JP4554912B2 - Arc welding machine - Google Patents
Arc welding machine Download PDFInfo
- Publication number
- JP4554912B2 JP4554912B2 JP2003380591A JP2003380591A JP4554912B2 JP 4554912 B2 JP4554912 B2 JP 4554912B2 JP 2003380591 A JP2003380591 A JP 2003380591A JP 2003380591 A JP2003380591 A JP 2003380591A JP 4554912 B2 JP4554912 B2 JP 4554912B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- crater
- voltage
- torch
- setting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Arc Welding Control (AREA)
Description
本発明は、トーチスイッチの開閉操作によって溶接条件の設定値を切り換えるようにしたアーク溶接機に関するものである。 The present invention relates to an arc welding machine in which a set value of welding conditions is switched by opening and closing a torch switch.
図7は、従来技術のアーク溶接機の電気接続図である。図7において、溶接電源主回路INVは、商用交流電源を整流しアーク加工に適した電圧に変換して溶接トーチ1と被溶接物3とに供給する。溶接ワイヤ2は、ワイヤ送給モータMと直結した送給ロール4によって、溶接トーチ1を通って被溶接物3に送給される。
FIG. 7 is an electrical connection diagram of a conventional arc welder. In FIG. 7, a welding power source main circuit INV rectifies commercial AC power, converts it into a voltage suitable for arc machining, and supplies it to the
トーチスイッチTSはトーチ信号Tsを出力し、溶接電圧設定回路WVは予め定めた値の溶接電圧設定信号Wvを設定し、溶接電流設定回路WIは予め定めた値の溶接電流設定信号Wiを設定し、クレータ電圧設定回路CVは予め定めた値のクレータ電圧設定信号Cvを設定し、クレータ電流設定回路CIは予め定めた値のクレータ電流設定信号Ciを設定する。また、クレータ有り/無し選択回路CSは、クレータ有りに選択するとクレータ有り/無し選択信号CsをHighレベルにして出力し、初期電流有り/無し選択回路SSは、初期電流有りに選択すると初期電流有り/無し選択信号SsをHighレベルにして出力する。 The torch switch TS outputs a torch signal Ts, the welding voltage setting circuit WV sets a welding voltage setting signal Wv having a predetermined value, and the welding current setting circuit WI sets a welding current setting signal Wi having a predetermined value. The crater voltage setting circuit CV sets a crater voltage setting signal Cv having a predetermined value, and the crater current setting circuit CI sets a crater current setting signal Ci having a predetermined value. The crater presence / absence selection circuit CS outputs a crater presence / absence selection signal Cs with a high level when it is selected, and the initial current presence / absence selection circuit SS has an initial current when it is selected with an initial current. The / none selection signal Ss is set to High level and output.
主制御回路SCは、トーチスイッチTSからのトーチ信号Tsに応じて動作を開始し、クレータ有り/無し設定信号CsがHighレベルでクレータ有りのときに、溶接電圧設定信号Wv及びクレータ電圧設定信号Cvの値に応じて主制御信号Scを制御して溶接電圧を出力する。また、溶接電流設定信号Wi及びクレータ電流設定信号Ciの値に応じてワイヤ送給制御信号Mcを出力してワイヤ送給速度を制御する。 The main control circuit SC starts to operate in response to the torch signal Ts from the torch switch TS, and when the crater presence / absence setting signal Cs is at the high level and the crater is present, the welding voltage setting signal Wv and the crater voltage setting signal Cv. The main control signal Sc is controlled according to the value of and a welding voltage is output. Further, the wire feed control signal Mc is output according to the values of the welding current setting signal Wi and the crater current setting signal Ci to control the wire feed speed.
上記に示す従来技術のアーク溶接機において、溶接個所が下向溶接と立向溶接とが混在した溶接では、溶接個所に対応して溶接条件を変更して溶接をおこなっていた。そこで、トーチスイッチの開閉信号を用いて溶接条件等を切り換える技術が特開2000−218367に開示されている。 In the arc welding machine of the prior art described above, in the welding in which the welding location is a mixture of downward welding and vertical welding, welding is performed by changing the welding conditions corresponding to the welding location. Therefore, Japanese Patent Laid-Open No. 2000-218367 discloses a technique for switching welding conditions and the like using an open / close signal of a torch switch.
被溶接物の溶接個所によっては、下向溶接個所と立向溶接個所とが混在する場合があり、溶接個所に応じて、そのつど溶接条件を変更し作業をおこなっていたので作業性が非常に悪かった。そこで作業性を改善するために、従来では下向溶接個所に溶接条件を使用し、立向溶接個所ではクレータ条件を使用して溶接する方法も用いられていた。しかし、立向溶接個所では限定されたクレータ条件でしか溶接ができなかった。 Depending on the weld location of the work piece, there are cases where downward welds and vertical welds may coexist, and the work conditions have been changed depending on the weld location. It was bad. Therefore, in order to improve workability, conventionally, a welding method is used in which welding conditions are used for the downward welding points, and crater conditions are used for the vertical welding points. However, welding was possible only in limited crater conditions at vertical welding locations.
上述した課題を解決するために、第1の発明は、商用交流電源を整流しアーク加工に適した電圧に変換して負荷に供給する溶接電源主回路と、溶接モードのクレータフィラ有り/無しを設定する溶接モード設定回路と、予め定めた溶接電圧を設定する溶接電圧設定回路と、予め定めた溶接電流を設定する溶接電流設定回路と、前記設定した各溶接条件に応じて出力を制御する主制御回路と、を備えたアーク溶接機において、
予め定めた第2の溶接電圧を設定する第2の溶接電圧設定回路と、予め定めた第2の溶接電流を設定する第2の溶接電流設定回路と、トーチスイッチのオン開始からのオン期間が予め定めたトーチ監視時間以上のとき前記溶接電圧設定値及び溶接電流設定値を選択し、前記トーチ監視時間未満のとき前記第2の溶接電圧設定値及び前記第2の溶接電流設定値を選択するトーチ監視時間判別回路とを設け、被溶接物で下向溶接箇所と立向溶接箇所とが混在した溶接を行うとき、前記下向溶接箇所では前記溶接モードのクレータフィラ無しを設定し前記トーチスイッチのオン期間を前記トーチ監視時間以上にし前記溶接電圧設定値及び溶接電流設定値を選択して下向溶接を行い、前記立向溶接箇所では前記溶接モードのクレータフィラ有りを設定し前記トーチスイッチのオン期間を前記トーチ監視時間未満にし前記第2の溶接電圧設定値及び前記第2の溶接電流設定値を選択して立向溶接を行う、ことを特徴とするアーク溶接機である。
In order to solve the above-described problems, the first invention includes a welding power source main circuit that rectifies a commercial AC power source, converts the commercial AC power source into a voltage suitable for arc machining, and supplies the load to the load, and the presence / absence of a crater filler in the welding mode. A welding mode setting circuit for setting, a welding voltage setting circuit for setting a predetermined welding voltage, a welding current setting circuit for setting a predetermined welding current, and a main for controlling the output in accordance with each of the set welding conditions. An arc welding machine comprising a control circuit,
A second welding voltage setting circuit for setting a predetermined second welding voltage; a second welding current setting circuit for setting a predetermined second welding current; and an ON period from the start of turning on the torch switch. The welding voltage setting value and the welding current setting value are selected when the time is equal to or longer than a predetermined torch monitoring time, and the second welding voltage setting value and the second welding current setting value are selected when the time is less than the torch monitoring time. A torch monitoring time discriminating circuit is provided, and when performing welding in which a downward welded portion and a vertical welded portion are mixed on the workpiece, the crater filler of the welding mode is set at the downward welded portion and the torch switch is set. The ON period is set to be longer than the torch monitoring time, the welding voltage setting value and the welding current setting value are selected and the downward welding is performed, and the welding mode is set to have the crater filler in the welding mode. An arc welding machine characterized in that vertical welding is performed by setting the ON period of the torch switch to be less than the torch monitoring time and selecting the second welding voltage setting value and the second welding current setting value. .
第2の発明は、商用交流電源を整流しアーク加工に適した電圧に変換して負荷に供給する溶接電源主回路と、溶接モードのクレータフィラ有り/無しを設定する溶接モード設定回路と、予め定めた初期電圧を設定する初期電圧設定回路と、予め定めた初期電流を設定する初期電流設定回路と、予め定めた溶接電圧を設定する溶接電圧設定回路と、予め定めた溶接電流を設定する溶接電流設定回路と、予め定めたクレータ電圧を設定するクレータ電圧設定回路と、予め定めたクレータ電流設定値を設定するクレータ電流設定回路と、前記設定した各溶接条件に応じて出力を制御する主制御回路と、を備えたアーク溶接機において、
予め定めた第2の初期電圧を設定する第2の初期電圧設定回路と、予め定めた第2の初期電流を設定する第2の初期電流設定回路と、予め定めた第2の溶接電圧を設定する第2の溶接電圧設定回路と、予め定めた第2の溶接電流を設定する第2の溶接電流設定回路と、予め定めた第2のクレータ電圧を設定する第2のクレータ電圧設定回路と、予め定めた第2のクレータ電流を設定する第2のクレータ電流設定回路と、トーチスイッチのオン開始からのオン期間が予め定めたトーチ監視時間以上のとき前記初期電圧設定値、初期電流設定値、溶接電圧設定値、溶接電流設定値、クレータ電圧設定値及びクレータ電流設定値を選択し、前記トーチ監視時間未満のとき前記第2の初期電圧設定値、前記第2の初期電流設定値、前記第2の溶接電圧設定値、前記第2の溶接電流設定値、前記第2のクレータ電圧設定値及び前記第2のクレータ電流設定値を選択するトーチ監視時間判別回路とを設け、被溶接物で下向溶接箇所と立向溶接箇所とが混在した溶接を行うとき、前記下向溶接箇所では前記溶接モードのクレータフィラ無しを設定して前記トーチスイッチのオン期間を前記トーチ監視時間以上にし前記溶接電圧設定値及び溶接電流設定値を選択して下向溶接を行い、前記立向溶接箇所では前記溶接モードのクレータフィラ有りを設定し前記トーチスイッチのオン期間を前記トーチ監視時間未満にし前記第2の初期電圧設定値、前記第2の初期電流設定値、前記第2の溶接電圧設定値、前記第2の溶接電流設定値、前記第2のクレータ電圧設定値及び前記第2のクレータ電流設定値を選択して立向溶接を行う、ことを特徴とするアーク溶接機である。
According to a second aspect of the present invention, there is provided a welding power source main circuit that rectifies a commercial AC power source, converts the voltage into a voltage suitable for arc machining, and supplies the voltage to a load, a welding mode setting circuit that sets presence / absence of a crater filler in the welding mode, An initial voltage setting circuit for setting a predetermined initial voltage, an initial current setting circuit for setting a predetermined initial current, a welding voltage setting circuit for setting a predetermined welding voltage, and a welding for setting a predetermined welding current A current setting circuit; a crater voltage setting circuit for setting a predetermined crater voltage; a crater current setting circuit for setting a predetermined crater current setting value; and a main control for controlling an output in accordance with each of the set welding conditions. An arc welding machine comprising a circuit,
A second initial voltage setting circuit for setting a predetermined second initial voltage, a second initial current setting circuit for setting a predetermined second initial current, and a predetermined second welding voltage are set. A second welding voltage setting circuit, a second welding current setting circuit for setting a predetermined second welding current, a second crater voltage setting circuit for setting a predetermined second crater voltage, A second crater current setting circuit for setting a predetermined second crater current; and the initial voltage setting value, the initial current setting value, when an on period from the start of turning on the torch switch is equal to or longer than a predetermined torch monitoring time; A welding voltage setting value, a welding current setting value, a crater voltage setting value and a crater current setting value are selected, and when the torch monitoring time is less than the second initial voltage setting value, the second initial current setting value, the first Welding voltage of 2 A torch monitoring time discriminating circuit for selecting a constant value, the second welding current set value, the second crater voltage set value, and the second crater current set value, and when performing welding and countercurrent welded portions are mixed, the downward welding at the location to set the no crater filler of the welding mode the oN period of the torch switch over the torch monitoring time the welding voltage setting value and the welding current Select a set value to perform downward welding, and set the welding mode with crater filler at the vertical welding location, set the on-period of the torch switch to be less than the torch monitoring time, and set the second initial voltage setting value, The second initial current setting value, the second welding voltage setting value, the second welding current setting value, the second crater voltage setting value, and the second crater current setting value. -Option to perform vertical welding and it is an arc welder according to claim.
第3の発明は、上記トーチ監視時間が、0.5[秒]以上2[秒]以下であることを特徴とする請求項1又は請求項2記載のアーク溶接機である。 A third aspect of the invention is the arc welder according to claim 1 or 2, wherein the torch monitoring time is 0.5 [second] or more and 2 [second] or less.
本発明のアーク溶接機によれば、被溶接物で下向溶接個所と立向溶接個所とが混在した溶接において、溶接個所に対応した溶接条件をトーチスイッチの開閉操作によって溶接開始前に選択でき、作業性が大幅に改善できる。 According to the arc welding machine of the present invention, in a welding in which a downward welded part and a vertical welded part are mixed in the work piece, a welding condition corresponding to the welded part can be selected before starting welding by opening and closing the torch switch. Workability can be greatly improved.
図1は、本発明のアーク溶接機の電気接続図であり、図7に示す電気接続図と同一符号は同一動作を行なうので詳細な説明は省略し違いのみを説明する。 FIG. 1 is an electrical connection diagram of the arc welder of the present invention. The same reference numerals as those in the electrical connection diagram shown in FIG.
トーチスイッチTSはトーチ信号Tsを出力し、溶接電圧設定回路WVは予め定めた値の溶接電圧設定信号Wvを設定し、第2の溶接電圧設定回路WV2は予め定めた値の第21の溶接電圧設定信号Wv2を設定し、溶接電流設定回路WIは予め定めた値の溶接電流設定信号Wiを設定し、第2の溶接電流設定回路WI2は予め定めた値の第2の溶接電流設定信号Wi2を設定し、クレータ電圧設定回路CVは予め定めた値のクレータ電圧設定信号Cvを設定し、第2のクレータ電圧設定回路CV2は予め定めた値の第2のクレータ電圧設定信号Cv2を設定し、クレータ電流設定回路CIは予め定めた値のクレータ電流設定信号Ciを設定し、第2のクレータ電流設定回路CI2は予め定めた値の第2のクレータ電流設定信号Ci2を設定する。溶接モードを選択するクレータ有り/無し選択回路(溶接モード選択回路)CSは、クレータ有りと選択するとクレータ有り/無し選択信号CsをHighレベルにして出力し、初期電流有り/無し選択回路SSは、初期電流有りと選択すると初期電流有り/無し選択信号SsをHighレベルにして出力する。また、初期電流の設定回路は上記と同一構成となるので図示を省略する。 The torch switch TS outputs a torch signal Ts, the welding voltage setting circuit WV sets a predetermined welding voltage setting signal Wv, and the second welding voltage setting circuit WV2 sets a predetermined value of the twenty-first welding voltage. The setting signal Wv2 is set, the welding current setting circuit WI sets a predetermined value of the welding current setting signal Wi, and the second welding current setting circuit WI2 sets the predetermined value of the second welding current setting signal Wi2. The crater voltage setting circuit CV sets a crater voltage setting signal Cv having a predetermined value, and the second crater voltage setting circuit CV2 sets a second crater voltage setting signal Cv2 having a predetermined value. The current setting circuit CI sets a crater current setting signal Ci having a predetermined value, and the second crater current setting circuit CI2 sets a second crater current setting signal Ci2 having a predetermined value. That. The crater presence / absence selection circuit (welding mode selection circuit) CS for selecting the welding mode outputs the crater presence / absence selection signal Cs with a high level when selecting crater presence, and the initial current presence / absence selection circuit SS If selection is made that the initial current is present, the initial current present / absent selection signal Ss is set to the High level and output. Since the initial current setting circuit has the same configuration as described above, the illustration thereof is omitted.
溶接電圧切換用スイッチSW1は、下記に示すトーチ監視判別信号CaがLowレベルのときにa側に接続して溶接電圧設定信号Wvを選択し、上記トーチ監視判別信号CaがHighレベルのときにb側に接続して第2の溶接電圧設定信号Wv2を選択して溶接電圧設定信号Wvとして出力する。また、溶接電流切換用スイッチSW2は、トーチ監視判別信号CaがLowレベルのときにa側に接続して溶接電流設定信号Wiを選択し、上記トーチ監視判別信号CaがHighレベルのときにb側に接続して第2の溶接電流設定信号Wi2を選択して溶接電流設定信号Wiとして出力する。 The welding voltage switching switch SW1 is connected to the a side when the torch monitoring determination signal Ca shown below is at the low level, and selects the welding voltage setting signal Wv. When the torch monitoring determination signal Ca is at the high level, b And the second welding voltage setting signal Wv2 is selected and output as the welding voltage setting signal Wv. The welding current switching switch SW2 is connected to the a side when the torch monitoring determination signal Ca is at the low level and selects the welding current setting signal Wi. When the torch monitoring determination signal Ca is at the high level, the b side To select the second welding current setting signal Wi2 and output it as the welding current setting signal Wi.
クレータ電圧切換用スイッチSW3は、トーチ監視判別信号CaがLowレベルのときにa側に接続してクレータ電圧設定信号Cvを選択し、上記トーチ監視判別信号CaがHighレベルのときにb側に接続して第2のクレータ電圧設定信号Cv2を選択してクレータ電圧設定信号Cvとして出力する。また、クレータ電流切換用スイッチSW4は、トーチ監視判別信号CaがLowレベルのときにa側に接続してクレータ電流設定信号Ciを選択し、上記トーチ監視判別信号CaがHighレベルのときにb側に接続して第2のクレータ電流設定信号Ci2を選択してクレータ電流設定信号Ciとして出力する。 The crater voltage switching switch SW3 is connected to the a side to select the crater voltage setting signal Cv when the torch monitoring determination signal Ca is at the low level, and is connected to the b side when the torch monitoring determination signal Ca is at the high level. Then, the second crater voltage setting signal Cv2 is selected and output as the crater voltage setting signal Cv. The crater current switching switch SW4 is connected to the a side when the torch monitoring determination signal Ca is at the low level and selects the crater current setting signal Ci. When the torch monitoring determination signal Ca is at the high level, the b side To select the second crater current setting signal Ci2 and output it as the crater current setting signal Ci.
主制御回路SCは、トーチスイッチTSからのトーチ信号Tsに応じて動作を開始し、クレータ有り/無し設定信号CsがLowレベルでクレータ無しのときに、溶接電圧設定信号Wvの値に応じて主制御信号Scを制御し、溶接電流設定信号Wiの値に応じてワイヤ送給制御信号Mcを出力してワイヤ送給速度を制御する。上記クレータ有り/無し設定信号CsがHighレベルでクレータ有りのときに、図示省略の初期電圧設定信号、溶接電圧設定信号Wv及びクレータ電圧設定信号Cvの値に応じて主制御信号Scを制御し、図示省略の初期電流設定信号、溶接電流設定信号Wi及びクレータ電流設定信号Ciの値に応じてワイヤ送給制御信号Mcを出力してワイヤ送給速度を制御する。更に、アーク発生期間中はアーク期間信号Wtを出力する。 The main control circuit SC starts to operate in response to the torch signal Ts from the torch switch TS. When the crater presence / absence setting signal Cs is low level and no crater is present, the main control circuit SC performs main operation according to the value of the welding voltage setting signal Wv. The control signal Sc is controlled, and the wire feed control signal Mc is output according to the value of the welding current setting signal Wi to control the wire feed speed. When the crater presence / absence setting signal Cs is at a high level and a crater is present, the main control signal Sc is controlled according to values of an initial voltage setting signal, a welding voltage setting signal Wv, and a crater voltage setting signal Cv (not shown), The wire feed speed is controlled by outputting a wire feed control signal Mc according to the values of the initial current setting signal (not shown), the welding current setting signal Wi and the crater current setting signal Ci. Further, an arc period signal Wt is output during the arc generation period.
トーチ監視時間設定回路TMは、下記に示すトーチ監視判別信号CaがLowレベルのときに動作を行ない、トーチスイッチTSからのトーチ信号Tsがオンすると予め定めた期間のトーチ監視時間設定信号Tmを出力する。また、上記主制御回路SCは上記トーチ監視時間設定信号Tmが入力期間中に、上記トーチ信号Tsがオフになっても動作は継続する。 The torch monitoring time setting circuit TM operates when a torch monitoring determination signal Ca shown below is at a low level, and outputs a torch monitoring time setting signal Tm for a predetermined period when the torch signal Ts from the torch switch TS is turned on. To do. The main control circuit SC continues to operate even when the torch signal Ts is turned off while the torch monitoring time setting signal Tm is input.
オア回路ORは、アーク期間信号Wt、トーチ信号Ts及びトーチ監視時間設定信号Tmのオア論理を取ってオア信号Orとして出力する。 The OR circuit OR takes the OR logic of the arc period signal Wt, the torch signal Ts, and the torch monitoring time setting signal Tm and outputs it as the OR signal Or.
トーチ監視時間判別回路CAは、オア信号OrがHighレベルの期間中に動作を行ない、溶接開始時のトーチ信号Tsのオン期間とトーチ監視時間設定信号Tmとを比較して上記トーチ信号Tsのオン期間が上記トーチ監視時間設定信号Tm未満と判別し、上記判別した後に上記トーチ監視時間設定信号Tmの期間内で上記トーチ信号Tsを再度オンするとトーチ監視判別信号CaがHighレベルとなって出力する。また、トーチ信号Tsのオン期間が上記トーチ監視時間設定信号Tm以上のときには、トーチ監視判別信号CaはLowレベルとなって出力する。 The torch monitoring time discriminating circuit CA operates during a period in which the OR signal Or is at a high level, compares the ON period of the torch signal Ts at the start of welding with the torch monitoring time setting signal Tm, and turns on the torch signal Ts. If it is determined that the period is less than the torch monitoring time setting signal Tm, and the determination is made and then the torch signal Ts is turned on again within the period of the torch monitoring time setting signal Tm, the torch monitoring determination signal Ca becomes a high level and is output. . When the ON period of the torch signal Ts is equal to or longer than the torch monitoring time setting signal Tm, the torch monitoring determination signal Ca is output at a low level.
「実施の形態1」
(クレータフィラ無しのとき)
図2は、図1に示す本発明のアーク溶接機のクレータフィラ無し(通常溶接)で溶接開始時のトーチスイッチの開閉操作に応じて溶接条件の設定値を切り換える動作を説明する波形図である。図2(A)はトーチスイッチTSのトーチ信号Tsの時間変化を示し、図2(B)はトーチ監視時間設定信号Tmの時間変化を示し、図2(C)はアーク期間信号Wtの時間変化を示し、図2(D)はオア信号Orの時間変化を示し、図2(E)はトーチ監視判別信号Caの時間変化を示し、図2(F)は溶接電圧設定信号Wvの時間変化を示し、図2(G)は溶接電流設定信号Wiの時間変化を示し、図2(H)は出力電圧Ivの時間変化を示し、図2(I)はワイヤ送給速度Msの時間変化を示す。
“
(Without crater filler)
FIG. 2 is a waveform diagram for explaining the operation of switching the setting values of the welding conditions in accordance with the opening / closing operation of the torch switch at the start of welding without the crater filler (normal welding) of the arc welder of the present invention shown in FIG. . 2A shows the time change of the torch signal Ts of the torch switch TS, FIG. 2B shows the time change of the torch monitoring time setting signal Tm, and FIG. 2C shows the time change of the arc period signal Wt. 2 (D) shows the time change of the OR signal Or, FIG. 2 (E) shows the time change of the torch monitoring determination signal Ca, and FIG. 2 (F) shows the time change of the welding voltage setting signal Wv. 2 (G) shows the time change of the welding current setting signal Wi, FIG. 2 (H) shows the time change of the output voltage Iv, and FIG. 2 (I) shows the time change of the wire feed speed Ms. .
図2(A)に示す時刻t=t1において、トーチスイッチTSのオン操作によってトーチ信号Tsがオンすると、トーチ監視時間設定回路TMは、上記トーチ信号Tsのオンに応じて図2(B)に示す予め定めた期間T1のトーチ監視時間設定信号Tmを出力する。 When the torch signal Ts is turned on by turning on the torch switch TS at time t = t1 shown in FIG. 2A, the torch monitoring time setting circuit TM changes to the state shown in FIG. 2B according to the turning on of the torch signal Ts. A torch monitoring time setting signal Tm for a predetermined period T1 is output.
主制御回路SCは、トーチ信号Tsのオンに応じて動作を開始し、溶接電圧設定信号Wvの値に応じて主制御信号Scを制御して図2(H)に示す溶接電圧Ivを出力する。また、溶接電流設定信号Wiの値に応じてワイヤ送給制御信号Mcを制御して図2(I)に示すワイヤ送給速度Msを出力する。 The main control circuit SC starts its operation in response to turning on the torch signal Ts, controls the main control signal Sc in accordance with the value of the welding voltage setting signal Wv, and outputs the welding voltage Iv shown in FIG. . Further, the wire feed control signal Mc is controlled according to the value of the welding current setting signal Wi to output the wire feed speed Ms shown in FIG.
オア回路ORは、トーチ信号Tsとアーク期間信号Wtとトーチ監視時間設定信号Tmとのオア論理を取って図2(D)に示すOr信号を出力する。また、トーチ監視時間判別回路CAは、Or信号がHighレベルの期間中にトーチ信号Tsの監視動作を行ない、図2(A)に示す上記トーチ信号Tsのオン期間T2とトーチ監視時間設定信号Tmの監視時間T1とを比較して、上記トーチ信号Tsのオン期間T2の値が上記監視時間T1未満と判別し、上記判別した後に上記トーチ監視時間設定信号Tmの期間内で上記トーチ信号Tsを再度オンすると、図2(E)に示すトーチ監視判別信号Caを時刻t=t2においてHighレベルにして出力する。 The OR circuit OR takes the OR logic of the torch signal Ts, the arc period signal Wt, and the torch monitoring time setting signal Tm, and outputs the Or signal shown in FIG. The torch monitoring time discriminating circuit CA performs the monitoring operation of the torch signal Ts during the period when the Or signal is at the high level, and the on period T2 of the torch signal Ts and the torch monitoring time setting signal Tm shown in FIG. The torch signal Ts is determined to be less than the monitoring time T1, and the torch signal Ts is determined within the period of the torch monitoring time setting signal Tm after the determination. When the power is turned on again, the torch monitoring determination signal Ca shown in FIG. 2 (E) is set to a high level and output at time t = t2.
時刻t=t2において、トーチ監視判別信号CaがHighレベルになると、溶接電圧切換用スイッチSW1は接点をb側に接続し、溶接電圧設定信号Wvから第2の溶接電圧設定信号Wv2に切り換えて出力する。また、主制御回路SCは、上記切り換わった第2の溶接電圧設定信号Wv2の値に応じて主制御信号Scを制御し、図2(H)に示す溶接電圧Ivを出力する。また、溶接電流切換用スイッチSW2もトーチ監視判別信号CaがHighレベルなるとb側に接続し、溶接電流設定信号Wiから第2の溶接電流設定信号Wi2に切り換えて出力し、上記主制御回路SCは第2の溶接電流設定信号Wi2の値に応じて、ワイヤ送給制御信号Mcを制御して図2(I)に示すワイヤ送給速度Msを出力する。 When the torch monitoring determination signal Ca becomes High level at time t = t2, the welding voltage switching switch SW1 connects the contact to the b side, and switches the welding voltage setting signal Wv to the second welding voltage setting signal Wv2 and outputs it. To do. Further, the main control circuit SC controls the main control signal Sc according to the switched value of the second welding voltage setting signal Wv2, and outputs the welding voltage Iv shown in FIG. The welding current switching switch SW2 is also connected to the b side when the torch monitoring determination signal Ca becomes High level, and is switched from the welding current setting signal Wi to the second welding current setting signal Wi2, and the main control circuit SC In accordance with the value of the second welding current setting signal Wi2, the wire feed control signal Mc is controlled to output the wire feed speed Ms shown in FIG.
図2(A)に示す時刻t=t5において、トーチスイッチTsをオンからオフにしてトーチ信号TsをLowレベルにすると溶接を終了し、溶接電圧Iv及びワイヤ送給速度Msは緩やかに減少して停止する。 At time t = t5 shown in FIG. 2A, when the torch switch Ts is turned from on to off and the torch signal Ts is set to the low level, the welding is finished, and the welding voltage Iv and the wire feed speed Ms are gradually reduced. Stop.
「実施の形態2」
(クレータフィラ有り、初期電流無しのとき)
図3は、図1に示す本発明のアーク溶接機のクレータフィラ有り、初期無しで溶接開始のトーチスイッチの開閉操作に応じて溶接条件の設定値を切り換える動作を説明する波形図である。図3(A)はトーチスイッチTSのトーチ信号Tsの時間変化を示し、図3(B)はトーチ監視時間設定信号Tmの時間変化を示し、図3(C)はアーク期間信号Wtの時間変化を示し、図3(D)はオア信号Orの時間変化を示し、図3(E)はトーチ監視判別信号Caの時間変化を示し、図3(F)は溶接電圧設定信号Wvの時間変化を示し、図3(G)はクレータ電圧設定信号Cvの時間変化を示し、図3(H)は溶接電流設定信号Wiの時間変化を示し、図3(I)はクレータ電流設定信号Ciの時間変化を示し、図3(J)は出力電圧Ivの時間変化を示し、図3(K)はワイヤ送給速度Msの時間変化を示す。
“
(With crater filler and no initial current)
FIG. 3 is a waveform diagram for explaining the operation of switching the setting values of the welding conditions in accordance with the opening / closing operation of the torch switch with and without the initial crater filler of the arc welder of the present invention shown in FIG. 3A shows the time change of the torch signal Ts of the torch switch TS, FIG. 3B shows the time change of the torch monitoring time setting signal Tm, and FIG. 3C shows the time change of the arc period signal Wt. 3D shows the time change of the OR signal Or, FIG. 3E shows the time change of the torch monitoring determination signal Ca, and FIG. 3F shows the time change of the welding voltage setting signal Wv. 3 (G) shows the time change of the crater voltage setting signal Cv, FIG. 3 (H) shows the time change of the welding current setting signal Wi, and FIG. 3 (I) shows the time change of the crater current setting signal Ci. 3 (J) shows the time change of the output voltage Iv, and FIG. 3 (K) shows the time change of the wire feed speed Ms.
図3(A)に示す時刻t=t1において、トーチスイッチTSのオン操作によってトーチ信号Tsがオンすると、トーチ監視時間設定回路TMは、上記トーチ信号Tsのオンに応じて図3(B)に示す予め定めた期間T1のトーチ監視時間設定信号Tmを出力する。 When the torch signal Ts is turned on by turning on the torch switch TS at time t = t1 shown in FIG. 3A, the torch monitoring time setting circuit TM responds to the turning on of the torch signal Ts according to FIG. 3B. A torch monitoring time setting signal Tm for a predetermined period T1 is output.
主制御回路SCは、トーチ信号Tsのオンに応じて動作を開始し、溶接電圧設定信号Wvの値に応じて主制御信号Scを制御して図3(J)に示す溶接電圧Ivを出力する。また、溶接電流設定信号Wiの値に応じてワイヤ送給制御信号Mcを制御し、図3(K)に示すワイヤ送給速度Msを出力する。 The main control circuit SC starts operation in response to the torch signal Ts being turned on, controls the main control signal Sc in accordance with the value of the welding voltage setting signal Wv, and outputs the welding voltage Iv shown in FIG. . Further, the wire feed control signal Mc is controlled according to the value of the welding current setting signal Wi, and the wire feed speed Ms shown in FIG.
トーチ監視時間判別回路CAは、溶接開始時のトーチ信号Tsのオン期間T2とトーチ監視時間設定信号Tmの監視時間T1とを比較して、上記トーチ信号Tsのオン期間T2の値が上記監視時間T1未満と判別し、上記判別した後に上記トーチ監視時間設定信号Tmの期間内で上記トーチ信号Tsを再度オンすると、図3(E)に示すトーチ監視判別信号Caを時刻t=t2においてHighレベルにして出力する。 The torch monitoring time discriminating circuit CA compares the on period T2 of the torch signal Ts at the start of welding with the monitoring time T1 of the torch monitoring time setting signal Tm, and the value of the on period T2 of the torch signal Ts is the monitoring time. When the torch signal Ts is turned on again within the period of the torch monitoring time setting signal Tm after determining that it is less than T1, the torch monitoring determining signal Ca shown in FIG. 3 (E) is set to the high level at time t = t2. And output.
時刻t=t2において、トーチ監視判別信号CaがHighレベルになると、溶接電圧切換用スイッチSW1は接点をb側に接続し、溶接電圧設定信号Wvから第2の溶接電圧設定信号Wv2に切り換えて出力し、主制御回路SCは、上記切り換わった第2の溶接電圧設定信号Wv2の値に応じて主制御信号Scを制御して、図3(J)に示す溶接電圧Ivを出力する。また、溶接電流切換用スイッチSW2もトーチ監視判別信号CaがHighレベルなるとb側に接続し、溶接電流設定信号Wiから第2の溶接電流設定信号Wi2に切り換えて出力し、上記主制御回路SCは第2の溶接電流設定信号Wi2の値に応じて、ワイヤ送給制御信号Mcを制御して図3(K)に示すワイヤ送給速度Msを出力する。続いて、時刻t2〜t3の初期電流期間において、初期電流無しのとき、上記第2の溶接電圧設定信号Wv2の値に応じて主制御信号Scを制御し、上記第2の溶接電流設定信号Wi2の値に応じて、ワイヤ送給制御信号Mcを制御する。 When the torch monitoring determination signal Ca becomes High level at time t = t2, the welding voltage switching switch SW1 connects the contact to the b side, and switches the welding voltage setting signal Wv to the second welding voltage setting signal Wv2 and outputs it. Then, the main control circuit SC controls the main control signal Sc according to the switched value of the second welding voltage setting signal Wv2, and outputs the welding voltage Iv shown in FIG. The welding current switching switch SW2 is also connected to the b side when the torch monitoring determination signal Ca becomes High level, and is switched from the welding current setting signal Wi to the second welding current setting signal Wi2, and the main control circuit SC According to the value of the second welding current setting signal Wi2, the wire feed control signal Mc is controlled to output the wire feed speed Ms shown in FIG. Subsequently, in the initial current period from time t2 to t3, when there is no initial current, the main control signal Sc is controlled according to the value of the second welding voltage setting signal Wv2, and the second welding current setting signal Wi2 is set. The wire feed control signal Mc is controlled according to the value of.
図3(A)に示す時刻t=t3において、トーチスイッチTSをオンからオフにしてトーチ信号TsがHighレベルからLowレベルになると、主制御回路SCは初期電流期間から溶接電流期間に切り換わったと判別し、溶接期間中T4は第2の溶接電圧設定信号Wv2の値に応じて主制御信号Scを制御して図3(J)に示す溶接電圧Ivを出力する。更に、第2の溶接電流設定信号Wi2の値に応じてワイヤ送給制御信号Mcを制御し、図3(K)に示すワイヤ送給速度Msを出力する。 At time t = t3 shown in FIG. 3A, when the torch switch TS is turned from on to off and the torch signal Ts changes from high level to low level, the main control circuit SC is switched from the initial current period to the welding current period. During the welding period, T4 controls the main control signal Sc according to the value of the second welding voltage setting signal Wv2, and outputs the welding voltage Iv shown in FIG. Further, the wire feed control signal Mc is controlled according to the value of the second welding current setting signal Wi2, and the wire feed speed Ms shown in FIG.
図3(A)に示す時刻t=t4において、トーチスイッチTsをオフからオンにしてトーチ信号がLowレベルからHighレベルになると、主制御回路SCは溶接電流期間からからクレータ電流期間に切り換わったと判別し、クレータ期間中T5は、選択した第2のクレータ電圧設定信号Cv2の値に応じて主制御信号Scを制御して図3(J)に示す溶接電圧Ivを出力する。更に、第2のクレータ電流設定信号Ci2の値に応じてワイヤ送給制御信号Mcを制御し、図3(K)に示すワイヤ送給速度Msを出力する。 At time t = t4 shown in FIG. 3A, when the torch switch Ts is turned from OFF to ON and the torch signal changes from Low level to High level, the main control circuit SC switches from the welding current period to the crater current period. In the crater period, T5 controls the main control signal Sc according to the value of the selected second crater voltage setting signal Cv2, and outputs the welding voltage Iv shown in FIG. Further, the wire feed control signal Mc is controlled according to the value of the second crater current setting signal Ci2, and the wire feed speed Ms shown in FIG.
時刻t=t5において、トーチスイッチTsをオンからオフにしてトーチ信号TsをHighレベルからLowレベルにすると溶接を終了し、図3(J)に溶接電圧Iv、図3(K)に示すイヤ送給速度Msは緩やかに減少して停止する。 At time t = t5, when the torch switch Ts is turned from on to off and the torch signal Ts is changed from the high level to the low level, the welding is finished, the welding voltage Iv in FIG. 3 (J), and the ear feeding shown in FIG. 3 (K). The feeding speed Ms decreases slowly and stops.
図4は、図1に示す本発明のアーク溶接機のクレータフィラ有り、初期無しで溶接開始のトーチスイッチの開閉操作をしないで溶接条件の設定値を換えないときの動作を説明する波形図である。また、図3に示す波形図と同一動作の個所については詳細な説明は省略し違いのみを説明する。 FIG. 4 is a waveform diagram for explaining the operation when the arc welding machine of the present invention shown in FIG. 1 has a crater filler and does not change the setting value of the welding conditions without opening and closing the torch switch for starting welding without the initial stage. is there. Also, detailed description of the same operation as that of the waveform diagram shown in FIG.
図4(A)に示す時刻t=t1において、トーチスイッチTSのオン操作によってトーチ信号Tsがオンすると、トーチ監視時間設定回路TMは、上記トーチ信号Tsのオンに応じて図4(B)に示す予め定めた期間T1のトーチ監視時間設定信号Tmを出力する。 When the torch signal Ts is turned on by turning on the torch switch TS at time t = t1 shown in FIG. 4A, the torch monitoring time setting circuit TM changes to FIG. 4B according to the turning on of the torch signal Ts. A torch monitoring time setting signal Tm for a predetermined period T1 is output.
主制御回路SCは、トーチ信号Tsのオンに応じて動作を開始し、溶接電圧設定信号Wvの値に応じて主制御信号Scを制御して図4(J)に示す溶接電圧Ivを出力し、溶接電流設定信号Wiの値に応じてワイヤ送給制御信号Mcを制御し、図4(K)に示すワイヤ送給速度Msを出力する。 The main control circuit SC starts operating in response to the torch signal Ts being turned on, controls the main control signal Sc in accordance with the value of the welding voltage setting signal Wv, and outputs the welding voltage Iv shown in FIG. The wire feed control signal Mc is controlled in accordance with the value of the welding current setting signal Wi, and the wire feed speed Ms shown in FIG.
トーチ監視時間判別回路CAは、図4(A)に示すトーチ信号TsのオンのHighレベル期間とトーチ監視時間設定信号Tmの監視時間T1とを比較して、上記トーチ信号Tsのオンの値が上記監視時間T1以上のとき、図4(E)に示すトーチ監視判別信号CaLowレベルを維持する。 The torch monitoring time discriminating circuit CA compares the ON high level period of the torch signal Ts shown in FIG. 4A with the monitoring time T1 of the torch monitoring time setting signal Tm, and the ON value of the torch signal Ts is determined. When the monitoring time T1 or longer, the torch monitoring determination signal CaLow level shown in FIG. 4E is maintained.
時刻t=t2において、トーチ監視判別信号CaがLowレベルのとき、溶接電圧切換用スイッチSW1は接点をa側に接続し、溶接電圧設定信号Wvを選択して出力し、主制御回路SCは、上記溶接電圧設定信号Wvの値に応じて主制御信号Scを制御して、図4(J)に示す溶接電圧Ivを出力する。また、溶接電流切換用スイッチSW2もトーチ監視判別信号CaがLowレベルを維持するとa側に接続し、溶接電流設定信号Wiを選択して出力し、上記主制御回路SCは溶接電流設定信号Wiの値に応じて、ワイヤ送給制御信号Mcを制御して図4(K)に示すワイヤ送給速度Msを出力する。続いて、時刻t2〜t3の初期電流期間において、初期電流無しのとき上記溶接電圧設定信号Wvの値に応じて主制御信号Scを制御し、上記溶接電流設定信号Wiの値に応じて、ワイヤ送給制御信号Mcを制御する。 At time t = t2, when the torch monitoring determination signal Ca is at the low level, the welding voltage switching switch SW1 connects the contact to the a side, selects and outputs the welding voltage setting signal Wv, and the main control circuit SC The main control signal Sc is controlled according to the value of the welding voltage setting signal Wv, and the welding voltage Iv shown in FIG. Also, the welding current switching switch SW2 is connected to the a side when the torch monitoring determination signal Ca is maintained at the low level, and the welding current setting signal Wi is selected and output. The main control circuit SC receives the welding current setting signal Wi. Depending on the value, the wire feed control signal Mc is controlled to output the wire feed speed Ms shown in FIG. Subsequently, during the initial current period from time t2 to t3, when there is no initial current, the main control signal Sc is controlled according to the value of the welding voltage setting signal Wv, and the wire is controlled according to the value of the welding current setting signal Wi. The feeding control signal Mc is controlled.
図4(A)に示す時刻t=t3において、トーチスイッチTSをオンからオフにしてトーチ信号TsがHighレベルからLowレベルになると、主制御回路SCは初期電流期間から溶接電流期間に切り換わったと判別し、溶接期間中T3は溶接電圧設定信号Wvの値に応じて主制御信号Scを制御して図4(J)に示す溶接電圧Ivを出力し、溶接電流設定信号Wiの値に応じてワイヤ送給制御信号Mcを制御して図4(K)に示すワイヤ送給速度Msを出力する。 At time t = t3 shown in FIG. 4A, when the torch switch TS is turned from on to off and the torch signal Ts changes from high level to low level, the main control circuit SC is switched from the initial current period to the welding current period. During the welding period, T3 controls the main control signal Sc according to the value of the welding voltage setting signal Wv to output the welding voltage Iv shown in FIG. 4 (J), and according to the value of the welding current setting signal Wi. The wire feed control signal Mc is controlled to output a wire feed speed Ms shown in FIG.
図4(A)に示す時刻t=t4において、トーチスイッチTsをオフからオンにしてトーチ信号がLowレベルからHighレベルになると、主制御回路SCは溶接電流からクレータ電流期間に切り換わったと判別し、クレータ期間中T5は選択したクレータ電圧設定信号Cvの値に応じて主制御信号Scを制御して図4(J)に示す溶接電圧Ivを出力し、クレータ電流設定信号Ciの値に応じてワイヤ送給制御信号Mcを制御して図4(K)に示すワイヤ送給速度Msを出力する。 At time t = t4 shown in FIG. 4 (A), when the torch switch Ts is turned on from off and the torch signal changes from low level to high level, the main control circuit SC determines that the welding current is switched to the crater current period. During the crater period, T5 controls the main control signal Sc according to the value of the selected crater voltage setting signal Cv to output the welding voltage Iv shown in FIG. 4 (J), and according to the value of the crater current setting signal Ci. The wire feed control signal Mc is controlled to output a wire feed speed Ms shown in FIG.
「実施の形態3」
(クレータフィラ有り、初期電流有りのとき)
図5は、図1に示す本発明のアーク溶接機のクレータフィラ有り、初期有りで溶接開始時のトーチスイッチの開閉操作に応じて溶接条件の設定値を切り換える動作を説明する波形図である。また、図2に示す波形図と同一動作の個所については詳細な説明は省略し違いのみを説明する。
“
(With crater filler and initial current)
FIG. 5 is a waveform diagram for explaining the operation of switching the set values of the welding conditions in accordance with the opening / closing operation of the torch switch at the start of welding with and without the crater filler of the arc welder of the present invention shown in FIG. Further, detailed description of the same operation as that of the waveform diagram shown in FIG. 2 is omitted, and only differences are described.
図5(A)に示す時刻t=t1において、トーチスイッチTSのオン操作によってトーチ信号Tsがオンすると、トーチ監視時間設定回路TMは、上記トーチ信号Tsのオンに応じて図5(B)に示す予め定めた期間T1のトーチ監視時間設定信号Tmを出力する。 When the torch signal Ts is turned on by turning on the torch switch TS at time t = t1 shown in FIG. 5A, the torch monitoring time setting circuit TM responds to the turning on of the torch signal Ts in FIG. 5B. A torch monitoring time setting signal Tm for a predetermined period T1 is output.
主制御回路SCは、トーチ信号Tsのオンに応じて動作を開始し、溶接電圧設定信号Wvの値に応じて主制御信号Scを制御して図5(J)に示す溶接電圧Ivを出力し、溶接電流設定信号Wiの値に応じてワイヤ送給制御信号Mcを制御して図5(H)に示すワイヤ送給速度Msを出力する。 The main control circuit SC starts operating in response to the torch signal Ts being turned on, controls the main control signal Sc in accordance with the value of the welding voltage setting signal Wv, and outputs the welding voltage Iv shown in FIG. Then, the wire feed control signal Mc is controlled according to the value of the welding current setting signal Wi to output the wire feed speed Ms shown in FIG.
トーチ監視時間判別回路CAは、溶接開始時の上記トーチ信号Tsのオン期間T2とトーチ監視時間設定信号Tmの監視時間T1とを比較して、上記トーチ信号Tsのオン期間T2の値が上記監視時間T1未満と判別し、上記判別した後に上記トーチ監視時間設定信号Tmの期間内で上記トーチ信号Tsを再度オンすると、図5(E)に示すトーチ監視判別信号Caを時刻t=t2においてHighレベルにして出力する。 The torch monitoring time discriminating circuit CA compares the on period T2 of the torch signal Ts at the start of welding with the monitoring time T1 of the torch monitoring time setting signal Tm, and the value of the on period T2 of the torch signal Ts is monitored. When the torch signal Ts is turned on again within the period of the torch monitoring time setting signal Tm after determining that the time is less than the time T1, the torch monitoring determining signal Ca shown in FIG. 5E is set to High at time t = t2. Output as level.
時刻t=t2において、トーチ監視判別信号CaがHighレベルになると、溶接電圧切換用スイッチSW1は接点をb側に接続し、溶接電圧設定信号Wvから第2の溶接電圧設定信号Wv2に切り換えて出力し、クレータ電圧切換用スイッチSW3も接点をb側に接続し、クレータ電圧設定信号Cvから第2のクレータ電圧設定信号Cv2に切り換えて出力する。更に、溶接電流切換用スイッチSW2はトーチ監視判別信号CaがHighレベルなるとb側に接続し、溶接電流設定信号Wiから第2の溶接電流設定信号Wi2に切り換えて出力し、クレータ電流切換用スイッチSW4もトーチ監視判別信号CaがHighレベルなるとb側に接続し、クレータ電流設定信号Ciから第2のクレータ電流設定信号Ci2に切り換えて出力する。そして、時刻t2〜t3の初期電流期間において、初期電流有りとき、図示省略の第2の初期電圧設定信号Sv2の値に応じて主制御信号Scを制御し、図示省略の第2の初期電流設定信号Si2の値に応じて、ワイヤ送給制御信号Mcを制御する。 When the torch monitoring determination signal Ca becomes High level at time t = t2, the welding voltage switching switch SW1 connects the contact to the b side, and switches the welding voltage setting signal Wv to the second welding voltage setting signal Wv2 and outputs it. The crater voltage switching switch SW3 is also connected to the b side and switched from the crater voltage setting signal Cv to the second crater voltage setting signal Cv2. Further, when the torch monitoring discrimination signal Ca becomes High level, the welding current switching switch SW2 is connected to the b side, switched from the welding current setting signal Wi to the second welding current setting signal Wi2, and output, and the crater current switching switch SW4. When the torch monitoring determination signal Ca becomes High level, the connection is made to the b side, and the crater current setting signal Ci is switched to the second crater current setting signal Ci2 and output. Then, during the initial current period from time t2 to t3, when there is an initial current, the main control signal Sc is controlled according to the value of the second initial voltage setting signal Sv2 (not shown), and the second initial current setting (not shown) is set. The wire feed control signal Mc is controlled according to the value of the signal Si2.
図5(A)に示す時刻t=t3において、トーチスイッチTSをオンからオフにしてトーチ信号TsがHighレベルからLowレベルになると、主制御回路SCは初期電流期間から溶接電流期間に切り換わったと判別し、溶接期間中T4は第2の溶接電圧設定信号Wv2の値に応じて主制御信号Scを制御して図5(J)に示す溶接電圧Ivを出力し、第2の溶接電流設定信号Wi2の値に応じてワイヤ送給制御信号Mcを制御して図5(K)に示すワイヤ送給速度Msを制御する。 At time t = t3 shown in FIG. 5 (A), when the torch switch TS is turned from on to off and the torch signal Ts changes from high level to low level, the main control circuit SC switches from the initial current period to the welding current period. In the welding period T4, the main control signal Sc is controlled according to the value of the second welding voltage setting signal Wv2 to output the welding voltage Iv shown in FIG. The wire feed control signal Mc is controlled according to the value of Wi2 to control the wire feed speed Ms shown in FIG.
図5(A)に示す時刻t=t4において、トーチスイッチTsをオフからオンにしてトーチ信号がLowレベルからHighレベルになると、主制御回路SCは溶接電流期間からクレータ電流期間に切り換わったと判別し、クレータ期間中T5は、選択した第2のクレータ電圧設定信号Cv2の値に応じて主制御信号Scを制御して図5(J)に示す溶接電圧Ivを出力し、第2のクレータ電流設定信号Ci2の値に応じてワイヤ送給制御信号Mcを制御して図5(K)に示すワイヤ送給速度Msを制御する。 When the torch switch Ts is turned from OFF to ON at time t = t4 shown in FIG. 5A and the torch signal changes from low level to high level, the main control circuit SC determines that the welding current period has switched to the crater current period. During the crater period, T5 controls the main control signal Sc according to the value of the selected second crater voltage setting signal Cv2 to output the welding voltage Iv shown in FIG. The wire feed control signal Mc is controlled according to the value of the setting signal Ci2 to control the wire feed speed Ms shown in FIG.
図6は、図1に示す本発明のアーク溶接機のクレータフィラ有り、初期有りで溶接開始時にトーチスイッチの開閉操作をしないで溶接条件の設定値を換えないときの動作を説明する波形図である。また、図6に示す波形図と図4に示す波形図の同一動作は省略し違いのみを説明する。 FIG. 6 is a waveform diagram for explaining the operation when the arc welding machine of the present invention shown in FIG. 1 has a crater filler, the initial setting is present, and the welding conditions are not changed without opening and closing the torch switch at the start of welding. is there. Further, the same operation of the waveform diagram shown in FIG. 6 and the waveform diagram shown in FIG. 4 is omitted, and only the difference will be described.
図6(A)に示す時刻t=t1において、トーチスイッチTSのオン操作によってトーチ信号Tsがオンすると、トーチ監視時間設定回路TMは、上記トーチ信号Tsのオンに応じて図6(B)に示す予め定めた期間T1のトーチ監視時間設定信号Tmを出力する。 When the torch signal Ts is turned on by turning on the torch switch TS at time t = t1 shown in FIG. 6A, the torch monitoring time setting circuit TM changes to the state shown in FIG. 6B according to the turning on of the torch signal Ts. A torch monitoring time setting signal Tm for a predetermined period T1 is output.
主制御回路SCは、トーチ信号Tsのオンに応じて動作を開始し、溶接電圧設定信号Wvの値に応じて主制御信号Scを制御して図6(J)に示す溶接電圧Ivを出力し、溶接電流設定信号Wiの値に応じてワイヤ送給制御信号Mcを制御して図6(K)に示すワイヤ送給速度Msを出力する。 The main control circuit SC starts operation in response to the torch signal Ts being turned on, controls the main control signal Sc in accordance with the value of the welding voltage setting signal Wv, and outputs the welding voltage Iv shown in FIG. 6 (J). Then, the wire feed control signal Mc is controlled according to the value of the welding current setting signal Wi to output the wire feed speed Ms shown in FIG.
トーチ監視時間判別回路CAは、図6(A)に示すトーチ信号TsのオンのHighレベル期間とトーチ監視時間設定信号Tmの監視時間T1とを比較して、上記トーチ信号Tsのオンの値が上記監視時間T1以上のとき、図6(E)に示すトーチ監視判別信号CaのLowレベルを維持する。 The torch monitoring time discriminating circuit CA compares the ON high level period of the torch signal Ts shown in FIG. 6A with the monitoring time T1 of the torch monitoring time setting signal Tm, and the ON value of the torch signal Ts is determined. When the time is equal to or longer than the monitoring time T1, the low level of the torch monitoring determination signal Ca shown in FIG. 6E is maintained.
時刻t=t2において、トーチ監視判別信号CaがLowレベルを維持すると、溶接電圧切換用スイッチSW1は接点をa側に接続し、溶接電圧設定信号Svを選択して出力し、クレータ電圧切換用スイッチSW3も接点をa側に接続し、クレータ電圧設定信号Cvを選択して出力する。更に、溶接電流切換用スイッチSW2はトーチ監視判別信号CaがLowレベルなるとa側に接続し、溶接電流設定信号Wiを選択して出力し、クレータ電流切換用スイッチSW4もトーチ監視判別信号CaがLowレベルなるとa側に接続し、クレータ電流設定信号Ciを選択して出力する。続いて、時刻t2〜t3の初期電流期間おいて、初期電流有りとき図示省略の初期電圧電圧設定信号Svの値に応じて主制御信号Scを制御し、図示省略の初期電流設定信号Siの値に応じて、ワイヤ送給制御信号Mcを制御する。 When the torch monitoring determination signal Ca is maintained at the low level at time t = t2, the welding voltage switching switch SW1 connects the contact to the a side, selects and outputs the welding voltage setting signal Sv, and the crater voltage switching switch. SW3 also connects the contact to the a side, and selects and outputs the crater voltage setting signal Cv. Further, when the torch monitoring determination signal Ca becomes low level, the welding current switching switch SW2 is connected to the a side, and selects and outputs the welding current setting signal Wi. The crater current switching switch SW4 also has the torch monitoring determination signal Ca set to Low. When the level is reached, the crater current setting signal Ci is selected and output by connecting to the a side. Subsequently, in the initial current period from time t2 to t3, when the initial current is present, the main control signal Sc is controlled according to the value of the initial voltage / voltage setting signal Sv (not shown), and the value of the initial current setting signal Si (not shown) is determined. In response to this, the wire feed control signal Mc is controlled.
図6(A)に示す時刻t=t3において、トーチスイッチTSをオンからオフにしてトーチ信号TsがHighレベルからLowレベルになると、主制御回路SCは初期電流期間から溶接電流期間に切り換わったと判別し、溶接期間中T4は溶接電圧設定信号Wvの値に応じて主制御信号Scを制御して図6(J)に示す溶接電圧Ivを出力し、溶接電流設定信号Wiの値に応じてワイヤ送給制御信号Mcを制御して図6(K)に示すワイヤ送給速度Msを出力する。 At time t = t3 shown in FIG. 6A, when the torch switch TS is turned from on to off and the torch signal Ts changes from high level to low level, the main control circuit SC is switched from the initial current period to the welding current period. During the welding period, T4 controls the main control signal Sc according to the value of the welding voltage setting signal Wv to output the welding voltage Iv shown in FIG. 6 (J), and according to the value of the welding current setting signal Wi. The wire feed control signal Mc is controlled to output a wire feed speed Ms shown in FIG.
図6(A)に示す時刻t=t4において、トーチスイッチTsをオフからオンにしてトーチ信号がLowレベルからHighレベルになると、主制御回路SCは溶接電流期間からクレータ電流期間に切り換わったと判別し、クレータ期間中T5は選択したクレータ電圧設定信号Cvの値に応じて主制御信号Scを制御して図6(J)に示す溶接電圧Ivを出力し、クレータ電流設定信号Ciの値に応じてワイヤ送給制御信号Mcを制御して図6(K)に示すワイヤ送給速度Msを出力する。 When the torch switch Ts is turned on from off to on at time t = t4 shown in FIG. 6A and the torch signal changes from low level to high level, the main control circuit SC determines that the welding current period has switched to the crater current period. During the crater period, T5 controls the main control signal Sc according to the value of the selected crater voltage setting signal Cv to output the welding voltage Iv shown in FIG. 6 (J), and according to the value of the crater current setting signal Ci. The wire feed control signal Mc is controlled to output a wire feed speed Ms shown in FIG.
1 溶接トーチ
2 溶接ワイヤ
3 被溶接物
4 送給ロール
AC 商用交流電源
CA トーチ監視判別回路
CI クレータ電流設定回路
CI2 第2のクレータ電流設定回路
CV クレータ電圧設定回路
CV2 第2のクレータ電圧設定回路
CS クレータ有り/無し設定回路(溶接モード設定回路)
INV 溶接電源主回路
M ワイヤ送給用モータ
MC ワイヤ送給制御回路
OR オア回路
SC 主制御回路
SS 初期電流有り/無し設定回路
SW1 溶接電圧切換用スイッチ
SW2 溶接電流切換スイッチ
SW3 クレータ電圧切換用スイッチ
SW4 クレータ電流切換用スイッチ
TM トーチ監視時間設定回路
TS トーチスイッチ
WG 溶接電源
WI 溶接電流設定回路
WI2 第2の溶接電流設定回路
WV 溶接電圧設定回路
WV2 第2の溶接電圧設定回路
Ca トーチ監視判別信号
Ci クレータ電流設定信号
Ci2 第2のクレータ電流設定信号
Cv クレータ電圧設定信号
Cv2 第2のクレータ電圧設定信号
Cs クレータ有り/無し選択信号
Iv 溶接電圧
Mc ワイヤ送給制御信号
Ms ワイヤ送給速度
Or オア信号
Tm トーチ監視時間設定信号
Ts トーチ信号
Sc 主制御信号
Ss 初期電流有り/無し選択信号
Wi 溶接電流設定信号
Wi2 第1の溶接電流設定信号
Wt アーク期間信号
Wv 溶接電圧設定信号
Wv2 第2の溶接電圧設定信号
DESCRIPTION OF
INV Welding power supply main circuit M Wire feed motor MC Wire feed control circuit OR OR circuit SC Main control circuit SS Initial current presence / absence setting circuit SW1 Welding voltage changeover switch SW2 Welding current changeover switch SW3 Crater voltage changeover switch SW4 Crater current switching switch TM Torch monitoring time setting circuit TS Torch switch WG Welding power supply WI Welding current setting circuit WI2 Second welding current setting circuit WV Welding voltage setting circuit WV2 Second welding voltage setting circuit Ca Torch monitoring determination signal Ci Crater Current setting signal Ci2 Second crater current setting signal Cv Crater voltage setting signal Cv2 Second crater voltage setting signal Cs With / without crater selection signal Iv Welding voltage Mc Wire feed control signal Ms Wire feed speed Or OR signal Tm Torch Monitoring Time setting signal Ts Torch signal Sc Main control signal Ss With / without initial current selection signal Wi Welding current setting signal Wi2 First welding current setting signal Wt Arc period signal Wv Welding voltage setting signal Wv2 Second welding voltage setting signal
Claims (3)
予め定めた第2の溶接電圧を設定する第2の溶接電圧設定回路と、予め定めた第2の溶接電流を設定する第2の溶接電流設定回路と、トーチスイッチのオン開始からのオン期間が予め定めたトーチ監視時間以上のとき前記溶接電圧設定値及び溶接電流設定値を選択し、前記トーチ監視時間未満のとき前記第2の溶接電圧設定値及び前記第2の溶接電流設定値を選択するトーチ監視時間判別回路とを設け、被溶接物で下向溶接箇所と立向溶接箇所とが混在した溶接を行うとき、前記下向溶接箇所では前記溶接モードのクレータフィラ無しを設定し前記トーチスイッチのオン期間を前記トーチ監視時間以上にし前記溶接電圧設定値及び溶接電流設定値を選択して下向溶接を行い、前記立向溶接箇所では前記溶接モードのクレータフィラ有りを設定し前記トーチスイッチのオン期間を前記トーチ監視時間未満にし前記第2の溶接電圧設定値及び前記第2の溶接電流設定値を選択して立向溶接を行う、ことを特徴とするアーク溶接機。 Welding power main circuit that rectifies commercial AC power, converts it into a voltage suitable for arc machining, and supplies it to the load, welding mode setting circuit that sets whether or not the crater filler is in the welding mode, and preset welding voltage In an arc welding machine comprising a welding voltage setting circuit, a welding current setting circuit that sets a predetermined welding current, and a main control circuit that controls output according to each of the set welding conditions,
A second welding voltage setting circuit for setting a predetermined second welding voltage; a second welding current setting circuit for setting a predetermined second welding current; and an ON period from the start of turning on the torch switch. The welding voltage setting value and the welding current setting value are selected when the time is equal to or longer than a predetermined torch monitoring time, and the second welding voltage setting value and the second welding current setting value are selected when the time is less than the torch monitoring time. A torch monitoring time discriminating circuit is provided, and when performing welding in which a downward welded portion and a vertical welded portion are mixed on the workpiece, the crater filler of the welding mode is set at the downward welded portion and the torch switch is set. The ON period is set to be longer than the torch monitoring time, the welding voltage setting value and the welding current setting value are selected and the downward welding is performed, and the welding mode is set to have the crater filler in the welding mode. Wherein the ON period of the torch switch below the torch monitoring time by selecting the second welding voltage setting value and the second welding current setting value performs vertical welding, arc welder, characterized in that.
予め定めた第2の初期電圧を設定する第2の初期電圧設定回路と、予め定めた第2の初期電流を設定する第2の初期電流設定回路と、予め定めた第2の溶接電圧を設定する第2の溶接電圧設定回路と、予め定めた第2の溶接電流を設定する第2の溶接電流設定回路と、予め定めた第2のクレータ電圧を設定する第2のクレータ電圧設定回路と、予め定めた第2のクレータ電流を設定する第2のクレータ電流設定回路と、トーチスイッチのオン開始からのオン期間が予め定めたトーチ監視時間以上のとき前記初期電圧設定値、初期電流設定値、溶接電圧設定値、溶接電流設定値、クレータ電圧設定値及びクレータ電流設定値を選択し、前記トーチ監視時間未満のとき前記第2の初期電圧設定値、前記第2の初期電流設定値、前記第2の溶接電圧設定値、前記第2の溶接電流設定値、前記第2のクレータ電圧設定値及び前記第2のクレータ電流設定値を選択するトーチ監視時間判別回路とを設け、被溶接物で下向溶接箇所と立向溶接箇所とが混在した溶接を行うとき、前記下向溶接箇所では前記溶接モードのクレータフィラ無しを設定して前記トーチスイッチのオン期間を前記トーチ監視時間以上にし前記溶接電圧設定値及び溶接電流設定値を選択して下向溶接を行い、前記立向溶接箇所では前記溶接モードのクレータフィラ有りを設定し前記トーチスイッチのオン期間を前記トーチ監視時間未満にし前記第2の初期電圧設定値、前記第2の初期電流設定値、前記第2の溶接電圧設定値、前記第2の溶接電流設定値、前記第2のクレータ電圧設定値及び前記第2のクレータ電流設定値を選択して立向溶接を行う、ことを特徴とするアーク溶接機。 Welding power main circuit that rectifies commercial AC power, converts it into a voltage suitable for arc machining, and supplies it to the load, welding mode setting circuit that sets whether or not the crater filler is in the welding mode, and preset initial voltage An initial voltage setting circuit for setting, an initial current setting circuit for setting a predetermined initial current, a welding voltage setting circuit for setting a predetermined welding voltage, a welding current setting circuit for setting a predetermined welding current, A crater voltage setting circuit for setting a predetermined crater voltage; a crater current setting circuit for setting a predetermined crater current setting value; and a main control circuit for controlling an output in accordance with each of the set welding conditions. In arc welding machine
A second initial voltage setting circuit for setting a predetermined second initial voltage, a second initial current setting circuit for setting a predetermined second initial current, and a predetermined second welding voltage are set. A second welding voltage setting circuit, a second welding current setting circuit for setting a predetermined second welding current, a second crater voltage setting circuit for setting a predetermined second crater voltage, A second crater current setting circuit for setting a predetermined second crater current; and the initial voltage setting value, the initial current setting value, when an on period from the start of turning on the torch switch is equal to or longer than a predetermined torch monitoring time; A welding voltage setting value, a welding current setting value, a crater voltage setting value and a crater current setting value are selected, and when the torch monitoring time is less than the second initial voltage setting value, the second initial current setting value, the first Welding voltage of 2 A torch monitoring time discriminating circuit for selecting a constant value, the second welding current set value, the second crater voltage set value, and the second crater current set value, and when performing welding and countercurrent welded portions are mixed, the downward welding at the location to set the no crater filler of the welding mode the oN period of the torch switch over the torch monitoring time the welding voltage setting value and the welding current Select a set value to perform downward welding, and set the welding mode with crater filler at the vertical welding location, set the on-period of the torch switch to be less than the torch monitoring time, and set the second initial voltage setting value, The second initial current setting value, the second welding voltage setting value, the second welding current setting value, the second crater voltage setting value, and the second crater current setting value. -Option to perform vertical welding, the arc welder, characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003380591A JP4554912B2 (en) | 2003-11-11 | 2003-11-11 | Arc welding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003380591A JP4554912B2 (en) | 2003-11-11 | 2003-11-11 | Arc welding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005144453A JP2005144453A (en) | 2005-06-09 |
JP4554912B2 true JP4554912B2 (en) | 2010-09-29 |
Family
ID=34690222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003380591A Expired - Fee Related JP4554912B2 (en) | 2003-11-11 | 2003-11-11 | Arc welding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4554912B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5444805B2 (en) * | 2009-04-17 | 2014-03-19 | パナソニック株式会社 | Arc welding equipment |
CN112917079B (en) * | 2021-01-21 | 2022-10-18 | 重庆工业职业技术学院 | Welding device and welding process thereof |
CN114226920B (en) * | 2022-01-07 | 2022-08-23 | 温岭阿凡达机电有限公司 | Global general welding machine circuit selection method and system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61253177A (en) * | 1985-05-04 | 1986-11-11 | Mitsubishi Heavy Ind Ltd | Power source device for co2 arc welding |
JP2000218367A (en) * | 1999-01-29 | 2000-08-08 | Hitachi Via Mechanics Ltd | Arc welding machine |
JP2001347375A (en) * | 2000-06-05 | 2001-12-18 | Daihen Corp | Semiautomatic arc welding machine |
-
2003
- 2003-11-11 JP JP2003380591A patent/JP4554912B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61253177A (en) * | 1985-05-04 | 1986-11-11 | Mitsubishi Heavy Ind Ltd | Power source device for co2 arc welding |
JP2000218367A (en) * | 1999-01-29 | 2000-08-08 | Hitachi Via Mechanics Ltd | Arc welding machine |
JP2001347375A (en) * | 2000-06-05 | 2001-12-18 | Daihen Corp | Semiautomatic arc welding machine |
Also Published As
Publication number | Publication date |
---|---|
JP2005144453A (en) | 2005-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100281315B1 (en) | Welding power supply and its manufacturing method | |
WO2006112219A1 (en) | Consumable electrode arc-welding machine | |
US11541475B2 (en) | Method and system for short-arc welding | |
JP4554912B2 (en) | Arc welding machine | |
JP4499303B2 (en) | Arc start control method for robot arc welding | |
JP2010075944A (en) | Ac arc welding machine | |
JP4490011B2 (en) | Arc start control method | |
US12083635B2 (en) | System for providing welding type power on multiple outputs | |
JP3358080B2 (en) | Polarity switching control method and consumable electrode arc welding machine | |
JP2007038290A (en) | Selective control method of welding condition | |
JP4875443B2 (en) | Output control method for consumable electrode arc welding power supply | |
JP2007216303A (en) | Arc start control method | |
JP2004314098A (en) | Arc welder | |
JP4643236B2 (en) | Polarity switching short-circuit arc welding method | |
JPH09271944A (en) | Submerged arc welding method | |
JP3391168B2 (en) | Consumable electrode AC arc welding method | |
JPS6255472B2 (en) | ||
JPS6127152B2 (en) | ||
JP3836872B2 (en) | Arc start control method for robot arc welding | |
JPH03297560A (en) | Method for starting ac arc | |
JP7142313B2 (en) | welding power supply | |
JPH0623549A (en) | Consumable electrode arc welding power unit | |
JP4850638B2 (en) | Polarity switching short-circuit arc welding method | |
JPH09192832A (en) | Comsumable electrode arc welding machine | |
JP2532434B2 (en) | Arc welding equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090602 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100323 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100514 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100713 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100715 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |