JP4557568B2 - Mg deposition method - Google Patents

Mg deposition method Download PDF

Info

Publication number
JP4557568B2
JP4557568B2 JP2004048143A JP2004048143A JP4557568B2 JP 4557568 B2 JP4557568 B2 JP 4557568B2 JP 2004048143 A JP2004048143 A JP 2004048143A JP 2004048143 A JP2004048143 A JP 2004048143A JP 4557568 B2 JP4557568 B2 JP 4557568B2
Authority
JP
Japan
Prior art keywords
vapor deposition
heating device
substrate
deposition material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004048143A
Other languages
Japanese (ja)
Other versions
JP2005240067A (en
Inventor
幸之助 稲川
信也 藤本
典明 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2004048143A priority Critical patent/JP4557568B2/en
Publication of JP2005240067A publication Critical patent/JP2005240067A/en
Application granted granted Critical
Publication of JP4557568B2 publication Critical patent/JP4557568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、Mg(マグネシウム)合金製の被蒸着体(基板)に、Mgの膜を真空蒸着により形成するMg蒸着方法に関する。   The present invention relates to a Mg vapor deposition method for forming a Mg film on a vapor deposition body (substrate) made of an Mg (magnesium) alloy by vacuum vapor deposition.

Mg合金は実用金属材料中でもっとも軽量で比強度も高いため、構造体の軽量化に最適な材料である。その一方、Mg合金はAl(アルミニウム)合金などに比べて耐食性が劣るため、実用的には耐食性を向上させる必要があり、従来、湿式法による表面処理(陽極酸化処理、化学化成処理など)が施されていた。しかしながら、湿式法による表面処理では、耐食性、表面硬度などが不十分であり、また、化学化成処理(クロメート処理)における6価クロムは、環境保護上好ましくない。このため、乾式法による表面処理が望まれていた。   Since the Mg alloy is the lightest and most specific strength among practical metal materials, it is an optimal material for reducing the weight of the structure. On the other hand, the Mg alloy is inferior in corrosion resistance to Al (aluminum) alloy etc., so it is necessary to improve the corrosion resistance practically. Conventionally, wet surface treatment (anodization treatment, chemical conversion treatment, etc.) has been performed. It was given. However, surface treatment by a wet method has insufficient corrosion resistance, surface hardness, etc., and hexavalent chromium in chemical conversion treatment (chromate treatment) is not preferable in terms of environmental protection. For this reason, surface treatment by a dry method has been desired.

乾式法による表面処理としては、真空蒸着法、イオン注入法、イオンプレーティング法、プラズマCVD法などが挙げられる。このうち、イオン注入法、イオンプレーティング法、プラズマCVD法などは実験的には可能であるが、大量生産には適しておらず、もっとも実用的な方法としては、真空蒸着法が挙げられる。この真空蒸着法によって、Mg合金材の表面に蒸着材としてのMgを蒸着させる場合、次のような方法となる。   Examples of the surface treatment by the dry method include a vacuum deposition method, an ion implantation method, an ion plating method, and a plasma CVD method. Among these, an ion implantation method, an ion plating method, a plasma CVD method, and the like are experimentally possible, but are not suitable for mass production, and the most practical method is a vacuum deposition method. When Mg as a deposition material is deposited on the surface of the Mg alloy material by this vacuum deposition method, the following method is used.

すなわち、真空槽のなかにMg合金製の基板(被蒸着体)を配置し、蒸着材としてのMgを加熱、蒸発させる蒸発源(加熱装置)を、基板と対向させて配置する。そして、蒸発源によってMgを蒸発させて、基板の表面にMgを付着させるものである(例えば、非特許文献1参照。)。
ジークフリート・シラー、ウルリッヒ・ハイジッヒ共著、日本真空技術株式会社訳「真空蒸着」株式会社アグネ出版、1979年8月1日
That is, a substrate made of Mg alloy (a deposition target) is placed in a vacuum chamber, and an evaporation source (heating device) that heats and evaporates Mg as a deposition material is placed facing the substrate. Then, Mg is evaporated by an evaporation source, and Mg is attached to the surface of the substrate (for example, see Non-Patent Document 1).
Co-authored by Siegfried Schiller and Ulrich Heisig, translated by Japan Vacuum Technology Co., Ltd. “Vacuum Deposition”, Agne Publishing Co., Ltd., August 1, 1979

ところで、このような真空蒸着は通常10-3Pa以下の真空下で行われるが、このような真空下では蒸発粒子同士が衝突する確率が10%以下となり、圧力が低ければ低いほど、その確率は低くなっていく。すなわち、真空蒸着においては、ほとんどの蒸発粒子は衝突することなく(散乱されず)、蒸着材からの蒸発方向(蒸発粒子が飛散する方向)を直進して、基板に衝突することになる。言い換えると、蒸着材から蒸発粒子が飛散する方向に対向する基板の面だけに、蒸着粒子が付着することになる。 By the way, such vacuum deposition is usually performed under a vacuum of 10 −3 Pa or less. Under such a vacuum, the probability that the evaporated particles collide with each other is 10% or less, and the lower the pressure, the higher the probability. Is getting lower. That is, in vacuum vapor deposition, most of the evaporated particles do not collide (is not scattered), but travel straight in the evaporation direction from the vapor deposition material (the direction in which the evaporated particles scatter) and collide with the substrate. In other words, the vapor deposition particles adhere only to the surface of the substrate facing the direction in which the vapor particles are scattered from the vapor deposition material.

さらに、このような真空蒸着においては、蒸着材を蒸発源によって溶融し、蒸発させているので、溶融した蒸着材を安定して保持する(溶融した蒸着材が蒸発源からこぼれないようにする)必要がある。このため、蒸発源の放出面(蒸発粒子が放出される面)を上方に向けて配置しなければならない。このため必然的に、基板を蒸発源の上方に位置させ、かつ、基板の被成膜面(膜を形成したい面)を蒸発源の放出面と対向させて配置しなければならない。この結果、この被成膜面だけに膜が形成されることになる。従って、基板の他面にも成膜させたい場合には、基板を配置し直して(他の被成膜面を下方に向けて)、再び蒸着処理を行うという工程を繰り返さなければならない。  Further, in such vacuum vapor deposition, the vapor deposition material is melted and evaporated by the evaporation source, so that the molten vapor deposition material is stably held (so that the molten vapor deposition material does not spill from the evaporation source). There is a need. For this reason, it is necessary to arrange the emission surface of the evaporation source (the surface from which the evaporated particles are emitted) facing upward. For this reason, the substrate must be positioned above the evaporation source, and the deposition surface of the substrate (the surface on which the film is to be formed) must face the emission surface of the evaporation source. As a result, a film is formed only on the deposition surface. Therefore, when it is desired to form a film on the other surface of the substrate, it is necessary to repeat the process of rearranging the substrate (with the other film formation surface facing downward) and performing vapor deposition again.

一方、Mgの耐食性はその純度に依存し、純度が99%程度では腐食しやすいが、純度が99.9999%程度になると腐食がほとんど発生しない。特に、Fe,Ni,Co,Cuによる耐食性劣化の影響は大きく、Al,Mn,Na,Si,Sn,Pb,Th,Zr,Be,Ce,Pr,Yは,その含有量が5重量%程度では、耐食性を大きく劣化させることはない。また、Zn,Cd,Ca,Agは、耐食性をやや劣化させる程度である。いずれにしても、良好な耐食性を得るには、高純度のMgを基板に蒸着させる必要がある。しかしながら、純度が99.9999%の超高純度のMgは非常に高価であり、このような高価な材料を蒸着材として用いることは実用上できない(大量生産に適用できない)。  On the other hand, the corrosion resistance of Mg depends on its purity. Corrosion is likely to occur when the purity is about 99%, but hardly occurs when the purity is about 99.9999%. In particular, the influence of corrosion resistance deterioration due to Fe, Ni, Co, Cu is large, and the content of Al, Mn, Na, Si, Sn, Pb, Th, Zr, Be, Ce, Pr, Y is about 5% by weight. Then, the corrosion resistance is not greatly deteriorated. Moreover, Zn, Cd, Ca, and Ag are the grades that slightly deteriorate the corrosion resistance. In any case, in order to obtain good corrosion resistance, it is necessary to deposit high-purity Mg on the substrate. However, ultra-high purity Mg having a purity of 99.9999% is very expensive, and it is practically impossible to use such an expensive material as a vapor deposition material (not applicable to mass production).

そこで本発明は、被蒸着体のあらゆる被成膜面に対してMgの膜を形成することができ、かつ、超高純度のMgを蒸着材として用いなくても、耐食性が高いMgの膜を被蒸着体に形成させることができるMg蒸着方法を提供することを目的とする。   Therefore, the present invention can form a Mg film on any film formation surface of the vapor deposition target, and can provide an Mg film with high corrosion resistance without using ultra-high purity Mg as a vapor deposition material. It aims at providing the Mg vapor deposition method which can be formed in a to-be-deposited body.

上記目的を達成するために本発明は、MgまたはMg合金を蒸着材とし、この蒸着材中のMgを前記蒸着材の融点よりも低い温度で昇華させ、この昇華によって気化したMgを前記被蒸着体に付着させるMg蒸着方法であって、前記被蒸着体を立方体であるホルダーの上下左右の4つの側面に配置し、加熱装置の前記気化したMgが放出される放出面を前記各被蒸着体の被成膜面に対向するように配置して、蒸着を行うことを特徴としている。
(作用)
蒸着材の融点よりも低い温度でMgを昇華させるため、蒸着材が溶融せず、蒸着材が加熱装置の放出面からこぼれ落ちることがない。このため、加熱装置の放出面をあらゆる方向に位置させることができる。
To achieve the above object, the present invention uses Mg or an Mg alloy as a vapor deposition material, sublimates Mg in the vapor deposition material at a temperature lower than the melting point of the vapor deposition material, and vaporizes Mg vaporized by the sublimation. a Mg evaporation method of attaching to the body, said deposition object arranged on four sides of up, down, left and right of the holder is a cube, each of the deposition object release surface on which the vaporized Mg of the heating device is released It arrange | positions so that it may oppose to the film-forming surface of , and it is characterized by performing vapor deposition.
(Function)
Since Mg is sublimated at a temperature lower than the melting point of the vapor deposition material, the vapor deposition material does not melt and the vapor deposition material does not spill from the discharge surface of the heating device. For this reason, the discharge | release surface of a heating apparatus can be located in all directions.

また、Mgの飽和蒸気圧は極めて高く、Mgの耐食性を大きく劣化させるFe,Ni,Co,Cuの飽和蒸気圧は極めて低い。このため、蒸着材にFe,Niなどが含有されていても、Mgの昇華にともなってFe,Niなどが昇華することがない。一方、蒸着材にAl,Mn,Na,Si,Sn,Pbなどが含有されていたとしても、実用上、Mgの耐食性を劣化させることはない。この結果、超高純度のMgを蒸着材として用いなくても、耐食性が高いMgの膜が被蒸着体に形成される。   Moreover, the saturated vapor pressure of Mg is extremely high, and the saturated vapor pressure of Fe, Ni, Co, and Cu that greatly deteriorates the corrosion resistance of Mg is extremely low. For this reason, even if Fe, Ni, etc. are contained in the vapor deposition material, Fe, Ni, etc. do not sublime with the sublimation of Mg. On the other hand, even if Al, Mn, Na, Si, Sn, Pb or the like is contained in the vapor deposition material, the corrosion resistance of Mg is not deteriorated practically. As a result, an Mg film having high corrosion resistance is formed on the deposition target without using ultra-high purity Mg as a deposition material.

さらに、蒸着材を溶融しないため、加熱装置への蒸着材の付着や、加熱装置の消耗、蒸着材と加熱装置材との合金化などが抑制され、加熱装置の健全性が維持される。  Furthermore, since the vapor deposition material is not melted, adhesion of the vapor deposition material to the heating device, consumption of the heating device, alloying of the vapor deposition material and the heating device material, and the like are suppressed, and the soundness of the heating device is maintained.

本発明によれば、被蒸着体のあらゆる被成膜面に加熱装置の放出面を対向させ、あらゆる方向の被成膜面にMg膜を形成することができる。これにより、複数の被成膜面に対して複数の加熱装置を配置し、同時にMg膜を形成することが可能となる。しかも、その方法は簡易であり、かつ、製造費を低く抑えることができる。  According to the present invention, it is possible to form the Mg film on the film formation surface in any direction by making the discharge surface of the heating device face the film formation surface of the vapor deposition body. Thereby, it is possible to arrange a plurality of heating devices for a plurality of deposition surfaces and simultaneously form an Mg film. Moreover, the method is simple and the manufacturing cost can be kept low.

また、蒸着材の融点よりも低い温度でMgを昇華させ、Mgの耐食性を大きく劣化させる元素は気化しないため、超高純度のMgを蒸着材として用いなくても、耐食性が高いMgの膜を被蒸着体に形成させることができる。   In addition, since Mg is sublimated at a temperature lower than the melting point of the vapor deposition material and elements that greatly deteriorate the corrosion resistance of Mg are not vaporized, an Mg film with high corrosion resistance can be formed without using ultra-high purity Mg as the vapor deposition material. It can be formed on the deposition target.

さらに、蒸着材を溶融しないため、加熱装置の使用寿命を向上させることができる。   Furthermore, since the vapor deposition material is not melted, the service life of the heating device can be improved.

加えて、真空蒸着によるため、従来の湿式法に見られるような環境汚染の問題が生じない。   In addition, because of vacuum deposition, there is no problem of environmental pollution as seen in conventional wet methods.

以下、本発明を図示の実施形態に基づいて説明する。
〈実施形態1〉
図1は、本発明の実施形態1に係わるMg蒸着方法を示す概念正面図である。
Hereinafter, the present invention will be described based on the illustrated embodiments.
<Embodiment 1>
FIG. 1 is a conceptual front view showing an Mg deposition method according to Embodiment 1 of the present invention.

図中1は真空槽で、その中央部にステンレス製の基板ホルダー5が、支持フレーム(図示せず)によって支持、配置されている。この基板ホルダー5は、本実施形態では一辺が60mmの立方体で、その上下左右の4つの面の中央部に、それぞれ基板2(被蒸着体)が取り付けられている。この基板2はAZ31材(3Al,1Zn,0.15Mnの展伸用Mg合金)で、一辺が40mmの正方形で、板厚が1mmである。これらの各基板2に対向するように、加熱装置4が配置されている。   In the figure, reference numeral 1 denotes a vacuum chamber, and a stainless steel substrate holder 5 is supported and arranged at the center by a support frame (not shown). In this embodiment, the substrate holder 5 is a cube having a side of 60 mm, and the substrate 2 (deposition body) is attached to the center of the four surfaces on the top, bottom, left, and right. This substrate 2 is an AZ31 material (3Al, 1Zn, 0.15Mn spreading Mg alloy), a square with a side of 40 mm, and a plate thickness of 1 mm. A heating device 4 is arranged so as to face each of these substrates 2.

加熱装置4はタンタル製のパイプで、その外径が10mm、内径が9mmで、長さが100mmである。このパイプの側面には、後述する気化Mgが放出される放出孔4aが、軸方向に沿って一列に形成されている。すなわち、この放出孔4aは直径が6mmで、10mmピッチ(穴心間の距離)で連続的に形成されており、この放出孔4aが連続的に形成された面(放出面)が基板2に対向するように、加熱装置4が配置されている。なお、この加熱装置4の加熱方法は、本実施形態では抵抗加熱法であり、加熱装置4に直接電流を流し、この電流による抵抗熱によって加熱するものである。   The heating device 4 is a tantalum pipe having an outer diameter of 10 mm, an inner diameter of 9 mm, and a length of 100 mm. On the side surface of the pipe, discharge holes 4a through which vaporized Mg, which will be described later, is discharged are formed in a line along the axial direction. That is, the discharge holes 4 a have a diameter of 6 mm and are continuously formed at a pitch of 10 mm (distance between the hole centers), and a surface (discharge surface) on which the discharge holes 4 a are continuously formed is formed on the substrate 2. The heating device 4 is arranged so as to face each other. Note that the heating method of the heating device 4 is a resistance heating method in the present embodiment, and a current is directly passed through the heating device 4 and heating is performed by resistance heat generated by the current.

この加熱装置4内には蒸着材3が収容され、加熱装置4の両端(パイプの両端)は、後述する気化Mgがこの両端から放出されないように、タンタル箔の蓋4bで封止されている。蒸着材3は純度が99.9%のMgで、厚み0.24mm、幅3.2mmのリボン状の素材を撚り合わせたものである。  The vapor deposition material 3 is accommodated in the heating device 4, and both ends (both ends of the pipe) of the heating device 4 are sealed with a tantalum foil lid 4b so that vaporized Mg, which will be described later, is not discharged from both ends. . The vapor deposition material 3 is made of Mg having a purity of 99.9%, and is a twisted ribbon-shaped material having a thickness of 0.24 mm and a width of 3.2 mm.

次に、このような構成で蒸着処理を行った結果を説明する。   Next, the results of performing the vapor deposition process with such a configuration will be described.

まず、真空槽1内を真空にし、真空度が10-3Paに達した後に、通電により加熱装置4を加熱して、その温度を約800Kで保持した(Mgの融点は923K)。これにより、各加熱装置4内の蒸着材3が昇華し、この昇華によって気化したMgが加熱装置4の放出孔4aから放出され、各基板2に付着してMg膜が形成された。このMg膜の膜厚は、各基板2で21μm、23μm、25μm、26μmであり、各基板2ともにほぼ均一な厚みのMg膜が全面に形成された。すなわち、真空槽1内で下部に位置する基板2のみではなく、左右、上部に位置する基板2に対しても、成膜が良好に行われた。 First, the inside of the vacuum chamber 1 was evacuated, and after the degree of vacuum reached 10 −3 Pa, the heating device 4 was heated by energization to maintain the temperature at about 800 K (Mg melting point: 923 K). Thereby, the vapor deposition material 3 in each heating device 4 was sublimated, and Mg vaporized by this sublimation was released from the discharge hole 4a of the heating device 4, and adhered to each substrate 2 to form an Mg film. The thickness of this Mg film was 21 μm, 23 μm, 25 μm, and 26 μm for each substrate 2, and an Mg film having a substantially uniform thickness was formed on the entire surface of each substrate 2. That is, the film formation was performed well not only on the substrate 2 positioned in the lower part in the vacuum chamber 1 but also on the substrate 2 positioned on the left and right and upper parts.

このように、蒸着材3としてのMgを融点以下で昇華させることで、基板2にMg膜が形成される過程(メカニズム)について、以下に説明する。   Thus, the process (mechanism) in which Mg film | membrane is formed in the board | substrate 2 by sublimating Mg as the vapor deposition material 3 below melting | fusing point is demonstrated below.

単位時間当たり、単位面積から蒸発(気化)する蒸発量(気化量)W(kg/m2s)は、次式で表される(応用物理学会編、第2版「応用物理ハンドブック」(丸善、2002))。 The amount of evaporation (vaporization amount) W (kg / m 2 s) that evaporates (vaporizes) from the unit area per unit time is expressed by the following equation (Applied Physics Society, 2nd edition “Applied Physics Handbook” (Maruzen) 2002)).

W=4.375×10-3・α・P・(M/T)1/2
ここで、P(Pa)は温度T(K)における飽和蒸気圧で、Mは蒸発分子の分子量、Tは蒸発面の絶対温度、αは蒸発係数である。この蒸発係数αは、実際の蒸発面からの蒸発速度と、理想状態にある蒸発面からの蒸発速度との比であり、極めて清浄な蒸発面ではα≒1であり、多くの金属ではα=1として扱っている。
W = 4.375 × 10 −3 · α · P · (M / T) 1/2
Here, P (Pa) is the saturated vapor pressure at temperature T (K), M is the molecular weight of the evaporated molecules, T is the absolute temperature of the evaporation surface, and α is the evaporation coefficient. This evaporation coefficient α is the ratio of the evaporation rate from the actual evaporation surface to the evaporation rate from the evaporation surface in an ideal state, α = 1 for very clean evaporation surfaces, and α = Treated as 1.

ところで、実用的な蒸着処理を行うには、蒸発量Wが10-4〜10-1(kg/m2s)程度必要である。ここで、蒸着材として常用されているアルミニウム(Al)について例示すると、Alの融点が933Kであるのに対し、蒸着処理時の温度は通常1,500〜1,700Kであり、その蒸発量Wは5.9×10-4〜3.0×10-2(kg/m2s)である。 By the way, in order to perform practical vapor deposition processing, the evaporation amount W needs to be about 10 −4 to 10 −1 (kg / m 2 s). Here, as an example of aluminum (Al) that is commonly used as a vapor deposition material, the melting point of Al is 933K, whereas the temperature during the vapor deposition treatment is usually 1,500 to 1,700K, and its evaporation amount W Is 5.9 × 10 −4 to 3.0 × 10 −2 (kg / m 2 s).

一方、Mgの融点は923Kであり、Alの融点と大差はないが、同一温度における飽和蒸気圧を比べると、MgがAlよりも105〜1010倍大きい。このため、各温度における飽和蒸気圧からMgの蒸発量(気化量)Wを算出すると、図2のようになる。 On the other hand, the melting point of Mg is 923 K, which is not much different from the melting point of Al, but when comparing the saturated vapor pressure at the same temperature, Mg is 10 5 to 10 10 times larger than Al. For this reason, when the evaporation amount (vaporization amount) W of Mg is calculated from the saturated vapor pressure at each temperature, it is as shown in FIG.

この算出結果から、昇華状態においても、Mgの蒸発量(気化量)が蒸着処理として実用的な量であることがわかる。すなわち、融点よりも少し高い1,000Kの溶融状態では、蒸発量が8.8×10-1(kg/m2s)と1,700KにおけるAlの蒸発量よりも一桁大きい。また、融点直下の900Kでは蒸発量が2.0×10-1(kg/m2s)と極めて多く、さらに、800Kにおいても蒸発量が1.7×10-2(kg/m2s)であり、蒸着処理として十分実用的な量である。 From this calculation result, it can be seen that the evaporation amount (vaporization amount) of Mg is a practical amount for the vapor deposition process even in the sublimation state. That is, in a molten state at 1,000 K, which is slightly higher than the melting point, the evaporation amount is 8.8 × 10 −1 (kg / m 2 s), which is an order of magnitude larger than the Al evaporation amount at 1,700 K. Further, at 900K just below the melting point, the evaporation amount is extremely large as 2.0 × 10 −1 (kg / m 2 s), and further, at 800K, the evaporation amount is 1.7 × 10 −2 (kg / m 2 s). This is a sufficiently practical amount for the vapor deposition process.

このように、Mgの飽和蒸気圧が極めて高いことに起因して、Mgの融点よりも低い温度においても、昇華によって十分な蒸発量(気化量)が得られるものである。なお、通常、蒸発とは、液体から気体に相が変化することをいうため、上記のように、融点以下で昇華させる場合、気化というべきであるが、従来の真空蒸着法における用語と一部用語を合わせるため、あるいは区別するために、適宜、蒸発、蒸発量、あるいは、気化、気化量という用語を用いる。   Thus, due to the extremely high saturated vapor pressure of Mg, a sufficient amount of evaporation (vaporization amount) can be obtained by sublimation even at a temperature lower than the melting point of Mg. Normally, evaporation means that the phase changes from a liquid to a gas, and as described above, when sublimating below the melting point, it should be called vaporization. In order to match or distinguish terms, the terms evaporation, evaporation, vaporization, vaporization are used as appropriate.

以上のメカニズムにより、本実施形態において、加熱装置4の温度が約800Kであっても、昇華によってMgが気化し、基板2にMg膜が形成されるものである。ところで、本実施形態では、純度が99.99%のMgを蒸着材3として用いているが、このように純度が比較的低いMgを用いても、耐食性が高いMg膜が基板2に形成される理由(メカニズム)について、次に説明する。   Due to the above mechanism, in the present embodiment, even when the temperature of the heating device 4 is about 800 K, Mg is vaporized by sublimation and an Mg film is formed on the substrate 2. By the way, in this embodiment, Mg having a purity of 99.99% is used as the vapor deposition material 3, but even if Mg having a relatively low purity is used as described above, a Mg film having high corrosion resistance is formed on the substrate 2. The reason (mechanism) will be described next.

同一温度におけるFe,Ni,Co,Cuの飽和蒸気圧は、Mgに比べて極めて低い。例えば、300℃におけるFe,Ni,Co,Cuの飽和蒸気圧は、Mgの1/1016であり、600℃では1/1010である。また、同一飽和蒸気圧になる温度を比較すると、Mgが437℃であるのに対してFeは1,425℃である。従って、上記のような条件下(真空度10-3Pa、加熱装置の温度800K)で蒸着処理を行っても、Fe,Ni,Co,Cuは昇華、気化されない。すなわち、蒸着材3中にFe,Ni,Co,Cuが含まれていたとしても、基板2にはこれらを含まないMg膜が形成されることになる。一方、蒸着材3中にAl,Mn,Na,Si,Sn,Pbなどが含まれており、これらの元素が基板2のMg膜中に含まれたとしても、これらの元素による耐食性劣化の影響は小さく、まして、純度が99.9%のMgを蒸着材3として用いているため(残部はわずかに0.1%)、その影響は実用上ない、と言える。 The saturated vapor pressure of Fe, Ni, Co, and Cu at the same temperature is extremely lower than that of Mg. For example, the saturation vapor pressure of Fe, Ni, Co, and Cu at 300 ° C. is 1/10 16 of Mg, and 1/10 10 at 600 ° C. Moreover, when comparing the temperatures at which the saturated vapor pressure is the same, Mg is 437 ° C., whereas Fe is 1,425 ° C. Therefore, Fe, Ni, Co, and Cu are not sublimated or vaporized even when the vapor deposition is performed under the above conditions (vacuum degree: 10 −3 Pa, heating device temperature: 800 K). That is, even if Fe, Ni, Co, and Cu are contained in the vapor deposition material 3, an Mg film not containing these is formed on the substrate 2. On the other hand, even if Al, Mn, Na, Si, Sn, Pb, and the like are contained in the vapor deposition material 3, even if these elements are contained in the Mg film of the substrate 2, the influence of the corrosion resistance deterioration due to these elements. Since Mg having a purity of 99.9% is used as the vapor deposition material 3 (the balance is only 0.1%), it can be said that the influence is not practical.

以上の理由により、純度が比較的低いMgを蒸着材3として用いても、耐食性が高いMg膜が基板2に形成されるものである。本実施形態では、純度が99.99%のMgを蒸着材3として用いているが、上記の理由から明らかなように、このような純Mgを用いる必要はなく、例えば、99%程度のMgであってもよい。さらに、Al,Mn,Na,Si,Sn,Pbなどが耐食性劣化に影響を与えない量範囲内であれば、これらの元素、および、Fe,Niなどを含む合金であってもよい(Fe,Ni,Co,Cuは気化しないため、その含有量に制限はない)。例えば、蒸着材3をAZ系、AM系、ZK系、EZ系、QE系、WE系のMg合金としてもよい。  For the reasons described above, even when Mg having a relatively low purity is used as the vapor deposition material 3, an Mg film having high corrosion resistance is formed on the substrate 2. In the present embodiment, Mg having a purity of 99.99% is used as the vapor deposition material 3, but as is apparent from the above reason, it is not necessary to use such pure Mg. It may be. Further, if Al, Mn, Na, Si, Sn, Pb, etc. are in an amount range that does not affect the corrosion resistance deterioration, an alloy containing these elements, Fe, Ni, etc. may be used (Fe, Ni). Since Ni, Co, and Cu are not vaporized, their content is not limited. For example, the vapor deposition material 3 may be an AZ, AM, ZK, EZ, QE, or WE Mg alloy.

以上のように、本実施形態に係わるMg蒸着方法によれば、蒸着材3(純Mg)の融点よりも低い温度でMgを昇華させるため、蒸着材3が加熱装置4からこぼれることがない。このため、図1に示すように、基板2を基板ホルダー5の上下左右の面に配置し、さらに、加熱装置4の放出面(連続した放出孔4aが形成された面)を各基板2に対向するように配置することができる。すなわち、加熱装置4の放出面をあらゆる方向に位置させることができる。この結果、上下左右に位置する基板2に対して、同時に蒸着処理を行うことができる。しかもその方法は、加熱装置4を複数配置するという簡易なものであり、従来と異なる設備等を要しないため、製造費を低く抑えることができる。   As described above, according to the Mg vapor deposition method according to the present embodiment, Mg is sublimated at a temperature lower than the melting point of the vapor deposition material 3 (pure Mg), so the vapor deposition material 3 does not spill from the heating device 4. Therefore, as shown in FIG. 1, the substrate 2 is arranged on the upper, lower, left and right surfaces of the substrate holder 5, and the discharge surface of the heating device 4 (the surface on which the continuous discharge holes 4 a are formed) is provided on each substrate 2. It can arrange | position so that it may oppose. That is, the discharge surface of the heating device 4 can be positioned in any direction. As a result, it is possible to perform the vapor deposition process simultaneously on the substrates 2 positioned on the top, bottom, left and right. In addition, the method is a simple method in which a plurality of heating devices 4 are arranged, and does not require equipment different from the conventional one, so that the manufacturing cost can be kept low.

なお、本実施形態では、複数の加熱装置4を各基板2に対向させて配置しているが、4つの基板2を囲む環状の加熱装置を設け、この加熱装置の放出面を各基板2に対向させるように形成してもよい。   In the present embodiment, the plurality of heating devices 4 are arranged so as to face the respective substrates 2, but an annular heating device surrounding the four substrates 2 is provided, and the discharge surface of this heating device is provided on each substrate 2. You may form so that it may oppose.

さらに、1つの被蒸着体(基板)が複数の被成膜面を有する場合であっても、各被成膜面に対して、一度に蒸着を行うことが可能となる。すなわち、被蒸着体の全被成膜面が露出するように配置し(例えば、吊り下げる)、すべての被成膜面を囲うように加熱装置の放出面を形成することで、各被成膜面への蒸着が可能となる。あるいは、本実施形態のように、加熱装置を複数設け、各加熱装置の放出面を各被成膜面に対向する(加熱装置で被蒸着体を囲む)ように配置してもよい。   Furthermore, even when one deposition target (substrate) has a plurality of deposition surfaces, it is possible to perform deposition on each deposition surface at once. In other words, each deposition target is formed by arranging (e.g., suspending) the entire deposition target surface of the deposition target so that it is exposed, and forming the discharge surface of the heating device so as to surround all the deposition target surfaces. Vapor deposition on the surface is possible. Alternatively, as in the present embodiment, a plurality of heating devices may be provided, and the discharge surface of each heating device may be disposed so as to face each deposition surface (enclose the deposition target with the heating device).

また、蒸着材3を溶融させないため、加熱装置4への蒸着材3の付着、加熱装置4の消耗や、蒸着材3と加熱装置4材との合金化などが抑制され、加熱装置4の健全性が維持される。すなわち、加熱装置4を繰り返し使用することができ、加熱装置4の使用寿命が向上することになる。   Further, since the vapor deposition material 3 is not melted, adhesion of the vapor deposition material 3 to the heating device 4, consumption of the heating device 4, alloying of the vapor deposition material 3 and the heating device 4, etc. are suppressed, and the heating device 4 is sound. Sex is maintained. That is, the heating device 4 can be used repeatedly, and the service life of the heating device 4 is improved.

さらに、Mgの気化により蒸着材3の減量(消費)はあるものの、溶融はなく、健全性は維持されていた。従って、蒸着材3を加熱装置4から容易に取り出して、保管したり、あるいは、引き続き蒸着処理に使用することができる。   Furthermore, although there was a reduction (consumption) of the vapor deposition material 3 due to the vaporization of Mg, there was no melting and the soundness was maintained. Therefore, the vapor deposition material 3 can be easily taken out from the heating device 4 and stored, or can be used continuously for vapor deposition.

また、加熱装置4の加熱による輻射熱によって、基板2も加熱されるが、この基板2の加熱により、基板2に付着していた油脂成分が除去され、基板2とMg膜との密着性が向上する。さらに、蒸着材3から気化して基板2に衝突したMgのマイグレーション(表面移動)が良好になり、その結果、Mg膜中のピンホールの発生が抑制される。   Moreover, although the board | substrate 2 is also heated by the radiant heat by the heating of the heating apparatus 4, the oil-fat component adhering to the board | substrate 2 is removed by the heating of this board | substrate 2, and the adhesiveness of the board | substrate 2 and Mg film | membrane improves. To do. Further, the migration (surface movement) of Mg vaporized from the vapor deposition material 3 and colliding with the substrate 2 is improved, and as a result, the generation of pinholes in the Mg film is suppressed.

なお、このような真空蒸着法では、従来の湿式法に見られるような環境汚染の問題が生ぜず、環境保護の面でも好ましいものである。
〈実施形態2〉
本実施形態では、蒸着材3としてAZ31材(基板2と同じ材質)を用いており、その形状は、断面が1mm×2mmで、長さが90mmの角棒である。また、本実施形態では、加熱装置4の温度を約850Kに保持している点で、上記実施形態1と異なる。
In addition, such a vacuum evaporation method does not cause the problem of environmental pollution as seen in the conventional wet method, and is preferable from the viewpoint of environmental protection.
<Embodiment 2>
In this embodiment, an AZ31 material (the same material as the substrate 2) is used as the vapor deposition material 3, and the shape thereof is a square bar having a cross section of 1 mm × 2 mm and a length of 90 mm. Further, the present embodiment is different from the first embodiment in that the temperature of the heating device 4 is maintained at about 850K.

蒸着処理の結果は、実施形態1と同様に良好であり、各基板2のMg膜の膜厚は、34μm、35μm、37μm、40μmで、各基板2ともにほぼ均一な厚みのMg膜が全面に形成された。このように、膜厚が実施形態1の膜厚に比べて厚いのは、加熱装置4の温度が高いためであり、上記図2の蒸発量(気化量)からも明らかである。従って、この結果からも、一定時間でMg膜の膜厚を厚くするには、加熱装置4の温度を上げればよいことがわかる(ただし、融点以下)。   The results of the vapor deposition treatment are as good as in the first embodiment, and the thickness of the Mg film on each substrate 2 is 34 μm, 35 μm, 37 μm, and 40 μm. Been formed. Thus, the film thickness is thicker than the film thickness of the first embodiment because the temperature of the heating device 4 is high, and is apparent from the evaporation amount (vaporization amount) in FIG. Therefore, also from this result, it is understood that the temperature of the heating device 4 should be increased (though below the melting point) in order to increase the thickness of the Mg film in a certain time.

なお、実施形態1と同様に、加熱装置4および蒸着材3の健全性は維持されていた。
〈実施形態3〉
本実施形態では、加熱装置4がFe−28%Cr−15%Niの耐熱綱製である(実施形態1と同様にパイプ状)点のみが、実施形態1と相違する。
In addition, the soundness of the heating apparatus 4 and the vapor deposition material 3 was maintained similarly to Embodiment 1.
<Embodiment 3>
This embodiment is different from the first embodiment only in that the heating device 4 is made of a heat-resistant steel made of Fe-28% Cr-15% Ni (pipe-like as in the first embodiment).

この加熱装置4の温度を800Kに保持し、蒸着処理した結果は、実施形態1と同様に良好であり、各基板2のMg膜の膜厚は、20μm、20μm、23μm、24μmで、各基板2ともにほぼ均一な厚みのMg膜が全面に形成された。また、加熱装置4および蒸着材3の健全性も維持されていた。  The heating apparatus 4 was kept at a temperature of 800 K, and the result of vapor deposition was as good as in the first embodiment. The thickness of the Mg film on each substrate 2 was 20 μm, 20 μm, 23 μm, and 24 μm. In both cases, an Mg film having a substantially uniform thickness was formed on the entire surface. Moreover, the soundness of the heating device 4 and the vapor deposition material 3 was also maintained.

なお、本実施形態では、加熱装置4の材質としてFe−28%Cr−15%Niの耐熱綱を用いているが、Cr綱、Cr−Si−Al綱、Cr−Ni綱(SUS,SUH)などの耐熱綱を用いてもよい。
〈実施形態4〉
本実施形態では、Fe−28%Cr−15%Niの耐熱綱製の加熱装置4(実施形態1と同様にパイプ状)に、幅4mmのスリットを形成し気化Mgの放出孔とした。さらに、真空槽1内の左右、上部に位置する3つの加熱装置4には、スリットから蒸着材3(実施形態1と同様にリボン状)がはみ出ないように、スリットと交差するように4カ所にタンタル線を巻き付けた。本実施形態は、これらの点で実施形態1と相違する。
In addition, in this embodiment, although the heat resistant steel of Fe-28% Cr-15% Ni is used as a material of the heating apparatus 4, Cr steel, Cr-Si-Al steel, Cr-Ni steel (SUS, SUH) A heat-resistant rope such as may be used.
<Embodiment 4>
In this embodiment, a 4 mm wide slit was formed in the heating device 4 made of a heat resistant steel of Fe-28% Cr-15% Ni (pipe shape as in the first embodiment) to form a vaporized Mg discharge hole. Further, the three heating devices 4 located on the left, right, and upper sides in the vacuum chamber 1 are provided at four locations so as to intersect the slits so that the vapor deposition material 3 (ribbon shape as in the first embodiment) does not protrude from the slits. A tantalum wire was wound around the wire. The present embodiment is different from the first embodiment in these points.

この加熱装置4の温度を800Kに保持し、蒸着処理した結果は、実施形態1と同様に良好であった。すなわち、各基板2のMg膜の膜厚は、タンタル線を巻き付けた加熱装置4に対向する基板2では、31μm、33μm、34μmであり、巻き付けなかった(真空槽1内の下部に位置する)加熱装置4に対向する基板2では、37μmであった。また、各基板2ともにほぼ均一な厚みのMg膜が全面に形成されており、さらに、加熱装置4および蒸着材3の健全性も維持されていた。  The temperature of the heating device 4 was kept at 800 K, and the result of the vapor deposition treatment was good as in the first embodiment. That is, the thickness of the Mg film of each substrate 2 was 31 μm, 33 μm, and 34 μm in the substrate 2 facing the heating device 4 wound with a tantalum wire, and was not wound (located in the lower part in the vacuum chamber 1). The thickness of the substrate 2 facing the heating device 4 was 37 μm. In addition, an Mg film having a substantially uniform thickness was formed on the entire surface of each substrate 2, and the soundness of the heating device 4 and the vapor deposition material 3 was also maintained.

このように、実施形態3に比べてMgの膜厚が厚かったことから、気化Mgが放出される放出孔が大きいほど、効果的に成膜することができると言える。なお、タンタル線を巻き付けた加熱装置4に対向する基板2の膜厚が、巻き付けなかった加熱装置4に対向する基板2の膜厚よりもやや薄かったのは、スリットから放出された気化Mgの一部が、タンタル線による散乱を受けたためである。
〈実施形態5〉
本実施形態では、加熱装置4をヒーター6によって加熱する点で、実施形態1と相違する。すなわち、ヒーター6は赤外線加熱ヒーターで、このヒーター6を加熱装置4の背面に配置し、加熱装置4を加熱した。
Thus, since the film thickness of Mg was thicker than that of the third embodiment, it can be said that the larger the release hole from which vaporized Mg is released, the more effectively the film can be formed. The film thickness of the substrate 2 facing the heating device 4 wound with the tantalum wire was slightly thinner than the film thickness of the substrate 2 facing the heating device 4 not wound, because of the vaporized Mg released from the slit. This is because part of the light was scattered by the tantalum wire.
<Embodiment 5>
The present embodiment is different from the first embodiment in that the heating device 4 is heated by the heater 6. That is, the heater 6 was an infrared heater, and the heater 6 was disposed on the back surface of the heating device 4 to heat the heating device 4.

このヒーター6によって加熱装置4の温度を800Kに保持し、蒸着処理した結果は、実施形態1と同様に良好であった。すなわち、各基板2のMg膜の膜厚は、20μm、21μm、24μm、25μmで、各基板2ともにほぼ均一な厚みのMg膜が全面に形成された。また、加熱装置4および蒸着材3の健全性も維持されていた。  The heater 6 kept the temperature of the heating device 4 at 800 K, and the result of the vapor deposition treatment was as good as in the first embodiment. That is, the thickness of the Mg film on each substrate 2 was 20 μm, 21 μm, 24 μm, and 25 μm, and an almost uniform thickness of the Mg film was formed on the entire surface of each substrate 2. Moreover, the soundness of the heating device 4 and the vapor deposition material 3 was also maintained.

このようにヒーター6による間接的な加熱によっても、加熱装置4を適正に加熱し、良好な成膜が行える。   Thus, even by indirect heating by the heater 6, the heating device 4 can be appropriately heated and good film formation can be performed.

次に、本発明に係わる真空蒸着法と比較するために、いくつかの比較例を示す。   Next, in order to compare with the vacuum deposition method according to the present invention, some comparative examples are shown.

まず、比較例1として、上記実施形態1において、真空槽1内で下部に位置する加熱装置4のみを加熱して、他の3つの加熱装置4は加熱しなかった。他の条件は実施形態1と同じ、基板2も基板ホルダー5の上下左右面にそれぞれ配置した。  First, as Comparative Example 1, in the first embodiment, only the heating device 4 positioned in the lower part in the vacuum chamber 1 was heated, and the other three heating devices 4 were not heated. The other conditions are the same as in the first embodiment, and the substrate 2 is also arranged on the upper, lower, left and right surfaces of the substrate holder 5, respectively.

そして、下部に位置する加熱装置4の温度を800Kに保持し、蒸着処理した結果、この加熱装置4と対向する基板2(基板ホルダー5の下面に位置する基板2)のみにMg膜が形成された。その厚みは23μmであり、他の3つの基板は成膜されなかった。   Then, as a result of holding the temperature of the heating device 4 positioned below at 800 K and performing a vapor deposition process, an Mg film is formed only on the substrate 2 (the substrate 2 positioned on the lower surface of the substrate holder 5) facing the heating device 4. It was. The thickness was 23 μm, and the other three substrates were not formed.

この比較例1から、加熱装置4と対向する基板2のみに成膜が行われること、言い換えると、加熱装置4と対向しない基板2(被成膜面)には成膜されないことが確認された。   From Comparative Example 1, it was confirmed that the film formation was performed only on the substrate 2 facing the heating device 4, in other words, the film was not deposited on the substrate 2 (film formation surface) not facing the heating device 4. .

さらに、比較例2として、加熱装置4の温度をMgの融点以上である1,100Kで保持して、蒸着処理を試みた。他の条件は実施形態1と同じである。   Further, as Comparative Example 2, the temperature of the heating device 4 was maintained at 1,100 K, which is equal to or higher than the melting point of Mg, and an evaporation process was attempted. Other conditions are the same as those in the first embodiment.

この結果、各基板2にはMg膜が形成されたものの、真空槽1内の左右、上部に位置する加熱装置4の放出孔4aから溶融したMgが流出した。このため、安定した蒸着処理が行えず、処理は中止された。すなわち、上部に位置する加熱装置4から流出した溶融Mgが、塊となって基板2上に付着し、また、左右に位置する加熱装置4から流出した溶融Mgが、真空槽1の底板に付着していた。   As a result, although the Mg film was formed on each substrate 2, molten Mg flowed out from the discharge holes 4 a of the heating device 4 located on the left, right, and upper sides in the vacuum chamber 1. For this reason, the stable vapor deposition process could not be performed, and the process was stopped. That is, molten Mg flowing out from the heating device 4 located at the top adheres to the substrate 2 as a lump, and molten Mg flowing out from the heating device 4 located on the left and right adheres to the bottom plate of the vacuum chamber 1. Was.

この比較例2から、蒸着材3を融点以上に加熱する場合、加熱装置4を自由な方向に位置させることができず、実際には加熱装置4の放出面を上方に位置させなければならず、従って、1つの基板2(被成膜面)しか蒸着できないことが確認された。  From Comparative Example 2, when heating the vapor deposition material 3 to the melting point or higher, the heating device 4 cannot be positioned in a free direction, and actually the discharge surface of the heating device 4 must be positioned upward. Therefore, it was confirmed that only one substrate 2 (film formation surface) can be deposited.

これらの比較例1,2から、上記した本願発明のように、あらゆる方向に位置する基板2(被成膜面)に対して加熱装置4を配置することができることによって、同時に複数の基板2(被成膜面)を成膜することができ、蒸着処理性が格段に向上することが明らかとなった。  From these comparative examples 1 and 2, the heating device 4 can be arranged on the substrate 2 (film formation surface) located in any direction as in the present invention described above, so that a plurality of substrates 2 ( It was revealed that the deposition surface can be deposited and the deposition processability is greatly improved.

本発明は、Mg合金の使用によって軽量化が図られているモバイル情報機器や携帯家電製品、自動車、福祉機器などの分野で、Mg合金製の製品の耐食性を向上させる方法として活用できる。   INDUSTRIAL APPLICABILITY The present invention can be used as a method for improving the corrosion resistance of Mg alloy products in the fields of mobile information devices, portable home appliances, automobiles, welfare devices and the like that are lightened by using Mg alloys.

本発明の実施形態1に係わるMg蒸着方法を示す概念正面図。The conceptual front view which shows the Mg vapor deposition method concerning Embodiment 1 of this invention. 各温度におけるMgの飽和蒸気圧と蒸発量(気化量)とを示す図。The figure which shows the saturated vapor pressure and evaporation amount (vaporization amount) of Mg in each temperature.

符号の説明Explanation of symbols

1 真空槽
2 基板(被蒸着体)
3 蒸着材
4 加熱装置
4a 放出孔
5 基板ホルダー
6 ヒーター

1 Vacuum chamber 2 Substrate (deposition body)
3 Deposition material 4 Heating device 4a Emission hole 5 Substrate holder 6 Heater

Claims (5)

Mg合金製の被蒸着体にMgの膜を真空蒸着により形成するMg蒸着方法において、
MgまたはMg合金を蒸着材とし、この蒸着材中のMgを前記蒸着材の融点よりも低い温度で昇華させ、この昇華によって気化したMgを前記被蒸着体に付着させるMg蒸着方法であって、前記被蒸着体を立方体であるホルダーの上下左右の4つの側面に配置し、加熱装置の前記気化したMgが放出される放出面を前記各被蒸着体の被成膜面に対向するように配置して、蒸着を行う、
ことを特徴とするMg蒸着方法。
In the Mg vapor deposition method for forming an Mg film on a vapor deposition body made of Mg alloy by vacuum vapor deposition,
Mg deposition method using Mg or Mg alloy as a vapor deposition material, sublimating Mg in the vapor deposition material at a temperature lower than the melting point of the vapor deposition material, and attaching Mg vaporized by the sublimation to the vapor deposition target, The vapor deposition body is arranged on four side surfaces of the cube holder, and is arranged so that the emission surface from which the vaporized Mg is released is opposed to the film formation surface of each vapor deposition body. And do the vapor deposition,
The Mg vapor deposition method characterized by the above-mentioned.
前記蒸着材としてのMgは、純度が99%から99.99%である、
ことを特徴とする請求項1に記載のMg蒸着方法。
Mg as the deposition material has a purity of 99% to 99.99%.
The Mg vapor deposition method according to claim 1, wherein:
前記蒸着材としてのMg合金は、Al−Zn系(AZ系)合金、Al−Mn系(AM系)合金、Zn−Zr系(ZK系)合金、Zn−Re系(EZ系)合金、Ag−Nd系(QE系)合金、Y−Nd系(WE系)合金のいずれかの系の合金である、
ことを特徴とする請求項1に記載のMg蒸着法。
Mg alloys as the vapor deposition material include Al—Zn (AZ) alloys, Al—Mn (AM) alloys, Zn—Zr (ZK) alloys, Zn—Re (EZ) alloys, Ag. -Nd-based (QE-based) alloy or Y-Nd-based (WE-based) alloy.
The Mg vapor deposition method according to claim 1, wherein:
前記蒸着材を加熱する一体の加熱装置の前記気化したMgが放出される放出面を、前記被蒸着体の被成膜面に対向するように形成した、
ことを特徴とする請求項1から3のいずれか1項に記載のMg蒸着方法。
The emission surface from which the vaporized Mg is released by an integrated heating device that heats the vapor deposition material is formed so as to face the film formation surface of the vapor deposition body.
The Mg vapor deposition method according to any one of claims 1 to 3, wherein:
前記蒸着材を加熱する加熱装置を複数設け、各加熱装置の前記気化したMgが放出される放出面を前記被蒸着体の被成膜面と対向するように配置した、
ことを特徴とする請求項1から3のいずれか1項に記載のMg蒸着方法。
A plurality of heating devices for heating the vapor deposition material are provided, and the emission surface from which the vaporized Mg of each heating device is released is disposed so as to face the film formation surface of the vapor deposition target.
The Mg vapor deposition method according to any one of claims 1 to 3, wherein:
JP2004048143A 2004-02-24 2004-02-24 Mg deposition method Expired - Lifetime JP4557568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048143A JP4557568B2 (en) 2004-02-24 2004-02-24 Mg deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048143A JP4557568B2 (en) 2004-02-24 2004-02-24 Mg deposition method

Publications (2)

Publication Number Publication Date
JP2005240067A JP2005240067A (en) 2005-09-08
JP4557568B2 true JP4557568B2 (en) 2010-10-06

Family

ID=35022108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048143A Expired - Lifetime JP4557568B2 (en) 2004-02-24 2004-02-24 Mg deposition method

Country Status (1)

Country Link
JP (1) JP4557568B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044593A1 (en) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 Copper/ceramic bonded body, insulation circuit board, method for producing copper/ceramic bonded body, and method for manufacturing insulation circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336262A (en) * 1989-06-29 1991-02-15 Ulvac Japan Ltd Vacuum film forming device
JPH10204622A (en) * 1997-01-13 1998-08-04 Tdk Corp Thin film forming device
JP2001181828A (en) * 1999-12-24 2001-07-03 Tetsuji Yamanishi METHOD FOR SURFACE TREATING Mg ALLOY
JP2002348660A (en) * 2001-05-18 2002-12-04 Katsuhiro Nishiyama Method for manufacturing product of magnesium or magnesium alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336262A (en) * 1989-06-29 1991-02-15 Ulvac Japan Ltd Vacuum film forming device
JPH10204622A (en) * 1997-01-13 1998-08-04 Tdk Corp Thin film forming device
JP2001181828A (en) * 1999-12-24 2001-07-03 Tetsuji Yamanishi METHOD FOR SURFACE TREATING Mg ALLOY
JP2002348660A (en) * 2001-05-18 2002-12-04 Katsuhiro Nishiyama Method for manufacturing product of magnesium or magnesium alloy

Also Published As

Publication number Publication date
JP2005240067A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP5873621B2 (en) Process for coating substrate and metal alloy vacuum deposition apparatus
JP2007146291A (en) Thermal spraying material, spray coating, thermal spraying method, material to be thermally sprayed and coated article
Dolique et al. High-entropy alloys deposited by magnetron sputtering
JP2005281865A (en) Method for protecting article, and related composition
Badini et al. Cyclic oxidation in burner rig of TiAlN coating deposited on Ti-48Al-2Cr-2Nb by reactive HiPIMS
Guo et al. Low-temperature chemical vapor deposition (CVD) of metallic titanium film from a novel precursor
PalDey et al. Cathodic arc deposited FeAl coatings: properties and oxidation characteristics
Ustinov et al. Effect of structure of high entropy CrFeCoNiCu alloys produced by EB PVD on their strength and dissipative properties
Zhang et al. Investigation of the role of silicon in TiAlSiN coating deposited on TiAl alloys during long-term oxidation
JP2008231573A (en) Evaporation crucible and evaporation apparatus with adapted evaporation characteristic
JP4557568B2 (en) Mg deposition method
JP2009532581A5 (en)
WO2006084925A1 (en) Method of protecting titanium alloys against high temperatures and material thus obtained
JP2004068156A5 (en)
Lauwerens et al. PVD Al–Ti and Al–Mn coatings for high temperature corrosion protection of sheet steel
Kumar et al. Modern coating processes and technologies
Melo et al. Production, characterization and evaluation of protective Cr oxide coatings against metal dusting
US20150252466A1 (en) High surface areas (hsa) coatings and methods for forming the same
US10323313B2 (en) Method of metal coating and coating produced thereby
EP1624087A1 (en) A method for depositing thin layers of titanium dioxide on support surfaces and artefacts obtained by said method
FX et al. Microstructure and electrochemical properties of PVD TiN,(Ti, Al) N-coated Ti-based bulk metallic glasses
Demchishin et al. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods
JP2018003156A (en) Filter device and cathodic arc evaporation method
Kim et al. Electroless nickel–phosphorus plating on Ni–Zr–Ti–Si–Sn amorphous powder
JP4975583B2 (en) Manufacturing method of fiber reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Ref document number: 4557568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term