44a. As described above, the gap 14 is maintained at a predetermined pressure by the heat transfer gas supply / discharge device 16.

次に、エッチングガス供給装置11によりエッチングガスをチャンバ3内に供給し、真空排気装置12によりチャンバ3内を所定圧力に維持する。続いて、高周波電源7から基板サセプタ6(下部電極)の電極板24に高周波電圧を印加し、それによってチャンバ3内にプラズマを発生させる。このプラズマにより基板2がエッチングされる。   Next, an etching gas is supplied into the chamber 3 by the etching gas supply device 11, and the inside of the chamber 3 is maintained at a predetermined pressure by the vacuum exhaust device 12. Subsequently, a high frequency voltage is applied from the high frequency power source 7 to the electrode plate 24 of the substrate susceptor 6 (lower electrode), thereby generating plasma in the chamber 3. The substrate 2 is etched by this plasma.

エッチング中は、冷媒供給装置13からの冷媒を電極板24内の冷媒循環流路37で循環させ、それによって保持板23に静電吸着によって保持された基板2を冷却する。保持板23の上面23aと基板2の下面2aの隙間14には伝熱ガスが充填されているので、保持板23と基板2の間の熱伝導性が良好である。そのため、基板2の温度を均一化し、かつ高精度で基板温度を制御できる。   During the etching, the refrigerant from the refrigerant supply device 13 is circulated through the refrigerant circulation passage 37 in the electrode plate 24, thereby cooling the substrate 2 held on the holding plate 23 by electrostatic adsorption. Since the gap 14 between the upper surface 23a of the holding plate 23 and the lower surface 2a of the substrate 2 is filled with heat transfer gas, the thermal conductivity between the holding plate 23 and the substrate 2 is good. Therefore, the temperature of the substrate 2 can be made uniform and the substrate temperature can be controlled with high accuracy.

前述のように、難エッチング性の材料をエッチングするために高周波電源7から電極板24に高電圧(3〜4kV程度)が印加される。しかし、以下に詳述するように本実施形態のドライエッチング装置1では、基板2の下面2a側での種々の異常放電をいずれも防止することができる。   As described above, a high voltage (about 3 to 4 kV) is applied from the high frequency power source 7 to the electrode plate 24 in order to etch the material that is difficult to etch. However, as described in detail below, in the dry etching apparatus 1 of the present embodiment, any of various abnormal discharges on the lower surface 2a side of the substrate 2 can be prevented.

まず、隙間14を介して基板2の下面2aと対向する保持板23とノズル部材43はいずれも絶縁性材料からなる。従って、高周波電源7から高周波電圧が印加される電極板24と基板2の下面2aとの間の電気的絶縁性が高く、基板2と保持板23及び電極板24との間での異常放電の発生を防止できる。   First, both the holding plate 23 and the nozzle member 43 facing the lower surface 2a of the substrate 2 through the gap 14 are made of an insulating material. Therefore, the electrical insulation between the electrode plate 24 to which a high-frequency voltage is applied from the high-frequency power source 7 and the lower surface 2a of the substrate 2 is high, and abnormal discharge between the substrate 2 and the holding plate 23 and the electrode plate 24 occurs. Occurrence can be prevented.

次に、保持板23と基板2の隙間14に伝熱ガスを供給するノズル部材43の上側ガス供給孔44は、直径d1が50μm以上300μm以下程度(本実施形態では200μm)の微小な孔である。また、上側ガス供給孔44は、多孔質材料が備える微小な孔が互いに連通したものではなく、絶縁材料からなるノズル部材43に上端面43aから下端面43bに貫通する孔加工を施したものであるので、上側ガス供給孔44間での直径d1のばらつきが少ない。従って、直径d1のばらつきに起因する上側ガス供給孔44の孔壁相互間での局所的な異常放電の発生を防止できる。   Next, the upper gas supply hole 44 of the nozzle member 43 that supplies heat transfer gas to the gap 14 between the holding plate 23 and the substrate 2 is a minute hole having a diameter d1 of about 50 μm to 300 μm (200 μm in this embodiment). is there. Further, the upper gas supply hole 44 is not a small hole provided in the porous material communicating with each other, but is a nozzle member 43 made of an insulating material subjected to a hole process penetrating from the upper end surface 43a to the lower end surface 43b. Therefore, there is little variation in the diameter d1 between the upper gas supply holes 44. Accordingly, it is possible to prevent the occurrence of local abnormal discharge between the hole walls of the upper gas supply hole 44 due to the variation in the diameter d1.

前述のように、基板2に対する静電吸着力を高めること、第1ガス供給孔の孔壁間での異常放電防止すること等を考慮して、上端面43a及び下端面43bの面積が小さいノズル部材43に微小な直径d1の上側ガス供給孔44を可能な限り多数設けている。そのため、複数の上側ガス供給孔44のうち最もノズル部材43の外周面43c側に形成されたものと、ノズル部材43の外周面43cとが近接する。図6Bを参照すると、本実施形態では最も外周面43cに近接する上側ガス供給孔44と外周面43cとの距離αは0.6mm程度である。そのため、電極板24に高周波電圧が印加されているプラズマ処理中は、ノズル部材43の外周面43cが帯電する。図4を参照すると、ノズル部材43の外周面43cのうち特に下端面43bと隣接する部位71が強く帯電する。この部位71と、導電体である電極板24とその上面24aに形成された金属系接着剤層41が下側収容孔39に臨む部位72との間で異常放電が発生しやすい。特に、本実施形態では難エッチングの材料をエッチングするために電極板24に高電圧を印加しているので、部位71がより強く帯電し、部位71,72間の異常放電が発生しやすい。図4に示すように、部位71,72をつなぐ経路73は、ノズル部材43の外周面43cと嵌合孔49の周壁49aの間、入口部材47の上端面47aと上側収容孔31の座ぐり部33の底壁33aとの空隙、入口部材47の外周面47dと座ぐり部33の周壁33bとの空隙、及び入口部材47の外周面47dと下側収容孔39の周壁39aとの空隙を含む。   As described above, a nozzle having a small area of the upper end surface 43a and the lower end surface 43b in consideration of increasing the electrostatic attraction force to the substrate 2 and preventing abnormal discharge between the hole walls of the first gas supply hole. The member 43 is provided with as many upper gas supply holes 44 with a minute diameter d1 as possible. For this reason, among the plurality of upper gas supply holes 44, the one formed closest to the outer peripheral surface 43 c of the nozzle member 43 and the outer peripheral surface 43 c of the nozzle member 43 are close to each other. Referring to FIG. 6B, in this embodiment, the distance α between the upper gas supply hole 44 closest to the outer peripheral surface 43c and the outer peripheral surface 43c is about 0.6 mm. Therefore, the outer peripheral surface 43c of the nozzle member 43 is charged during the plasma processing in which the high frequency voltage is applied to the electrode plate 24. Referring to FIG. 4, a portion 71 adjacent to the lower end surface 43b in the outer peripheral surface 43c of the nozzle member 43 is strongly charged. Abnormal discharge is likely to occur between this portion 71 and the portion 72 where the metal-based adhesive layer 41 formed on the upper surface 24a of the electrode plate 24, which is a conductor, faces the lower accommodation hole 39. In particular, in the present embodiment, since a high voltage is applied to the electrode plate 24 in order to etch a difficult-to-etch material, the portion 71 is more strongly charged and abnormal discharge between the portions 71 and 72 is likely to occur. As shown in FIG. 4, the path 73 connecting the portions 71 and 72 is between the outer peripheral surface 43 c of the nozzle member 43 and the peripheral wall 49 a of the fitting hole 49 and between the upper end surface 47 a of the inlet member 47 and the upper accommodation hole 31. A gap between the bottom wall 33 a of the portion 33, a gap between the outer peripheral surface 47 d of the inlet member 47 and the peripheral wall 33 b of the spot facing portion 33, and a gap between the outer peripheral surface 47 d of the inlet member 47 and the peripheral wall 39 a of the lower housing hole 39. Including.

本実施形態では、部位71,72をつなぐ経路73に含まれる入口部材47の上端面47aと上側収容孔31の座ぐり部33の底壁33aとの空隙、入口部材47の外周面47dと座ぐり部33の周壁33bとの空隙、及び入口部材47の外周面47dと下側収容孔39の周壁39aとの空隙に絶縁性接着剤層52を設けている。この絶縁性接着剤層52を設けたことにより部位71,72間の電位差が低減される。また、絶縁性着剤層52で充填されているので、これらの部位71,72をつなぐ経路73に含まれる空隙に伝熱ガスが侵入しない。従って、部位71,72との間での局所的な異常放電の発生を防止できる。   In the present embodiment, the gap between the upper end surface 47a of the inlet member 47 and the bottom wall 33a of the spot facing portion 33 of the upper accommodation hole 31 included in the path 73 connecting the portions 71 and 72, the outer peripheral surface 47d of the inlet member 47 and the seat. An insulating adhesive layer 52 is provided in the space between the peripheral wall 33 b of the bore 33 and the space between the outer peripheral surface 47 d of the inlet member 47 and the peripheral wall 39 a of the lower housing hole 39. By providing the insulating adhesive layer 52, the potential difference between the portions 71 and 72 is reduced. In addition, since the insulating adhesive layer 52 is filled, the heat transfer gas does not enter the voids included in the path 73 connecting these portions 71 and 72. Therefore, the occurrence of local abnormal discharge between the portions 71 and 72 can be prevented.

保持板23と電極板24の熱膨張の程度差を吸収するために変形性に富むが導電性の高い金属系接着剤層41を設ける必要がある。この金属系接着剤層41が存在することにより部位71,72の間の異常放電がより生じやすい。しかし、本実施形態では経路73の一部を構成する空隙に絶縁性接着剤層52を設けているので、金属系接着剤層41が存在するにもかかわらず、部位71,72間での異常放電の発生を確実に防止できる。   In order to absorb the difference in thermal expansion between the holding plate 23 and the electrode plate 24, it is necessary to provide a metal adhesive layer 41 that is highly deformable but highly conductive. Due to the presence of the metal-based adhesive layer 41, abnormal discharge between the portions 71 and 72 is more likely to occur. However, in this embodiment, since the insulating adhesive layer 52 is provided in the gap that constitutes a part of the path 73, the abnormality between the portions 71 and 72 despite the presence of the metal-based adhesive layer 41. The occurrence of discharge can be reliably prevented.

保持板23の上側収容孔31に設けた座ぐり部33に入口部材47の上端面47a側を配置したことにより、経路73が折れ曲がっている。この折れ曲がり部分の存在により経路73の距離が長くなっている。具体的には、図4に示すように、入口部材47の上端面47aと座ぐり部33の底壁33aの間の空隙に対して、入口部材47の外周面47dと座ぐり部33の周壁33bとの間の空隙は直角である。また、入口部材47の上端面47aに設けた嵌合孔49にノズル部材43の下端面43b側を嵌合したことによっても、経路73が折れ曲がって距離が長くなっている。具体的には、図4に示すように、ノズル部材43の外周面43cと嵌合孔49の周壁49aの空隙に対して、入口部材47に上端面47aと座ぐり部33の周壁33bとの間の空隙は直角である。経路73を折れ曲げて長くしたことによっても、部位71,72の間の局所的な異常放電の発生が防止される。図12を参照すると、部位71,72を経路73を介して対向する電極とみなした場合、圧力Pと距離dの積Pdは極値Pdeよりも大きく、距離dの値が大きい程放電発生電圧Vが大きくなる(矢印A2参照。)。従って、経路73の長さが長い程、部位71,72間の局所的な異常放電は発生しにくくなる。 By arranging the upper end face 47a side of the inlet member 47 in the spot facing portion 33 provided in the upper accommodation hole 31 of the holding plate 23, the path 73 is bent. The distance of the path 73 is increased due to the presence of the bent portion. Specifically, as shown in FIG. 4, the outer peripheral surface 47 d of the inlet member 47 and the peripheral wall of the counterbore portion 33 with respect to the gap between the upper end surface 47 a of the inlet member 47 and the bottom wall 33 a of the counterbore portion 33. The gap between 33b is a right angle. Also, the path 73 is bent and the distance is increased by fitting the lower end surface 43 b side of the nozzle member 43 into the fitting hole 49 provided in the upper end surface 47 a of the inlet member 47. Specifically, as shown in FIG. 4, with respect to the gap between the outer peripheral surface 43 c of the nozzle member 43 and the peripheral wall 49 a of the fitting hole 49, the inlet member 47 has an upper end surface 47 a and a peripheral wall 33 b of the spot facing portion 33. The gap between them is a right angle. Even when the path 73 is bent and lengthened, the occurrence of local abnormal discharge between the portions 71 and 72 is prevented. Referring to FIG. 12, when the parts 71 and 72 are regarded as electrodes facing each other through the path 73, the product Pd 2 of the pressure P and the distance d is larger than the extreme value Pde, and discharge is generated as the value of the distance d is larger. The voltage V S increases (see arrow A2). Therefore, as the length of the path 73 is longer, local abnormal discharge between the portions 71 and 72 is less likely to occur.

以上のように、本実施形態のドライエッチング装置では、基板2と保持板23及び電極板24間の異常放電、上側ガス供給孔44の孔壁間の異常放電、及びノズル部材43の外周面43cの部位71と電極板24及び金属系接着剤層41の下側収容孔39に臨む部位72との間の異常放電をいずれも防止できる。従って、基板2の下面2a側で発生する異常放電に起因する基板2の損傷を防止し、ドライエッチング処理の安定性を向上できる。   As described above, in the dry etching apparatus of this embodiment, abnormal discharge between the substrate 2, the holding plate 23 and the electrode plate 24, abnormal discharge between the hole walls of the upper gas supply hole 44, and the outer peripheral surface 43 c of the nozzle member 43. The abnormal discharge between the part 71 and the part 72 facing the lower receiving hole 39 of the electrode plate 24 and the metal adhesive layer 41 can be prevented. Accordingly, it is possible to prevent the substrate 2 from being damaged due to abnormal discharge occurring on the lower surface 2a side of the substrate 2 and improve the stability of the dry etching process.

エッチング終了時には、高周波電源7から電極板24への高周波電圧の印加を停止する。続いて、伝熱ガス給排装置16により伝熱ガスを排気して隙間14を減圧した後、直流電源9A,9Bから静電吸着用電極8A,8Bへの直流電圧の印加を停止し、保持板23への基板2の保持を解除する。その後、突上げ装置17によって基板2を保持板23から引き離し、ゲート3cからチャンバ3の外部に搬出する。   At the end of etching, the application of the high frequency voltage from the high frequency power source 7 to the electrode plate 24 is stopped. Subsequently, after the heat transfer gas is exhausted by the heat transfer gas supply / discharge device 16 and the gap 14 is decompressed, the application of the DC voltage from the DC power supplies 9A and 9B to the electrostatic adsorption electrodes 8A and 8B is stopped and held. The holding of the substrate 2 on the plate 23 is released. Thereafter, the substrate 2 is pulled away from the holding plate 23 by the push-up device 17 and carried out of the chamber 3 from the gate 3c.

(第2実施形態)
図8に示す本発明の第2実施形態では、入口部材47に嵌合孔49(図4参照)を形成しておらず、ノズル部材43の下端面43bは入口部材47の上端面47aに当接している。ノズル部材43の外周面43cの部位71と電極板24及び金属系接着剤層41の部位72をつなぐ経路73は、入口部材47の上端面47aと座ぐり部33の底壁33aとの間の空隙、入口部材47の外周面47dと座ぐり部33の周壁33bの間の空隙、及び入口部材47の外周面47dと下側収容孔39の周壁39aとの間の空隙により構成されている。これらの空隙にはいずれも絶縁性接着剤層52が形成されており、部位71と部位72の間での局所的な異常放電を防止している。
(Second Embodiment)
In the second embodiment of the present invention shown in FIG. 8, the fitting hole 49 (see FIG. 4) is not formed in the inlet member 47, and the lower end surface 43 b of the nozzle member 43 is in contact with the upper end surface 47 a of the inlet member 47. It touches. A path 73 connecting the portion 71 of the outer peripheral surface 43 c of the nozzle member 43 and the portion 72 of the electrode plate 24 and the metal-based adhesive layer 41 is between the upper end surface 47 a of the inlet member 47 and the bottom wall 33 a of the spot facing portion 33. A gap, a gap between the outer peripheral surface 47 d of the inlet member 47 and the peripheral wall 33 b of the spot facing portion 33, and a gap between the outer peripheral surface 47 d of the inlet member 47 and the peripheral wall 39 a of the lower receiving hole 39 are configured. An insulating adhesive layer 52 is formed in each of these voids, and local abnormal discharge between the portion 71 and the portion 72 is prevented.

本実施形態では、入口部材47の直径D4を第1実施形態よりも大きく設定し、それに対応して座ぐり部33の直径D2と下側収容孔39の直径D5も第1実施形態よりも大きく設定している。これらの寸法設定により部位71,72をつなぐ経路73のうち、入口部材47の上端面47aと座ぐり部33の底壁33aとの間の空隙の長さを長く設定している。これによって経路73の十分な長さが確保され、部位71,72間での異常放電をより確実に防止できる。   In the present embodiment, the diameter D4 of the inlet member 47 is set larger than that in the first embodiment, and the diameter D2 of the counterbore portion 33 and the diameter D5 of the lower receiving hole 39 are correspondingly larger than those in the first embodiment. It is set. By setting these dimensions, the length of the gap between the upper end surface 47a of the inlet member 47 and the bottom wall 33a of the spot facing portion 33 in the path 73 connecting the portions 71 and 72 is set longer. As a result, a sufficient length of the path 73 is secured, and abnormal discharge between the portions 71 and 72 can be prevented more reliably.

第2実施形態のその他の構成及び作用は第1実施形態と同様であるので、同一の要素には同一の符号を付して説明は省略する。   Since the other configurations and operations of the second embodiment are the same as those of the first embodiment, the same elements are denoted by the same reference numerals and description thereof is omitted.

(第3実施形態)
図9に示す本発明の第3実施形態では、保持板23の上側収容孔31には座ぐり部33(図4参照)が形成されておらず、入口部材47の上端面47aは保持板23の下面23bに位置している。部位71,72をつなぐ経路73は、ノズル部材43の外周面43cと嵌合孔49の周壁49aとの間の空隙、ノズル部材43の上端面43aと保持板23の下面23bとの間の空隙、及び入口部材47の外周面47dと下側収容孔39の周壁39aとの空隙により構成されている。これらの空隙にはいずれも絶縁性接着剤層52が形成されており、部位71,72間での局所的な異常放電を防止している。
(Third embodiment)
In the third embodiment of the present invention shown in FIG. 9, no counterbore portion 33 (see FIG. 4) is formed in the upper accommodation hole 31 of the holding plate 23, and the upper end surface 47 a of the inlet member 47 is formed on the holding plate 23. Is located on the lower surface 23b. A path 73 connecting the portions 71 and 72 is a gap between the outer peripheral surface 43 c of the nozzle member 43 and the peripheral wall 49 a of the fitting hole 49, and a gap between the upper end surface 43 a of the nozzle member 43 and the lower surface 23 b of the holding plate 23. And an air gap between the outer peripheral surface 47 d of the inlet member 47 and the peripheral wall 39 a of the lower accommodation hole 39. An insulating adhesive layer 52 is formed in each of these gaps, and local abnormal discharge between the portions 71 and 72 is prevented.

また、入口部材47の直径D4と下側収容孔39の直径D5を第1実施形態よりも大きく設定し、経路73のうち入口部材47の上端面47aと保持板23の下面23bとの間の空隙の長さを長く設定している。これによって経路73の十分な長さが確保され、部位71,72の間での異常放電をより確実に防止できる。   Further, the diameter D4 of the inlet member 47 and the diameter D5 of the lower receiving hole 39 are set to be larger than those in the first embodiment, and the path 73 is formed between the upper end surface 47a of the inlet member 47 and the lower surface 23b of the holding plate 23. The length of the gap is set longer. As a result, a sufficient length of the path 73 is ensured, and abnormal discharge between the portions 71 and 72 can be prevented more reliably.

第3実施形態のその他の構成及び作用は第1実施形態と同様であるので、同一の要素には同一の符号を付して説明は省略する。   Since other configurations and operations of the third embodiment are the same as those of the first embodiment, the same elements are denoted by the same reference numerals, and description thereof is omitted.

(第4実施形態)
図10に示す本発明の第4実施形態では、保持板23の上側収容孔31に座ぐり部33(図4参照)が形成されていない。また、ノズル部材43の上端面43aには嵌合孔49(図4参照)が形成されていない。ノズル部材43の下端面43bと入口部材47の上端面47aは、いずれも保持板23の下面23bに位置している。部位71,72をつなぐ経路73は、入口部材47の上端面47aと保持板23の下面23bとの間の空隙により構成されている。この空隙に絶縁性接着剤層52が形成されており、部位71,72間での局所的な異常放電を防止している。
(Fourth embodiment)
In the fourth embodiment of the present invention shown in FIG. 10, the counterbore portion 33 (see FIG. 4) is not formed in the upper accommodation hole 31 of the holding plate 23. Moreover, the fitting hole 49 (refer FIG. 4) is not formed in the upper end surface 43a of the nozzle member 43. FIG. Both the lower end surface 43 b of the nozzle member 43 and the upper end surface 47 a of the inlet member 47 are located on the lower surface 23 b of the holding plate 23. A path 73 connecting the portions 71 and 72 is formed by a gap between the upper end surface 47 a of the inlet member 47 and the lower surface 23 b of the holding plate 23. An insulating adhesive layer 52 is formed in the gap, and local abnormal discharge between the portions 71 and 72 is prevented.

また、第3実施形態と同様に、入口部材47の直径D4と下側収容孔39の直径D5を第1実施形態よりも大きく設定し、経路73を構成する入口部材47の上端面47aと保持板23の下面23bとの間の空隙の長さを長く設定している。これによって経路73の十分な長さが確保され、部位71,72間での異常放電をより確実に防止できる。   Similarly to the third embodiment, the diameter D4 of the inlet member 47 and the diameter D5 of the lower receiving hole 39 are set larger than those of the first embodiment, and the upper end surface 47a of the inlet member 47 constituting the path 73 is held. The length of the gap between the lower surface 23b of the plate 23 is set long. As a result, a sufficient length of the path 73 is secured, and abnormal discharge between the portions 71 and 72 can be prevented more reliably.

第4実施形態のその他の構成及び作用は第1実施形態と同様であるので、同一の要素には同一の符号を付して説明は省略する。   Since the other configurations and operations of the fourth embodiment are the same as those of the first embodiment, the same elements are denoted by the same reference numerals and description thereof is omitted.

(第5実施形態)
図11に示す本発明の第5実施形態では、保持板23に形成された上側収容孔31に座ぐり部33(図4参照)を形成していない。また、入口部材47の直径D4をノズル部材43の直径D3と同一に設定し、入口部材47の上端面47a側を上側収容孔31内に収容している。部位71,72をつなぐ経路73は、ノズル部材43の外周面43cと上側収容孔31の周壁との空隙により構成されている。この空隙に絶縁性接着剤層52が形成されており、部位71,72間での局所的な異常放電を防止している。また、ノズル部材43の上側収容孔31内に収容されている部分の長さLを長く設定している。これによって経路73の十分な長さが確保され、部位71,72の間での異常放電をより確実に防止できる。
(Fifth embodiment)
In the fifth embodiment of the present invention shown in FIG. 11, the counterbore 33 (see FIG. 4) is not formed in the upper accommodation hole 31 formed in the holding plate 23. Further, the diameter D 4 of the inlet member 47 is set to be the same as the diameter D 3 of the nozzle member 43, and the upper end surface 47 a side of the inlet member 47 is accommodated in the upper accommodation hole 31. A path 73 connecting the portions 71 and 72 is formed by a gap between the outer peripheral surface 43 c of the nozzle member 43 and the peripheral wall of the upper accommodation hole 31. An insulating adhesive layer 52 is formed in the gap, and local abnormal discharge between the portions 71 and 72 is prevented. Moreover, the length L of the part accommodated in the upper side accommodation hole 31 of the nozzle member 43 is set long. As a result, a sufficient length of the path 73 is ensured, and abnormal discharge between the portions 71 and 72 can be prevented more reliably.

第5実施形態のその他の構成及び作用は第1実施形態と同様であるので、同一の要素には同一の符号を付して説明は省略する。   Since other configurations and operations of the fifth embodiment are the same as those of the first embodiment, the same elements are denoted by the same reference numerals and description thereof is omitted.

本発明は実施形態に限定されず種々の変形が可能である。例えば、上側収容孔31、下側収容孔39、上側ガス供給孔44、下側ガス供給孔48等の平面視での形状は円形に限定されず、楕円形、矩形等の他の形状であってもよい。また、上側収容孔31、下側収容孔39、上側ガス供給孔44、及び下側ガス供給孔48は、必ずしも鉛直方向に設ける必要はなく、保持板23、電極板24、及び台座部材26に斜めに形成してもよい。さらに、ノズル部材43や入口部材47の外形は、円柱状に限定されず、角柱状等の他の形状であってもよい。また、反応イオンエッチング型のドライエッチング装置を例に本発明を説明したが、本発明は誘導結合プラズマ型を含む他のドライエッチング装置にも適用できる。さらに、本発明は、ドライエッチング装置以外の、スパッタ装置、CVD装置等の他のプラズマ処理装置にも適用できる。   The present invention is not limited to the embodiments and can be variously modified. For example, the shape of the upper accommodation hole 31, the lower accommodation hole 39, the upper gas supply hole 44, the lower gas supply hole 48, etc. in plan view is not limited to a circle, but may be other shapes such as an ellipse or a rectangle. May be. Further, the upper accommodation hole 31, the lower accommodation hole 39, the upper gas supply hole 44, and the lower gas supply hole 48 are not necessarily provided in the vertical direction, and are not provided in the holding plate 23, the electrode plate 24, and the base member 26. You may form diagonally. Furthermore, the outer shape of the nozzle member 43 and the inlet member 47 is not limited to a cylindrical shape, and may be other shapes such as a prismatic shape. Although the present invention has been described by taking a reactive ion etching type dry etching apparatus as an example, the present invention can also be applied to other dry etching apparatuses including an inductively coupled plasma type. Furthermore, the present invention can be applied to other plasma processing apparatuses such as a sputtering apparatus and a CVD apparatus other than the dry etching apparatus.

本発明の第1実施形態に係るドライエッチング装置を示す模式図。The schematic diagram which shows the dry etching apparatus which concerns on 1st Embodiment of this invention. 基板サセプタ(下部電極)の平面図。The top view of a board | substrate susceptor (lower electrode). 図2のIII−III線での断面図。Sectional drawing in the III-III line of FIG. 図3の部分拡大図。The elements on larger scale of FIG. 基板サセプタ(下部電極)の分解断面図。The exploded sectional view of a substrate susceptor (lower electrode). 上側ガス供給部材の平面図。The top view of an upper side gas supply member. 図6AのVI−VI線での断面図。Sectional drawing in the VI-VI line of FIG. 6A. 下側ガス供給部材の平面図。The top view of a lower side gas supply member. 図7AのVII−VII線での断面図。Sectional drawing in the VII-VII line of FIG. 7A. 本発明の第2実施形態に係るドライエッチング装置の基板サセプタ(下部電極)の断面図。Sectional drawing of the substrate susceptor (lower electrode) of the dry etching apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るドライエッチング装置の基板サセプタ(下部電極)の断面図。Sectional drawing of the substrate susceptor (lower electrode) of the dry etching apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るドライエッチング装置の基板サセプタ(下部電極)の断面図。Sectional drawing of the board | substrate susceptor (lower electrode) of the dry etching apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るドライエッチング装置の基板サセプタ(下部電極)の断面図。Sectional drawing of the substrate susceptor (lower electrode) of the dry etching apparatus which concerns on 5th Embodiment of this invention. 放電開始電圧と圧力と距離の距離との関係を示すグラフ。The graph which shows the relationship between the discharge start voltage, a pressure, and the distance of distance.

符号の説明Explanation of symbols

1 ドライエッチング装置
2 基板
2a 下面
3 チャンバ
3a エッチングガス流入口
3b 排気口
3c ゲート
4 上部電極
6 基板サセプタ(下部電極)
7 高周波電源
8A,8B 静電吸着用電極
9A,9B 直流電源
11 エッチングガス供給装置
12 真空排気装置
13 冷媒供給装置
14 隙間
16 伝熱ガス給排装置
17 突上げ装置
18 突上げピン
19 ベース
21 シリンダ
21a ロッド
22 ハウジング
23 保持板(絶縁板部材)
23a 上面
23b 下面
24 電極板(金属板部材)
24a 上面
24b 下面
26 台座部材
27,28 枠体
29 環状板
31 上側収容孔(第1の収容孔)
32 孔本体
32a 周壁
33 座ぐり部
33a 底壁
33b 周壁
34 突起
36 囲み部
37 冷媒循環流路
38 冷媒流路
39 下側収容孔(第2の収容孔)
39a 周壁
41 金属系接着剤層
42 収容孔
43 ノズル部材(第1のガス供給部材)
43a 上端面
43b 下端面
43c 外周面
44 上側ガス供給孔(第1のガス供給孔)
44a 上端開口
44b 下端開口
46 下端凹部
47 入口部材(第2のガス供給部材)
47a 上端面
47b 下端面
47c 拡径部
47d 外周面
48 下側ガス供給孔(第2のガス供給孔)
48a 上端開口
48b 下端開口
49 嵌合孔
49a 周壁
51 流路部材
51a 伝熱ガス流路
52 絶縁性接着剤層
56 伝熱ガス供給ライン
57 伝熱ガス排気ライン
58 伝熱ガス源
59 MFC
61A,61B,61C,61D カットオフバルブ
62 真空ポンプ
63 自動圧力制御バルブ
64 真空計
66,67 バイパスライン
68 コントローラ
71,72 部位
73 経路
81 収容孔
82 ガイド筒部材
82a ガイド孔
83 収容孔
84 貫通孔
DESCRIPTION OF SYMBOLS 1 Dry etching apparatus 2 Substrate 2a Lower surface 3 Chamber 3a Etching gas inflow port 3b Exhaust port 3c Gate 4 Upper electrode 6 Substrate susceptor (lower electrode)
7 High-frequency power supply 8A, 8B Electrostatic adsorption electrode 9A, 9B DC power supply 11 Etching gas supply device 12 Vacuum exhaust device 13 Refrigerant supply device 14 Gap 16 Heat transfer gas supply / discharge device 17 Push-up device 18 Push-up pin 19 Base 21 Cylinder 21a Rod 22 Housing 23 Holding plate (insulating plate member)
23a Upper surface 23b Lower surface 24 Electrode plate (metal plate member)
24a upper surface 24b lower surface 26 pedestal member 27, 28 frame 29 annular plate 31 upper accommodation hole (first accommodation hole)
32 hole body 32a peripheral wall 33 counterbore part 33a bottom wall 33b peripheral wall 34 projection 36 surrounding part 37 refrigerant circulation channel 38 refrigerant channel 39 lower accommodation hole (second accommodation hole)
39a Perimeter wall 41 Metal-based adhesive layer 42 Housing hole 43 Nozzle member (first gas supply member)
43a upper end surface 43b lower end surface 43c outer peripheral surface 44 upper gas supply hole (first gas supply hole)
44a Upper end opening 44b Lower end opening 46 Lower end recess 47 Inlet member (second gas supply member)
47a Upper end surface 47b Lower end surface 47c Expanded portion 47d Outer peripheral surface 48 Lower gas supply hole (second gas supply hole)
48a Upper end opening 48b Lower end opening 49 Fitting hole 49a Perimeter wall 51 Flow path member 51a Heat transfer gas flow path 52 Insulating adhesive layer 56 Heat transfer gas supply line 57 Heat transfer gas exhaust line 58 Heat transfer gas source 59 MFC
61A, 61B, 61C, 61D Cutoff valve 62 Vacuum pump 63 Automatic pressure control valve 64 Vacuum gauge 66, 67 Bypass line 68 Controller 71, 72 Site 73 Path 81 Housing hole 82 Guide cylinder member 82a Guide hole 83 Housing hole 84 Through hole

Claims (14)

絶縁性材料からなり、基板(2)を静電吸着して上面(23a)に保持するための電極(8A,8B)が内部に配置され、かつ前記上面から下面(23b)まで貫通する第1の収容孔(31)が形成された絶縁板部材(23)と、
金属材料からなり、上面(24a)に前記絶縁板部材が固定され、前記上面から下面(24b)まで貫通する前記第1の収容孔より孔寸法が大きい第2の収容孔(39)が前記絶縁板部材の前記第1の収容孔と対応する位置に形成され、かつプラズマ発生のための高周波電圧が印加される金属板部材(24)と、
絶縁性材料からなり、前記絶縁板部材の前記第1の収容孔に収容され、上端面(43a)から下端面(43b)まで貫通する複数の第1のガス供給孔(44)が形成され、かつ前記第1のガス供給孔の上端開口(44a)が前記絶縁板部材の前記上面で開口している、第1のガス供給部材(43)と、
絶縁性材料からなり、前記金属板部材の前記第2の収容孔に収容され、前記第1のガス供給孔よりも孔寸法が大きい第2のガス供給孔(48)が上端面(47a)から下端面(47b)まで貫通するように形成され、前記第2のガス供給孔の下端開口(48b)から伝熱ガスが供給され、かつ前記伝熱ガスは前記第2のガス供給孔の上端開口(48a)から前記第1のガス供給孔の下端開口(44b)に流入し、前記第1のガス供給孔の前記上端開口から前記絶縁板部材の上面と前記基板の下面の間の隙間(14)に供給される、第2のガス供給部材(47)と、
少なくとも前記第2のガス供給部材の上端面と前記絶縁板部材の下面との間に形成された絶縁性接着剤層(52)と
を備えることを特徴とする、プラズマ処理装置。
An electrode (8A, 8B) made of an insulating material for electrostatically adsorbing the substrate (2) and holding it on the upper surface (23a) is disposed inside, and the first penetrates from the upper surface to the lower surface (23b). An insulating plate member (23) in which a receiving hole (31) is formed;
The insulating plate member is made of a metal material, the insulating plate member is fixed to the upper surface (24a), and the second receiving hole (39) having a hole size larger than the first receiving hole penetrating from the upper surface to the lower surface (24b) is the insulating material. A metal plate member (24) formed at a position corresponding to the first accommodation hole of the plate member and to which a high-frequency voltage for plasma generation is applied;
A plurality of first gas supply holes (44) made of an insulating material, accommodated in the first accommodation hole of the insulating plate member, and penetrating from the upper end surface (43a) to the lower end surface (43b) are formed, And a first gas supply member (43) in which an upper end opening (44a) of the first gas supply hole is opened on the upper surface of the insulating plate member;
A second gas supply hole (48) made of an insulating material and accommodated in the second accommodation hole of the metal plate member and having a hole size larger than the first gas supply hole is formed from the upper end surface (47a). It is formed to penetrate to the lower end surface (47b), heat transfer gas is supplied from the lower end opening (48b) of the second gas supply hole, and the heat transfer gas is opened at the upper end of the second gas supply hole (48a) flows into the lower end opening (44b) of the first gas supply hole, and the gap (14 between the upper end opening of the first gas supply hole and the upper surface of the insulating plate member and the lower surface of the substrate). A second gas supply member (47),
A plasma processing apparatus comprising: an insulating adhesive layer (52) formed at least between an upper end surface of the second gas supply member and a lower surface of the insulating plate member.
前記第1のガス供給孔の孔寸法は50μm以上300μm以下であり、
前記第2のガス供給孔の孔寸法は、300μm以上700μm以下であることを特徴とする、請求項1に記載のプラズマ処理装置。
The hole size of the first gas supply hole is not less than 50 μm and not more than 300 μm,
2. The plasma processing apparatus according to claim 1, wherein a hole size of the second gas supply hole is 300 μm or more and 700 μm or less.
前記第1のガス供給部材に、前記第1のガス供給孔が30個以上設けられていることを特徴とする、請求項1に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein 30 or more of the first gas supply holes are provided in the first gas supply member. 前記絶縁板部材の下面と前記金属板部材の上面との間に、前記絶縁板部材と前記金属板部材を互いに固定する金属系接着剤層(41)をさらに備えることを特徴とする請求項1から請求項3のいずれか1項に記載のプラズマ処理装置。   The metal-based adhesive layer (41) for fixing the insulating plate member and the metal plate member to each other is further provided between the lower surface of the insulating plate member and the upper surface of the metal plate member. The plasma processing apparatus according to claim 3. 前記第1の収容孔は、前記絶縁板部材の上面側に配置され、前記第1のガス供給部材のと対応する孔寸法を有し、前記第1のガス供給部材の少なくとも前記上端面側が収容される孔本体(32)と、前記絶縁板部材の下面側に配置され、前記第2のガス供給部材と対応する孔径を有し、前記第2のガス供給部材の前記上端面側が収容される座ぐり部(33)とを備え、かつ
前記絶縁性接着剤層は、前記第2のガス供給部材の上端面と前記座ぐり部の底壁(33a)との間の空隙、前記第2のガス供給部材の上端面側の外周面(47d)と前記座ぐり部の周壁(33b)との間の空隙、及び前記第2のガス供給部材の上端面側の外周面と前記第2の収容孔の周壁(39a)との間の空隙に形成されていることを特徴とする、請求項1から請求項4のいずれか1項に記載のプラズマ処理装置。
The first accommodation hole is disposed on the upper surface side of the insulating plate member, has a hole size corresponding to that of the first gas supply member, and accommodates at least the upper end surface side of the first gas supply member. A hole body (32) to be formed, disposed on the lower surface side of the insulating plate member, having a hole diameter corresponding to the second gas supply member, and accommodating the upper end surface side of the second gas supply member. A counterbore part (33), and the insulating adhesive layer includes a gap between an upper end surface of the second gas supply member and a bottom wall (33a) of the counterbore part, The gap between the outer peripheral surface (47d) on the upper end surface side of the gas supply member and the peripheral wall (33b) of the spot facing portion, the outer peripheral surface on the upper end surface side of the second gas supply member, and the second housing 2. A space between the peripheral wall (39a) of the hole and formed in a gap. 5. The plasma processing apparatus according to any one of 4 above.
前記第2のガス供給部材はその上端面に嵌合孔(49)を有し、前記第1のガス供給部材の下端面側が前記嵌合孔に嵌め込まれていることを特徴とする、請求項1から請求項5のいずれか1項に記載のプラズマ処理装置。   The said 2nd gas supply member has a fitting hole (49) in the upper end surface, and the lower end surface side of the said 1st gas supply member is engage | inserted by the said fitting hole, The characterized by the above-mentioned. The plasma processing apparatus according to any one of claims 1 to 5. 絶縁性材料からなり、基板(2)を静電吸着して上面(23a)に保持するための電極(8A,8B)が内部に配置され、かつ前記上面から下面(23b)まで貫通する第1の収容孔(31)が形成され、前記第1の収容孔は、前記絶縁板部材の上面側に配置された孔本体(32)と絶縁板部材の下面側に配置された前記孔本体よりも孔寸法が大きい座ぐり部(33)とを備える、絶縁板部材(23)と、
金属材料からなり、上面(24a)に前記絶縁板部材が固定され、かつ前記上面から下面(24b)まで貫通する第2の収容孔(39)が前記絶縁板部材の前記第1の収容孔と対応する位置に形成され、かつプラズマ発生のための高周波電圧が印加される金属板部材(24)と、
絶縁性材料からなり、前記絶縁板部材の前記第1の収容孔の前記孔本体に上端面(43a)側が収容され、前記上端面から下端面(43b)まで貫通する複数の第1のガス供給孔(44)が形成され、かつ前記第1のガス供給孔(44)の上端開口(44a)が前記絶縁板部材の前記上面で開口している、第1のガス供給部材(43)と、
絶縁性材料からなり、前記第1のガス供給部材よりも外形寸法が大きく、前記金属板部材の前記第2の収容孔に収容されると共に、上端面(47a)側が前記絶縁板部材の前記第1の収容孔の前記座ぐり部に収容され、前記上端面に前記第1のガス供給部材の下端面側が嵌め込まれる嵌合孔(49)が形成され、前記第1のガス供給孔よりも孔寸法が大きい第2のガス供給孔(48)が前記上端面から下端面(47b)まで貫通するように形成され、前記第2のガス供給孔の下端開口(48b)から伝熱ガスが供給され、かつ前記伝熱ガスは前記第2のガス供給孔の上端開口(48a)から前記第1のガス供給孔の下端開口(44b)に流入して前記第1のガス供給孔の前記上端開口から前記絶縁板部材の上面と前記基板の下面の間の隙間(14)に供給される、第2のガス供給部材(47)と、
少なくとも前記第2のガス供給部材の上端面と前記第1の収容孔の座ぐり部の底壁(33a)の間、前記第2のガス供給部材の外周面(47d)と前記第1の収容孔の座ぐり部の周壁(33b)との間、及び前記第2のガス供給部材の外周面と前記第2の収容孔の周壁の間に形成された絶縁性接着剤層(52)と
を備えることを特徴とする、プラズマ処理装置。
An electrode (8A, 8B) made of an insulating material for electrostatically adsorbing the substrate (2) and holding it on the upper surface (23a) is disposed inside, and the first penetrates from the upper surface to the lower surface (23b). The first accommodation hole is formed with a hole body (32) disposed on the upper surface side of the insulating plate member and the hole body disposed on the lower surface side of the insulation plate member. An insulating plate member (23) comprising a counterbore (33) having a large hole size;
A second housing hole (39) made of a metal material, the insulating plate member being fixed to the upper surface (24a), and penetrating from the upper surface to the lower surface (24b) is formed with the first housing hole of the insulating plate member. A metal plate member (24) formed at a corresponding position and to which a high-frequency voltage for plasma generation is applied;
A plurality of first gas supplies made of an insulating material, the upper end surface (43a) side being accommodated in the hole body of the first accommodation hole of the insulating plate member, and penetrating from the upper end surface to the lower end surface (43b) A first gas supply member (43) in which a hole (44) is formed and an upper end opening (44a) of the first gas supply hole (44) is opened on the upper surface of the insulating plate member;
It is made of an insulating material, has an outer dimension larger than that of the first gas supply member, is accommodated in the second accommodation hole of the metal plate member, and an upper end surface (47a) side is the first of the insulation plate member. A fitting hole (49) is formed which is accommodated in the counterbore portion of the one accommodation hole and into which the lower end surface side of the first gas supply member is fitted on the upper end surface, and is more hole than the first gas supply hole. A second gas supply hole (48) having a large size is formed so as to penetrate from the upper end surface to the lower end surface (47b), and heat transfer gas is supplied from the lower end opening (48b) of the second gas supply hole. The heat transfer gas flows from the upper end opening (48a) of the second gas supply hole into the lower end opening (44b) of the first gas supply hole and from the upper end opening of the first gas supply hole. A gap between the upper surface of the insulating plate member and the lower surface of the substrate ( 4) is supplied to the second gas supply member and (47),
At least between the upper end surface of the second gas supply member and the bottom wall (33a) of the countersunk portion of the first accommodation hole, the outer peripheral surface (47d) of the second gas supply member and the first accommodation. An insulating adhesive layer (52) formed between the peripheral wall (33b) of the counterbore part of the hole and between the outer peripheral surface of the second gas supply member and the peripheral wall of the second accommodation hole. A plasma processing apparatus comprising:
前記第1のガス供給孔の孔寸法は50μm以上300μm以下であり、
前記第2のガス供給孔の孔寸法は、300μm以上700μm以下であることを特徴とする、請求項7に記載のプラズマ処理装置。
The hole size of the first gas supply hole is not less than 50 μm and not more than 300 μm,
The plasma processing apparatus according to claim 7, wherein a hole size of the second gas supply hole is 300 μm or more and 700 μm or less.
前記第1のガス供給部材に、前記第1のガス供給孔が30個以上設けられていることを特徴とする、請求項7又は請求項8に記載のプラズマ処理装置。   9. The plasma processing apparatus according to claim 7, wherein the first gas supply member is provided with 30 or more first gas supply holes. 前記絶縁板部材の下面と前記金属板部材の上面との間に、前記絶縁板部材と前記金属板部材を互いに固定する金属系接着剤層(41)をさらに備えることを特徴とする請求項7から請求項9のいずれか1項に記載のプラズマ処理装置。   The metal-based adhesive layer (41) for fixing the insulating plate member and the metal plate member to each other is further provided between the lower surface of the insulating plate member and the upper surface of the metal plate member. The plasma processing apparatus according to claim 9. 絶縁性材料からなり、基板(2)を静電吸着して上面(23a)に保持するための電極(8A,8B)が内部に配置され、かつ前記上面から下面(23b)まで貫通する第1の収容孔(31)が形成された絶縁板部材(23)と、
金属材料からなり、上面(24a)に前記絶縁板部材が固定され、前記第1の収容孔と同一孔寸法の第2の収容孔(39)が前記絶縁板部材の前記第1の収容孔と対応する位置に前記上面から下面(24b)まで貫通するように形成され、かつプラズマ発生のための高周波電圧が印加される金属板部材(24)と、
絶縁性材料からなり、前記絶縁板部材の前記第1の収容孔内に収容され、上端面(43a)から下端面(43b)まで貫通する複数の第1のガス供給孔(44)が形成され、かつ前記第1のガス供給孔の上端開口(44a)が前記絶縁板部材の前記上面で開口している、第1のガス供給部材(43)と、
絶縁性材料からなり、前記金属板部材の前記第2の収容孔に収容されると共に、上端面(47a)側が前記絶縁板部材の前記第1の収容孔に収容され、前記第1のガス供給孔よりも孔寸法が大きい第2のガス供給孔(48)が前記上端面から下端面(47b)まで貫通するように形成され、前記第2のガス供給孔の下端開口(48b)から伝熱ガスが供給され、かつ前記伝熱ガスは前記第2のガス供給孔の上端開口(48a)から前記第1のガス供給孔の下端開口(44b)に流入して前記第1のガス供給孔の前記上端開口から前記絶縁板部材の上面と前記基板の下面の間の隙間(14)に供給される、前記第1のガス供給部材と外形寸法が同一の第2のガス供給部材(47)と、
少なくとも前記第1のガス供給部材の外周面(43c)と前記第1の収容孔の周壁(32a)の間の空隙、前記第2のガス供給部材の外周面(47d)と前記第1の収容孔の周壁の間の空隙、及び前記第2のガス供給部材の外周面と前記第2の収容孔の周壁(39a)の間の空隙に形成された絶縁性接着剤層(52)と
を備えることを特徴とする、プラズマ処理装置。
An electrode (8A, 8B) made of an insulating material for electrostatically adsorbing the substrate (2) and holding it on the upper surface (23a) is disposed inside, and the first penetrates from the upper surface to the lower surface (23b). An insulating plate member (23) in which a receiving hole (31) is formed;
The insulating plate member is made of a metal material, fixed to the upper surface (24a), and the second receiving hole (39) having the same hole size as the first receiving hole is formed with the first receiving hole of the insulating plate member. A metal plate member (24) formed so as to penetrate from the upper surface to the lower surface (24b) at a corresponding position and to which a high-frequency voltage for plasma generation is applied;
A plurality of first gas supply holes (44) made of an insulating material and housed in the first housing hole of the insulating plate member and penetrating from the upper end surface (43a) to the lower end surface (43b) are formed. And a first gas supply member (43) in which an upper end opening (44a) of the first gas supply hole is opened on the upper surface of the insulating plate member;
The first gas supply is made of an insulating material and accommodated in the second accommodation hole of the metal plate member, and the upper end surface (47a) side is accommodated in the first accommodation hole of the insulation plate member. A second gas supply hole (48) having a hole size larger than the hole is formed so as to penetrate from the upper end surface to the lower end surface (47b), and heat is transferred from the lower end opening (48b) of the second gas supply hole. Gas is supplied, and the heat transfer gas flows from the upper end opening (48a) of the second gas supply hole into the lower end opening (44b) of the first gas supply hole and passes through the first gas supply hole. A second gas supply member (47) having the same outer dimensions as the first gas supply member, which is supplied from the upper end opening to a gap (14) between the upper surface of the insulating plate member and the lower surface of the substrate; ,
At least a gap between the outer peripheral surface (43c) of the first gas supply member and the peripheral wall (32a) of the first accommodation hole, the outer peripheral surface (47d) of the second gas supply member and the first accommodation. A gap between the peripheral walls of the holes, and an insulating adhesive layer (52) formed in the gap between the outer peripheral surface of the second gas supply member and the peripheral wall (39a) of the second accommodation hole. A plasma processing apparatus.
前記第1のガス供給孔の孔寸法は50μm以上300μm以下であり、
前記第2のガス供給孔の孔寸法は、300μm以上700μm以下であることを特徴とする、請求項11に記載のプラズマ処理装置。
The hole size of the first gas supply hole is not less than 50 μm and not more than 300 μm,
The plasma processing apparatus according to claim 11, wherein a hole size of the second gas supply hole is not less than 300 μm and not more than 700 μm.
前記第1のガス供給部材に、前記第1のガス供給孔が30個以上設けられていることを特徴とする、請求項11又は請求項12に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 11, wherein the first gas supply member is provided with 30 or more first gas supply holes. 前記絶縁板部材の下面と前記金属板部材の上面との間に、前記絶縁板部材と前記金属板部材を互いに固定する金属系接着剤層(41)をさらに備えることを特徴とする請求項11から請求項13のいずれか1項に記載のプラズマ処理装置。   The metal-based adhesive layer (41) for fixing the insulating plate member and the metal plate member to each other is further provided between the lower surface of the insulating plate member and the upper surface of the metal plate member. The plasma processing apparatus according to claim 1.
JP2005169116A 2005-06-09 2005-06-09 Plasma processing equipment Active JP4557814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169116A JP4557814B2 (en) 2005-06-09 2005-06-09 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169116A JP4557814B2 (en) 2005-06-09 2005-06-09 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2006344766A JP2006344766A (en) 2006-12-21
JP4557814B2 true JP4557814B2 (en) 2010-10-06

Family

ID=37641500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169116A Active JP4557814B2 (en) 2005-06-09 2005-06-09 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4557814B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087561B2 (en) * 2007-02-15 2012-12-05 株式会社クリエイティブ テクノロジー Electrostatic chuck
JP2010182763A (en) * 2009-02-04 2010-08-19 Hitachi High-Technologies Corp Plasma processing apparatus
JP5550602B2 (en) * 2011-04-28 2014-07-16 パナソニック株式会社 Electrostatic chuck and dry etching apparatus having the same
JP6005579B2 (en) * 2012-04-27 2016-10-12 日本碍子株式会社 Components for semiconductor manufacturing equipment
JP5984504B2 (en) * 2012-05-21 2016-09-06 新光電気工業株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck
JP2014082354A (en) 2012-10-17 2014-05-08 Hitachi High-Technologies Corp Plasma processing apparatus
JP6017328B2 (en) * 2013-01-22 2016-10-26 東京エレクトロン株式会社 Mounting table and plasma processing apparatus
US20150228524A1 (en) * 2014-02-12 2015-08-13 Varian Semiconductor Equipment Associates, Inc. Plasma resistant electrostatic clamp
JP6383389B2 (en) * 2016-07-22 2018-08-29 東京エレクトロン株式会社 Mounting table
JP6865145B2 (en) * 2016-12-16 2021-04-28 日本特殊陶業株式会社 Holding device
JP6368808B2 (en) * 2017-01-31 2018-08-01 株式会社日立ハイテクノロジーズ Plasma processing equipment
JP6994981B2 (en) * 2018-02-26 2022-01-14 東京エレクトロン株式会社 Manufacturing method of plasma processing equipment and mounting table
WO2019187785A1 (en) * 2018-03-26 2019-10-03 日本碍子株式会社 Electrostatic chuck heater
US11456161B2 (en) * 2018-06-04 2022-09-27 Applied Materials, Inc. Substrate support pedestal
WO2020004478A1 (en) * 2018-06-29 2020-01-02 北陸成型工業株式会社 Electrostatic chuck
CN112970091A (en) * 2018-11-01 2021-06-15 朗姆研究公司 High power electrostatic chuck with helium hole ignition/arcing prevention features
JP7240145B2 (en) * 2018-11-20 2023-03-15 日本特殊陶業株式会社 electrostatic chuck
US20220026151A1 (en) * 2018-12-14 2022-01-27 Nhk Spring Co., Ltd. Plate with flow channel
CN113228496A (en) * 2019-01-24 2021-08-06 京瓷株式会社 Electrostatic chuck
CN111668148A (en) * 2019-03-05 2020-09-15 Toto株式会社 Electrostatic chuck and processing apparatus
JP6729735B1 (en) * 2019-03-05 2020-07-22 Toto株式会社 Electrostatic chuck
JP7441404B2 (en) * 2019-03-05 2024-03-01 Toto株式会社 Electrostatic chuck and processing equipment
JP7441402B2 (en) * 2019-03-05 2024-03-01 Toto株式会社 Electrostatic chuck and processing equipment
JP7441403B2 (en) * 2019-03-05 2024-03-01 Toto株式会社 Electrostatic chuck and processing equipment
JP7269759B2 (en) * 2019-03-12 2023-05-09 新光電気工業株式会社 Substrate fixing device
JP7299805B2 (en) 2019-09-09 2023-06-28 日本特殊陶業株式会社 holding device
JP7458195B2 (en) * 2020-02-10 2024-03-29 東京エレクトロン株式会社 Mounting table, plasma processing device, and cleaning processing method
WO2021192935A1 (en) 2020-03-26 2021-09-30 株式会社巴川製紙所 Electrostatic chuck device and sleeve for electrostatic chuck device
JP7255659B1 (en) 2021-11-25 2023-04-11 住友大阪セメント株式会社 Electrostatic chuck device
WO2023153021A1 (en) * 2022-02-09 2023-08-17 日本碍子株式会社 Member for semiconductor manufacturing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270587A (en) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Plasma processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3050716B2 (en) * 1993-02-20 2000-06-12 東京エレクトロン株式会社 Plasma processing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270587A (en) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Plasma processing apparatus

Also Published As

Publication number Publication date
JP2006344766A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
JP4557814B2 (en) Plasma processing equipment
JP5248370B2 (en) Shower head and plasma processing apparatus
JP4819411B2 (en) Plasma processing equipment
US20110005686A1 (en) Loading table structure and processing device
US7056831B2 (en) Plasma processing apparatus and plasma processing method
CN107887246B (en) Mounting table and plasma processing apparatus
US8852386B2 (en) Plasma processing apparatus
JP7038497B2 (en) Manufacturing method of electrostatic chuck
US9623503B2 (en) Support unit and substrate treating device including the same
KR101850355B1 (en) Plasma processing apparatus
US20140116622A1 (en) Electrostatic chuck and substrate processing apparatus
US8747609B2 (en) Plasma processing apparatus and shower head
US10109466B2 (en) Support unit and apparatus for treating substrate
KR20190048114A (en) Support unit and substrate treating apparatus including the same
KR20090096334A (en) Cover part, processing gas diffusing and supplying unit, and substrate processing apparatus
KR20190019965A (en) Plasma processing apparatus
TWI508163B (en) High pressure bevel etch process
JP2019220555A (en) Mounting table and substrate processing apparatus
JP7458195B2 (en) Mounting table, plasma processing device, and cleaning processing method
JP2009076598A (en) Mounting stand structure and treatment equipment
KR102650167B1 (en) electrostatic chuck and plasma processing apparatus including the same
KR102323076B1 (en) Detection unit, substrate treating apparatus including the same and detecting method
JP2007234940A (en) Wafer processing apparatus
US20230064141A1 (en) Substrate processing apparatus including electrostatic chuck, substrate processing method, and method of manufacturing electrostatic chuck
KR101430745B1 (en) Electrostatic chuck and substrate treating apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Ref document number: 4557814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3