JP4555794B2 - Metal parts or metal structures excellent in fatigue crack initiation / propagation prevention characteristics and methods for producing the same - Google Patents

Metal parts or metal structures excellent in fatigue crack initiation / propagation prevention characteristics and methods for producing the same Download PDF

Info

Publication number
JP4555794B2
JP4555794B2 JP2006102763A JP2006102763A JP4555794B2 JP 4555794 B2 JP4555794 B2 JP 4555794B2 JP 2006102763 A JP2006102763 A JP 2006102763A JP 2006102763 A JP2006102763 A JP 2006102763A JP 4555794 B2 JP4555794 B2 JP 4555794B2
Authority
JP
Japan
Prior art keywords
rib
plate
metal
thickness
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006102763A
Other languages
Japanese (ja)
Other versions
JP2006312201A (en
Inventor
広志 島貫
清孝 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006102763A priority Critical patent/JP4555794B2/en
Priority to TW095112592A priority patent/TW200702095A/en
Priority to PCT/JP2006/307897 priority patent/WO2006109873A1/en
Publication of JP2006312201A publication Critical patent/JP2006312201A/en
Application granted granted Critical
Publication of JP4555794B2 publication Critical patent/JP4555794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、部材の補剛や補強にリブを用いる金属部品や金属製構造物において、リブの長さ方向に繰返し負荷が生じ、疲労き裂の発生や伝播が懸念される、金属部品や金属製構造物(溶接構造物も含む。)とそれらの製造方法に関するものである。   The present invention relates to a metal part or metal in which a metal part or metal structure using ribs for stiffening or reinforcement of a member is repeatedly subjected to a load in the length direction of the rib, and there is a concern about the occurrence or propagation of fatigue cracks. The present invention relates to a manufactured structure (including a welded structure) and a manufacturing method thereof.

金属部品や金属製構造物には、溶接、接着、鋳造、鍛造や種々の塑性加工など種々の方法によってリブ板が取り付けられている。構造上応力集中部となるリブが取り付けてある部位であって、リブ長さ方向の端部となる部位部品や構造物に作用する繰返し荷重により、疲労き裂の発生や進展が懸念される。特に溶接リブの長さ方向の端部のトウは溶接残留応力と応力集中が重畳するため疲労き裂発生やすく、部品や構造物寿命に関係する問題となることが多い。
金属部品や金属製構造物の疲労き裂発生防止の従来技術として古くから、疲労き裂の発生する応力集中部に熱処理を施し残留応力を除去する方法やグラインダーなどの装置を用いた切削処理により溶接トウ部の形状を滑らかにし応力集中を低下させる方法(例えば、特許文献1参照。)、またピーニング処理により溶接トウ部を叩くことにより塑性加工を加え、溶接残留応力の低減とトウ部の形状を改善する方法(例えば、特許文献2、特許文献3参照。)が広く用いられ疲労き裂の発生特性を改善させている。
Rib plates are attached to metal parts and metal structures by various methods such as welding, adhesion, casting, forging, and various plastic workings. A portion where the ribs serving as structural stress concentration portion is attached, a portion the rib longitudinal direction of the end, the repetitive load acting on the component or structure, occurrence and development of fatigue crack is a concern The In particular, the toe end of the length direction of the welding ribs, fatigue crack tends to occur because the residual stress and the stress concentration is superposed, it is often a problem relating to the component or structure life.
As a conventional technique of Fatigue Crack Initiation prevent metal parts or metal structures, or methods for removing old from the residual stress by heat treatment on the stress concentrated portion occurring in the fatigue crack, cutting using a device such as a grinder A method of reducing the stress concentration by smoothing the shape of the weld toe by the treatment (for example, see Patent Document 1) , and applying plastic working by hitting the weld toe by the peening treatment to reduce the welding residual stress and method of improving the part shape (e.g., Patent Document 2, Patent Document 3.) is widely used, thereby improving the generation characteristics of the fatigue crack.

このほかにも、残留応力を解放させるための溶接部近傍に熱を加えながら溶接する方法(特許文献4参照。)や回し溶接継ぎ手の溶接順番を考慮して残留応力を下げたもの(特許文献5、特許文献6参照。)付加溶接や線状加熱によって残留応力分布を変化させるもの(特許文献7、特許文献8参照)や、溶接部の形状に工夫を加えることで応力集中を小さくするもの(特許文献9参照。)などが開示されている。
特開平05−069128号公報 特開2003−001476号公報 特開2003−001477号公報 特開平11−147193号公報 特開平08−019860号公報 特開平08−155635号公報 特開平08−118012号公報 特開平08−112688号公報 特開平08−267234号公報
In addition, a method of welding while applying heat in the vicinity of the weld for releasing the residual stress (see Patent Document 4) and a method in which the residual stress is reduced in consideration of the welding order of the rotating weld joint (Patent Document) 5, see Patent Document 6.) Residual stress distribution is changed by additional welding or linear heating (refer to Patent Document 7, Patent Document 8), or stress concentration is reduced by devising the shape of the weld. (See Patent Document 9).
JP 05-069128 A JP 2003-001476 A JP 2003-001477 A Japanese Patent Laid-Open No. 11-147193 Japanese Patent Laid-Open No. 08-019860 Japanese Patent Laid-Open No. 08-155635 JP 08-1118012 A Japanese Patent Laid-Open No. 08-112688 JP 08-267234 A

しかしながら、従来技術の熱処理による方法は大型構造物など現地で施工する場合には、熱処理の設備を施工する場所へ搬送する必要があるが、設備が大型となることが多く搬送困難である場合が多いことや、構造物自体の熱容量が大きく非効率である場合も多く、適用することが難しい。また、切削処理による方法では溶接されていない場合には疲労き裂の発生防止に効果的であるが、溶接部の場合、溶接残留応力の除去ができないため、溶接トウ部に引張の溶接残留応力が残ってしまい、疲労き裂発生の防止効果は限定的である。また、ピーニング処理は疲労き裂の発生抑止特性向上に効果的であるが、圧縮応力の作用する部位は叩いた部位近傍に限られるため、ひとたび疲労き裂が発生してしまうと疲労き裂の進展防止には効果が小さいと考えられる。 However, if the method according to the heat treatment of the prior art, when applied in a field such as large structure, it is necessary to transport to the place of applying a heat treatment equipment, equipment is much transport difficult to become large In many cases, the heat capacity of the structure itself is large and inefficient, which is difficult to apply. In the method according to the cutting process, but if not welded is effective in prevention of fatigue crack, if the weld, because it can not remove the residual stress, welding residual tensile weld toe portion Stress remains, and the effect of preventing the occurrence of fatigue cracks is limited. Further, peening is effective in generating deterrence characteristics improve fatigue crack, because the site to the action of the compression stress is limited to near the site struck,-out once the fatigue and fatigue crack occurs Cracks This is considered to be less effective in preventing the progress of

また、残留応力を解放させるための溶接部近傍に熱を加えながら溶接する方法では主板に加熱による材質劣化の懸念が生じる。また、回し溶接継ぎ手の溶接順番を考慮して残留応力を下げたものでは最終ビードによる引張残留応力は回避できない。また、付加溶接や線状加熱によって残留応力分布を変化させるものは条件の管理が難しく、予期していない部分からのき裂の発生が懸念される。また溶接部の形状に工夫を加えることで応力集中を小さくするものでは大きな欠陥が溶接部内に残ることになりその寸法を施工後確認するのが難しいなどの欠点があった。
そこで、本発明では、金属部品や金属製構造物の表面であって、金属製リブの長さ方向端部と交わる応力集中部付近を簡易な方法で圧縮応力状態にすることで、該応力集中部からの疲労き裂の発生と進展を抑制し、疲労き裂の発生や進展に対する抵抗を大きくすることのできる、疲労き裂の発生・進展抑止特性に優れた金属製構造物およびそれらの製造方法を提供することを課題とする。
Further, in the method of welding while applying heat in the vicinity of the weld for releasing the residual stress, the main plate may be deteriorated due to heating. Further, if the residual stress is lowered in consideration of the welding order of the turn welded joint, the tensile residual stress due to the final bead cannot be avoided. In addition, it is difficult to manage the conditions for changing the residual stress distribution by additional welding or linear heating, and there is a concern about the occurrence of a crack from an unexpected part. In addition , if the stress concentration is reduced by devising the shape of the welded part, a large defect remains in the welded part, and it is difficult to confirm the dimensions after construction.
Therefore, in the present invention, the stress concentration is obtained by forming a compressive stress state by a simple method in the vicinity of the stress concentration portion that intersects the lengthwise end of the metal rib on the surface of the metal part or metal structure. Metal structures with excellent fatigue crack initiation / development suppression properties that can suppress the occurrence and propagation of fatigue cracks from the joints and increase resistance to fatigue crack initiation and propagation, and their manufacture It is an object to provide a method.

上記課題を解決するための本発明の要旨は以下のとおりである。
(1) 厚みbの金属製の主板または主管1から、厚みtが1mm以上、高さhが3t以上で、長さlの板状の金属製リブ2が突き出ており、該リブの長さ方向の端部にリブの厚み方向に圧痕形状の圧縮予ひずみ部を形成した金属部品または金属製構造物であって、該圧縮予ひずみ部は、板厚方向圧縮ひずみが0.5%以上25%未満であり、リブ面上に占める面積pが0.67t2以上であり、リブ長さ方向寸法kが0.5t以上3(t・b)0.5以下であり、リブ高さ方向寸法dが0.5t以上0.5h以下であり、その重心位置と前記主板または主管との距離aが0.5h以下かつ3t以下であり、その端部からリブ長さ方向端部までの距離eがリブの厚みtより小さいものであり、さらに、該圧縮予ひずみにより、前記リブの長さ方向端部であって、前記主板または主管と交差する部分4に、圧縮残留応力が働いていることを特徴とする、リブ端部から主板または主管への疲労き裂の発生・進展抑止特性に優れた金属部品または金属製構造物。
(2) 前記リブ2が溶接により前記主板または主管1に接合されており、リブおよび溶接部5の降伏強度が主板または主管1の降伏強度の95%以上であり、リブの引張強度が主板または主管の引張強度より大きく、リブの溶接部5がリブ端部から2h以上の距離に渡ってのど厚が0.5t以上であることを特徴とする、上記(1)に記載の疲労き裂の発生・進展抑止特性に優れた金属部品または金属製構造物。
(3) 厚みbの金属製の主板または主管1の表面に、厚みtが1mm以上、高さhが3t以上で、長さlの板状の金属性リブ2を形成した後、リブの板厚方向圧縮ひずみが0.5%以上25%未満の圧縮予ひずみ部3を、そのリブ長さ方向寸法kが0.5t以上3(t・b)0.5以下であり、リブ高さ方向寸法dが0.5t以上0.5h以下であり、そのリブ面上に占める面積pが0.67t2以上であるような圧痕形状で、その重心位置と前記主板または主管との距離aが0.5h以下かつ3t以下であり、その端部からリブ長さ方向端部までの距離eがリブの厚みtより小さい位置に形成することにより、前記リブの長さ方向端部であって、前記主板または主管と交差する部分4に、圧縮残留応力を付与することを特徴とする、疲労き裂の発生・進展抑止特性に優れた金属部品または金属製構造物の製造方法。
The gist of the present invention for solving the above problems is as follows.
(1) A plate-shaped metal rib 2 having a thickness t of 1 mm or more, a height h of 3 t or more, and a length l protrudes from a metal main plate or main pipe 1 having a thickness b, and the length of the rib A metal part or a metal structure in which an indentation-shaped compression pre-strained portion is formed in the thickness direction of the rib at the end of the direction, and the compression pre-strained portion has a plate thickness direction compressive strain of 0.5% or more and 25 %, The area p occupying on the rib surface is 0.67 t 2 or more, the rib length direction dimension k is 0.5 t or more and 3 (t · b) 0.5 or less, and the rib height direction dimension d is 0.5 t or less and 0.5 h or less, the distance a between the center of gravity and the main plate or main pipe is 0.5 h or less and 3 t or less, and the distance e from the end to the end in the rib length direction is the rib Further, the end of the rib in the length direction is further reduced by the compression pre-strain. The portion 4 intersecting with the main plate or main pipe is subjected to compressive residual stress, and has excellent fatigue crack generation / propagation suppression characteristics from the rib end portion to the main plate or main pipe. Metal parts or metal structures.
(2) The rib 2 is joined to the main plate or the main pipe 1 by welding, the yield strength of the rib and the welded portion 5 is 95% or more of the yield strength of the main plate or the main pipe 1, and the tensile strength of the rib is the main plate or The fatigue crack of the above (1), characterized in that it is larger than the tensile strength of the main pipe, and the welded portion 5 of the rib has a throat thickness of 0.5 t or more over a distance of 2 h or more from the end of the rib. Metal parts or metal structures with excellent generation / development suppression characteristics.
(3) After forming a plate-like metallic rib 2 having a thickness t of 1 mm or more and a height h of 3 t or more on the surface of a metal main plate or main pipe 1 having a thickness b, the rib plate The compression pre-strained portion 3 having a thickness direction compressive strain of 0.5% or more and less than 25% has a rib length direction dimension k of 0.5 t or more and 3 (t · b) 0.5 or less, and a rib height direction dimension d. Is an indentation shape in which the area p on the rib surface is 0.67 t 2 or more, and the distance a between the center of gravity and the main plate or main pipe is 0.5 h. And the distance e from the end portion to the rib length direction end portion is formed at a position smaller than the rib thickness t, thereby forming the rib length direction end portion, the main plate or Fatigue cracks characterized by imparting compressive residual stress to the part 4 intersecting the main pipe A method for manufacturing metal parts or metal structures with excellent generation / development suppression characteristics.

本発明は、金属部品や金属製構造物の表面であって、金属製リブの長さ方向端部と交わる応力集中部に簡易な方法で予め圧縮の残留応力を発生させることにより、該応力集中部からの疲労き裂の発生と進展を抑制することができるため、その産業上の効果は計り知れない。   The present invention is a surface of a metal part or a metal structure, and by generating a compressive residual stress in a simple manner in advance in a stress concentration portion that intersects with a longitudinal end portion of a metal rib, the stress concentration Since the generation and propagation of fatigue cracks from the parts can be suppressed, the industrial effect is immeasurable.

本発明は、金属部品や金属製構造物の表面であって、金属製リブの長さ方向端部と交わる応力集中部に簡易な方法で予め圧縮の残留応力を発生させることにより、該応力集中部からの疲労き裂の発生と進展を抑制することを特徴とするものである。
具体的には、請求項1に記載の発明は、厚みbの金属製の主板または主管1から、厚みtが1mm以上、高さhが3t以上で、長さlの板状の金属製リブ2が突き出ており、該リブの長さ方向の端部にリブ2の厚み方向に圧痕形状の圧縮予ひずみ部3を形成した金属部品または金属製構造物であって、該圧縮予ひずみ部3は、板厚方向圧縮ひずみが0.5%以上25%未満であり、リブ面上に占める面積pが0.67t2以上であり、リブ長さ方向寸法kが0.5t以上3(t・b)0.5以下であり、リブ高さ方向寸法dが0.5t以上0.5h以下であり、その重心位置17と前記主板または主管との距離aが0.5h以下かつ3t以下であり、その端部からリブ長さ方向端部までの距離eがリブ2の厚みtより小さいものであり、さらに、該圧縮予ひずみにより、前記リブの長さ方向端部であって、前記主板または主管と交差する部分4に、圧縮残留応力が働いていることを特徴とするものである。
The present invention provides the stress concentration by generating a compressive residual stress in a simple manner in advance in a stress concentration portion that intersects the lengthwise end portion of the metal rib on the surface of a metal part or metal structure. It is characterized by suppressing the occurrence and propagation of fatigue cracks from the part.
Specifically, the invention described in claim 1 is a plate-shaped metal rib having a thickness t of 1 mm or more, a height h of 3 t or more, and a length l from a metal main plate or main pipe 1 having a thickness b. 2 is a metal part or metal structure in which an indentation-shaped compression pre-strained portion 3 is formed in the thickness direction of the rib 2 at an end in the length direction of the rib, and the compression pre-strain portion 3 Has a plate thickness direction compressive strain of 0.5% or more and less than 25%, an area p on the rib surface of 0.67 t 2 or more, and a rib length direction dimension k of 0.5 t or more and 3 (t · b) 0.5 or less, the rib height direction dimension d is 0.5 t or more and 0.5 h or less, and the distance a between the center of gravity position 17 and the main plate or main pipe is 0.5 h or less and 3 t or less, The distance e from the end to the end in the rib length direction is smaller than the thickness t of the rib 2, The compressive strain Pre, the a longitudinal end of the rib, the portion 4 which intersects with the main plate or main, is characterized in that the compressive residual stress is working.

本発明の対象を厚みbの金属製の主板または主管1から長さl、高さh、厚みtの板状の金属性リブ2が突き出た金属部品または金属製構造物とするのは、金属製の主板または主管と突き出たリブとが接する部位であって、該リブの長さ方向の端部4は部品や構造物に荷重が作用した際に応力集中部となり、繰返し荷重下では疲労き裂の発生源となるからである。
また、該リブの長さ方向の端部にリブの厚み方向に0.5%以上25%未満の圧縮予ひずみ部3を形成させるのは、該リブと金属主板または主管1の接する部位であって、該リブの長さ方向の端部に圧縮の残留応力を発生させるためであり、0.5%より小さい圧縮ひずみでは十分な残留応力を発生させることは出来ず、25%より大きなひずみでは効果が頭打ちとなる上に板厚の減少や部材の巨視的な変形が顕著となり部品や構造物としての形状精度が損なわれるためである。
また、リブ2の厚みtを1mm以上としたのは、tが1mmより小さい場合には予ひずみ量の管理が困難であるためである。リブの厚みtが1mmより小さい場合でもリブの厚みt以外の本発明の特定事項を精度よく適用できれば本発明と同様の効力を発揮できる。
また、リブの長さ方向の寸法kが0.5t以上3(t・b)0.5以下の領域に圧縮予ひずみを与えるのは、kが0.5tより小さい場合、疲労き裂の発生が懸念される応力集中部に圧縮残留応力が十分に発生しないためであり、kが3(t・b)0.5超では主板の変形が顕著になることや疲労き裂の発生が懸念される応力集中部の圧縮残留応力が頭打ちもしくは減少するからである。
The object of the present invention is a metal component or metal structure in which a plate-like metallic rib 2 having a length l, a height h, and a thickness t protrudes from a metal main plate or main pipe 1 having a thickness b. The main plate or main pipe made of metal and the protruding rib are in contact with each other, and the end 4 in the length direction of the rib becomes a stress concentration part when a load is applied to a part or a structure, and fatigue occurs under repeated load. This is because it becomes a source of cracks.
In addition, the compression pre-strained portion 3 of 0.5% or more and less than 25% in the rib thickness direction is formed at the end of the rib in the length direction at the portion where the rib contacts the metal main plate or main pipe 1. In order to generate a compressive residual stress at the end of the rib in the length direction, a sufficient residual stress cannot be generated with a compressive strain smaller than 0.5%, and with a strain larger than 25%. This is because the effect reaches a peak, and the reduction of the plate thickness and macroscopic deformation of the member become remarkable, and the shape accuracy as a component or structure is impaired.
The reason why the thickness t of the rib 2 is set to 1 mm or more is that when the t is smaller than 1 mm, it is difficult to manage the pre-strain amount . Even when the rib thickness t is smaller than 1 mm , the same effects as the present invention can be exhibited if the specific matters of the present invention other than the rib thickness t can be applied with high accuracy.
Further, the compression prestrain is applied to the region where the dimension k in the length direction of the rib is 0.5 t or more and 3 (t · b) 0.5 or less. This is because sufficient compressive residual stress is not generated in the stress concentration portion, and when k is greater than 3 (t · b) 0.5 , the deformation of the main plate becomes prominent and the occurrence of fatigue cracks is a concern. This is because the compressive residual stress of the sample reaches a peak or decreases.

また、圧縮予ひずみ部のリブ高さ方向寸法dを0.5t以上0.5h以下とするのは、dが大きいほど疲労き裂の発生が懸念される応力集中部4の圧縮残留応力が大きくなるからである。リブ面上に占める面積pが0.67t2以上の領域に圧縮予ひずみを付与するのは、面積pが0.67t2より小さい場合には疲労き裂の発生が懸念される圧縮予ひずみ部3から離れた応力集中部4に疲労き裂発生を阻止できるための十分な圧縮応力を発生させられないためである。
また、圧縮ひずみ部3の重心位置17と前記主板または主管との距離aが0.5h以下かつ3t以下、およびリブの端部から圧痕までの距離eがリブの厚みtより小さくする理由は、圧縮ひずみ部がリブの長さ方向の端部から離れると疲労き裂の発生が懸念される応力集中部4の圧縮残留応力が低下し、本発明の効果である疲労き裂発生抵抗が低下してしまうからである。
Moreover, the rib height direction dimension d of the compression pre-strained part is set to 0.5 t or more and 0.5 h or less because the compressive residual stress of the stress concentration part 4 where the occurrence of fatigue cracks is concerned as the value of d increases. Because it becomes. The compression pre-strain is applied to the region where the area p on the rib surface is 0.67 t 2 or more, and the compression pre-strain part where the occurrence of fatigue cracks is concerned when the area p is smaller than 0.67 t 2. This is because a sufficient compressive stress for preventing the generation of fatigue cracks cannot be generated in the stress concentration portion 4 away from 3.
The reason why the distance a between the center of gravity position 17 of the compressive strain portion 3 and the main plate or main pipe is 0.5 h or less and 3 t or less and the distance e from the end of the rib to the indentation is smaller than the thickness t of the rib is as follows. When the compressive strain portion is separated from the end in the length direction of the rib, the compressive residual stress of the stress concentration portion 4 where the occurrence of fatigue cracks is a concern is reduced, and the fatigue crack initiation resistance which is the effect of the present invention is reduced. Because it will end up.

図1は、請求項1に記載の本発明の一実施例を示す図である。図1において、1は金属板、2は金属製リブ板、3は圧縮予ひずみ部、4は応力集中部を示す。図1のaは、圧縮予ひずみ部の重心17から疲労き裂の発生が懸念される金属板までの最短距離を示す。図1のeは、圧縮ひずみ部3の端部とリブ2の長さ方向の端部の最短距離を示す。
請求項2に記載の発明は、請求項1に記載の疲労き裂発生・進展抑止特性が優れた金属部品または金属製構造物であって、前記リブが溶接により前記主板または主管1に接合されており、リブおよび溶接部5の降伏強度が主板または主管の降伏強度の95%以上であり、リブの引張強度が主板または主管の引張強度より大きく、リブの溶接部5がリブ端部から2h以上の距離に渡って、のど厚cが0.5t以上であることを特徴とする。リブの溶接部5がリブ端部から2h以上の距離に渡って、のど厚cが0.5t以上とするのは、リブに付与する圧縮予ひずみと該リブとリブを溶接により取り付けた主板または主管との間に生じる溶接残留応力によって溶接部を破壊することなしに、該リブに付与する圧縮予ひずみにより生じた応力を、該溶接部を介してリブ板2に接する主板または主管1に伝達させるために十分なのど厚が必要であるからである。また、リブおよび溶接部5の降伏強度を主板または主管1の降伏強度の95%以上とし、リブの引張強度を主板または主管の引張強度より大きくするのは、圧縮予ひずみにより生じた応力を主板または主管1に十分伝達させるためであり、リブと溶接部の強度は高いほど本発明の効果は高くなる。
FIG. 1 is a view showing an embodiment of the present invention. In FIG. 1, 1 is a metal plate, 2 is a metal rib plate, 3 is a compression pre-strain portion, and 4 is a stress concentration portion. FIG. 1a shows the shortest distance from the center of gravity 17 of the compression prestrained portion to the metal plate where the occurrence of fatigue cracks is a concern. 1e of FIG. 1 shows the shortest distance between the end of the compressive strain portion 3 and the end of the rib 2 in the length direction.
The invention according to claim 2 is a metal part or metal structure having excellent fatigue crack initiation / development suppressing characteristics according to claim 1, wherein the rib is joined to the main plate or main pipe 1 by welding. The yield strength of the rib and the welded portion 5 is 95% or more of the yield strength of the main plate or the main pipe, the tensile strength of the rib is larger than the tensile strength of the main plate or the main pipe, and the welded portion 5 of the rib is 2 h from the end of the rib. The throat thickness c is 0.5 t or more over the above distance . The rib welded portion 5 has a throat thickness c of 0.5 t or more over a distance of 2 h or more from the end of the rib. The reason is that the compression prestrain applied to the rib and the main plate on which the rib and the rib are attached by welding Without destroying the weld due to welding residual stress generated between the main pipe and the main pipe or the main pipe 1 in contact with the rib plate 2 through the weld, the stress generated by the compression pre-strain applied to the rib is transmitted. This is because a sufficient thickness of the throat is necessary to make it . In addition, the yield strength of the rib and the welded portion 5 is 95% or more of the yield strength of the main plate or the main pipe 1 and the tensile strength of the rib is larger than the tensile strength of the main plate or the main pipe. Or it is for fully transmitting to the main pipe 1, and the effect of this invention becomes high, so that the intensity | strength of a rib and a welding part is high.

図2は、請求項2に記載の本発明の一実施例を示す図である。図2において、5は隅肉溶接部を示す。図3は、図2の溶接構造をリブ板2の板厚中央に対応する面で切った場合の断面を示す。図3のcは、隅肉溶接部5ののど厚である。
請求項3に記載の発明は、厚みbの金属製の主板または主管1表面に、厚みtが1mm以上、高さhが3t以上で、長さlの板状の金属性リブ2を形成した後、リブの板厚方向圧縮ひずみが0.5%以上25%未満の圧縮予ひずみ部3を、そのリブ長さ方向寸法kが0.5t以上3(t・b)0.5以下であり、リブ高さ方向の寸法dが0.5t以上0.5h以下であり、そのリブ面上に占める面積pが0.67t2以上であるような圧痕形状で、その重心位置と前記主板または主管との距離aが0.5h以下かつ3t以下であり、その端部からリブ長さ方向端部までの距離eがリブの厚みtより小さい位置に形成することにより、前記リブの長さ方向端部であって、前記主板または主管と交差する部分4に、圧縮残留応力を付与することを特徴とする、疲労き裂の発生・進展抑止特性に優れた金属部品または金属製構造物の製造方法とするものである。なお、圧縮予ひずみを金属製リブ形成後に与える作用効果は、該リブと該主板または主管の間にせん断応力を生じさせ、該リブの長さ方向端部であって、該主板または主管と交差する部分4に圧縮残留応力を生じさせるものである。
FIG. 2 is a view showing an embodiment of the present invention. In FIG. 2, 5 indicates a fillet weld. FIG. 3 shows a cross section when the welded structure of FIG. 2 is cut along a plane corresponding to the center of the plate thickness of the rib plate 2. FIG. 3 c shows the thickness of the fillet weld 5.
According to the third aspect of the present invention, a plate-shaped metallic rib 2 having a thickness l of 1 mm or more and a height h of 3 t or more is formed on the surface of a metal main plate or main pipe 1 having a thickness b. After that, the rib pre-strained portion 3 having a rib thickness direction compressive strain of 0.5% or more and less than 25%, the rib length direction dimension k is 0.5 t or more and 3 (t · b) 0.5 or less, The indentation shape in which the dimension d in the rib height direction is 0.5 t or more and 0.5 h or less and the area p occupying on the rib surface is 0.67 t 2 or more, and its center of gravity position and the main plate or main pipe the distance a is less and 3t below 0.5h, by a distance e from the end to the rib lengthwise end portion is formed to a thickness t smaller than the position of the rib, the rib longitudinal ends a is the portion 4 which intersects with the main plate or main, especially of imparting compressive residual stress That is for the manufacturing method of the excellent metal parts or metal structures to generation and progress suppression characteristics of fatigue cracks. The effect of applying compressive pre-strain after the formation of the metal rib is to cause a shear stress between the rib and the main plate or main pipe, and at the longitudinal end of the rib, intersecting the main plate or main pipe. the portion 4 which is intended to produce a residual compressive stress.

本発明の図4に示す構造モデルと該構造モデルと同形状であって圧縮予ひずみを与えない構造モデルの有限要素解析を行い、本発明の構造物における圧縮予ひずみが疲労き裂の発生しやすい応力集中部の応力状況に及ぼす影響を説明する。
前記構造モデルは例として、主板とリブ板共に降伏応力330MPaであり、引張強度が490MPaである鋼材で構成されているものと仮定し、図4の矢印方向に引張荷重が作用することを想定してモデル化した。構造モデルは、表1に各部の寸法と併せて示したように記号AからYまでの25種類であり、これらすべてについて有限要素解析を行った。構造モデルの主板の厚みbは8〜16mm、リブ板の厚みtは8〜24mmとした。また、圧縮予ひずみ部の形状は、リブ板2の長さ方向の寸法kを10〜80mm、リブ板2の高さ方向の寸法dを8〜24mmの矩形の面を持ち、主板1と圧縮予ひずみ部3までの距離a−d/2を8〜16mm、リブの長さ方向端部からの距離eを5〜10mmとした。予ひずみ部となる面に変位制御で圧縮および除荷によってリブ板2に厚み方向の残留ひずみとして約2.5%の塑性歪を与えた。
A finite element analysis of the structural model shown in FIG. 4 of the present invention and a structural model that has the same shape as the structural model and does not give a compressive pre-strain is performed, and the compressive pre-strain in the structure of the present invention generates a fatigue crack. The influence of the stress concentrated part on the stress situation will be explained.
As an example , the structural model assumes that the main plate and the rib plate are made of a steel material having a yield stress of 330 MPa and a tensile strength of 490 MPa, and a tensile load acts in the direction of the arrow in FIG. And modeled. There are 25 types of structural models from symbols A to Y as shown in Table 1 together with the dimensions of each part, and finite element analysis was performed for all of these. The thickness b of the main plate of the structural model was 8 to 16 mm, and the thickness t of the rib plate was 8 to 24 mm. The compression pre-strained portion has a rectangular surface in which the length k of the rib plate 2 is 10 to 80 mm and the height d of the rib plate 2 is 8 to 24 mm. The distance ad-2 to the pre-strained portion 3 was 8 to 16 mm, and the distance e from the end in the longitudinal direction of the rib was 5 to 10 mm. About 2.5% of plastic strain was applied to the rib plate 2 as a residual strain in the thickness direction by compressing and unloading the surface to be the pre-strain portion by displacement control.

例として、モデルDの場合について、予ひずみ付与の後の予ひずみ部近傍の残留応力分布の例を図5に示す。構造モデルの矢印方向に引張荷重が作用した際に応力集中部となる部位4の応力は圧縮となっている。図5の等高線につけた数字はリブの材軸方向の引張応力をMPaの単位で示したものである。なお、図5において6はリブ板2の板厚中央で半分にした場合の断面を示している。
次に、有限要素法解析により求めた、前記構造モデルで前記予ひずみ付与後に、構造モデルDの矢印方向に降伏応力の半分(165MPa)の引張負荷を与えた場合についての引張方向応力分布を図に、また、予ひずみを与えずに構造モデルDと同様に矢印方向に降伏応力の半分の引張負荷を与えたモデルD’の場合についての引張方向応力分布を図に示す。図6、図7の等高線につけた数字はリブの材軸方向の引張応力をMPaの単位で示したものである。構造モデルDの部位4の応力は構造モデルD’の部位4の応力に対して著しく低くなっている。
As an example, FIG. 5 shows an example of the residual stress distribution in the vicinity of the prestrained portion after the prestraining for the model D. When a tensile load is applied in the direction of the arrow of the structural model, the stress at the portion 4 that becomes the stress concentration portion is compressed. The numbers attached to the contour lines in FIG. 5 indicate the tensile stress in the material axis direction of the rib in units of MPa. In addition, in FIG. 5, 6 has shown the cross section at the time of making it half in the plate | board thickness center of the rib board 2. FIG.
Next, the tensile direction stress distribution obtained by applying a half of the yield stress (165 MPa) in the arrow direction of the structural model D after applying the pre-strain in the structural model, obtained by finite element method analysis, is shown in FIG. 7 and FIG. 6 shows the tensile direction stress distribution in the case of model D ′ in which a tensile load half the yield stress is applied in the direction of the arrow in the same manner as the structural model D without prestraining. 6 and 7 indicate the tensile stress in the material axis direction of the rib in units of MPa. The stress at the site 4 of the structural model D is significantly lower than the stress at the site 4 of the structural model D ′.

一般に、繰り返し負荷を受ける金属製部品や金属製構造物は応力集中を除いた部位で使用時の応力は降伏応力の半分程度以下となるように設計されている構造モデルD’で示したような応力集中部4では局所的に降伏する程度の応力が繰り返し作用することもあり、疲労き裂の発生が懸念される本発明の構造モデルDの応力集中部4では端部に降伏応力の半分の引張負荷を与えても生じる引張応力が極めて小さくなるため、疲労き裂の発生が抑制される効果がある。
本発明を適用した構造モデルの端部に引張負荷を与えた場合の応力集中部4に生じる応力は、予ひずみを与えて除荷した時点での圧縮残留応力が大きいほど疲労き裂発生に対する抵抗が大きいと考えられる。該圧縮残留応力は特にリブ板の厚みtや高さhや圧縮予ひずみ部の位置や大きさ、また、溶接によりリブ板が取り付けられた場合には溶接部の形状の影響を受けるため、それぞれの因子の影響について有限要素解析を用いて検討した。該有限要素解析の結果を用いて作成した本発明の構造モデルの応力集中部に生じる圧縮残留応力を記載した表1に基づいて請求項1に記載の発明について説明する。
Generally, metal parts or metal structures subjected to cyclic loading, the stress during use at a site other than the stress concentration are designed to be equal to or less than about half the yield stress. In the stress concentration part 4 as shown by the structural model D ′, stress that yields locally may repeatedly act, and there is a concern about the occurrence of fatigue cracks . In the stress concentration portion 4 of the structural model D of the present invention, the tensile stress generated even when a tensile load that is half the yield stress is applied to the end portion becomes extremely small.
The stress generated in the stress concentration portion 4 when a tensile load is applied to the end portion of the structural model to which the present invention is applied is that resistance to fatigue crack generation increases as the compressive residual stress at the time of unloading with prestrain is increased. Is considered large. The compressive residual stress, in particular, the rib plate thickness t and the height h and compression prestrain portions of the position and size of, also, because if the rib plate is attached by welding is influenced by the shape of the weld The effect of each factor was examined using finite element analysis. Was prepared using the results of the finite element analysis, based on Table 1 described compressive residual stress generated in the stress concentration portion of the structure model of the present invention will be described the present invention according to claim 1.

Figure 0004555794
表1の結果から以下のことが読み取れる。すなわち、モデルK、L、Mの結果から、主板に対してリブ板2は厚い方が応力集中部に生じる圧縮残留応力が大きくなっており、本発明に用いられる圧縮予ひずみ部3の寸法についてはリブ板の厚みtを基準に規定することが妥当であると判断した。
モデルK、X、Y、の結果から、リブ板の背hは高い方が応力集中部4に生じる圧縮残留応力が大きい。これは、圧縮予ひずみを受けた部分の周りの弾性領域が大きい方が応力集中部に生じる圧縮残留応力が大きくなることを表しており、圧縮予ひずみを受けた部分の周りの弾性領域が十分確保できるようh≧2dとした。
モデルKとOの比較、モデルB、C、Dの比較の結果、また、モデルH、I、Jの比較の結果から、圧縮予ひずみ部3の寸法dは大きい方が応力集中部に生じる圧縮残留応力が大きく、圧縮応力が顕著に表れるが、dが大きくなりhに近づくと効果が頭打ちになるため、dは0.5t以上0.5h以下とした。
Figure 0004555794
The following can be read from the results in Table 1. That is, from the results of models K, L, and M, the compressive residual stress generated in the stress concentration portion increases as the rib plate 2 is thicker than the main plate. Was determined to be appropriate based on the thickness t of the rib plate.
From the results of the models K, X, and Y, the compressive residual stress generated in the stress concentration portion 4 is larger when the rib plate h is higher. This indicates that the larger the elastic region around the part subjected to compressive prestrain, the greater the compressive residual stress generated in the stress concentration part, and the elastic region around the part subjected to compressive prestrain is sufficient. In order to ensure, h ≧ 2d.
From the comparison results of models K and O, models B, C, and D, and the comparison results of models H, I, and J, the compression pre-strained portion 3 having a larger dimension d causes compression at the stress concentration portion. Although the residual stress is large and the compressive stress appears remarkably, d increases to 0.5 h or more and 0.5 h or less because the effect reaches its peak when d increases and approaches h.

モデルD、E、F、G、Hの比較の結果およびモデルO、P、Q、R、S、T、Uの比較の結果から、圧縮予ひずみ部3の寸法kは大きくなると応力集中部に生じる圧縮残留応力が大きくなるが、ある程度以上大きくなると圧縮残留応力が低下する。これはkが大きく、リブ板2が厚くなると主板1に曲げが生じやすくなることや主板側にも塑性ひずみが生じやすくなるためであり、0.5t<k<3(t・b)0.5とした。
モデルO、Nの比較の結果などから、リブ2の端部からの圧縮予ひずみ部3までの距離eは小さい方が応力集中部4に生じる圧縮残留応力が大きく、e<tとした。
モデルA、Dの比較の結果などから、主板1から圧縮予ひずみ部3までの距離a−d/2は小さい方が応力集中部に生じる圧縮残留応力が大きく、a<3tとした。
モデルU、V、Wの比較の結果から、両面にリブ板を付けて本発明で行う圧縮予ひずみを与えた場合、片面リブ板の場合よりも、応力集中部に生じる圧縮残留応力が大きく、片側リブよりは両側リブの方が効果が高い。
From the comparison results of models D, E, F, G, and H and the comparison results of models O, P, Q, R, S, T, and U, when the dimension k of the compression pre-strained portion 3 increases, The generated compressive residual stress is increased, but when the compressive residual stress is increased to a certain extent, the compressive residual stress is reduced. This is because when k is large and the rib plate 2 is thick, the main plate 1 is likely to be bent, and plastic strain is also likely to occur on the main plate side, and 0.5 t <k <3 (t · b) 0.5 . did.
From the comparison results of models O and N, etc., the smaller the distance e from the end portion of the rib 2 to the compression pre-strained portion 3, the larger the compressive residual stress generated in the stress concentration portion 4, and e <t.
From the comparison results of models A and D, the compressive residual stress generated in the stress concentration portion is larger when the distance ad-2 from the main plate 1 to the compression pre-strained portion 3 is smaller, and a <3t.
From the results of comparison of models U, V, and W, when compressive prestrain is applied in the present invention with rib plates attached to both sides, the compressive residual stress generated in the stress concentration portion is larger than in the case of single-sided rib plates, Both-side ribs are more effective than one-side ribs.

前記圧縮予ひずみを与える方法としては、図8に示すように円形や矩形の平面の断面を持つ押しポンチ7をプレス装置等を用いてリブ板2に押し当てる方法が考えられるが、同様の圧縮負荷を与えられる装置であれば他の装置でも可能である。なお、押しポンチ7で圧縮予ひずみを与えた場合、押しポンチ7の角部がリブ板2に段差を作ることになるが、この段差は応力集中を発生させるため、できるだけ滑らかになるよう、面取りや曲面加工しておくことが望ましい。
ポンチの断面形状については矩形以外にも円形の他、種々の形状が適用可能であり、効果には大きな差は出ないと考えられるため、自由にデザインできるが、ポンチの寿命を延ばし、圧縮荷重をできるだけ低くするためには外に凸の中実断面が合理的である。
ポンチの大きさについては鋼材の内部にまで十分に塑性歪を与えることが重要であるためポンチの寸法はリブ板厚tと比例させる必要がある。また、所定の圧縮ひずみをリブ板に付与するためには圧縮面積に比例して大きな圧縮荷重が必要となり、負荷が困難となることがあるため注意が必要である。圧縮予ひずみ付与面積pは板厚tに対して0.67t2以上と定めたが、これより大きくなりすぎると、予ひずみを付与するために必要な荷重が面積に比例して大きくな実施する設備が大きくなるため困難となる場合があることや、予ひずみによる残留応力で主板の平面性が失われる可能性があることに注意する必要がある。適切な圧縮予ひずみ付与装置を準備し、各寸法は本発明の効果の期待できる範囲となるよう設定するのが望ましい。
As a method for applying the compression pre-strain, a method of pressing a pressing punch 7 having a circular or rectangular cross section as shown in FIG. 8 against the rib plate 2 using a pressing device or the like can be considered. Other devices are possible as long as they can be loaded. When compression prestrain is applied by the push punch 7, the corner of the push punch 7 creates a step in the rib plate 2. This step generates stress concentration, so that the chamfer is made as smooth as possible. Or curved surface processing is desirable.
As for the cross-sectional shape of the punch, various shapes other than a rectangle can be applied besides the rectangle, and it is considered that there will be no significant difference in the effect, so it can be freely designed, but it will extend the life of the punch and compress the load In order to make the height as low as possible, an outwardly convex solid section is reasonable.
As for the size of the punch, it is important to give sufficient plastic strain to the inside of the steel material, so the size of the punch needs to be proportional to the rib plate thickness t. Further, in order to apply a predetermined compressive strain to the rib plate, a large compressive load is required in proportion to the compression area, and care must be taken because the load may be difficult. Compression prestrain applied area p has been defined as 0.67T 2 or more with respect to the plate thickness t, above which excessively large, Ri Na increased in proportion to the load area required to impart prestrain implementation It must be noted that the equipment to be used may become difficult due to the increase in size, and that the flatness of the main plate may be lost due to residual stress due to pre-strain . It is desirable to prepare an appropriate compression prestraining device and set each dimension to be within a range where the effect of the present invention can be expected.

圧縮負荷の回数は所定のひずみの範囲になるまで複数回押してよく、ポンチの大きさとリブ板2の強度の関係から圧縮負荷装置の負荷荷重が十分に取れない場合には、ポンチの位置をずらしながら、面積が0.67t2以上の領域を面積が0.5t2以上のポンチを用いて複数回圧縮負荷を与えることにより、0.5%以上かつ25%未満のひずみを圧縮負荷により与えることで同様の効果が得られる。
また、本発明では圧縮予ひずみ部をリブ取り付け後に設けなければ、主板表面であって、リブ板と接する部分のリブ板の長手方向端部4に圧縮予ひずみによる圧縮応力が発生せず、疲労き裂発生阻止の効果は得られない。そこで、本発明を適用しているかどうかについて疑わしい場合については、磁歪法やX線を用いた方法等によって圧縮予ひずみ部付近の残留応力分布を確認することで、容易に本発明を適用していることが確認できる。
また、本発明は既存の構造物に対して適用することも可能であり、既存構造物の疲労き裂発生防止方法としても有効である。
The number of compression loads may be pushed several times until the predetermined strain range is reached. If the load of the compression load device is not sufficient due to the relationship between the size of the punch and the strength of the rib plate 2, the position of the punch is shifted. while, by area the area the 0.67T 2 or more areas providing a plurality of times the compression load with 0.5 t 2 or more punches, to give the compressive load distortion less than 0.5% or more and 25% A similar effect can be obtained.
Further, in the present invention, if the compression pre-strained portion is not provided after the rib is attached, the compression stress due to the compression pre-strain does not occur at the longitudinal end portion 4 of the rib plate on the surface of the main plate and in contact with the rib plate, and fatigue The effect of preventing crack initiation cannot be obtained. Therefore, in the case of doubt about whether the present invention is applied, the present invention can be easily applied by confirming the residual stress distribution near the compression pre-strained portion by a method using a magnetostriction method or an X-ray. It can be confirmed.
The present invention can also be applied to existing structures, and is also effective as a method for preventing the occurrence of fatigue cracks in existing structures.

図9のリブ板付き鋼板の疲労き裂発生試験を行った。使用した鋼板は主板8が板厚24mmで降伏応力が400MPaの溶接構造用鋼板であり、リブ板9が板厚10mmで降伏応力が380MPaの溶接構造用鋼板である。リブ板9の取り付け溶接10は490MPa級の強度を持つ材料を用いてCO2溶接によりおこなった。試験片F1〜試験片F5は本発明を適用した試験体であり、圧縮負荷部の寸法を表2に示した。また、圧縮予ひずみ量は2.5%とした。試験片F0は本発明を適用していない試験片である。どの試験片についても、リブ板は同じ条件で隅肉溶接を行い、脚長を5mmとし、溶接部断面を調査した所、のど厚3.5mmを確保した。

Figure 0004555794
A fatigue crack initiation test was performed on the steel sheet with rib plates shown in FIG. The steel plate used is a welded structural steel plate with a main plate 8 having a thickness of 24 mm and a yield stress of 400 MPa, and a rib plate 9 is a welded structural steel plate with a thickness of 10 mm and a yield stress of 380 MPa. The attachment welding 10 of the rib plate 9 was performed by CO 2 welding using a material having a strength of 490 MPa class. Test pieces F1 to F5 are test bodies to which the present invention is applied, and the dimensions of the compression load portion are shown in Table 2. Moreover, the compression pre-strain amount was 2.5%. The test piece F0 is a test piece to which the present invention is not applied. For any specimen, the rib plate was fillet welded under the same conditions, the leg length was 5 mm, and the cross section of the weld was examined, and a throat thickness of 3.5 mm was ensured.
Figure 0004555794

負荷した荷重は、部材の降伏荷重の1/4を中心に主板端部での応力振幅が降伏応力の1/4となる繰り返し荷重を1周期が1秒間に10回となるようあたえ、溶接トウ部11に生じる疲労き裂長さが10mmとなった場合の繰り返し負荷の周期数を実験的にもとめた。
実験の結果、試験片F0は1×106回程度の繰り返し負荷周期で所定の疲労き裂が生じた。それに対し、本発明の試験体においては、試験片F1は5×106回、試験片F5は7×106回で所定のき裂が見られたものの、試験片F2,F3,F4では1.5×107回でも疲労き裂が発生しなかった。このことから、疲労き裂の発生に対しては5倍程度以上の性能が得られるものと考えられる。
The applied load is a repetitive load in which the stress amplitude at the edge of the main plate is 1/4 of the yield stress centering on 1/4 of the yield load of the member so that one cycle is 10 times per second. The number of cycles of the repeated load when the fatigue crack length generated in the portion 11 becomes 10 mm was experimentally determined.
As a result of the experiment, a predetermined fatigue crack occurred in the test piece F0 at a repeated load cycle of about 1 × 10 6 times. On the other hand, in the specimen of the present invention, the test piece F1 was 5 × 10 6 times and the test piece F5 was 7 × 10 6 times, and a predetermined crack was observed, but the test pieces F2, F3 and F4 were 1 No fatigue cracks occurred even after 5 × 10 7 times. From this, it is considered that a performance of about 5 times or more can be obtained for the occurrence of fatigue cracks.

道路の照明などに用いられる鋼管ポールは風による繰り返し曲げ荷重を受ける。また、鋼管ポールの基部は補強のためリブ板が取り付けられていることがあり、リブの端部は溶接による残留応力と風による繰り返し荷重とが重畳することにより、リブ板によるポール側の応力集中部に疲労き裂が発生することがある。そこで、図10に示す直径17cm管厚bは6mmの鋼管ポール13の実大モデルを作製した。前記モデルの基部はベースプレート12にリブ板15を用いて、溶接で取り付け、リブ板15の円柱ポール13側に本発明を適用した。リブ板15の厚みtは6mmであり、8枚を完全とけ込み溶接で取り付けた。
本発明を適用した鋼管ポールモデルとリブ板溶接ままの通常の鋼管ポールモデルを作製し、両振りの繰り返し曲げ試験を行い、疲労き裂の発生特性を比較した。
圧縮予ひずみ部14の寸法は図1に示した各部の寸法で示すと、aが6mm、dが12mm、eが2mm、kが12mm、hが25mmである。
載荷条件は基部の応力振幅が160MPaとなるよう両振り試験を行った。
実験の結果、通常の鋼管ポールモデルでは7×105回で応力集中部16から実施例1で用いた疲労き裂評価基準である疲労き裂長さ10mmに達したものの、本発明を適用したモデルでは疲労き裂が確認できなかった。本発明を適用したモデルではさらに1×107回まで繰り返し載荷を行ったところで、疲労き裂が10mmに達し、本発明の有効であることが確認できた。
Steel pipe poles used for road lighting and the like are subjected to repeated bending loads caused by wind. In addition, a rib plate may be attached to the base of the steel pipe pole for reinforcement, and the stress concentration on the pole side due to the rib plate is superimposed on the end of the rib by superimposing residual stress due to welding and repeated load due to wind. Fatigue cracks may occur at the part. Therefore, a full-scale model of a steel pipe pole 13 having a diameter of 17 cm 2 and a pipe thickness b of 6 mm shown in FIG. 10 was produced. The base portion of the model was attached to the base plate 12 by welding using a rib plate 15, and the present invention was applied to the cylindrical pole 13 side of the rib plate 15. The rib plate 15 had a thickness t of 6 mm, and eight plates were attached by complete penetration welding.
A steel pipe pole model to which the present invention was applied and a normal steel pipe pole model as welded with a rib plate were prepared, a repeated bending test of both swings was performed, and fatigue crack generation characteristics were compared.
When the dimensions of the compression pre-strained portion 14 are indicated by the dimensions of the respective portions shown in FIG. 1, a is 6 mm, d is 12 mm, e is 2 mm, k is 12 mm, and h is 25 mm.
As the loading condition, a double swing test was performed so that the stress amplitude of the base was 160 MPa.
As a result of the experiment, the normal steel pipe pole model has reached the fatigue crack length of 10 mm, which is the fatigue crack evaluation standard used in Example 1, from the stress concentration portion 16 in 7 × 10 5 times, but the model to which the present invention is applied. Then, fatigue cracks could not be confirmed. In the model to which the present invention was applied, when repeated loading was performed up to 1 × 10 7 times, the fatigue crack reached 10 mm, and it was confirmed that the present invention was effective.

請求項1に記載の溶接構造物を一部切り出した斜視図を模式的に示す図である。It is a figure which shows typically the perspective view which partly cut out the welding structure of Claim 1. 請求項2に記載の溶接構造物を一部切り出した斜視図を模式的に示す図である。It is a figure which shows typically the perspective view which partially cut out the welding structure of Claim 2. 溶接部ののど厚を溶接部の断面図で模式的に示す図である。It is a figure which shows typically the throat thickness of a welding part with sectional drawing of a welding part. 圧縮予ひずみ部の位置と寸法を決定するため解析を行った構造モデルを斜視図で模式的に示す図である。It is a figure which shows typically the structural model which analyzed in order to determine the position and dimension of a compression pre-strain part with a perspective view. モデル解析により得られた圧縮予ひずみ後の応力分布を斜視図で示す図である。It is a figure which shows the stress distribution after the compression pre-strain obtained by model analysis with a perspective view. モデル解析により得られた圧縮予ひずみを与えずに荷重を作用させた場合の応力分布を斜視図で示す図である。It is a figure which shows the stress distribution at the time of applying a load, without giving the compression pre-strain obtained by model analysis with a perspective view. モデル解析により得られた圧縮予ひずみ付与後に荷重を作用させた場合の応力分布を斜視図で示す図である。It is a figure which shows the stress distribution at the time of applying a load after the compression prestraining obtained by model analysis by a perspective view. 圧縮予ひずみ付与方法の例を斜視図で模式的に示す図である。It is a figure which shows typically the example of the compression predistortion provision method with a perspective view. 実施例1の試験片形状と試験方法を斜視図で模式的に示す図である。It is a figure which shows typically the test piece shape and test method of Example 1 with a perspective view. 実施例2の試験体形状と試験方法を斜視図で模式的に示す図である。It is a figure which shows typically the test body shape and test method of Example 2 with a perspective view.

1 主板または主管
2 リブ板
3 圧縮予ひずみ部
4 応力集中部
5 溶接部
6 構造モデル中央断面
7 ポンチ
8 鋼板
9 リブ板
10 溶接部
11 溶接トウ部
12 ベースプレート
13 鋼管ポール
14 応力集中部
15 リブ板
16 圧縮予ひずみ部
17 圧縮予ひずみ部の重心
DESCRIPTION OF SYMBOLS 1 Main plate or main pipe 2 Rib plate 3 Compression pre-strained part 4 Stress concentrated part 5 Welded part 6 Structural model central section 7 Punch 8 Steel plate 9 Rib plate 10 Welded part 11 Welded toe part 12 Base plate 13 Steel pipe pole 14 Stress concentrated part 15 Rib plate 16 Compression pre-strain part 17 Center of gravity of compression pre-strain part

Claims (3)

厚みbの金属製の主板または主管1から、厚みtが1mm以上、高さhが3t以上で、長さlの板状の金属製リブ2が突き出ており、該リブの長さ方向の端部にリブの厚み方向に圧痕形状の圧縮予ひずみ部を形成した金属部品または金属製構造物であって、該圧縮予ひずみ部3は、板厚方向圧縮ひずみが0.5%以上25%未満であり、リブ面上に占める面積pが0.67t2以上であり、リブ長さ方向寸法kが0.5t以上3(t・b)0.5以下であり、リブ高さ方向寸法dが0.5t以上0.5h以下であり、その重心位置と前記主板または主管との距離aが0.5h以下かつ3t以下であり、その端部からリブ長さ方向端部までの距離eがリブの厚みtより小さいものであり、さらに、該圧縮予ひずみにより、前記リブの長さ方向端部であって、前記主板または主管と交差する部分4に、圧縮残留応力が働いていることを特徴とする、リブ端部から主板または主管への疲労き裂の発生・進展抑止特性に優れた金属部品または金属製構造物。 A plate-shaped metal rib 2 having a thickness t of 1 mm or more, a height h of 3 t or more, and a length 1 protrudes from a metal main plate or main tube 1 having a thickness b, and the end of the rib in the length direction A metal part or metal structure in which an indentation-shaped compression prestrained part is formed in the thickness direction of the rib in the part, and the compression prestrained part 3 has a plate thickness direction compressive strain of 0.5% or more and less than 25%. The area p occupying on the rib surface is 0.67 t 2 or more, the rib length direction dimension k is 0.5 t or more and 3 (t · b) 0.5 or less, and the rib height direction dimension d is 0.00. The distance a between the center of gravity and the main plate or the main pipe is 0.5 h or less and 3 t or less, and the distance e from the end to the end in the rib length direction is the thickness of the rib. t is smaller than t, and further, due to the compression pre-strain, at the longitudinal end of the rib Thus, the metal part having excellent fatigue crack generation / propagation preventing characteristics from the rib end to the main plate or main pipe, wherein compressive residual stress is applied to the portion 4 intersecting the main plate or main pipe Or a metal structure. 前記リブ2が溶接により前記主板または主管1に接合されており、リブおよび溶接部5の降伏強度が主板または主管1の降伏強度の95%以上であり、リブの引張強度が主板または主管の引張強度より大きく、リブの溶接部5がリブ端部から2h以上の距離に渡ってのど厚が0.5t以上であることを特徴とする、請求項1に記載の疲労き裂の発生・進展抑止特性に優れた金属部品または金属製構造物。   The rib 2 is joined to the main plate or the main pipe 1 by welding, the yield strength of the rib and the welded portion 5 is 95% or more of the yield strength of the main plate or the main pipe 1, and the tensile strength of the rib is the tensile strength of the main plate or the main pipe. 2. The suppression of the generation and propagation of fatigue cracks according to claim 1, wherein the welded portion 5 of the rib is greater than strength and has a throat thickness of 0.5 t or more over a distance of 2 h or more from the end of the rib. Metal parts or metal structures with excellent characteristics. 厚みbの金属製の主板または主管1の表面に、厚みtが1mm以上、高さhが3t以上で、長さlの板状の金属性リブ2を形成した後、リブの板厚方向圧縮ひずみが0.5%以上25%未満の圧縮予ひずみ部3を、そのリブ長さ方向寸法kが0.5t以上3(t・b)0.5以下であり、リブ高さ方向寸法dが0.5t以上0.5h以下であり、そのリブ面上に占める面積pが0.67t2以上であるような圧痕形状で、その重心位置と前記主板または主管との距離aが0.5h以下かつ3t以下であり、その端部からリブ長さ方向端部までの距離eがリブの厚みtより小さい位置に形成することにより、前記リブの長さ方向端部であって、前記主板または主管と交差する部分4に、圧縮残留応力を付与することを特徴とする、疲労き裂の発生・進展抑止特性に優れた金属部品または金属製構造物の製造方法。 After forming a plate-like metallic rib 2 having a thickness t of 1 mm or more, a height h of 3 t or more and a length 1 on the surface of a metal main plate or main pipe 1 having a thickness b, compression of the rib in the plate thickness direction is performed. The compression pre-strained portion 3 having a strain of 0.5% or more and less than 25% has a rib length direction dimension k of 0.5 t or more and 3 (t · b) 0.5 or less, and a rib height direction dimension d of 0. 5t above 0.5h or less, the area p occupied on the rib surface at the indentation shape such that 0.67T 2 or more, the distance a is 0.5h less and 3t of the main plate or main and center of gravity position The distance e from the end portion to the rib length direction end portion is formed at a position smaller than the rib thickness t, so that the rib length end portion intersects the main plate or the main pipe. the portion 4, and wherein the imparting compressive residual stress, - the occurrence of the fatigue crack Excellent production method for metal parts or metal structures on exhibition deterrence characteristics.
JP2006102763A 2005-04-08 2006-04-04 Metal parts or metal structures excellent in fatigue crack initiation / propagation prevention characteristics and methods for producing the same Expired - Fee Related JP4555794B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006102763A JP4555794B2 (en) 2005-04-08 2006-04-04 Metal parts or metal structures excellent in fatigue crack initiation / propagation prevention characteristics and methods for producing the same
TW095112592A TW200702095A (en) 2005-04-08 2006-04-07 Metallic members and metallic members with different width having an excellent properties for restraining generation and propagation of fatigue cracks and method for producing the same and metallic structures including the same
PCT/JP2006/307897 WO2006109873A1 (en) 2005-04-08 2006-04-07 Metal member and metal plate member having different width excellent in fatigue crack development and propagation suppressing characteristics, method of manufacturing these metal members, and metal structure having these metal members

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005111630 2005-04-08
JP2006102763A JP4555794B2 (en) 2005-04-08 2006-04-04 Metal parts or metal structures excellent in fatigue crack initiation / propagation prevention characteristics and methods for producing the same

Publications (2)

Publication Number Publication Date
JP2006312201A JP2006312201A (en) 2006-11-16
JP4555794B2 true JP4555794B2 (en) 2010-10-06

Family

ID=37533904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102763A Expired - Fee Related JP4555794B2 (en) 2005-04-08 2006-04-04 Metal parts or metal structures excellent in fatigue crack initiation / propagation prevention characteristics and methods for producing the same

Country Status (1)

Country Link
JP (1) JP4555794B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4987816B2 (en) 2008-07-28 2012-07-25 新日本製鐵株式会社 Automatic impact processing method and automatic impact processing apparatus for improving the fatigue characteristics of welded joints
CN117054266B (en) * 2023-10-12 2024-01-23 禧天龙科技发展有限公司 Fatigue test method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117344A (en) * 1978-03-06 1979-09-12 Mitsubishi Heavy Ind Ltd Welded joint with improved fatigue strength
JPH0639580A (en) * 1992-07-22 1994-02-15 Toyota Autom Loom Works Ltd Method for relieving concentration of stress of welding joint
JPH07100643A (en) * 1993-10-05 1995-04-18 Nippon Steel Corp Welding method with excellent fatigue cracking resistance
JPH08118012A (en) * 1994-10-31 1996-05-14 Mitsubishi Heavy Ind Ltd Method for preventing generation of fatigue crack
JPH0939829A (en) * 1995-07-28 1997-02-10 Toyota Motor Corp Stress relaxation structure of welded part
JP2004130316A (en) * 2002-10-08 2004-04-30 Nippon Steel Corp Boxing joint of excellent fatigue strength, boxing joint manufacturing method, and welded structure
JP2004298943A (en) * 2003-03-31 2004-10-28 National Institute For Materials Science Welding method for improving welding fatigue strength
JP2004300898A (en) * 2003-03-28 2004-10-28 Shingo Kizai Kk Welding method of rail bond terminal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117344A (en) * 1978-03-06 1979-09-12 Mitsubishi Heavy Ind Ltd Welded joint with improved fatigue strength
JPH0639580A (en) * 1992-07-22 1994-02-15 Toyota Autom Loom Works Ltd Method for relieving concentration of stress of welding joint
JPH07100643A (en) * 1993-10-05 1995-04-18 Nippon Steel Corp Welding method with excellent fatigue cracking resistance
JPH08118012A (en) * 1994-10-31 1996-05-14 Mitsubishi Heavy Ind Ltd Method for preventing generation of fatigue crack
JPH0939829A (en) * 1995-07-28 1997-02-10 Toyota Motor Corp Stress relaxation structure of welded part
JP2004130316A (en) * 2002-10-08 2004-04-30 Nippon Steel Corp Boxing joint of excellent fatigue strength, boxing joint manufacturing method, and welded structure
JP2004300898A (en) * 2003-03-28 2004-10-28 Shingo Kizai Kk Welding method of rail bond terminal
JP2004298943A (en) * 2003-03-31 2004-10-28 National Institute For Materials Science Welding method for improving welding fatigue strength

Also Published As

Publication number Publication date
JP2006312201A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
TWI396600B (en) Out-of-plane gusset weld joints and manufacturing method therefor
JP2006320960A (en) Metal member and metal structure excellent in fatigue crack development and propagation suppressing characteristics, and its manufacturing method
JP4505368B2 (en) Welded steel structure excellent in brittle crack propagation stopping characteristics and method for producing the same
JP4555794B2 (en) Metal parts or metal structures excellent in fatigue crack initiation / propagation prevention characteristics and methods for producing the same
JP2008169455A (en) Method for improving strength of member
WO2004046397A1 (en) Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength
JP5573633B2 (en) Method for predicting fatigue life of welded structures
JP6642314B2 (en) Manufacturing method of steel deck
JP4854981B2 (en) Friction welded parts with excellent fatigue resistance and methods for improving the fatigue characteristics
WO2006109873A1 (en) Metal member and metal plate member having different width excellent in fatigue crack development and propagation suppressing characteristics, method of manufacturing these metal members, and metal structure having these metal members
JP4757697B2 (en) Method for improving fatigue performance of fillet welds
JP6601067B2 (en) Overlap fillet welding method and welded member
JP2016068593A (en) Truck frame for railway vehicle and method of manufacturing the same
JP5024980B2 (en) Stainless steel spiral screw manufacturing method
JP6662399B2 (en) Turning welding joint and turning welding method excellent in fatigue strength
JP6885136B2 (en) Steel plate joint structure
JP2017196950A (en) Joint structure and joint structure manufacturing method
JP6623926B2 (en) Method of manufacturing welded structure and welded structure
WO2012140920A1 (en) Impact tip, hammer peening method, and weld joint using same
JP6314670B2 (en) Structure with excellent fatigue characteristics
JP6984495B2 (en) Fillet welded joint and its manufacturing method
JP2014233747A (en) Welding method of gusset plate
JP2021091002A (en) Welded structural member and method for manufacturing welded structural member
JP4964848B2 (en) Steel sleeper and manufacturing method thereof
JP3851953B2 (en) Welding method to improve weld fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4555794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees