JP4557195B2 - Plastic foam laminated bent steel plate manufacturing equipment - Google Patents

Plastic foam laminated bent steel plate manufacturing equipment Download PDF

Info

Publication number
JP4557195B2
JP4557195B2 JP2000027879A JP2000027879A JP4557195B2 JP 4557195 B2 JP4557195 B2 JP 4557195B2 JP 2000027879 A JP2000027879 A JP 2000027879A JP 2000027879 A JP2000027879 A JP 2000027879A JP 4557195 B2 JP4557195 B2 JP 4557195B2
Authority
JP
Japan
Prior art keywords
steel sheet
laminated
sheet
pef
polyethylene foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000027879A
Other languages
Japanese (ja)
Other versions
JP2001219224A (en
Inventor
恒男 栗田
信 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2000027879A priority Critical patent/JP4557195B2/en
Publication of JP2001219224A publication Critical patent/JP2001219224A/en
Application granted granted Critical
Publication of JP4557195B2 publication Critical patent/JP4557195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、横断面が凹状に折曲げられているとともに樹脂フォームが表面に積層されてなる樹脂フォーム積層折曲げ鋼板の製造装置に関し、特にポリエチレンフォーム(以下、適宜「PEF」と略記する)を表面に積層したPEF積層折曲げ鋼板とポリウレタンフォーム(以下、適宜「PUF」と略記する)を表面に積層したPUF積層折曲げ鋼板の選択製造ができる樹脂フォーム積層折曲げ鋼板の製造装置に関する。
【0002】
【従来の技術】
建築材などに用いられている折曲げ鋼板として、図12に示すように、特公平8−1383号公報記載のPEF積層折曲げ鋼板(以下、適宜「PEF折曲げ鋼板」と略記する)1と、図13に示すように、PUF積層折曲げ鋼板(以下、適宜「PUF折曲げ鋼板」と略記する)2とがある。これら折曲げ鋼板1、2は、横断面が凹状に折曲げられているとともに断熱目的等のためのPEF1aやPUF2aが表面に積層されている。
【0003】
PUF折曲げ鋼板2では表面全体がPUF積層域であるのに対し、PEF折曲げ鋼板1では長手方向の各両端縁1b,1cから内側へかけての所定長さLa,Lbの間はPEF未積層域となっていて、全長Lから両所定長さLa,Lbを差し引いた長さLcの間がPEF積層域となっている。両折曲げ鋼板1,2の間には、フォームの種類・積層形態の違いがあるが、いずれも、有用な複合材として屋根材などに使われており、PEF折曲げ鋼板は断熱性には劣るが低コスト品として、またPUF折曲げ鋼板は高価格ではあるが、高断熱性製品として、それぞれ用途・目的に応じて選択され、使用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の2種の折曲げ鋼板1,2の場合、効率よく製造することが難しいという問題がある。
【0005】
すなわち、両鋼板1,2の間には製造方式に顕著な差異があるので、両種を別々の製造設備で生産しなければならないからである。PEF折曲げ鋼板1の場合、平板に貼着する必要が有るために、帯状の平鋼板を所定の長さに切断した板状の鋼板シートにPEFを積層した後、折曲げ加工を施す製造方式であるのに対し、PUF折曲げ鋼板2の場合、折曲げ鋼板にPUF層を施工することが可能であると共に、平板に施工して折り曲げるとPUF層に亀裂が発生することが有るために、帯状の平鋼板を切断せずに長尺のまま折曲げ加工を施した後、さらに表面にPUFを積層してから個々に切断する製造方式が採られる。
【0006】
また、PEF折曲げ鋼板1の製造の場合には、加えて、実質的にPEF未積層域に対してのみに折曲げを施す局部的な折曲げ処理がうまくいかないということも往々にしてある。PEF未積層域はPEF積層域より幅方向に広がる復元力が大きいので、局部的な折曲げ処理を折曲げプロセスの後半に別途設けて、両端側での幅方向への広がりを止め長手方向の幅が均一なPEF折曲げ鋼板1を得ている。しかし、局部的な折曲げ処理が常に旨くいくとは限らないのである。
【0007】
特公平8−1383号公報の製造方式の場合、リミットスイッチ等の厚みセンサがPEF積層の有無による厚み差に基づき鋼板表面のPEF未積層域を感知するとともに、鋼板のPEF未積層域に対しては強力なロール加圧を行い、PEF積層域には強力なロール加圧を行わないようにして局部的な折曲げ処理を実行している。しかし、PEFの厚みが薄い場合などリミットスイッチ等の厚みセンサが誤動作しないようにセットすることは簡単ではなく往々にしてうまくいかないことがあり、厚みの大きく異なるPEFを積層する場合には、リミットスイッチの位置を調整する必要もあり、特公平8−1383号公報の製造方式では、PEF折曲げ鋼板1を効率よく製造するにはなお改良の余地がある。
【0008】
そこで、本発明の目的は、PEF折曲げ鋼板およびPUF折曲げ鋼板を効率よく製造することのできる樹脂フォーム積層折曲げ鋼板の製造装置を提供することを課題とする。
【0009】
【課題を解決するための手段】
上記目的は請求項記載の発明により達成される。すなわち、本発明の樹脂フォーム積層折曲げ鋼板の製造装置の特徴構成は、ポリエチレンフォーム(PEF)を表面に積層したPEF積層折曲げ鋼板とポリウレタンフォーム(PUF)を表面に積層したPUF積層折曲げ鋼板とを選択製造することのできる樹脂フォーム積層折曲げ鋼板の製造装置であって、
前記PEF積層折曲げ鋼板は、鋼板切断後にPEFを貼着し、次いで折曲げて製造し、前記PUF積層折曲げ鋼板は、連続鋼板を折曲げた後にPUFを積層し、次いで切断して製造するように選択可能であり、
長尺の帯状鋼板を連続的に送給する帯状鋼板供給手段と、送給されてくる鋼板を所定長さの鋼板シートに切断して送り出す第1鋼板切断手段と、搬送されてくる鋼板シートの表面にPEFシートを貼着積層するPEF積層手段と、鋼板に断面凹状の折曲げ加工を施す第1折曲げ手段と、第1折曲げ手段による折曲げが施された鋼板に再び断面凹状の折曲げ加工を施す第2折曲げ手段と、搬送されてくる未切断の折曲げ加工済帯状鋼板の表面にPUFを連続的に積層するPUF積層手段と、PUF積層済の未切断帯状鋼板を所定の寸法に切断する第2鋼板切断手段との各手段が配設されているとともに、鋼板シートの長手方向端縁から内側へかけての所定長さの間はPEF未積層域とするための寸法データを設定する寸法データ設定手段と、寸法データ設定手段の前記寸法データに基づき鋼板シートの長手方向の各両端に所定長さのPEF未積層域が生じるようPEF積層手段にPEFシートの貼着を行わせるPEF貼着制御手段と、PEF積層済の鋼板シートの先端到来を検知するシート先端検知手段と、シート先端検知手段によるシート先端検知信号と寸法データ設定手段による前記寸法データに基づきPEF積層済の鋼板シートに対しては第2折曲げ手段による折曲げ加工が実質的にPEF未積層域に対してのみ施されるよう第2折曲げ手段を制御する折曲げ制御手段が配設されており、かつ、PEF積層折曲げ鋼板製造の際は、PUF積層手段によるPUF積層処理および第2鋼板切断手段による鋼板切断処理が製造ラインから外されるとともに、PUF積層折曲げ鋼板の製造の際は、第1鋼板切断手段による鋼板切断処理およびPEF積層手段によるPEF積層処理が製造ラインから外されるよう構成されていることにある。
【0010】
上記のように構成された本発明の装置では、PEF積層折曲げ鋼板製造の際は、PUF積層手段によるPUF積層処理および第2鋼板切断手段による鋼板切断処理が製造ラインから外され、他の手段により、長尺の帯状鋼板が所定長さの鋼板シートに切断された後、鋼板シートの長手方向端縁から内側へかけての所定長さの間はPEF未積層域となるようにして鋼板シートにPEFシートが貼着積層され、ついで行われる断面凹状の折曲げ加工に続いて実質的にPEF未積層域に対してのみに折曲げを施す局部的な折曲げ処理が行われてPEF積層折曲げ鋼板が次々と製造可能である。
【0011】
なお、PEF積層折曲げ鋼板製造の際のPEF未積層域への局所的な折曲げ処理に必要なPEF未積層域とPEF積層域の識別は、PEF積層の有無による僅かな厚み差というエラーの生じやすい情報ではなく、PEF積層済の鋼板シートの先端到来のみを検出したシート先端検知、および、所定長さのPEF未積層域とするために予め設定する寸法というエラーの生じない情報に基づき行われるので、PEF未積層域に対する局部的な折曲げ処理が常に旨く行われることになる。
【0012】
また、上記の本発明の装置では、PUF積層折曲げ鋼板の製造の際は、第1鋼板切断手段による鋼板切断処理およびPEF積層手段によるPEF積層処理が製造ラインから外され、他の手段により、連続的に供給される長尺の帯状鋼板は未切断のまま断面凹状の折曲げ加工が施された後、PEFが積層されてから個々に切断されてPUF積層折曲げ鋼板が次々と製造可能である。この際、第2折曲げ手段は作動しないように設定される。
【0013】
すなわち、本発明の装置では、同じ装置においてPEF積層折曲げ鋼板製造ラインとPUF積層折曲げ鋼板の製造ラインのいずれでも、選択的に切替え設定できる構成となっているとともに、PEF未積層域に対する局部的な折曲げ処理も常に旨く行われることから、本発明の樹脂フォーム積層折曲げ鋼板の製造装置(以下、適宜「折曲げ鋼板製造装置」と略記する)によれば、PEF折曲げ鋼板およびPUF折曲げ鋼板を効率よく製造できるのである。
【0014】
【発明の実施の形態】
本発明の実施の形態を、図面を参照して詳しく説明する。図1は実施例に係る折曲げ鋼板製造装置の全体構成を示すブロック図である。
【0015】
実施例の折曲げ鋼板製造装置Sでは、図1に示すように、長尺の帯状(平)鋼板を連続的に送給する帯状鋼板供給部3と、鋼板を所定長さの鋼板シートに切断して送り出す第1鋼板切断部4と、鋼板シートの表面にPEFシートを貼着積層するPEF積層部5と、鋼板に断面凹状の折曲げ加工を施す第1折曲げ部6と、第1折曲げ部6による折曲げが施された鋼板に再び断面凹状の折曲げ加工を施す第2折曲げ部7と、未切断の折曲げ加工済帯状鋼板の表面にPUFを連続的に積層するPUF積層部8と、PUF積層済の未切断帯状鋼板を所定の寸法に切断する第2鋼板切断部9とが、上記の順で配設されている。
【0016】
さらに、実施例の折曲げ鋼板製造装置Sでは、第1鋼板切断部4によって所定長さに切断されたPEF積層に供する鋼板シートの先端到来を検知する第1シート先端検知部10と、鋼板シートの長手方向端縁から内側へかけての所定長さの間はPEF未積層域とするための寸法データを設定する寸法データ設定部11と、寸法データと第1シート先端検知部10の検出信号に基づき鋼板シートの長手方向の各両端に所定長さのPEF未積層域が生じるようPEF積層部5にPEFシートの貼着を行わせるPEF貼着制御部12と、PEF積層済の鋼板シートの先端到来を検知する第2シート先端検知部13と、シート先端検知部13の検出信号とデータ設定部11の寸法データに基づきPEF積層済の鋼板シートに対しては第2折曲げ部7による折曲げ加工が実質的にPEF未積層域に対してのみ施されるよう第2折曲げ部7を制御する折曲げ制御部14とが配設されているとともに、PEF折曲げ鋼板1製造の際は、PUF積層部8によるPUF積層処理および第2鋼板切断部9による鋼板切断処理を製造ラインから外し、PUF折曲げ鋼板2の製造の際は、第1鋼板切断部4による鋼板切断処理およびPEF積層部5によるPEF積層処理を製造ラインから外すライン選択制御部15とが設けられている他、製造ラインの選択指定や寸法データに必要な数値を入力するための操作卓16が配設されている。
【0017】
なお、図示は省略するが、鋼板シートの各製造途中の部材を先へ送る周知の搬送機構なども適所に配設されていることはいうまでもない。以下、各部の構成を具体的に説明する。
【0018】
帯状鋼板供給部3は、未切断の(平)帯状鋼板が幾重にも巻かれた鋼板ロールから鋼板を引き出して先送りするよう構成されている。第1鋼板切断部4は、PEF折曲げ鋼板1を製造する際だけ鋼板切断処理を行うのであるが、図2に示すように、帯状鋼板をPEF折曲げ鋼板1の長さLと同一の長さLの鋼板シート1Aに次々と切断するよう構成されている。
【0019】
PEF積層部5も、PEF折曲げ鋼板1を製造する際だけPEF積層処理を行うのであるが、PEF積層部5は、図3に示すように、PEF折曲げ鋼板1と同幅でPEF積層域の長さLcと同一の長さLcのPEFシート1BをPEF貼着制御部12のコントロールに従って鋼板シート1Aに貼着するよう構成されている。
【0020】
PEF貼着制御部12は、第1シート先端検知部10の検出信号とデータ設定部11の寸法データに基づきPEF積層部5をコントロールする。すなわち、寸法データ設定部11には、鋼板シート1AにおけるPEF未積層域の長さLa,Lb、PEF積層域の長さLc、さらには鋼板シート1Aの全体の長さLなど必要な寸法データが予め操作部16からの数値入力等により設定されている。一方、第1シート先端検知部10は鋼板シート1Aの先端を検知して検出信号を出す。したがって、PEF貼着制御部12は、寸法データから鋼板シート1AにおけるPEFシート1Bの貼る位置を割り出すとともに、第1シート先端検知部10の検出信号から鋼板シート1Aの先端位置を割り出し、図4に示すように、鋼板シート1Aの先端縁から長さLaだけ後方の位置にPEFシート1Bの先端縁が位置するようにPEFシート1Bを鋼板シート1Aに貼着させるようPEF積層部5をコントロールすることになる。
【0021】
第1折曲げ部6は、図1に示すように、鋼板進行方向に沿って設置された7個のロールユニット6Aを備え、ロールユニット6Aによって鋼板を断面凹状とする折曲げ加工を施す構成となっている。第1折曲げ部6の各ロールユニット6Aは、ユニット間でロール径などに若干の差があったりはするが、例えば図5に示すような構成になっている。すなわち、凹状中央部形成用の上下加圧ロール6a,6bが鋼板シート1Aの幅方向において真ん中に位置するように配設され、側部形成用の上下加圧ロール6c,6dが鋼板シート1Aの幅方向において左右側縁近傍にそれぞれ位置するようにして配設されている。加圧ロール6b,6cは鋼板進行方向に沿って徐々に径が大きくなり、逆に加圧ロール6a,6dは鋼板進行方向に沿って徐々に径が小さくなっているので、折曲げ成形は徐々に無理なく行われる。
【0022】
そして、第1折曲げ部6の場合、加圧ロール6b,6d用の回転軸6fがロール駆動部6Bの駆動モータ(図示省略)により強制回転させられる駆動軸であり、加圧ロール6a,6c用の回転軸6eが従動軸であり、回転軸6fが回転駆動されるのに伴って全加圧ロール6a〜6dが回転して鋼板は前進しながら折れ曲がっていくことになる。また、加圧ロール6a〜6dの回転量が鋼板の移動距離に比例しているとともに、加圧ロール6a〜6dの回転量と駆動モータの回転量に比例しているので、ロール駆動部6Bは駆動モータのエンコーダからパルス信号を入力し駆動モータの回転量を検出し、これを鋼板の移動距離計測信号として折曲げ制御部14へ送出するようにも構成されている。
【0023】
第2折曲げ部7は、図1に示すように、鋼板進行方向に沿って設置された2個のロールユニット7Aを備え、ロールユニット7Aによって鋼板を断面凹状とする折曲げ加工を再び施す構成となっている。第2折曲げ部7の各ロールユニット7Aは、例えば図6に示すような構成になっている。すなわち、凹状中央部形成用の上下加圧ロール7a,7bが鋼板の幅方向において真ん中に位置するように配設され、側部形成用の上下加圧ロール7c,7dが鋼板の幅方向において左右側縁近傍にそれぞれ位置するようにして配設されている。そして、加圧ロール7bが溝無し形状であるとともに、加圧ロール7bの内側外縁が溝無し形状であるため、強力な加圧を凹状の底に加えられる点がロールユニット7Aの特徴である。回転軸7gがロール駆動部7Bの駆動モータ(図示省略)により強制回転させられる駆動軸であり、回転軸7e,7fは従動軸であり、回転軸7gが回転駆動されるのに伴って全加圧ロール7a〜7dが回転して鋼板は前進しながら折れ曲がっていくことになる。
【0024】
また、第2折曲げ部7は、図7の右部分に一点鎖線で示すように、エアシリンダ7Bの作動により上側のローラ7a,7cを少し持ち上げて退避させることにより通過中の鋼板への強力な加圧を停止することが可能なように構成されている。したがって、折曲げ制御部14は、折曲げ加工対象がPEF積層の鋼板シート1Aである場合、図7に示すように、PEF積層済の鋼板シート1Aの先端到来の検知を知らせる第2シート先端検知部13の検知信号を受けた後、ロール駆動部6Bからの鋼板の移動距離計測信号に基づき、鋼板シート1Aの先端が、第2シート先端検知部13と前段のロールユニット7Aとの間の長さLoにデータ設定部11の寸法データによるPEF未積層域の長さLaを加えた距離だけ第2シート先端検知部13の位置から前進したことを検知した時点で電磁弁7Cに開放信号を送り、エアシリンダ7Bを作動させて鋼板1Aへの強力な加圧を停止させるよう構成されている。
【0025】
さらに、折曲げ制御部14は、その後、ロール駆動部6Bからの鋼板の移動距離計測信号に基づき、鋼板シート1AがPEF未積層域の長さLcだけ前進したことを検知した時点で電磁弁7Cに閉止信号を送り、エアシリンダ7Bの作動を停止させて鋼板シート1Aへ再び強力な加圧を加える。したがって、鋼板シート1AのPEF積層域では鋼板シート1Aに強力な加圧が加わらないのでPEFは損傷することなく、また鋼板シート1AのPEF未積層域では鋼板1Aに強力な加圧が加わり、PEF折曲げ鋼板1のPEF未積層域の幅方向への開きをきちっと抑えられる結果、長手方向の幅寸法が一定に揃うことになる。
【0026】
なお、PUF折曲げ鋼板2の場合、折曲げ制御部14は、常に電磁弁7Cに閉止信号を送り、エアシリンダ7Bの作動を停止させて鋼板に常に強力な加圧を与え続ける。しかし、PUF折曲げ鋼板2の場合、必要に応じて逆にエアシリンダ7Bを常に作動させて鋼板への強力な加圧は完全にストップさせる構成であってもよい。
【0027】
PUF積層部8は未切断の折曲げ加工済帯状鋼板の表面にPUF発泡原液組成物を吹き付ける等してPUFを連続的に積層する構成になっている。また、第2鋼板切断部9はPUF折曲げ鋼板2の製品寸法の長さに合わせてPUF積層済の未切断帯状鋼板を所定の寸法に切断する構成になっている。
【0028】
ライン選択制御部15は、操作部16により製造品目としてPEF折曲げ鋼板1が指定された場合、PUF積層部8によるPUF積層処理と、第2鋼板切断部9による鋼板切断処理を停止させて製造をスタートさせる。図10のフローチャートに示す流れに従って、図12に示すPEF折曲げ鋼板1が次々と得られる。
なお、この場合、図8に示すように、第1,第2折曲げ部では、鋼板シート1Aに対して折曲げ加工が施されることになる。
【0029】
また、ライン選択制御部15は、操作部16により製造品目としてPUF折曲げ鋼板2が指定された場合、第1切断部4による鋼板切断処理と、PEF積層部5によるPEF積層処理を停止させて製造をスタートさせる。図11のフローチャートに示す流れに従って、図13に示すPUF折曲げ鋼板2が次々と得られる。なお、この場合、図9に示すように、第1,第2折曲げ部では、未切断の帯状鋼板CAに対して折曲げ加工が施されることになる。
【0030】
〔別実施の形態〕
(1)実施例装置では、第2シート先端検知部13が第1折曲げ部6の入口の手前に設けられていたが、第2シート先端検知部13は第1折曲げ部6の直前に設けられていてもよい。
【0031】
(2)第1折曲げ部6の構成は実施例に限られず、第1折曲げ部6の中にロールユニット7Aに類似の構成の仕上げ成形等用のロールユニットが後尾側に設置されていてもよい。
【0032】
(3)実施例では第2折曲げ部7で折曲げ加工が終了する構成であったが、第2折曲げ部7の後に、さらに仕上げ成形等用のロールユニットによる折曲げ加工が行われるような構成であってもよい。
【0033】
(4)実施例の装置は、断面の凹状が1個の折曲げ鋼板を製造する構成であったが、本発明は、断面の凹状が幅方向に複数個ある折曲げ鋼板を製造する装置構成であってもよい。
【0034】
(5)鋼板の表面に積層されるポリエチレンフォームやポリウレタンフォームは断熱効果を有するものは限定なく使用できる。PUFは、通常硬質フォームが使用される。
【0035】
(6)製造ラインの切替えの際、PUF積層処理や第2鋼板切断部による鋼板切断処理を製造ラインから外したり、第1鋼板切断部による鋼板切断処理やPEF積層処理を製造ラインから外すのが自動的に行われる構成でもよいし、一部または全部が手動で行われる構成であってもよい。
【0036】
(7)第1鋼板切断部を構成する切断機が移動可能に構成され、第2鋼板切断部を構成する切断機を兼用できるように構成することも好適である。
【0037】
PUF積層処理は、硬質ポリウレタンフォーム発泡原液組成物を第1折曲げ手段により所定形状に折曲げられた折曲げ済鋼板に塗布することにより行われる。
硬質ポリウレタンフォーム発泡原液組成物は、2液反応硬化タイプの硬質ポリウレタンフォーム発泡原液を公知の発泡機にて混合し、塗布される。塗布の方法はスプレー方式、キャスティング方式等が例示されるが、限定されるものではない。硬質ポリウレタンフォーム発泡原液は、市販の原液の使用が便利であり、ソフランR原液(東洋ゴム工業(株)製)等が例示され、目的に応じた特性の原液が選択使用される。
【0038】
本発明において、断熱層であるPEF、PUF層の厚さは、特に限定されず、要求される断熱性等に応じて適宜設定されるが、1〜10mm程度であることが好ましい。
【図面の簡単な説明】
【図1】 実施例の樹脂フォーム積層折曲げ鋼板の製造装置の全体構成を示すブロック図
【図2】 実施例の装置による製造の過程で生じる鋼板シートを示す平面図
【図3】 実施例の装置による製造の過程で用いるPEFシートを示す平面図
【図4】 鋼板シートとPEFシートの積層状態を示す平面図
【図5】 実施例装置のロールユニット6Aの加圧ロールの配置状態を示す概略側面図
【図6】 実施例装置のロールユニット7Aの加圧ロールの配置状態を示す概略側面図
【図7】 実施例装置の折曲げ部の構成・動作を説明するための概略正面図
【図8】 実施例でのPEF折曲げ鋼板製造時の折曲げ部の状況を示す概略正面図
【図9】 実施例でのPUF折曲げ鋼板製造時の折曲げ部の状況を示す概略正面図
【図10】 実施例装置によるPEF折曲げ鋼板製造の流れを示すフローチャート
【図11】 実施例装置によるPUF折曲げ鋼板製造の流れを示すフローチャート
【図12】 PEF折曲げ鋼板の一例を示す外観斜視図
【図13】 PUF折曲げ鋼板の一例を示す外観斜視図
【符号の説明】
S …樹脂フォーム積層折曲げ鋼板の製造装置
1 …PEF折曲げ鋼板
1a …PEF
1A …鋼板シート
1B …PEFシート
2 …PUF折曲げ鋼板
2a …PUF
3 …帯状鋼板供給部
4 …第1鋼板切断部
5 …PEF積層部
6 …第1折曲げ部
7 …第2折曲げ部
8 …PUF積層部
9 …第2鋼板切断部
11 …寸法データ設定部
12 …PEF貼着制御部
13 …第2シート先端検知部
14 …第2折曲げ制御部
15 …ライン選択制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for manufacturing a resin foam laminated bent steel sheet in which a cross section is bent into a concave shape and a resin foam is laminated on the surface, and in particular, polyethylene foam (hereinafter abbreviated as “PEF” as appropriate). The present invention relates to an apparatus for producing a resin foam laminated folded steel sheet capable of selectively producing a PUF laminated folded steel sheet having a surface laminated with a PEF laminated folded steel sheet and a polyurethane foam (hereinafter abbreviated as “PUF” as appropriate).
[0002]
[Prior art]
As a folded steel sheet used for building materials, etc., as shown in FIG. 12, a PEF laminated folded steel sheet (hereinafter abbreviated as “PEF folded steel sheet”) 1 described in Japanese Patent Publication No. 8-1383, and As shown in FIG. 13, there is a PUF laminated folded steel sheet (hereinafter, abbreviated as “PUF folded steel sheet” as appropriate) 2. These bent steel plates 1 and 2 have a transverse cross section bent into a concave shape, and PEF 1a and PUF 2a for heat insulation purposes are laminated on the surface.
[0003]
In the PUF folded steel plate 2, the entire surface is a PUF laminated region, whereas in the PEF folded steel plate 1, there is no PEF between the predetermined lengths La and Lb from the respective longitudinal edges 1b and 1c to the inside. It is a lamination area, and a portion between the length Lc obtained by subtracting both predetermined lengths La and Lb from the total length L is the PEF lamination area. There is a difference in foam type and lamination form between the two folded steel plates 1 and 2, but both are used as roofing materials as a useful composite material. Although it is inferior, it is a low-cost product, and PUF bent steel sheet is expensive, but it is selected and used as a highly heat-insulating product according to its application and purpose.
[0004]
[Problems to be solved by the invention]
However, in the case of the two types of bent steel plates 1 and 2, there is a problem that it is difficult to manufacture efficiently.
[0005]
That is, since there is a remarkable difference in the manufacturing method between the steel plates 1 and 2, both types must be produced by separate manufacturing facilities. In the case of the PEF bent steel sheet 1, since it is necessary to stick it to a flat plate, a PEF is laminated on a plate-shaped steel sheet obtained by cutting a strip-shaped flat steel sheet into a predetermined length, and then a bending process is performed. On the other hand, in the case of the PUF folded steel plate 2, it is possible to construct a PUF layer on the folded steel plate, and when the plate is constructed and bent, a crack may occur in the PUF layer. A production method is adopted in which the strip-shaped flat steel plate is bent without being cut, and then is further cut after being laminated with PUF on the surface.
[0006]
In addition, in the case of manufacturing the PEF folded steel sheet 1, in addition, it is often the case that the local bending process of bending only the PEF non-laminated region is not successful. Since the PEF non-laminated area has a greater restoring force in the width direction than the PEF laminated area, a local folding process is separately provided in the latter half of the folding process to stop the widthwise expansion at both ends. A PEF bent steel sheet 1 having a uniform width is obtained. However, local bending is not always successful.
[0007]
In the case of the manufacturing method of Japanese Patent Publication No. 8-1383, a thickness sensor such as a limit switch senses a PEF non-laminated area on the surface of a steel sheet based on a thickness difference due to the presence or absence of PEF lamination, Performs strong bending of the roll, and the local bending process is performed without applying strong roll pressing to the PEF lamination region. However, setting a thickness sensor such as a limit switch so that it does not malfunction, such as when the thickness of the PEF is thin, is not easy and often does not work. When stacking PEFs with greatly different thicknesses, The position needs to be adjusted, and the manufacturing method disclosed in Japanese Patent Publication No. 8-1383 still has room for improvement in order to efficiently manufacture the PEF folded steel sheet 1.
[0008]
Then, the objective of this invention makes it a subject to provide the manufacturing apparatus of the resin foam lamination | stacking bending steel plate which can manufacture a PEF bending steel plate and a PUF bending steel plate efficiently.
[0009]
[Means for Solving the Problems]
The above object can be achieved by the invention described in the claims. That is, the characteristic configuration of the resin foam laminated folded steel sheet manufacturing apparatus according to the present invention includes a PEF laminated folded steel sheet having a polyethylene foam (PEF) laminated on the surface and a PUF laminated folded steel sheet having a polyurethane foam (PUF) laminated on the surface. And a resin foam laminated folded steel sheet manufacturing apparatus that can be selectively manufactured,
The PEF laminated folded steel sheet is manufactured by sticking PEF after cutting the steel sheet, and then bending, and the PUF laminated folded steel sheet is manufactured by folding the continuous steel sheet, then stacking the PUF, and then cutting. Is selectable as
A strip-shaped steel sheet supply means for continuously feeding a long strip-shaped steel sheet; a first steel sheet cutting means for cutting and feeding the fed steel sheet into a steel sheet having a predetermined length; and PEF laminating means for laminating and laminating a PEF sheet on the surface, first folding means for subjecting the steel sheet to a concave cross section, and a steel sheet that has been folded by the first folding means, again with a concave concave section. A second bending means for performing bending, a PUF laminating means for continuously laminating PUF on the surface of the uncut bent strip steel plate being conveyed, and a PUF laminated uncut strip steel plate for a predetermined Dimension data for providing a PEF non-laminated area for a predetermined length from the longitudinal direction edge of the steel sheet sheet to the inside thereof, as well as each means with the second steel sheet cutting means for cutting into dimensions. Dimension data setting means to set PEF adhesion control means for causing the PEF lamination means to adhere the PEF sheet so that a predetermined length of PEF non-lamination areas are generated at both ends in the longitudinal direction of the steel sheet based on the dimension data of the data setting means, and PEF lamination A sheet tip detection means for detecting the arrival of the leading edge of the finished steel sheet, a second bend for the PEF laminated steel sheet based on the sheet tip detection signal by the sheet tip detection means and the dimension data by the dimension data setting means. Bending control means for controlling the second bending means is disposed so that the bending process by the means is substantially performed only on the non-PEF laminated area, and the PEF laminated folded steel sheet is produced. The PUF laminating process by the PUF laminating means and the steel sheet cutting process by the second steel sheet cutting means are removed from the production line, and the PUF laminated folded steel sheet is manufactured. The time of is that the PEF laminating process by steel severing and PEF laminating means according to the first steel plate cutting means is configured to be removed from the production line.
[0010]
In the apparatus of the present invention configured as described above, when manufacturing a PEF laminated folded steel sheet, the PUF lamination process by the PUF lamination means and the steel sheet cutting process by the second steel sheet cutting means are removed from the production line. After the long strip-shaped steel plate is cut into a steel plate sheet having a predetermined length, the steel plate sheet is made to be a PEF non-laminated region for a predetermined length from the longitudinal edge of the steel plate sheet to the inside. A PEF sheet is laminated to the PEF sheet, and then a concave bending process is performed, followed by a local bending process in which only a PEF non-laminated area is bent, and PEF laminated folding is performed. Bending steel plates can be manufactured one after another.
[0011]
In addition, the identification of the PEF non-laminated area and the PEF laminated area necessary for the local bending process to the PEF non-laminated area when manufacturing the PEF laminated folded steel sheet is an error of a slight thickness difference due to the presence or absence of PEF lamination. Not based on information that is likely to occur, but based on sheet tip detection that detects only the arrival of the leading edge of a PEF-laminated steel sheet sheet, and information that does not cause an error such as a preset dimension for a PEF non-laminated area of a predetermined length. Therefore, the local bending process for the PEF non-laminated area is always performed well.
[0012]
Moreover, in the apparatus of the present invention described above, when manufacturing the PUF laminated bent steel sheet, the steel sheet cutting process by the first steel sheet cutting means and the PEF lamination process by the PEF laminating means are removed from the production line, and by other means, Continuously supplied long strip steel sheets are subjected to bending processing with a concave cross section without cutting, and then cut individually after the PEFs are laminated, and PUF laminated bent steel sheets can be manufactured one after another. is there. At this time, the second bending means is set not to operate.
[0013]
That is, in the apparatus of the present invention, both the PEF laminated folded steel sheet production line and the PUF laminated folded steel sheet production line can be selectively switched and set in the same apparatus, and the local area with respect to the non-PEF laminated area. Therefore, according to the resin foam laminated folded steel sheet manufacturing apparatus of the present invention (hereinafter abbreviated as “bending steel sheet manufacturing apparatus” as appropriate), the PEF bent steel sheet and the PUF are used. A bent steel sheet can be manufactured efficiently.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram illustrating an overall configuration of a bent steel sheet manufacturing apparatus according to an embodiment.
[0015]
In the folded steel plate manufacturing apparatus S of the embodiment, as shown in FIG. 1, a strip-shaped steel plate supply unit 3 that continuously feeds a long strip-shaped (flat) steel plate and a steel plate cut into a steel sheet having a predetermined length. The first steel sheet cutting section 4 to be sent out, the PEF laminated section 5 for laminating and laminating a PEF sheet on the surface of the steel sheet, the first folding section 6 for bending the steel sheet into a concave section, and the first folding A second bent portion 7 for again bending the steel plate that has been bent by the bent portion 6 and a PUF stack for continuously stacking PUF on the surface of the uncut bent strip-shaped steel plate. The part 8 and the second steel sheet cutting part 9 for cutting the PUF laminated uncut strip steel sheet into a predetermined dimension are arranged in the above order.
[0016]
Furthermore, in the bent steel sheet manufacturing apparatus S of the embodiment, the first sheet leading edge detection unit 10 that detects the arrival of the leading edge of the steel sheet provided for the PEF lamination cut to a predetermined length by the first steel sheet cutting unit 4, and the steel sheet sheet A dimension data setting unit 11 for setting dimension data for setting a PEF non-stacked area between a predetermined length from the longitudinal edge to the inside of the sheet, dimension data, and a detection signal of the first sheet leading edge detection unit 10 Of the PEF lamination control section 12 for attaching the PEF sheet to the PEF lamination section 5 so that a PEF non-lamination area having a predetermined length is generated at each end in the longitudinal direction of the steel sheet, and the PEF lamination steel sheet sheet Based on the detection signal of the sheet leading edge detection unit 13 and the dimension data of the data setting unit 11, the second sheet leading edge detection unit 13 for detecting the arrival of the leading edge is applied to the second bending unit 7 for the PEF laminated steel sheet. And a bending control unit 14 for controlling the second bent portion 7 so that the bending process is substantially performed only on the non-PEF laminated region, and the PEF bent steel sheet 1 is manufactured. At the time, the PUF lamination process by the PUF lamination part 8 and the steel sheet cutting process by the second steel sheet cutting part 9 are removed from the production line, and the steel sheet cutting process by the first steel sheet cutting part 4 and the In addition to a line selection control unit 15 for removing the PEF stacking process by the PEF stacking unit 5 from the production line, an operation console 16 is provided for inputting a numerical value necessary for selecting and specifying the manufacturing line and dimension data. ing.
[0017]
In addition, although illustration is abbreviate | omitted, it cannot be overemphasized that the known conveyance mechanism etc. which send the member in the middle of each manufacture of a steel plate sheet | seat ahead are also arrange | positioned in the appropriate place. Hereinafter, the structure of each part is demonstrated concretely.
[0018]
The strip steel plate supply unit 3 is configured to pull out and feed a steel plate from a steel plate roll on which uncut (flat) strip steel plates are wound several times. The first steel plate cutting part 4 performs the steel plate cutting process only when the PEF bent steel plate 1 is manufactured. As shown in FIG. 2, the strip steel plate has the same length as the length L of the PEF bent steel plate 1. It is comprised so that it may cut | disconnect to the steel sheet 1A of length L one after another.
[0019]
The PEF lamination part 5 also performs the PEF lamination process only when the PEF bent steel sheet 1 is manufactured. As shown in FIG. 3, the PEF laminated part 5 has the same width as the PEF bent steel sheet 1 and the PEF lamination area. The PEF sheet 1 </ b> B having the same length Lc as the length Lc is adhered to the steel sheet 1 </ b> A according to the control of the PEF adhesion control unit 12.
[0020]
The PEF sticking control unit 12 controls the PEF stacking unit 5 based on the detection signal of the first sheet leading edge detection unit 10 and the dimension data of the data setting unit 11. That is, the dimension data setting unit 11 includes necessary dimension data such as the lengths La and Lb of the PEF non-laminated areas in the steel sheet 1A, the length Lc of the PEF laminated areas, and the entire length L of the steel sheet 1A. It is set in advance by numerical input from the operation unit 16 or the like. On the other hand, the first sheet leading edge detector 10 detects the leading edge of the steel sheet 1A and outputs a detection signal. Therefore, the PEF sticking control unit 12 calculates the position where the PEF sheet 1B is pasted on the steel sheet 1A from the dimension data, and the tip position of the steel sheet 1A based on the detection signal of the first sheet tip detecting unit 10, as shown in FIG. As shown, controlling the PEF lamination part 5 so that the PEF sheet 1B is adhered to the steel sheet 1A so that the leading edge of the PEF sheet 1B is located at a position backward by a length La from the leading edge of the steel sheet 1A. become.
[0021]
As shown in FIG. 1, the 1st bending part 6 is equipped with the seven roll units 6A installed along the steel plate advancing direction, and the structure which performs the bending process which makes a steel plate a cross-sectional concave shape with the roll unit 6A, It has become. Each roll unit 6A of the first bent portion 6 has a configuration as shown in FIG. 5, for example, although there is a slight difference in roll diameter between the units. That is, the upper and lower pressure rolls 6a and 6b for forming the concave center part are arranged so as to be positioned in the middle in the width direction of the steel sheet 1A, and the upper and lower pressure rolls 6c and 6d for forming the side parts are formed on the steel sheet 1A. They are arranged so as to be positioned in the vicinity of the left and right side edges in the width direction. The pressure rolls 6b and 6c gradually increase in diameter along the steel plate traveling direction, and conversely, the pressure rolls 6a and 6d gradually decrease in diameter along the steel plate traveling direction. It is done without difficulty.
[0022]
In the case of the first bent portion 6, the rotary shaft 6f for the pressure rolls 6b and 6d is a drive shaft that is forcibly rotated by a drive motor (not shown) of the roll drive portion 6B, and the pressure rolls 6a and 6c. The rotary shaft 6e is a driven shaft, and all the pressure rolls 6a to 6d are rotated as the rotary shaft 6f is driven to rotate, and the steel sheet is bent while moving forward. Moreover, since the rotation amount of the pressure rolls 6a to 6d is proportional to the moving distance of the steel plate and is proportional to the rotation amount of the pressure rolls 6a to 6d and the rotation amount of the drive motor, the roll driving unit 6B is A pulse signal is input from the encoder of the drive motor to detect the rotation amount of the drive motor, and this is sent to the bending control unit 14 as a steel plate movement distance measurement signal.
[0023]
As shown in FIG. 1, the 2nd bending part 7 is equipped with the two roll units 7A installed along the steel plate advancing direction, and the structure which gives again the bending process which makes a steel plate a cross-sectional concave shape with 7 A of roll units. It has become. Each roll unit 7A of the 2nd bending part 7 has a structure as shown, for example in FIG. That is, the upper and lower pressure rolls 7a and 7b for forming the concave center portion are arranged so as to be positioned in the middle in the width direction of the steel sheet, and the upper and lower pressure rolls 7c and 7d for forming the side portions are left and right in the width direction of the steel sheet. It arrange | positions so that it may each be located in the side edge vicinity. Since the pressure roll 7b has a grooveless shape and the inner outer edge of the pressure roll 7b has a grooveless shape, a feature of the roll unit 7A is that strong pressure can be applied to the concave bottom. The rotating shaft 7g is a driving shaft that is forcibly rotated by a drive motor (not shown) of the roll driving unit 7B, the rotating shafts 7e and 7f are driven shafts, and are fully added as the rotating shaft 7g is rotationally driven. The pressure rolls 7a to 7d rotate and the steel plate is bent while moving forward.
[0024]
Further, as shown by the alternate long and short dash line in the right part of FIG. 7, the second bent portion 7 is strong against the passing steel plate by lifting the upper rollers 7a and 7c slightly by the operation of the air cylinder 7B. It is configured so that it is possible to stop the pressurization. Therefore, when the bending object is the PEF laminated steel sheet 1A, the bending control unit 14 detects the arrival of the leading edge of the PEF laminated steel sheet 1A as shown in FIG. After receiving the detection signal of the section 13, based on the moving distance measurement signal of the steel sheet from the roll driving section 6B, the front end of the steel sheet 1A is the length between the second sheet front end detection section 13 and the preceding roll unit 7A. An opening signal is sent to the solenoid valve 7C when it is detected that the head has moved forward from the position of the second sheet leading edge detector 13 by a distance obtained by adding the length La of the PEF non-stacked area based on the dimension data of the data setting unit 11 to the length Lo. The air cylinder 7B is operated to stop the strong pressurization to the steel plate 1A.
[0025]
Furthermore, the bending control unit 14 then detects that the steel sheet 1A has advanced by the length Lc of the PEF non-laminated area based on the moving distance measurement signal of the steel sheet from the roll driving unit 6B. A close signal is sent to stop the operation of the air cylinder 7B, and strong pressurization is again applied to the steel sheet 1A. Therefore, the PEF is not damaged in the PEF laminated area of the steel sheet 1A, so that the PEF is not damaged, and the strong pressure is applied to the steel sheet 1A in the non-PEF laminated area of the steel sheet 1A. As a result of the tight opening of the bent steel sheet 1 in the width direction of the PEF non-laminated region, the width dimension in the longitudinal direction is uniform.
[0026]
In the case of the PUF bent steel sheet 2, the bending control unit 14 always sends a closing signal to the electromagnetic valve 7 </ b> C, stops the operation of the air cylinder 7 </ b> B, and continuously applies strong pressure to the steel sheet. However, in the case of the PUF bent steel sheet 2, the air cylinder 7B may always be operated as necessary to reverse the powerful pressurization to the steel sheet completely.
[0027]
The PUF lamination part 8 is configured to continuously laminate the PUF by spraying a PUF foaming stock composition on the surface of an uncut bent strip-shaped steel sheet. Moreover, the 2nd steel plate cutting part 9 is the structure which cut | disconnects the uncut cutting strip steel plate of PUF lamination | stacking to the predetermined dimension according to the length of the product dimension of the PUF bending steel plate 2. FIG.
[0028]
The line selection control unit 15, when the PEF bent steel sheet 1 is designated as a manufacturing item by the operation unit 16, stops the PUF lamination process by the PUF lamination part 8 and the steel sheet cutting process by the second steel sheet cutting part 9. Start. According to the flow shown in the flowchart of FIG. 10, the PEF bent steel sheet 1 shown in FIG. 12 is obtained one after another.
In this case, as shown in FIG. 8, in the first and second bent portions, the steel sheet 1A is bent.
[0029]
In addition, when the PUF bent steel sheet 2 is designated as a manufacturing item by the operation unit 16, the line selection control unit 15 stops the steel sheet cutting process by the first cutting unit 4 and the PEF stacking process by the PEF stacking unit 5. Start manufacturing. According to the flow shown in the flowchart of FIG. 11, the PUF bent steel sheet 2 shown in FIG. 13 is obtained one after another. In this case, as shown in FIG. 9, in the first and second bent portions, the uncut band-shaped steel plate CA is bent.
[0030]
[Another embodiment]
(1) In the embodiment apparatus, the second sheet leading end detection unit 13 is provided in front of the entrance of the first folding unit 6, but the second sheet leading end detection unit 13 is disposed immediately before the first folding unit 6. It may be provided.
[0031]
(2) The structure of the 1st bending part 6 is not restricted to an Example, The roll unit for finish molding etc. of the structure similar to the roll unit 7A in the 1st bending part 6 is installed in the tail side. Also good.
[0032]
(3) In the embodiment, the bending process is completed at the second bending part 7, but after the second bending part 7, the bending process by a roll unit for finish molding or the like is further performed. It may be a simple configuration.
[0033]
(4) Although the apparatus of an Example was the structure which manufactures the bending steel plate in which the concave shape of a cross section is one, this invention is an apparatus structure which manufactures the bending steel plate in which the concave shape of a cross section has two or more in the width direction. It may be.
[0034]
(5) Polyethylene foam or polyurethane foam laminated on the surface of the steel sheet can be used without limitation as long as it has a heat insulating effect. As the PUF, a rigid foam is usually used.
[0035]
(6) When switching the production line, the PUF lamination process and the steel sheet cutting process by the second steel sheet cutting part are removed from the production line, or the steel sheet cutting process and the PEF lamination process by the first steel sheet cutting part are removed from the production line. The configuration may be automatically performed, or a configuration in which part or all of the configuration is manually performed may be used.
[0036]
(7) It is also preferable that the cutting machine that constitutes the first steel sheet cutting part is configured to be movable, and that the cutting machine that constitutes the second steel sheet cutting part can also be used.
[0037]
The PUF lamination treatment is performed by applying the hard polyurethane foam foam concentrate solution to a folded steel plate that has been folded into a predetermined shape by the first folding means.
The hard polyurethane foam foam stock solution composition is applied by mixing a two-component reaction curing type hard polyurethane foam foam stock solution with a known foaming machine. Examples of the application method include, but are not limited to, a spray method and a casting method. As the rigid polyurethane foam foaming stock solution, it is convenient to use a commercially available stock solution, such as Soflan R stock solution (manufactured by Toyo Tire & Rubber Co., Ltd.), and a stock solution having properties according to the purpose is selectively used.
[0038]
In the present invention, the thicknesses of the PEF and PUF layers which are heat insulating layers are not particularly limited, and are appropriately set according to required heat insulating properties and the like, but are preferably about 1 to 10 mm.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the overall configuration of a production apparatus for resin foam laminated bent steel sheets of an embodiment. FIG. 2 is a plan view showing a steel sheet produced in the course of production by the apparatus of the embodiments. FIG. 4 is a plan view showing a laminated state of a steel sheet and a PEF sheet. FIG. 5 is a schematic view showing an arrangement state of pressure rolls of the roll unit 6A of the embodiment apparatus. Side view [FIG. 6] Schematic side view showing the arrangement state of the pressure rolls of the roll unit 7A of the embodiment apparatus. [FIG. 7] Schematic front view for explaining the configuration and operation of the folding part of the embodiment apparatus. 8] Schematic front view showing the situation of the bent portion during manufacture of the PEF bent steel sheet in the embodiment. [FIG. 9] Schematic front view showing the situation of the bent portion during manufacture of the PUF bent steel plate in the embodiment. 10] PEF by Example Equipment Flowchart showing the flow of manufacturing a folded steel plate [FIG. 11] Flowchart showing the flow of manufacturing a PUF folded steel plate by the apparatus of the embodiment [FIG. 12] FIG. 13 is an external perspective view showing an example of a PEF folded steel plate. Appearance perspective view showing an example
DESCRIPTION OF SYMBOLS S ... Production apparatus 1 of resin foam lamination | stacking bending steel plate 1 ... PEF bending steel plate 1a ... PEF
DESCRIPTION OF SYMBOLS 1A ... Steel plate sheet 1B ... PEF sheet 2 ... PUF bending steel plate 2a ... PUF
DESCRIPTION OF SYMBOLS 3 ... Strip | belt-shaped steel plate supply part 4 ... 1st steel plate cutting part 5 ... PEF lamination | stacking part 6 ... 1st bending part 7 ... 2nd bending part 8 ... PUF lamination | stacking part 9 ... 2nd steel plate cutting part 11 ... Dimension data setting part DESCRIPTION OF SYMBOLS 12 ... PEF sticking control part 13 ... 2nd sheet front-end | tip detection part 14 ... 2nd bending control part 15 ... Line selection control part

Claims (1)

ポリエチレンフォームを表面に積層したポリエチレンフォーム積層折曲げ鋼板と、ポリウレタンフォームを表面に積層したポリウレタンフォーム積層折曲げ鋼板とを選択製造することのできる樹脂フォーム積層折曲げ鋼板の製造装置であって、
前記ポリエチレンフォーム積層折曲げ鋼板は、鋼板切断後にポリエチレンフォームを貼着し、次いで折曲げて製造し、前記ポリウレタンフォーム積層折曲げ鋼板は、連続鋼板を折り曲げた後にポリウレタンフォームを積層し、次いで切断して製造するように選択可能であり、
長尺の帯状鋼板を連続的に送給する帯状鋼板供給手段と、送給されてくる鋼板を所定長さの鋼板シートに切断して送り出す第1鋼板切断手段と、搬送されてくる鋼板シートの表面にポリエチレンフォームシートを貼着積層するポリエチレンフォーム積層手段と、鋼板に断面凹状の折曲げ加工を施す第1折曲げ手段と、第1折曲げ手段による折曲げが施された鋼板に再び断面凹状の折曲げ加工を施す第2折曲げ手段と、搬送されてくる未切断の折曲げ加工済帯状鋼板の表面にポリウレタンフォームを連続的に積層するポリウレタンフォーム積層手段と、ポリウレタンフォーム積層済の未切断帯状鋼板を所定の寸法に切断する第2鋼板切断手段との各手段が配設されているとともに、鋼板シートの長手方向端縁から内側へかけての所定長さの間はポリエチレンフォーム未積層域とするための寸法データを設定する寸法データ設定手段と、寸法データ設定手段の前記寸法データに基づき鋼板シートの長手方向の各両端に所定長さのポリエチレンフォーム未積層域が生じるようポリエチレンフォーム積層手段にポリエチレンフォームシートの貼着を行わせるポリエチレンフォーム貼着制御手段と、ポリエチレンフォーム積層済の鋼板シートの先端到来を検知するシート先端検知手段と、シート先端検知手段によるシート先端検知信号と寸法データ設定手段による前記寸法データに基づきポリエチレンフォーム積層済の鋼板シートに対しては第2折曲げ手段による折曲げ加工が実質的にポリエチレンフォーム未積層域に対してのみ施されるよう第2折曲げ手段を制御する折曲げ制御手段が配設されており、かつ、ポリエチレンフォーム積層折曲げ鋼板製造の際は、ポリウレタンフォーム積層手段によるポリウレタンフォーム積層処理および第2鋼板切断手段による鋼板切断処理が製造ラインから外されるとともに、ポリウレタンフォーム積層折曲げ鋼板の製造の際は、第1鋼板切断手段による鋼板切断処理およびポリエチレンフォーム積層手段によるポリエチレンフォーム積層処理が製造ラインから外されるよう構成されていることを特徴とする樹脂フォーム積層折曲げ鋼板の製造装置。
An apparatus for producing a resin foam laminated folded steel sheet capable of selectively producing a polyethylene foam laminated folded steel sheet having a polyethylene foam laminated on the surface and a polyurethane foam laminated folded steel sheet having a polyurethane foam laminated on the surface,
The polyethylene foam laminated folded steel sheet is manufactured by pasting and then folding polyethylene foam after cutting the steel sheet, and the polyurethane foam laminated folded steel sheet is formed by laminating polyurethane foam after bending continuous steel sheet and then cutting. Can be selected to manufacture,
A strip-shaped steel sheet supply means for continuously feeding a long strip-shaped steel sheet, a first steel sheet cutting means for cutting and feeding the fed steel sheet into a steel sheet of a predetermined length, and a transported steel sheet sheet Polyethylene foam laminating means for laminating and laminating a polyethylene foam sheet on the surface, first folding means for subjecting the steel sheet to bending with a concave cross section, and a steel sheet that has been bent by the first folding means again with a concave cross section. 2nd bending means for performing the bending process, polyurethane foam laminating means for continuously laminating polyurethane foam on the surface of the uncut folded strip-shaped steel sheet being conveyed, and polyurethane foam laminated uncut While each means with the 2nd steel plate cutting means which cuts a strip shaped steel plate to a predetermined size is arranged, between the predetermined length from the longitudinal direction edge of a steel plate sheet to the inside Dimension data setting means for setting dimension data for making a polyethylene foam non-laminated area, and a polyethylene foam non-laminated area having a predetermined length are generated at both ends in the longitudinal direction of the steel sheet based on the dimension data of the dimension data setting means. Polyethylene foam sticking control means for making the polyethylene foam sheet stick to the polyethylene foam laminating means, sheet leading edge detecting means for detecting the arrival of the leading edge of the steel sheet sheet laminated with polyethylene foam, and sheet leading edge detection means by the sheet leading edge detecting means On the basis of the signal and the dimension data set by the dimension data setting means, the steel sheet laminated with polyethylene foam is subjected to the folding process by the second folding means so as to be substantially applied only to the polyethylene foam non-laminated area. Bending control means for controlling 2 folding means is provided In addition, when producing polyethylene foam laminated folded steel sheets, polyurethane foam lamination treatment by polyurethane foam lamination means and steel sheet cutting treatment by second steel sheet cutting means are removed from the production line, and polyurethane foam lamination bending is performed. In the production of the steel sheet, the resin foam laminated folded steel sheet is configured such that the steel sheet cutting treatment by the first steel plate cutting means and the polyethylene foam lamination treatment by the polyethylene foam lamination means are removed from the production line. Manufacturing equipment.
JP2000027879A 2000-02-04 2000-02-04 Plastic foam laminated bent steel plate manufacturing equipment Expired - Fee Related JP4557195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027879A JP4557195B2 (en) 2000-02-04 2000-02-04 Plastic foam laminated bent steel plate manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027879A JP4557195B2 (en) 2000-02-04 2000-02-04 Plastic foam laminated bent steel plate manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2001219224A JP2001219224A (en) 2001-08-14
JP4557195B2 true JP4557195B2 (en) 2010-10-06

Family

ID=18553389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027879A Expired - Fee Related JP4557195B2 (en) 2000-02-04 2000-02-04 Plastic foam laminated bent steel plate manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4557195B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449667B1 (en) * 2001-12-28 2004-09-22 천지현 An apparatus to produce a polyethylene color sheet with s type corrugation which is prevented from widthwise deflection
KR20020064247A (en) * 2002-07-03 2002-08-07 권영국 Panel for construction
JP5569429B2 (en) * 2011-02-23 2014-08-13 Jfeスチール株式会社 Hat channel member press molding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142060A (en) * 1974-10-09 1976-04-09 Daido Steel Sheet Corp KINZOKU OBIITAKAKOHOHO OYOBI SONOSOCHI
JPS5181082A (en) * 1975-01-13 1976-07-15 Aida Eng Ltd Puresuniokeru zairyokyokyusochino idohoshiki
JPH0788561A (en) * 1993-09-21 1995-04-04 Mitsubishi Plastics Ind Ltd Eaves trough forming method

Also Published As

Publication number Publication date
JP2001219224A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
US4859259A (en) Process and apparatus for reclosable container stock
JP5159610B2 (en) Machine assisted laminator and method
JP4212365B2 (en) Method for forming tire constituent member
JPS5946116B2 (en) laminator
US20100022375A1 (en) Method for the Production of Packaging Bags Having a Reinforced Base Region and Device for Carrying Out the Method
JP4557195B2 (en) Plastic foam laminated bent steel plate manufacturing equipment
US10875285B2 (en) In-line lamination method and apparatus
US10604367B2 (en) Method and device for cutting outer layer of rollstock
JPH049647B2 (en)
US9358769B2 (en) Method for manufacturing a multi-layer composite, arrangement for positioning a sheet-like element onto a backing in a laminating unit
KR200205968Y1 (en) An edge banding machine
IE42527B1 (en) Improvements in or relating to butt joints
JP2001179828A (en) Control device of longitudinal cutter for laminator
KR20230114169A (en) Plywood coating and cutting apparatus
JP3415805B2 (en) Sheet laminating molding machine
JP2009196021A (en) Method and device for manufacturing japanese paper strip
JP2001232696A (en) Method for molding unvulcanized tire inner liner
AU2005201822A1 (en) A method of manufacturing biodegradable packaging material and apparatus therefor
JPH0746508Y2 (en) Laminator with cutting device
JP4415455B2 (en) Manufacturing method of tire component
US20240217227A1 (en) Methods and devices for mechanical separation of multilayer interlayers
GB2263252A (en) Laminating machine
CN216001611U (en) Four-layer bag making device
JP3225083U (en) Molding machine
EP3769930A1 (en) Method and plant for the production of three-layer panels in thermoplastic material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070802

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees