JP2009532581A5 - - Google Patents

Download PDF

Info

Publication number
JP2009532581A5
JP2009532581A5 JP2009503387A JP2009503387A JP2009532581A5 JP 2009532581 A5 JP2009532581 A5 JP 2009532581A5 JP 2009503387 A JP2009503387 A JP 2009503387A JP 2009503387 A JP2009503387 A JP 2009503387A JP 2009532581 A5 JP2009532581 A5 JP 2009532581A5
Authority
JP
Japan
Prior art keywords
component
wear protection
component wear
vapor
coating method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009503387A
Other languages
Japanese (ja)
Other versions
JP2009532581A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/CH2007/000167 external-priority patent/WO2007115419A2/en
Publication of JP2009532581A publication Critical patent/JP2009532581A/en
Publication of JP2009532581A5 publication Critical patent/JP2009532581A5/ja
Withdrawn legal-status Critical Current

Links

Claims (22)

化学元素の周期系の亜族の金属またはその合金、好ましくはCr,W,Ti,V,Zr,Nb,Mo,Taと、C,Si,BおよびSの群に属する単一のメタロイドとからなる多相のコンポーネント摩耗防護層であって、
i)前記コンポーネント摩耗防護層は実質的に前記金属と前記メタロイドと前記メタロイドの化合物からなっており、
ii)前記コンポーネント摩耗防護層は実質的に水素を含んでおらず、
iii)前記コンポーネント摩耗防護層は工作物表面またはコンポーネント表面に場合により存在する付着層を除いて、金属からなる明確な層を実質的に有しておらず、
iv)前記コンポーネント摩耗防護層はメタロイドからなる連続する層を実質的に有していないコンポーネント摩耗防護層。
From the sub-group metals of the periodic system of chemical elements or their alloys, preferably Cr, W, Ti, V, Zr, Nb, Mo, Ta, and a single metalloid belonging to the group of C, Si, B and S A multiphase component wear protection layer comprising:
i) The component wear protection layer substantially consists of the metal, the metalloid, and the metalloid compound,
ii) the component wear protection layer is substantially free of hydrogen;
iii) the component wear protection layer is substantially free of a distinct layer of metal, except for an adhesion layer optionally present on the workpiece surface or component surface;
iv) The component wear protection layer is substantially free of a continuous layer of metalloid.
金属の濃度の合計に対するメタロイドの濃度の比率は層表面から工作物表面またはコンポーネント表面に向かって周期的に変化することを特徴とする、請求項1に記載の多相のコンポーネント摩耗防護層。   The multiphase component wear protection layer according to claim 1, wherein the ratio of the metalloid concentration to the total metal concentration varies periodically from the layer surface toward the workpiece surface or component surface. i)メタロイドとして炭素が使用され、
ii)金属としてCr,W,Ti,Zr,Nb,MoまたはTaが使用され、
iii)炭素濃度は20〜85%、好ましくは40〜70%であることを特徴とする、請求項1または2に記載の多相のコンポーネント摩耗防護層。
i) Carbon is used as the metalloid,
ii) Cr, W, Ti, Zr, Nb, Mo or Ta is used as the metal,
iii) Multi-phase component wear protection layer according to claim 1 or 2, characterized in that the carbon concentration is 20-85%, preferably 40-70%.
前記層は追加的に窒素を含んでいることを特徴とする、請求項3に記載の多相のコンポーネント摩耗防護層。   4. A multi-phase component wear protection layer according to claim 3, characterized in that the layer additionally contains nitrogen. 窒素濃度は炭素濃度を上回っていないことを特徴とする、請求項4に記載の多相のコンポーネント摩耗防護層。   The multi-phase component wear protection layer according to claim 4, wherein the nitrogen concentration does not exceed the carbon concentration. 金属に対するメタロイドの濃度の比率が層表面から工作物表面またはコンポーネント表面に向かって変化する周期は5nmを上回っておらず、好ましくは2nmを上回っていないことを特徴とする、請求項2から5のいずれか1項に記載の多相のコンポーネント摩耗防護層。   The period of the change in the ratio of the metalloid to metal concentration from the layer surface towards the workpiece surface or the component surface does not exceed 5 nm, preferably does not exceed 2 nm. The multiphase component wear protective layer according to any one of the preceding claims. i)多層に構成されており、
ii)個々の層は実質的に金属とメタロイドの化合物の粒度の点でのみ区別されることを特徴とする、請求項1から6のいずれか1項に記載の多相のコンポーネント摩耗防護層。
i) It is composed of multiple layers,
The multiphase component wear protection layer according to any one of claims 1 to 6, characterized in that ii) the individual layers are distinguished substantially only in terms of the particle size of the metal and metalloid compounds.
PVDコンポーネント摩耗防護コーティング法であって、
i)金属蒸気を生成するために少なくとも1つの物理的な蒸発源を使用し、
ii)メタロイド蒸気を生成するために少なくとも1つの物理的な蒸発源を使用し、
iii)金属蒸気とメタロイド蒸気が反応して化合物となるように工作物表面に当たることを特徴とするPVDコンポーネント摩耗防護コーティング法。
PVD component wear protection coating method,
i) using at least one physical evaporation source to generate metal vapor;
ii) using at least one physical evaporation source to generate metalloid vapor;
iii) A PVD component wear protective coating method characterized in that a metal vapor and a metalloid vapor react with each other to strike a workpiece surface so as to form a compound.
金属蒸気は化学元素の周期系の亜族の金属、好ましくはCr,W,Ti,V,Zr,Nb,Mo,Ta、またはこれらの金属が主合金成分を形成する合金であり、メタロイド蒸気は元素C,Si,BおよびS、好ましくはCの蒸気であることを特徴とする、請求項8に記載のPVDコンポーネント摩耗防護コーティング法。   The metal vapor is a subgroup metal of the periodic system of chemical elements, preferably Cr, W, Ti, V, Zr, Nb, Mo, Ta, or an alloy in which these metals form the main alloy component, PVD component wear protective coating method according to claim 8, characterized in that it is a vapor of the elements C, Si, B and S, preferably C. i)メタロイド蒸気は炭素であり、
ii)工作物およびコンポーネント表面に当たる炭素のモル流と金属のモル流との比率の時間的平均は0.2よりも大きくて4.5よりも小さく、好ましくは0.4よりも大きくて2.5よりも小さいことを特徴とする、請求項9に記載のPVDコンポーネント摩耗防護コーティング法。
i) Metalloid vapor is carbon,
ii) The temporal average of the ratio of the molar flow of carbon and the molar flow of metal impinging on the workpiece and component surfaces is greater than 0.2 and less than 4.5, preferably greater than 0.4. 10. PVD component wear protection coating method according to claim 9, characterized in that it is smaller than 5.
i)工作物およびコンポーネント表面に当たる金属蒸気のモル流とメタロイド蒸気のモル流との比率は時間周期Δtで周期的に変化し、
ii)時間周期Δtは単位m/secで表したコーティング率の5×10−9倍よりも小さく、好ましくは2×10−9倍よりも小さいことを特徴とする、請求項8から10のいずれか1項に記載のPVDコンポーネント摩耗防護コーティング法。
i) The ratio of the molar flow of metal vapor and metalloid vapor impinging on the workpiece and component surfaces varies periodically with a time period Δt;
ii) The time period Δt is smaller than 5 × 10 −9 times the coating rate expressed in units of m / sec, preferably smaller than 2 × 10 −9 times. The PVD component wear protection coating method according to claim 1.
両方の物理的な蒸発源のうちの一方として陰極アーク式蒸発器が用いられることを特徴とする、請求項8から11のいずれか1項に記載のPVDコンポーネント摩耗防護コーティング法。   12. PVD component wear protection coating method according to any one of claims 8 to 11, characterized in that a cathodic arc evaporator is used as one of both physical evaporation sources. 窒素を含有する雰囲気のなかでコーティングが行われることを特徴とする、請求項8から12のいずれか1項に記載のPVDコンポーネント摩耗防護コーティング法。   13. PVD component wear protection coating method according to any one of claims 8 to 12, characterized in that the coating is carried out in an atmosphere containing nitrogen. 水素または水素を含有する化合物を実質的に含まない雰囲気のなかでコーティングが行われることを特徴とする、請求項8から13のいずれか1項に記載のPVDコンポーネント摩耗防護コーティング法。   14. PVD component wear protection coating method according to any one of claims 8 to 13, characterized in that the coating is carried out in an atmosphere substantially free of hydrogen or hydrogen containing compounds. 真空室(1)と、物理的な蒸発源(3),(4),(5)および(6)と、回転装置(7)と、コンポーネント回転支持体(9)とで構成される、コンポーネント摩耗防護コーティング法を実施する装置であって、
i)前記装置は少なくとも2つの物理的な蒸発源を含んでおり、
ii)少なくとも2つの物理的な前記蒸発源には物理的プロセスによって蒸気相へと移されるべき異なる材料が装填されており、
iii)少なくとも1つの物理的な蒸発源は炭素蒸気、硫黄蒸気、珪素蒸気、または硼素蒸気の生成に適しており、
iv)それぞれ2つの物理的な蒸発源と前記回転装置はすべてのコンポーネントが両方の物理的な蒸発源に周期的に曝露されるように配置されており、
v)前記コンポーネント支持体が再び同じ位置に達するまでの時間周期Δtは単位m/secで表した逆コーティング率の5×10−9倍よりも小さく、好ましくは2×10−9倍よりも小さいことを特徴とする、コンポーネント摩耗防護コーティング法を実施する装置。
A component comprising a vacuum chamber (1), a physical evaporation source (3), (4), (5) and (6), a rotating device (7), and a component rotating support (9) An apparatus for performing a wear protective coating method,
i) the device comprises at least two physical evaporation sources;
ii) At least two physical said evaporation sources are loaded with different materials to be transferred to the vapor phase by a physical process;
iii) the at least one physical evaporation source is suitable for producing carbon vapor, sulfur vapor, silicon vapor or boron vapor;
iv) each of the two physical evaporation sources and the rotating device are arranged such that all components are periodically exposed to both physical evaporation sources;
v) Time period delta t to the component support has reached the same position again less than 5 × 10 -9 × reverse coating rate in units m / sec, even more preferably 2 × 10 -9 × A device for carrying out the component wear protection coating process, characterized in that it is small.
前記回転装置の回転速度は少なくとも10回転/分であり、好ましくは少なくとも50回転/分であることを特徴とする、請求項15に記載のコンポーネント摩耗防護コーティング法を実施する装置。   The apparatus for carrying out the component wear protection coating method according to claim 15, characterized in that the rotational speed of the rotating device is at least 10 revolutions / minute, preferably at least 50 revolutions / minute. 前記回転装置の回転速度は単位m/secで表した逆コーティング率の5×10−9倍であり、好ましくは2×10−9倍であることを特徴とする、請求項15に記載のコンポーネント摩耗防護コーティング法を実施する装置。 16. Component according to claim 15, characterized in that the rotational speed of the rotating device is 5 x 10-9 times, preferably 2 x 10-9 times the reverse coating rate in units of m / sec. Equipment that implements the wear protection coating method. i)それぞれ両方の物理的な蒸発源のターゲットプレート(30)の回転方向に対して横向きの平均間隔は、それぞれ両方の物理的な蒸発源のターゲットプレート(32)の平均直径よりも短く、
ii)それぞれ両方の物理的な蒸発源のターゲットプレート(30)の回転方向に対して横向きの平均間隔は、それぞれ両方の物理的な蒸発源のターゲットプレート(31)の表面からコンポーネント支持体(9)までの平均間隔よりも短いことを特徴とする、請求項15から17のいずれか1項に記載のコンポーネント摩耗防護コーティング法を実施する装置。
i) The average spacing transverse to the direction of rotation of the target plates (30) of both physical vapor sources is shorter than the average diameter of the target plates (32) of both physical vapor sources,
ii) the average spacing transverse to the direction of rotation of the target plates (30) of both physical evaporation sources, respectively, from the surface of the target plate (31) of both physical evaporation sources to the component support (9 The apparatus for carrying out the component wear protection coating method according to any one of claims 15 to 17, characterized in that it is shorter than the average interval between.
それぞれ両方の物理的な蒸発源の蒸発材料プレート(30)の回転方向に対して横向きの平均間隔は150mmよりも短いことを特徴とする、請求項15から18のいずれか1項に記載のコンポーネント摩耗防護コーティング法を実施する装置。   Component according to any one of claims 15 to 18, characterized in that the average distance transverse to the direction of rotation of the evaporation material plates (30) of both physical evaporation sources is shorter than 150 mm. Equipment that implements the wear protection coating method. それぞれ両方の物理的な蒸発装置のうちの一方の中心から他方の物理的な蒸発装置の中心まで達するためにコンポーネント支持体が必要とする時間は6秒よりも短く、好ましくは1秒よりも短いことを特徴とする、請求項15に記載のコンポーネント摩耗防護コーティング法を実施する装置。   The time required for the component support to reach from the center of one of the two physical evaporators to the center of the other physical evaporator is less than 6 seconds, preferably less than 1 second. An apparatus for carrying out the component wear protection coating method according to claim 15, characterized in that: それぞれ両方の物理的な蒸発装置は陰極アーク式蒸発器であることを特徴とする、請求項15に記載のコンポーネント摩耗防護コーティング法を実施する装置。   The apparatus for carrying out the component wear protective coating method according to claim 15, characterized in that both physical vaporizers are cathodic arc evaporators. i)陰極アーク式蒸発器は炭素について磁気的な陰極足点案内部を有しており、
ii)磁気的な陰極足点案内部は陰極足点が回転運動(21)に対して横向きに時間周期δtで振動性運動を行うように構成されており、
iii)陰極足点の振動性運動の時間周期δtはコンポーネント支持体が再び同じ位置に達する時間周期Δtの少なくとも10〜100倍であることを特徴とする、請求項21に記載のコンポーネント摩耗防護コーティング法を実施する装置。
i) Cathodic arc evaporator has a magnetic cathode foot guide for carbon,
ii) The magnetic cathode foot point guide is configured such that the cathode foot point performs an oscillating motion with a time period δt in a direction transverse to the rotational motion (21),
The component wear protection coating according to claim 21, characterized in that the time period δt of the oscillating movement of the cathode foot point is at least 10 to 100 times the time period Δt at which the component support reaches the same position again. A device that implements the law.
JP2009503387A 2006-04-07 2007-04-02 Component wear protection layer, component wear protection coating method, and apparatus for performing component wear protection coating method Withdrawn JP2009532581A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5732006 2006-04-07
PCT/CH2007/000167 WO2007115419A2 (en) 2006-04-07 2007-04-02 Wear-resistant layer for parts, method for coating a part with a wear-resistant layer, and device for carrying out said method

Publications (2)

Publication Number Publication Date
JP2009532581A JP2009532581A (en) 2009-09-10
JP2009532581A5 true JP2009532581A5 (en) 2010-05-13

Family

ID=38037449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009503387A Withdrawn JP2009532581A (en) 2006-04-07 2007-04-02 Component wear protection layer, component wear protection coating method, and apparatus for performing component wear protection coating method

Country Status (3)

Country Link
EP (1) EP2007922A2 (en)
JP (1) JP2009532581A (en)
WO (1) WO2007115419A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006029415B4 (en) * 2006-06-27 2023-07-06 Schaeffler Technologies AG & Co. KG Wear-resistant coating and manufacturing process therefor
DE102008042896A1 (en) * 2008-10-16 2010-04-22 Federal-Mogul Burscheid Gmbh Method for coating a sliding element and sliding element, in particular piston ring or cylinder liner of an internal combustion engine
DE102008062220B4 (en) * 2008-12-13 2021-04-22 Mahle International Gmbh Sliding layer, its use on or with a sliding element and method for producing a sliding layer
DE102012020756A1 (en) * 2012-10-23 2014-04-24 Mahle International Gmbh Component with a coating and process for its preparation
DE102012020757A1 (en) * 2012-10-23 2014-05-08 Mahle International Gmbh Component with a coating and process for its preparation
DE102017205028A1 (en) * 2017-03-24 2018-09-27 Robert Bosch Gmbh Wear-resistant coated metallic component consisting of this component assembly
CN112481591B (en) * 2020-11-11 2023-03-24 中国科学院宁波材料技术与工程研究所 Self-adaptive high-low temperature cycle resistant low-friction functional protective coating and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10005612A1 (en) * 2000-02-09 2001-08-16 Hauzer Techno Coating Europ B Process for making an article and article
DE10104611A1 (en) * 2001-02-02 2002-08-14 Bosch Gmbh Robert Device for the ceramic-like coating of a substrate
JP4720052B2 (en) * 2001-09-10 2011-07-13 住友電気工業株式会社 Apparatus and method for forming amorphous carbon film
FR2849449B1 (en) * 2002-12-27 2005-08-05 Commissariat Energie Atomique METHOD FOR MAKING A MULTILAYER ANTI-WEAR COATING
CN100419117C (en) * 2004-02-02 2008-09-17 株式会社神户制钢所 Hard laminated film, method of manufacturing the same and film-forming device
KR101131241B1 (en) * 2004-09-08 2012-03-30 빅-비올렉스 에스아 Method for deposition of a layer on razor blade edge and razor blade

Similar Documents

Publication Publication Date Title
JP2009532581A5 (en)
Li et al. Evaporated-gas-induced splashing model for splat formation during plasma spraying
Vetter 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications
JP2010526204A5 (en)
JP6830992B2 (en) Method for Producing Metal Hobide Carbide Layer on Substrate
Movahedi et al. Structural and thermal behavior of Fe-Cr-Mo-PBC-Si amorphous and nanocrystalline HVOF coatings
CN100560793C (en) A kind of method for preparing nano composite diamond coating
CN104831240B (en) Apparatus and method for preparing nano multilayer hard coating
Shaha et al. Effect of process parameters on mechanical and tribological performance of pulsed-DC sputtered TiC/aC: H nanocomposite films
Wang et al. Titanium-modified graphite reinforced Cu-Ni composite by multi-arc ion plating technology
JP2005281865A5 (en)
Yoon et al. Kinetic spraying deposition behavior of bulk amorphous NiTiZrSiSn feedstock
Ramos et al. Thermal stability of nanoscale metallic multilayers
Mayrhofer et al. Recrystallization and grain growth of nanocomposite Ti–B–N coatings
Li et al. Achieving in-situ alloy-hardening core-shell structured carbonyl iron powders for magnetic abrasive finishing
JP5438892B2 (en) Method for forming metal oxide film and physical vapor deposition apparatus
JP2009532581A (en) Component wear protection layer, component wear protection coating method, and apparatus for performing component wear protection coating method
CN100519828C (en) Vacuum film plating method and apparatus
JP5242062B2 (en) Hydroxyapatite particle-dispersed metal film and method for forming the same
Cicek et al. A low temperature in-situ crystalline TiNi shape memory thin film deposited by magnetron sputtering
EP2300879B1 (en) Extreme uv radiation generating device comprising a contamination captor and method of purifying tin in said device
Lee et al. Annealing effects on the intermetallic compound formation of cold sprayed Ni, Al coatings
JP2018003156A (en) Filter device and cathodic arc evaporation method
Cook et al. Solid-state processing of oxidation-resistant molybdenum borosilicide composites for ultra-high-temperature applications
CN107815644A (en) A kind of preparation method of matrix surface composite coating