JP4557103B2 - Coating composition for polyolefin resin - Google Patents

Coating composition for polyolefin resin Download PDF

Info

Publication number
JP4557103B2
JP4557103B2 JP2000070100A JP2000070100A JP4557103B2 JP 4557103 B2 JP4557103 B2 JP 4557103B2 JP 2000070100 A JP2000070100 A JP 2000070100A JP 2000070100 A JP2000070100 A JP 2000070100A JP 4557103 B2 JP4557103 B2 JP 4557103B2
Authority
JP
Japan
Prior art keywords
weight
coating composition
acid
polyolefin
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000070100A
Other languages
Japanese (ja)
Other versions
JP2001262042A (en
Inventor
敬文 増田
昭二 前川
進 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000070100A priority Critical patent/JP4557103B2/en
Publication of JP2001262042A publication Critical patent/JP2001262042A/en
Application granted granted Critical
Publication of JP4557103B2 publication Critical patent/JP4557103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリプロピレン等のポリオレフィン系樹脂成形品の表面を塗装する場合、またポリオレフィン系樹脂にアルミニウム等の他の基材を接着する場合に密着力や接着力を向上させる目的で使用するコーティング組成物に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
ポリプロピレン等のポリオレフィン系樹脂は、優れた性質を持ち安価であることから、自動車部品等に多量に使用されている。しかしながら、ポリウレタン系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリエステル系樹脂等の極性を有する合成樹脂とは異なり、非極性でかつ結晶性のため、塗装や接着が困難であるという問題を有する。
【0003】
そこで、この問題を解決するために、従来より、ポリオレフィン系樹脂成形品の表面をプラズマ処理やガス炎処理して活性化することにより付着性を改良しているが、この方法は、工程が複雑で多大な設備費や時間的ロスを伴うこと、また成形品の形の複雑さおよび顔料や添加物の影響により、表面処理効果にバラツキを生ずる等の欠点を有している。
【0004】
このような表面処理(前処理)なしに塗装する方法としては、自動車のポリプロピレンバンパー塗装に見られるようなプライマー組成物を用いる方法が種々提案されている(例えば特公平6−2771号)。
【0005】
一般に、このようなプライマー組成物としては、ポリオレフィン類を不飽和カルボン酸および/またはその酸無水物で変性して塩素化した塩素化ポリオレフィン系樹脂を主成分としたプライマー組成物を用いている(例えば特公平1−16414号)。しかしながら、これら塩素化ポリオレフィン系樹脂組成物は、密着性に優れているものの耐候性や耐熱性に問題があり、例えば高温下(150℃以上)では短時間に脱塩酸が進み、塗膜の着色が起こる可能性があった。
【0006】
また、従来の非塩素化ポリオレフィン系樹脂組成物として、特公昭61−11250号や特公昭62−21027号に提案されているものが挙げられるが、結晶化度を有する系単独では分散状態やゲル状態になった。また、分散状態のものは、低温保管時に流動性を失うため、取扱いが煩雑であった。
【0007】
本発明の目的は、上記のような従来技術の問題を解決し得て、塩素化ポリオレフィン系樹脂組成物にみられる高温による塗膜の着色がなく、また、従来の非塩素化ポリオレフィン系樹脂組成物にみられる分散状態やゲル状態ではなく、溶液状態で存在し、低温で保管しても流動性を失うことのないコーティング組成物を提供することにある。
【0008】
本発明者らは、種々検討を重ねた結果、重量平均分子量が30000〜50000の非晶質プロピレン−ブテン共重合体にα,β−不飽和カルボン酸またはその誘導体を0.1〜10重量%グラフト共重合させて得られる酸変性非晶質ポリオレフィンと、脂環式炭化水素および芳香族炭化水素から選択される少なくとも1種とを含有してなる組成物が、優れた特性を有することを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、下記に示すとおりのポリオレフィン系樹脂用コーティング組成物を提供するものである。
項1. 重量平均分子量が30000〜50000の非晶質プロピレン−ブテン共重合体にα,β−不飽和カルボン酸またはその誘導体を0.1〜10重量%グラフト共重合させて得られる酸変性非晶質ポリオレフィンと、脂環式炭化水素および芳香族炭化水素から選択される少なくとも1種とを含有してなるポリオレフィン系樹脂用コーティング組成物。
項2. 非晶質プロピレン−ブテン共重合体が、そのプロピレン成分が55〜80モル%で、示差走査型熱量計の熱分析に基づく結晶融解熱量が0〜2J/gであることを特徴とする項1に記載のポリオレフィン系樹脂用コーティング組成物。
項3. 酸変性非晶質ポリオレフィンの固形分濃度が10〜50重量%であることを特徴とする項1または2に記載のポリオレフィン系樹脂用コーティング組成物。
項4. 酸変性非晶質ポリオレフィンの固形分濃度が15〜30重量%であることを特徴とする項1〜3のいずれかに記載のポリオレフィン系樹脂用コーティング組成物。
【0010】
【発明の実施の形態】
本発明において使用する非晶質プロピレン−ブテン共重合体は、プロピレンとブテンの二元共重合体である。ブテンとしては、1−ブテンが好ましい。非晶質プロピレン−ブテン共重合体の重量平均分子量は、5000〜60000であり、好ましくは10000〜50000である。重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)で測定することができる。
【0011】
非晶質プロピレン−ブテン共重合体におけるプロピレン成分の割合は、55〜80モル%が好ましく、60〜70モル%がより好ましい。プロピレン成分の割合が55モル%未満であるとポリオレフィンへの密着性が低下する傾向があり、プロピレン成分の割合が80モル%を超えると得られる溶液の安定性が低下する傾向がある。
【0012】
また、非晶質プロピレン−ブテン共重合体における示差走査型熱量計(DSC)の熱分析に基づく結晶融解熱量は、0〜2J/gであるのが好ましい。この場合、非晶質プロピレン−ブテン共重合体のX線回折による結晶化度は0〜1%程度である。結晶融解熱量は、0〜1.5J/gであるのがより好ましい。
【0013】
非晶質プロピレン−ブテン共重合体にグラフト共重合するα,β−不飽和カルボン酸またはその誘導体とは、α,β−不飽和カルボン酸の他にα,β−不飽和カルボン酸の酸無水物やエステル等のことをいい、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等の不飽和カルボン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸等の不飽和カルボン酸の無水物、アクリル酸メチル、メタクリル酸メチル、マレイン酸ジメチル等の不飽和カルボン酸エステルが挙げられる。これらの中でもマレイン酸、イタコン酸およびこれらの酸無水物が好ましい。グラフト共重合する量は0.1〜10重量%であり、1〜5重量%が好ましく、1〜3重量%がより好ましい。
【0014】
グラフト共重合は、公知の方法で実施される。例えば、前記の非晶質プロピレン−ブテン共重合体と不飽和カルボン酸成分との溶融混合物に、または、トルエン、キシレン等の溶媒を用いた混合物溶液に、有機過酸化物を添加して行う。グラフト共重合は、空気または酸素の混入を避けるのが好ましく、窒素ガス等の不活性ガス雰囲気下で行うのが好ましい。有機過酸化物としては、アセチルシクロヘキシルスルホニルペルオキシド、ベンゾイルペルオキシド、ジクロロベンゾイルペルオキシド、ジクミルペルオキシド、ジ−tert−ブチルペルオキシド、ラウロイルペルオキシド等が挙げられる。
【0015】
本発明のポリオレフィン系樹脂用コーティング組成物は、上記のようにして得られる酸変性非晶質ポリオレフィンと、脂環式炭化水素および芳香族炭化水素から選択される少なくとも1種とを含有してなる。
【0016】
本発明のコーティング組成物において溶剤として使用する脂環式炭化水素としては、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、メチルエチルシクロヘキサン等が挙げられ、芳香族炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼン、芳香族系ソルベントナフサ等が挙げられる。他に、酢酸エチル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤を、併用しても差し支えない。
【0017】
本発明のコーティング組成物における酸変性非晶質ポリオレフィンの固形分濃度は、溶解性や取扱い性等の点から、10〜50重量%であるのが好ましく、15〜30重量%であるのがより好ましい。このような固形分濃度の場合には、本発明のコーティング組成物は溶液状となり得る。特に、固形分濃度が30重量%以下の場合には、5℃以下の低温においても溶液状態を安定に保ち得る。
【0018】
本発明のコーティング組成物は、顔料を添加・混合して使用することができる。顔料としては、カーボンブラック、二酸化チタン、タルク、亜鉛華、アルミペースト等の無機系顔料や、アゾ系等の有機系顔料が使用できる。
【0019】
【発明の効果】
本発明のポリオレフィン系樹脂用コーティング組成物は、溶液状態で存在し、低温で保管しても流動性を失うことがない。また、本発明に用いる酸変性非晶質ポリオレフィンは、有機溶剤に対する溶解性が向上したので、コーティング組成物中の樹脂の固形分濃度を高めることができ、ハイソリッド塗料化にも展開できる。
【0020】
本発明のポリオレフィン系樹脂用コーティング組成物は、従来の塩素化ポリオレフィン系樹脂組成物と同様に、ポリオレフィンに対する密着性に優れているほか、極性を有する塗料樹脂にも良好な密着性を示す。また、本発明のポリオレフィン系樹脂用コーティング組成物は、高温による塗膜の着色がない。
【0021】
【実施例】
次に、本発明を実施例により詳細に説明するが、本発明はこれに限定されるものではない。
【0022】
製造例1
1000mlオートクレーブ中で、非晶質プロピレン−ブテン(プロピレン成分70モル%、1−ブテン成分30モル%、重量平均分子量30000、示差走査型熱量計の熱分析に基づく結晶融解熱量1.4J/g、X線回折による結晶化度0%)200重量部を、精製トルエンとアセトンとの混合溶媒(アセトン5重量%)500重量部に溶解し、工業用無水マレイン酸50重量部を添加して、140℃に加熱した後、1時間溶解し、工業用ジ−t−ブチルペルオキシド5重量部を添加した。その温度を維持したままで撹拌を5時間継続した後、室温に冷却した。得られた樹脂溶液を再沈溶媒のアセトン3000重量部に加えた後、沈殿した樹脂を吸引濾過した。乾燥後、得られた酸変性非晶質樹脂の無水マレイン酸変性率(グラフト共重合量)は1.5重量%であった。
【0023】
製造例2
重量平均分子量が50000である以外は製造例1で用いたのと同様の非晶質プロピレン−ブテン共重合体を用いて、製造例1と同様にして酸変性非晶質樹脂を得た。得られた樹脂の無水マレイン酸変性率(グラフト共重合量)は1.0重量%であった。
【0024】
比較製造例1
非晶質プロピレン−ブテン共重合体の代わりに結晶質プロピレン−ブテン共重合体(プロピレン成分76モル%、1−ブテン成分24モル%、重量平均分子量12500、示差走査型熱量計の熱分析に基づく結晶融解熱量21J/g、X線回折による結晶化度25%)を用いた以外は製造例1と同様にして酸変性樹脂を得た。得られた樹脂の無水マレイン酸変性率(グラフト共重合量)は3.5重量%であった。
【0025】
比較製造例2
非晶質プロピレン−ブテン共重合体の代わりに結晶質プロピレン−ブテン共重合体(プロピレン成分76モル%、1−ブテン成分24モル%、重量平均分子量35000、示差走査型熱量計の熱分析に基づく結晶融解熱量28J/g、X線回折による結晶化度35%)を用いた以外は製造例1と同様にして酸変性樹脂を得た。得られた樹脂の無水マレイン酸変性率(グラフト共重合量)は1.5重量%であった。
【0026】
実施例1
製造例1で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製トルエンに溶解し、固形分濃度50重量%の樹脂溶液を調製した。樹脂溶液は23℃で均一に流動した。
【0027】
実施例2
製造例1で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製キシレンに溶解し、固形分濃度40重量%の樹脂溶液を調製した。樹脂溶液は23℃で均一に流動した。
【0028】
実施例3
製造例1で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製シクロヘキサンに溶解し、固形分濃度30重量%の樹脂溶液を調製した。樹脂溶液は23℃で均一に流動した。
【0029】
実施例4
製造例2で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製トルエンに溶解し、固形分濃度30重量%の樹脂溶液を調製した。樹脂溶液は23℃で均一に流動した。
【0030】
実施例5
製造例1で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製トルエンに溶解し、固形分濃度20重量%の樹脂溶液を調製した。
【0031】
実施例6
製造例1で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製トルエンとシクロヘキサンの混合溶剤(混合重量比64:16)に溶解し、固形分濃度20重量%の樹脂溶液を調製した。
【0032】
実施例7
製造例1で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製トルエンとシクロヘキサンの混合溶剤(混合重量比40:40)に溶解し、固形分濃度20重量%の樹脂溶液を調製した。
【0033】
実施例8
製造例1で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製トルエンとシクロヘキサンの混合溶剤(混合重量比16:64)に溶解し、固形分濃度20重量%の樹脂溶液を調製した。
【0034】
実施例9
製造例1で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製シクロヘキサンに溶解し、固形分濃度20重量%の樹脂溶液を調製した。
【0035】
実施例10
製造例2で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製エチルシクロヘキサンに溶解し、固形分濃度20重量%の樹脂溶液を調製した。
【0036】
実施例11
製造例2で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製トルエンと酢酸ブチルの混合溶剤(混合重量比75:5)に溶解し、固形分濃度20重量%の樹脂溶液を調製した。
【0037】
実施例5〜11において得られた樹脂溶液の溶液安定性を、次の方法で測定した。
[溶液安定性]
それぞれの溶液を23℃で30日間保管した後に、溶液の流動性を確認した。
[低温における溶液安定性]
それぞれの溶液を5℃と−5℃で10日間保管した後に、溶液の流動性を確認した。
【0038】
実施例5〜11において得られた樹脂溶液は、23℃、5℃、−5℃の全ての場合において、均一に流動した。
【0039】
比較例1
比較製造例1で得られた無水マレイン酸変性結晶質プロピレン−ブテン共重合体を、固形分濃度が20重量%となるように、精製トルエンと混合したが、完全に溶解しなかった。
【0040】
比較例2
比較製造例1で得られた無水マレイン酸変性結晶質プロピレン−ブテン共重合体を、固形分濃度が20重量%となるように、精製シクロヘキサンと混合したが、完全に溶解しなかった。
【0041】
比較例3
比較製造例2で得られた無水マレイン酸変性結晶質プロピレン−ブテン共重合体を、固形分濃度が20重量%となるように、精製トルエンと混合したが、完全に溶解しなかった。
【0042】
試験例1
製造例1で得られた無水マレイン酸変性非晶質プロピレン−ブテン共重合体を精製トルエンに溶解し、固形分濃度20重量%の樹脂溶液を調製した。この樹脂溶液について、以下の諸特性を評価した。
[層間密着性]
20重量%トルエン溶液をバーコーターでポリプロピレン板に塗布し、80℃で10分間乾燥した後、塗面の上にプラスチック補修用ウレタン塗料(関西ペイント(株)製、商品名:レタンPG80III、2液型ウレタン塗料)を塗装し、80℃で40分焼き付けして塗装片を作製した。この塗装片の塗面にカッターで切れ目を入れて、1mm間隔で素地に達する100個の碁盤目を作り、その上にセロファン粘着テープを密着させて180゜方向に10回引き剥がした。10回剥離しても変化のなかった場合を10点とした。
[耐温水性]
上記と同様にして塗装片を作製し、40℃の温水に塗装片を浸漬させて10日間放置した後、温水から引き上げ、塗膜表面の外観と層間密着性を確認した。塗膜表面の外観についてはブリスター(塗膜の膨れ)の有無を確認し、層間密着性は上記と同様にして確認した。
[耐ガソリン性]
上記と同様にして塗装片を作製し、20℃のレギュラーガソリンに塗装片を浸漬させて塗膜表面にリンクル(しわ)が入るまでの時間(分)を確認した。最長120分で終了した。
【0043】
評価結果は、層間密着性については、温水に浸漬しない場合、浸漬した場合のいずれも10点であった。温水浸漬後に、ブリスターは確認されなかった。また、ガソリンに120分浸漬しても、リンクルは確認されなかった。
【0044】
参考のために、塩素化ポリプロピレン樹脂溶液を調製し、上記と同様にして諸特性を評価したところ、上記と同様の結果が得られた。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a coating composition used for the purpose of improving adhesion and adhesion when coating the surface of a polyolefin resin molded product such as polypropylene, or when bonding another substrate such as aluminum to a polyolefin resin. Related to things.
[0002]
[Prior art and problems to be solved by the invention]
Polyolefin resins such as polypropylene are excellent in properties and inexpensive, and are therefore used in large quantities in automobile parts and the like. However, unlike synthetic resins having polarity such as polyurethane resin, polyamide resin, acrylic resin, polyester resin, etc., there is a problem that coating and adhesion are difficult because of nonpolarity and crystallinity.
[0003]
Therefore, in order to solve this problem, the adhesion has been improved by activating the surface of the polyolefin resin molded product by plasma treatment or gas flame treatment, but this method has complicated processes. In addition, there are drawbacks such as significant equipment costs and time loss, and variations in the surface treatment effect due to the complexity of the shape of the molded product and the influence of pigments and additives.
[0004]
As a method for coating without such surface treatment (pretreatment), various methods using a primer composition as found in polypropylene bumper coating of automobiles have been proposed (for example, Japanese Patent Publication No. 6-27771).
[0005]
In general, as such a primer composition, a primer composition mainly composed of a chlorinated polyolefin resin obtained by modifying polyolefins with unsaturated carboxylic acid and / or acid anhydride thereof and chlorinating is used ( For example, Japanese Patent Publication No. 1-161414). However, although these chlorinated polyolefin resin compositions are excellent in adhesion, they have problems in weather resistance and heat resistance. For example, dehydrochlorination proceeds in a short time at high temperatures (150 ° C. or higher), and the coating film is colored. Could happen.
[0006]
Further, as conventional non-chlorinated polyolefin resin compositions, those proposed in Japanese Patent Publication Nos. 61-11250 and 62-21027 can be mentioned. It became a state. In addition, the dispersed product is difficult to handle because it loses fluidity during low-temperature storage.
[0007]
The object of the present invention is to solve the problems of the prior art as described above, and there is no coloration of the coating film due to high temperature found in the chlorinated polyolefin resin composition, and the conventional non-chlorinated polyolefin resin composition An object of the present invention is to provide a coating composition that exists in a solution state, not in a dispersed state or a gel state, and does not lose fluidity even when stored at a low temperature.
[0008]
As a result of various investigations, the present inventors have found that an amorphous propylene-butene copolymer having a weight average molecular weight of 30,000 to 50,000 is 0.1 to 10% by weight of an α, β-unsaturated carboxylic acid or a derivative thereof. It has been found that a composition comprising an acid-modified amorphous polyolefin obtained by graft copolymerization and at least one selected from alicyclic hydrocarbons and aromatic hydrocarbons has excellent characteristics. The present invention has been completed.
[0009]
That is, this invention provides the coating composition for polyolefin resin as shown below.
Item 1. Acid-modified amorphous polyolefin obtained by graft copolymerization of α, β-unsaturated carboxylic acid or its derivative with 0.1 to 10% by weight of amorphous propylene-butene copolymer having a weight average molecular weight of 30,000 to 50,000 And a coating composition for polyolefin-based resins comprising at least one selected from alicyclic hydrocarbons and aromatic hydrocarbons.
Item 2. Item 1. The amorphous propylene-butene copolymer has a propylene component of 55 to 80 mol% and a heat of crystal melting based on thermal analysis of a differential scanning calorimeter of 0 to 2 J / g. The coating composition for polyolefin resin as described in 2.
Item 3. Item 3. The polyolefin resin coating composition according to Item 1 or 2, wherein the solid content concentration of the acid-modified amorphous polyolefin is 10 to 50% by weight.
Item 4. Item 4. The polyolefin resin coating composition according to any one of Items 1 to 3, wherein the acid-modified amorphous polyolefin has a solid content concentration of 15 to 30% by weight.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The amorphous propylene-butene copolymer used in the present invention is a binary copolymer of propylene and butene. As butene, 1-butene is preferable. The weight average molecular weight of the amorphous propylene-butene copolymer is 5,000 to 60,000, preferably 10,000 to 50,000. The weight average molecular weight can be measured by GPC (gel permeation chromatography).
[0011]
The proportion of the propylene component in the amorphous propylene-butene copolymer is preferably 55 to 80 mol%, more preferably 60 to 70 mol%. If the proportion of the propylene component is less than 55 mol%, the adhesion to the polyolefin tends to decrease, and if the proportion of the propylene component exceeds 80 mol%, the stability of the resulting solution tends to decrease.
[0012]
Moreover, it is preferable that the heat of crystal fusion based on the thermal analysis of a differential scanning calorimeter (DSC) in the amorphous propylene-butene copolymer is 0 to 2 J / g. In this case, the crystallinity of the amorphous propylene-butene copolymer by X-ray diffraction is about 0 to 1%. The amount of heat of crystal melting is more preferably 0 to 1.5 J / g.
[0013]
The α, β-unsaturated carboxylic acid or derivative thereof graft-copolymerized to the amorphous propylene-butene copolymer is an acid anhydride of α, β-unsaturated carboxylic acid in addition to α, β-unsaturated carboxylic acid. Such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid and the like, unsaturated carboxylic acids such as maleic anhydride, itaconic anhydride, citraconic anhydride, etc. Examples thereof include unsaturated carboxylic acid esters such as carboxylic acid anhydride, methyl acrylate, methyl methacrylate, and dimethyl maleate. Of these, maleic acid, itaconic acid and acid anhydrides thereof are preferred. The amount of graft copolymerization is 0.1 to 10% by weight, preferably 1 to 5% by weight, and more preferably 1 to 3% by weight.
[0014]
Graft copolymerization is carried out by a known method. For example, an organic peroxide is added to a molten mixture of the amorphous propylene-butene copolymer and the unsaturated carboxylic acid component or to a mixture solution using a solvent such as toluene or xylene. The graft copolymer is preferably avoided from mixing with air or oxygen, and is preferably carried out in an inert gas atmosphere such as nitrogen gas. Examples of the organic peroxide include acetylcyclohexylsulfonyl peroxide, benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide, lauroyl peroxide and the like.
[0015]
The polyolefin resin coating composition of the present invention comprises the acid-modified amorphous polyolefin obtained as described above and at least one selected from alicyclic hydrocarbons and aromatic hydrocarbons. .
[0016]
Examples of the alicyclic hydrocarbon used as a solvent in the coating composition of the present invention include cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, methylethylcyclohexane, and the like. Examples thereof include benzene, toluene, xylene, ethylbenzene, isopropylbenzene, and aromatic solvent naphtha. In addition, ester solvents such as ethyl acetate and butyl acetate, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone may be used in combination.
[0017]
The solid content concentration of the acid-modified amorphous polyolefin in the coating composition of the present invention is preferably 10 to 50% by weight, more preferably 15 to 30% by weight from the viewpoints of solubility and handleability. preferable. In the case of such a solid content concentration, the coating composition of the present invention can be in the form of a solution. In particular, when the solid content concentration is 30% by weight or less, the solution state can be kept stable even at a low temperature of 5 ° C. or less.
[0018]
The coating composition of the present invention can be used by adding and mixing pigments. As the pigment, inorganic pigments such as carbon black, titanium dioxide, talc, zinc white, and aluminum paste, and organic pigments such as azo can be used.
[0019]
【The invention's effect】
The coating composition for polyolefin resin of the present invention exists in a solution state and does not lose fluidity even when stored at a low temperature. In addition, since the acid-modified amorphous polyolefin used in the present invention has improved solubility in an organic solvent, the solid content concentration of the resin in the coating composition can be increased and can be developed into a high solid paint.
[0020]
Like the conventional chlorinated polyolefin resin composition, the coating composition for polyolefin resin of the present invention is excellent in adhesion to polyolefin and also exhibits good adhesion to polar paint resins. Moreover, the coating composition for polyolefin resin of the present invention does not color the coating film due to high temperature.
[0021]
【Example】
EXAMPLES Next, although an Example demonstrates this invention in detail, this invention is not limited to this.
[0022]
Production Example 1
In a 1000 ml autoclave, amorphous propylene-butene (propylene component 70 mol%, 1-butene component 30 mol%, weight average molecular weight 30000, heat of crystal melting 1.4 J / g based on thermal analysis of differential scanning calorimeter, 200 parts by weight of X-ray diffraction crystallinity 0%) was dissolved in 500 parts by weight of a mixed solvent of purified toluene and acetone (acetone 5% by weight), and 50 parts by weight of industrial maleic anhydride was added. After heating to ° C., it was dissolved for 1 hour and 5 parts by weight of industrial di-t-butyl peroxide was added. Stirring was continued for 5 hours while maintaining the temperature, and then cooled to room temperature. The obtained resin solution was added to 3000 parts by weight of acetone as a reprecipitation solvent, and the precipitated resin was subjected to suction filtration. After drying, the maleic anhydride modification rate (graft copolymerization amount) of the obtained acid-modified amorphous resin was 1.5% by weight.
[0023]
Production Example 2
An acid-modified amorphous resin was obtained in the same manner as in Production Example 1 using the same amorphous propylene-butene copolymer as used in Production Example 1 except that the weight average molecular weight was 50000. The maleic anhydride modification rate (graft copolymerization amount) of the obtained resin was 1.0% by weight.
[0024]
Comparative production example 1
Crystalline propylene-butene copolymer (76 mol% of propylene component, 24 mol% of 1-butene component, weight average molecular weight of 12500, instead of amorphous propylene-butene copolymer, based on thermal analysis of differential scanning calorimeter An acid-modified resin was obtained in the same manner as in Production Example 1 except that the heat of crystal fusion 21 J / g and the crystallinity 25% by X-ray diffraction were used. The maleic anhydride modification rate (graft copolymerization amount) of the obtained resin was 3.5% by weight.
[0025]
Comparative production example 2
Crystalline propylene-butene copolymer (76 mol% of propylene component, 24 mol% of 1-butene component, weight average molecular weight 35000, instead of amorphous propylene-butene copolymer, based on thermal analysis of differential scanning calorimeter An acid-modified resin was obtained in the same manner as in Production Example 1 except that the heat of crystal fusion was 28 J / g and the crystallinity was 35% by X-ray diffraction. The maleic anhydride modification rate (graft copolymerization amount) of the obtained resin was 1.5% by weight.
[0026]
Example 1
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 1 was dissolved in purified toluene to prepare a resin solution having a solid content concentration of 50% by weight. The resin solution flowed uniformly at 23 ° C.
[0027]
Example 2
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 1 was dissolved in purified xylene to prepare a resin solution having a solid concentration of 40% by weight. The resin solution flowed uniformly at 23 ° C.
[0028]
Example 3
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 1 was dissolved in purified cyclohexane to prepare a resin solution having a solid content concentration of 30% by weight. The resin solution flowed uniformly at 23 ° C.
[0029]
Example 4
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 2 was dissolved in purified toluene to prepare a resin solution having a solid content concentration of 30% by weight. The resin solution flowed uniformly at 23 ° C.
[0030]
Example 5
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 1 was dissolved in purified toluene to prepare a resin solution having a solid content concentration of 20% by weight.
[0031]
Example 6
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 1 is dissolved in a mixed solvent of purified toluene and cyclohexane (mixing weight ratio 64:16), and a resin solution having a solid content concentration of 20% by weight is obtained. Prepared.
[0032]
Example 7
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 1 is dissolved in a mixed solvent of purified toluene and cyclohexane (mixing weight ratio 40:40), and a resin solution having a solid content concentration of 20% by weight is obtained. Prepared.
[0033]
Example 8
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 1 is dissolved in a mixed solvent of purified toluene and cyclohexane (mixing weight ratio 16:64), and a resin solution having a solid content concentration of 20% by weight is obtained. Prepared.
[0034]
Example 9
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 1 was dissolved in purified cyclohexane to prepare a resin solution having a solid concentration of 20% by weight.
[0035]
Example 10
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 2 was dissolved in purified ethylcyclohexane to prepare a resin solution having a solid concentration of 20% by weight.
[0036]
Example 11
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 2 is dissolved in a mixed solvent of purified toluene and butyl acetate (mixing weight ratio 75: 5), and a resin solution having a solid content concentration of 20% by weight is obtained. Was prepared.
[0037]
The solution stability of the resin solutions obtained in Examples 5 to 11 was measured by the following method.
[Solution stability]
After storing each solution at 23 ° C. for 30 days, the fluidity of the solution was confirmed.
[Solution stability at low temperatures]
After storing each solution at 5 ° C. and −5 ° C. for 10 days, the fluidity of the solution was confirmed.
[0038]
The resin solutions obtained in Examples 5 to 11 flowed uniformly in all cases of 23 ° C, 5 ° C, and -5 ° C.
[0039]
Comparative Example 1
The maleic anhydride-modified crystalline propylene-butene copolymer obtained in Comparative Production Example 1 was mixed with purified toluene so that the solid content concentration was 20% by weight, but was not completely dissolved.
[0040]
Comparative Example 2
The maleic anhydride-modified crystalline propylene-butene copolymer obtained in Comparative Production Example 1 was mixed with purified cyclohexane so that the solid concentration was 20% by weight, but was not completely dissolved.
[0041]
Comparative Example 3
The maleic anhydride-modified crystalline propylene-butene copolymer obtained in Comparative Production Example 2 was mixed with purified toluene so that the solid content concentration was 20% by weight, but was not completely dissolved.
[0042]
Test example 1
The maleic anhydride-modified amorphous propylene-butene copolymer obtained in Production Example 1 was dissolved in purified toluene to prepare a resin solution having a solid content concentration of 20% by weight. The following properties were evaluated for this resin solution.
[Interlayer adhesion]
A 20% by weight toluene solution was applied to a polypropylene plate with a bar coater, dried at 80 ° C. for 10 minutes, and then a urethane paint for repairing plastic (made by Kansai Paint Co., Ltd., trade name: Retan PG80III, 2 parts) on the coated surface. Type urethane paint) was applied and baked at 80 ° C. for 40 minutes to produce a coated piece. The coated surface of this coated piece was cut with a cutter to make 100 grids that reached the substrate at 1 mm intervals, and a cellophane adhesive tape was stuck on it and peeled 10 times in the 180 ° direction. The case where there was no change even after peeling 10 times was taken as 10 points.
[Hot water resistance]
A coated piece was prepared in the same manner as described above, and the coated piece was immersed in warm water at 40 ° C. and allowed to stand for 10 days, then pulled up from the warm water, and the appearance of the coating film surface and interlayer adhesion were confirmed. About the external appearance of the coating-film surface, the presence or absence of blister (swelling of a coating-film) was confirmed, and interlayer adhesiveness was confirmed similarly to the above.
[Gasoline resistance]
A coated piece was prepared in the same manner as described above, and the time (minute) until the wrinkle was formed on the surface of the coating film was confirmed by immersing the coated piece in regular gasoline at 20 ° C. Finished in up to 120 minutes.
[0043]
As for the evaluation results, the interlayer adhesion was 10 points when not immersed in warm water and when immersed. No blisters were observed after warm water immersion. In addition, no wrinkle was found after 120 minutes of immersion in gasoline.
[0044]
For reference, a chlorinated polypropylene resin solution was prepared, and various characteristics were evaluated in the same manner as described above, and the same results as above were obtained.

Claims (4)

重量平均分子量が30000〜50000の非晶質プロピレン−ブテン共重合体にα,β−不飽和カルボン酸またはその誘導体を0.1〜10重量%グラフト共重合させて得られる酸変性非晶質ポリオレフィンと、脂環式炭化水素および芳香族炭化水素から選択される少なくとも1種とを含有してなるポリオレフィン系樹脂用コーティング組成物。Acid-modified amorphous polyolefin obtained by graft copolymerization of α, β-unsaturated carboxylic acid or its derivative with 0.1 to 10% by weight of amorphous propylene-butene copolymer having a weight average molecular weight of 30,000 to 50,000 And a coating composition for polyolefin-based resins comprising at least one selected from alicyclic hydrocarbons and aromatic hydrocarbons. 非晶質プロピレン−ブテン共重合体が、そのプロピレン成分が55〜80モル%で、示差走査型熱量計の熱分析に基づく結晶融解熱量が0〜2J/gであることを特徴とする請求項1に記載のポリオレフィン系樹脂用コーティング組成物。The amorphous propylene-butene copolymer has a propylene component of 55 to 80 mol% and a heat of crystal fusion based on thermal analysis of a differential scanning calorimeter of 0 to 2 J / g. The coating composition for polyolefin resin according to 1. 酸変性非晶質ポリオレフィンの固形分濃度が10〜50重量%であることを特徴とする請求項1または2に記載のポリオレフィン系樹脂用コーティング組成物。The coating composition for polyolefin resin according to claim 1 or 2, wherein the solid content concentration of the acid-modified amorphous polyolefin is 10 to 50% by weight. 酸変性非晶質ポリオレフィンの固形分濃度が15〜30重量%であることを特徴とする請求項1〜3のいずれかに記載のポリオレフィン系樹脂用コーティング組成物。4. The polyolefin resin coating composition according to claim 1, wherein the solid content concentration of the acid-modified amorphous polyolefin is 15 to 30% by weight.
JP2000070100A 2000-03-14 2000-03-14 Coating composition for polyolefin resin Expired - Fee Related JP4557103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000070100A JP4557103B2 (en) 2000-03-14 2000-03-14 Coating composition for polyolefin resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000070100A JP4557103B2 (en) 2000-03-14 2000-03-14 Coating composition for polyolefin resin

Publications (2)

Publication Number Publication Date
JP2001262042A JP2001262042A (en) 2001-09-26
JP4557103B2 true JP4557103B2 (en) 2010-10-06

Family

ID=18588885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000070100A Expired - Fee Related JP4557103B2 (en) 2000-03-14 2000-03-14 Coating composition for polyolefin resin

Country Status (1)

Country Link
JP (1) JP4557103B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056616A1 (en) * 2003-12-10 2005-06-23 Sanyo Chemical Industries, Ltd. Method for producing modified polyolefin
EP2845875B1 (en) * 2012-05-01 2019-01-23 Mitsui Chemicals, Inc. Coating agent, decorative film and molded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031512A (en) * 1983-07-29 1985-02-18 Mitsui Petrochem Ind Ltd Modified 1-butene polymer and its use
JPH04114072A (en) * 1990-09-05 1992-04-15 Sanyo Kokusaku Pulp Co Ltd Coating composition for polyolefin based resin
JPH08176356A (en) * 1994-12-27 1996-07-09 Ube Ind Ltd Amorphous polyolefin emulsion and its production
JPH11222543A (en) * 1998-02-06 1999-08-17 Mitsui Chem Inc Resin dispersion excellent in low-temperature heat sealability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031512A (en) * 1983-07-29 1985-02-18 Mitsui Petrochem Ind Ltd Modified 1-butene polymer and its use
JPH04114072A (en) * 1990-09-05 1992-04-15 Sanyo Kokusaku Pulp Co Ltd Coating composition for polyolefin based resin
JPH08176356A (en) * 1994-12-27 1996-07-09 Ube Ind Ltd Amorphous polyolefin emulsion and its production
JPH11222543A (en) * 1998-02-06 1999-08-17 Mitsui Chem Inc Resin dispersion excellent in low-temperature heat sealability

Also Published As

Publication number Publication date
JP2001262042A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
US4299754A (en) Surface treating agent and method for its production
JP3534253B2 (en) Acrylate-containing polymer blends
JP4848592B2 (en) Method for producing coating composition for polyolefin resin
JP5650035B2 (en) Modified polyolefin resin dispersion composition
JP4439050B2 (en) Polyolefin resin composition
EP1207171B1 (en) Graft polyolefin and resin coating composition containing the same
EP0074811B1 (en) Surface treating agent
JP4557103B2 (en) Coating composition for polyolefin resin
GB2319774A (en) Primer compositions based on modified chlorinated polypropylenes
JPH03229772A (en) Coating composition for polyolefin resin
JPH01174536A (en) Surface-treating agent
JP2527375B2 (en) Modified EVA manufacturing method
JPH0742380B2 (en) Paint composition
JPS59202230A (en) Primer
JPH0489832A (en) Aqueous dispersion
JPH01174537A (en) Surface-treating agent
JPH0725913B2 (en) Surface treatment agent
JPH05222320A (en) Primer composition
JP2670581B2 (en) Primer composition
JPS598298B2 (en) Polyolefin-based removable protective film
JPH04114072A (en) Coating composition for polyolefin based resin
JPH05112751A (en) Primer composition
JPH04320469A (en) Coating composition for polyolefinic resin
JP3638419B2 (en) Pretreatment composition and coating method using the same
JPH11256095A (en) Preparation of coating composition for polyolefin resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4557103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees