JP4643236B2 - Polarity switching short-circuit arc welding method - Google Patents

Polarity switching short-circuit arc welding method Download PDF

Info

Publication number
JP4643236B2
JP4643236B2 JP2004346304A JP2004346304A JP4643236B2 JP 4643236 B2 JP4643236 B2 JP 4643236B2 JP 2004346304 A JP2004346304 A JP 2004346304A JP 2004346304 A JP2004346304 A JP 2004346304A JP 4643236 B2 JP4643236 B2 JP 4643236B2
Authority
JP
Japan
Prior art keywords
welding
circuit
polarity
short
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004346304A
Other languages
Japanese (ja)
Other versions
JP2006150423A (en
Inventor
紅軍 仝
哲生 恵良
裕康 水取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2004346304A priority Critical patent/JP4643236B2/en
Publication of JP2006150423A publication Critical patent/JP2006150423A/en
Application granted granted Critical
Publication of JP4643236B2 publication Critical patent/JP4643236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Description

本発明は、溶接中に電極プラス極性溶接と電極マイナス極性溶接とを円滑に切り換えるための極性切換短絡アーク溶接方法に関するものである。   The present invention relates to a polarity switching short-circuit arc welding method for smoothly switching between electrode positive polarity welding and electrode negative polarity welding during welding.

消耗電極式短絡アーク溶接は、消耗電極である溶接ワイヤを定速で送給すると共に、溶接ワイヤと母材との間でアーク状態と短絡状態とを繰り返しながら溶接が行われる。短絡アーク溶接には、中電流域以下の短絡移行域のCO2溶接、MAG溶接、MIG溶接及び中電流域超のグロビュール移行域又はスプレー移行域のCO2溶接、MAG溶接、MIG溶接が該当する。短絡アーク溶接は、通常は溶接ワイヤが陽極となり母材が陰極となる電極プラス極性EPで溶接が行われる。しかし、ワークが薄板でギャップの大きい場合には、溶接ワイヤが陰極となり母材が陽極となる電極マイナス極性ENで溶接が行われるケースもある。電極プラス極性溶接では、溶込みが深くかつ全電流域にわたって安定した溶接を行うことができる。他方、電極マイナス極性溶接では、母材への入熱を低くすることができ、かつ、ワイヤ溶融量を多くすることができる。このために、薄板でギャップの大きなワークに対して良好な溶接品質を得ることができる。両極性とも定電圧特性の溶接電源が使用される。   In the consumable electrode short-circuit arc welding, welding wire as a consumable electrode is fed at a constant speed, and welding is performed while repeating an arc state and a short-circuit state between the welding wire and the base material. Short-circuit arc welding includes CO2 welding, MAG welding, MIG welding in the short-circuit transition region below the middle current region, and CO2 welding, MAG welding, MIG welding in the globule transition region or spray transition region exceeding the middle current region. In short-circuit arc welding, welding is usually performed with an electrode plus polarity EP in which the welding wire serves as an anode and the base material serves as a cathode. However, when the workpiece is a thin plate and the gap is large, there is a case where welding is performed with an electrode negative polarity EN in which the welding wire serves as a cathode and the base material serves as an anode. In the electrode positive polarity welding, it is possible to perform welding with deep penetration and stable over the entire current range. On the other hand, in electrode negative polarity welding, the heat input to the base material can be lowered, and the amount of wire melt can be increased. For this reason, it is possible to obtain a good welding quality for a thin plate with a large gap. A welding power source with constant voltage characteristics is used for both polarities.

溶接中ではなく溶接停止時において溶接電源の出力極性を切り換えるためには、溶接電源の出力にスイッチング素子又は機械的スイッチを設けることによって可能となる。溶接停止時であるために任意のタイミングで極性を切り換えれば良い。他方、溶接中において極性を切り換えるためには、下記に説明する様々な工夫を行う必要がある。ワークの継手、板厚が溶接線に沿って変化する場合には、溶接中において極性を切り換えた方が良好な溶接品質を得ることができる。したがって、このような場合には、1回の溶接中に数回程度極性を切り換えることになる。溶接中に極性を切り換える場合において、その切換タイミングがアーク状態であると、極性切換時にアーク切れが発生して不良な溶接になってしまう。このアーク切れを防止するために、極性切換時に数百Vの高電圧を印加する必要がある。この高電圧印加回路は回路構成が複雑であるために高価であり、かつ、大型であるという問題を有している。この問題を短絡アーク溶接において解決するために提案されたのが、以下に説明する特許文献1、2に記載する従来技術である。この従来技術では、溶接中の極性切り換えを必ず短絡状態において行うものである。アーク状態ではないのでアーク切れが発生する心配はない。このために、上記の高電圧印加回路も不要となる。以下、この従来技術について図面を参照して説明する。   In order to switch the output polarity of the welding power source when welding is stopped, not during welding, it is possible to provide a switching element or a mechanical switch for the output of the welding power source. Since the welding is stopped, the polarity may be switched at an arbitrary timing. On the other hand, in order to switch the polarity during welding, it is necessary to perform various ideas described below. In the case where the joint and plate thickness of the workpiece change along the weld line, better welding quality can be obtained by switching the polarity during welding. Therefore, in such a case, the polarity is switched about several times during one welding. When the polarity is switched during welding, if the switching timing is in an arc state, an arc break occurs during polarity switching, resulting in poor welding. In order to prevent this arc break, it is necessary to apply a high voltage of several hundred volts when switching the polarity. This high voltage application circuit has a problem that it is expensive and large because of its complicated circuit configuration. In order to solve this problem in short-circuit arc welding, the conventional techniques described in Patent Documents 1 and 2 described below are proposed. In this prior art, polarity switching during welding is always performed in a short-circuit state. Since it is not in an arc state, there is no worry of arc breakage. For this reason, the above-described high voltage application circuit is also unnecessary. The prior art will be described below with reference to the drawings.

図7は、従来技術の極性切換短絡アーク溶接における電圧・電流波形図である。同図(A)は極性切換信号Saの、同図(B)は極性切換開始信号Sbの、同図(C)は溶接ワイヤと母材との間の電圧である溶接電圧vの、同図(D)はアーク/短絡負荷を通電する溶接電流iの、同図(E)は溶接ワイヤのワイヤ送給速度Wfの時間変化を示す。同図において、EPとは電極プラス極性を示し、ENとは電極マイナス極性を示す。以下、同図を参照して説明する。   FIG. 7 is a voltage / current waveform diagram in the conventional polarity-switching short-circuit arc welding. FIG. 4A shows the polarity switching signal Sa, FIG. 4B shows the polarity switching start signal Sb, and FIG. 4C shows the welding voltage v which is the voltage between the welding wire and the base metal. (D) shows the welding current i for energizing the arc / short-circuit load, and (E) shows the change over time in the wire feed speed Wf of the welding wire. In the figure, EP indicates the positive polarity of the electrode, and EN indicates the negative polarity of the electrode. Hereinafter, a description will be given with reference to FIG.

短絡期間Ts中は、同図(C)に示すように、溶接電圧vは数V程度の短絡電圧値となり、同図(D)に示すように、溶接電流iは次第に増加する。続いてアーク期間Ta中は、同図(C)に示すように、溶接電圧vは数十V程度のアーク電圧値となり、同図(D)に示すように、溶接電流iは次第に減少する。上記の状態は、電極プラス極性EPでも電極マイナス極性ENでも略同様である。ワイヤ送給速度Wfは、同図(E)に示すように、予め定めた定速で送給される。このときに、電極プラス極性EPと電極マイナス極性ENとで送給速度を異なった値に設定することもある。   During the short-circuit period Ts, the welding voltage v becomes a short-circuit voltage value of about several volts as shown in FIG. 10C, and the welding current i gradually increases as shown in FIG. Subsequently, during the arc period Ta, the welding voltage v has an arc voltage value of about several tens of volts as shown in FIG. 3C, and the welding current i gradually decreases as shown in FIG. The above state is substantially the same for both the electrode positive polarity EP and the electrode negative polarity EN. The wire feed speed Wf is fed at a predetermined constant speed as shown in FIG. At this time, the feeding speed may be set to a different value between the electrode positive polarity EP and the electrode negative polarity EN.

時刻t1において、同図(A)に示すように、極性切換信号Saが変化して時刻t2において次の短絡が発生すると、同図(C)に示すように、時刻t3までの予め定めた短絡初期期間Ti中は溶接電流iを低い値の予め定めた短絡初期電流Iiに低下させる。同時に時刻t3において同図(B)に示すように、極性切換開始信号Sbが変化するので、同図(C)に示す溶接電圧v及び同図(D)に示す溶接電流iの極性は、電極プラス極性EPから電極マイナス極性ENへと切り換わる。上記の短絡初期期間Tiを設けて溶接電流iを低い値にする理由は、溶滴と溶融池との短絡状態をより確実な状態にして極性切換途中で突然にアークが再発生してアーク切れが発生するのを防止するためである。   When the polarity switching signal Sa changes at time t1 and the next short circuit occurs at time t2, as shown in FIG. 9A, a predetermined short circuit until time t3 is performed as shown in FIG. During the initial period Ti, the welding current i is reduced to a predetermined short-circuit initial current Ii having a low value. At the same time, the polarity switching start signal Sb changes as shown in FIG. 5B at time t3. Therefore, the polarity of the welding voltage v shown in FIG. 5C and the welding current i shown in FIG. Switching from positive polarity EP to electrode negative polarity EN. The reason for making the welding current i low by providing the above-mentioned initial short-circuit period Ti is that the short-circuit state between the droplet and the molten pool is made more reliable and the arc suddenly reappears during polarity switching and the arc breaks. This is to prevent the occurrence of the above.

特開昭58−38664号公報JP 58-38664 A 特開昭63−157765号公報Japanese Unexamined Patent Publication No. 63-157765

図7で上述した従来技術においては、極性切換信号Saは溶接トーチがワークの極性切換ポイントに到達した時点で変化する。したがって、極性切換信号Saは、溶接状態がアーク状態又は短絡状態のどちらであるかには関係なく変化する。そして、実際の極性切換タイミングは、次の短絡が時刻t2で発生し短絡初期期間Tiが経過した時刻t3になる。この時間遅れが長くなりかつバラツキが大きくなると、極性切換ポイントと極性切換とのズレが大きくなり、かつ、ズレのバラツキも大きくなるので、溶接品質が悪くなる。時刻t1〜t3の時間遅れのうち短絡初期期間Tiは1ms程度と短くかつ一定値であるので問題はない。しかし、時刻t1〜t2の短絡待ち期間は、特に中電流域以上で数十ms〜数百msになり、時間遅れが長くなる。したがって、極性切換時の溶接品質に悪影響を与えるおそれが大きくなる。   In the prior art described above with reference to FIG. 7, the polarity switching signal Sa changes when the welding torch reaches the workpiece polarity switching point. Therefore, the polarity switching signal Sa changes regardless of whether the welding state is an arc state or a short circuit state. The actual polarity switching timing is time t3 when the next short circuit occurs at time t2 and the initial short circuit period Ti has elapsed. If this time delay becomes longer and the variation becomes larger, the deviation between the polarity switching point and the polarity switching becomes larger, and the variation in the deviation becomes larger, so that the welding quality is deteriorated. Of the time delay between times t1 and t3, the initial short-circuit period Ti is as short as about 1 ms and has a constant value, so there is no problem. However, the short-circuit waiting period from time t1 to t2 is several tens of milliseconds to several hundreds of milliseconds, particularly in the middle current region or more, and the time delay becomes long. Therefore, there is a greater risk of adversely affecting the welding quality when switching the polarity.

そこで、本発明は、上述した課題を解決することができる極性切換短絡アーク溶接方法を提供する。   Then, this invention provides the polarity switching short circuit arc welding method which can solve the subject mentioned above.

上述した課題を解決するために、第1の発明は、溶接ワイヤを定速で送給すると共に短絡状態とアーク状態とを繰り返す短絡アーク溶接にあって、予め定めた極性切換信号に応じて溶接電源の出力極性を溶接中に切り換えることによって電極プラス極性溶接と電極マイナス極性溶接とを切り換えて溶接を行う極性切換短絡アーク溶接方法において、
前記極性切換信号が変化した場合は、前回の短絡解除からのアーク期間が基準値になった時点から次の短絡が発生するまでは溶接電流の低下又は溶接電圧の低下又はワイヤ送給速度の高速化を行うことによって短絡の発生を早期に誘発し、短絡が発生したときは所定期間溶接電流を低い値に維持した後に溶接電源の出力極性を切り換え、その後に溶接電流を増加させて短絡状態を解除に導く、ことを特徴とする極性切換短絡アーク溶接方法である。
In order to solve the above-described problem, the first invention is short-circuit arc welding in which a welding wire is fed at a constant speed and a short-circuit state and an arc state are repeated, and welding is performed according to a predetermined polarity switching signal. In the polarity-switching short-circuit arc welding method in which welding is performed by switching between electrode positive polarity welding and electrode negative polarity welding by switching the output polarity of the power source during welding,
When the polarity switching signal changes, the welding current decreases or the welding voltage decreases or the wire feeding speed increases from the time when the arc period from the previous short circuit cancellation becomes the reference value until the next short circuit occurs. When a short circuit occurs, the welding current is maintained at a low value for a predetermined period, then the output polarity of the welding power source is switched, and then the welding current is increased to reduce the short circuit state. A polarity-switching short-circuit arc welding method characterized by leading to release.

また、第2の発明は、第1の発明記載の基準値を、前記極性切換信号が変化するまでの各々のアーク期間の平均値に基づいて設定する、ことを特徴とする極性切換短絡アーク溶接方法である。 Moreover, 2nd invention sets the reference value of 1st invention description based on the average value of each arc period until the said polarity switching signal changes, The polarity switching short circuit arc welding characterized by the above-mentioned Is the method.

また、第3の発明は、前記極性切換信号を、アークスタート後の予め定めたスタート初期期間が経過した時点で変化させて極性を切り換える、ことを特徴とする第1又は第2の発明記載の極性切換短絡アーク溶接方法である。 The third invention, the polarity switching signal to switch the polarity by changing when the predetermined start initial period after an arc start has elapsed, the first or second invention, wherein the This is a polarity switching short-circuit arc welding method.

上記第1の発明によれば、極性切換信号が変化しかつ当該アーク期間が基準値に達した時点で溶接電流の低下又は溶接電圧の低下又はワイヤ送給速度の高速化を行うことによって早期に短絡を誘発することができるので、短絡状態で円滑に極性を切り替えることができる。このために、極性切換信号の変化時点と実際の極性切換タイミングのズレが小さいので、極性切換時の溶接品質が良好になる。さらに、第1の発明では、アーク期間が通常値よりも長くなった場合のみ溶接電流の低下等を行うので、溶接電流の低下等に伴うビードへの影響を最小限にすることができる。 According to the first aspect, when the polarity switching signal changes and the arc period reaches the reference value, the welding current is reduced, the welding voltage is lowered, or the wire feed speed is increased at an early stage. Since a short circuit can be induced, the polarity can be switched smoothly in a short circuit state. For this reason, since the difference between the change point of the polarity switching signal and the actual polarity switching timing is small, the welding quality at the time of polarity switching is improved. Furthermore, in the first invention, since the welding current is reduced only when the arc period is longer than the normal value, the influence on the bead accompanying the reduction in the welding current can be minimized.

さらに、上記第2の発明によれば、上述した効果に加えて、上記の基準値を極性切換信号が変化するまでの各々のアーク期間の平均値に基づいて設定することによって、溶接電流の低下等のタイミングが最適化される。 Furthermore, according to the second invention , in addition to the above-described effects, the reference value is set based on the average value of each arc period until the polarity switching signal changes, thereby reducing the welding current. Etc. are optimized.

さらに、上記第3の発明によれば、アークスタートしてスタート初期期間が経過した後に上記第1〜第2の発明によって極性を円滑に切り換えることができる。このために、スタート部の溶接品質が良好になる。


Furthermore, according to the third invention , the polarity can be smoothly switched by the first and second inventions after an arc start and an initial start period elapses. For this reason, the welding quality of a start part becomes favorable.


以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係る極性切換短絡アーク溶接方法を示す電圧・電流波形図である。同図(A)は極性切換信号Saの、同図(B)は極性切換開始信号Sbの、同図(C)は溶接電圧vの、同図(D)は溶接電流iの、同図(E)はワイヤ送給速度Wfの時間変化を示す。同図は上述した図7と対応しており、時刻t1以前の動作は同一である。以下、同図を参照して時刻t1以降の動作について説明する。
[Embodiment 1]
FIG. 1 is a voltage / current waveform diagram showing a polarity switching short-circuit arc welding method according to Embodiment 1 of the present invention. (A) in the figure shows the polarity switching signal Sa, (B) in the figure shows the polarity switching start signal Sb, (C) shows the welding voltage v, and (D) shows the welding current i. E) shows the time change of the wire feed speed Wf. This figure corresponds to FIG. 7 described above, and the operation before time t1 is the same. Hereinafter, the operation after time t1 will be described with reference to FIG.

時刻t1において、同図(A)に示すように、極性切換信号Saが変化すると、同図(C)に示すように、溶接電圧vを低下させ、これに伴って同図(D)に示すように、溶接電流iも低下する。また同時に同図(E)に示すように、ワイヤ送給速度Wfを高速化させる。溶接電圧v又は溶接電流iが低下するとワイヤ溶融速度が遅くなるので短絡が早期に発生しやすくなる。同様に、ワイヤ送給速度が高速化すると短絡が早期に発生しやすくなる。この結果、同図(C)に示すように、時刻t2において短絡が早期に誘発される。この時刻t1〜t2の期間が短絡誘発期間Tdとなる。時刻t2に短絡が発生すると、同図(D)に示すように、予め定めた短絡初期期間Tiの間は溶接電流iを短絡初期電流Iiに低下させる。同図(B)に示すように、時刻t3に短絡初期期間Tiが経過した時点で極性切換開始信号Sbが変化する。これに応動して極性切換動作に移行する。この結果、同図(C)に示す溶接電圧v及び同図(D)に示す溶接電流iは、電極プラス極性EPから電極マイナス極性ENへと切り換わる。   When the polarity switching signal Sa changes at time t1, as shown in FIG. 6A, the welding voltage v is lowered as shown in FIG. Similarly, the welding current i also decreases. At the same time, the wire feed speed Wf is increased as shown in FIG. When the welding voltage v or the welding current i is lowered, the wire melting rate is slowed, so that a short circuit is likely to occur at an early stage. Similarly, when the wire feeding speed is increased, a short circuit is likely to occur at an early stage. As a result, as shown in FIG. 5C, a short circuit is induced early at time t2. The period from time t1 to t2 is a short circuit induction period Td. When a short circuit occurs at time t2, the welding current i is reduced to the short circuit initial current Ii during a predetermined short circuit initial period Ti as shown in FIG. As shown in FIG. 5B, the polarity switching start signal Sb changes when the short-circuit initial period Ti elapses at time t3. In response to this, the operation shifts to the polarity switching operation. As a result, the welding voltage v shown in FIG. 5C and the welding current i shown in FIG. 4D are switched from the electrode positive polarity EP to the electrode negative polarity EN.

時刻t3において極性を切り換えた後は、溶接電流iを増加させて短絡の解除に導く。この電流増加のタイミングは、極性切換時点でも良いし、切換状態が安定するまで遅延させた後でも良い。   After switching the polarity at time t3, the welding current i is increased to lead to the release of the short circuit. The timing of this current increase may be at the time of polarity switching or after being delayed until the switching state is stabilized.

上記において、短絡を早期に誘発するためには、溶接電圧vの低下、溶接電流iの低下又はワイヤ送給速度Wfの高速化のいずれか1つ以上を行うことで可能となる。溶接電流iを低下させた後の値は、平均溶接電流に応じて10〜100A程度であり、短絡初期電流Iiと同一値に設定しても良い。   In the above, in order to induce a short circuit at an early stage, it is possible to perform any one or more of a decrease in the welding voltage v, a decrease in the welding current i, or an increase in the wire feed speed Wf. The value after reducing the welding current i is about 10 to 100 A according to the average welding current, and may be set to the same value as the short-circuit initial current Ii.

図2は、上述した実施の形態1に係る極性切換短絡アーク溶接方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。   FIG. 2 is a block diagram of a welding power source for carrying out the polarity switching short-circuit arc welding method according to Embodiment 1 described above. Hereinafter, each block will be described with reference to FIG.

インバータ回路INVは、交流商用電源AC(3相200V等)を入力として整流し、後述する駆動信号Dvに従ってインバータ制御によって高周波交流を出力する。高周波トランスINTは、高周波交流をアーク溶接に適した電圧値へと降圧した高周波交流を出力する。2次側ダイオードD2a〜D2dは、降圧された高周波交流を直流に整流する。電極プラス極性スイッチング素子PTRは、後述する電極プラス極性駆動信号Pdに従ってオン/オフされ、オン状態のときは電極プラス極性EPになる。電極マイナス極性スイッチング素子NTRは、後述する電極マイナス極性駆動信号Ndに従ってオン/オフされ、オン状態のときは電極マイナス極性ENになる。リアクトルWLは、整流されたリップルのある直流を平滑する。溶接ワイヤ1はワイヤ送給装置の送給モータMに直結した送給ロール5によって溶接トーチ4内を通って送給され、母材2との間にアーク3が発生する。   The inverter circuit INV rectifies using an AC commercial power supply AC (three-phase 200 V or the like) as an input, and outputs high-frequency AC by inverter control according to a drive signal Dv described later. The high frequency transformer INT outputs a high frequency alternating current obtained by stepping down the high frequency alternating current to a voltage value suitable for arc welding. The secondary side diodes D2a to D2d rectify the stepped-down high-frequency alternating current into direct current. The electrode positive polarity switching element PTR is turned on / off in accordance with an electrode positive polarity drive signal Pd, which will be described later. The electrode negative polarity switching element NTR is turned on / off according to an electrode negative polarity drive signal Nd, which will be described later, and when in the on state, has an electrode negative polarity EN. The reactor WL smoothes the rectified rippled direct current. The welding wire 1 is fed through the welding torch 4 by a feeding roll 5 directly connected to a feeding motor M of the wire feeding device, and an arc 3 is generated between the welding wire 1 and the base material 2.

電圧検出回路VDは、溶接電圧vを検出して電圧検出信号Vdを出力する。短絡/アーク判別回路SDは、上記の電圧検出信号Vdの値によって短絡状態を判別してHighレベルとなりアーク状態を判別してLowレベルとなる短絡/アーク判別信号Sdを出力する。極性切換信号回路SAは、溶接箇所等に応じた極性に切り換えるための極性切換信号Saを出力する。短絡誘発期間生成回路TDは、上記の極性切換信号Saが変化した時点から上記の短絡/アーク判別信号Sdが最初にHighレベル(短絡)に変化する時点までの期間Highレベルとなる短絡誘発期間信号Tdを出力する。極性切換開始信号生成回路SBは、上記の極性切換信号Saが変化して上記の短絡/アーク判別信号SdがHighレベル(短絡)になった時点から予め定めた短絡初期期間中Highレベルとなる短絡初期期間信号Tiを出力する。さらに、この極性切換開始信号生成回路SBは、上記の短絡初期期間が経過した時点で変化する極性切換開始信号Sbを出力する。すなわち、上述した図1において、上記の短絡誘発期間信号Tdは時刻t1〜t2の間Highレベルになり、上記の短絡初期期間信号Tiは時刻t2〜t3の間Highレベルになる。電圧低下設定回路ΔVRは、上記の短絡誘発期間信号TdがHighレベルの間は第1所定値となり、続いて上記の短絡初期期間信号TiがHighレベルの間はより大きな値の第2所定値となり、それ以外の期間は零となる電圧低下設定信号ΔVrを出力する。   The voltage detection circuit VD detects the welding voltage v and outputs a voltage detection signal Vd. The short-circuit / arc discrimination circuit SD determines a short-circuit state based on the value of the voltage detection signal Vd and outputs a short-circuit / arc discrimination signal Sd which becomes a high level and discriminates an arc state. The polarity switching signal circuit SA outputs a polarity switching signal Sa for switching to the polarity according to the welding location. The short-circuit induction period generation circuit TD is a short-circuit induction period signal that becomes a high level during a period from the time when the polarity switching signal Sa changes to the time when the short-circuit / arc determination signal Sd first changes to a high level (short-circuit). Td is output. The polarity switching start signal generation circuit SB is short-circuited to be at a high level during a predetermined short-circuit initial period from the time when the polarity switching signal Sa is changed and the short-circuit / arc determination signal Sd is at a high level (short-circuit). An initial period signal Ti is output. Further, the polarity switching start signal generation circuit SB outputs a polarity switching start signal Sb that changes when the initial short-circuit period elapses. That is, in FIG. 1 described above, the short-circuit induction period signal Td is at a high level from time t1 to t2, and the short-circuit initial period signal Ti is at a high level from time t2 to t3. The voltage drop setting circuit ΔVR has a first predetermined value while the short circuit induction period signal Td is at a high level, and then has a second predetermined value with a larger value while the short circuit initial period signal Ti is at a high level. In other periods, a voltage drop setting signal ΔVr that is zero is output.

溶接開始回路ONは、溶接を開始するときにHighレベルに変化する溶接開始信号Onを出力する。送給制御回路FCは、この溶接開始信号OnがHighレベルに変化すると定速送給を開始させ、上記の短絡誘発期間信号TdがHighレベルの間は速度を速くさせるための送給制御信号Fcを出力する。送給モータMは、この送給制御信号Fcによって送給速度を制御する。電圧設定回路VRは、予め定めた電圧設定信号Vrを出力する。減算回路SUBは、この電圧設定信号Vrから上記の電圧低下設定信号ΔVrを減算して、電圧制御設定信号Vcr=Vr−ΔVrを出力する。したがって、短絡誘発期間及び短絡初期期間中の電圧制御設定信号Vcrの値を小さくすることになり、これによって溶接電圧vを低下させて溶接電流iを低低下させることができる。誤差増幅回路AMPは、上記の電圧制御設定信号Vcrと上記の電圧検出信号Vdとの誤差を増幅して誤差増幅信号Ampを出力する。この回路によって溶接電源は定電圧特性となる。1次側駆動回路DV1は、上記の溶接開始信号OnがHighレベルのときは上記の誤差増幅信号Ampに従って上記のインバータ回路INVを駆動するための駆動信号Dvを出力する。   The welding start circuit ON outputs a welding start signal On that changes to a high level when welding is started. The feed control circuit FC starts constant-speed feeding when the welding start signal On changes to the high level, and feed control signal Fc for increasing the speed while the short-circuit induction period signal Td is at the high level. Is output. The feed motor M controls the feed speed by this feed control signal Fc. The voltage setting circuit VR outputs a predetermined voltage setting signal Vr. The subtraction circuit SUB subtracts the voltage drop setting signal ΔVr from the voltage setting signal Vr, and outputs a voltage control setting signal Vcr = Vr−ΔVr. Therefore, the value of the voltage control setting signal Vcr during the short-circuit induction period and the initial short-circuit period is decreased, whereby the welding voltage v can be decreased and the welding current i can be decreased. The error amplifier circuit AMP amplifies an error between the voltage control setting signal Vcr and the voltage detection signal Vd, and outputs an error amplification signal Amp. With this circuit, the welding power source has constant voltage characteristics. The primary side drive circuit DV1 outputs a drive signal Dv for driving the inverter circuit INV in accordance with the error amplification signal Amp when the welding start signal On is at a high level.

2次側駆動回路DV2は、上記の極性切換開始信号SbがHighレベルのときは上記の電極プラス極性駆動信号Pdを出力し、Lowレベルのときは上記の電極マイナス極性駆動信号Ndを出力する。上記においては、短絡誘発期間及び短絡初期期間中の電圧制御設定信号Vcrを低下させることによって溶接電流iを低下させる場合を説明した。これ以外にも、溶接電源を両期間のみ定電流特性に制御して、電流設定信号を低い値に設定することによって溶接電流iを低下させても良い。   The secondary drive circuit DV2 outputs the electrode positive polarity drive signal Pd when the polarity switching start signal Sb is at a high level, and outputs the electrode negative polarity drive signal Nd when the polarity switch start signal Sb is at a low level. In the above description, the case where the welding current i is reduced by reducing the voltage control setting signal Vcr during the short-circuit induction period and the short-circuit initial period has been described. In addition to this, the welding current i may be reduced by controlling the welding power source to constant current characteristics only during both periods and setting the current setting signal to a low value.

[実施の形態2]
図3は、本発明の実施の形態2に係る極性切換短絡アーク溶接方法を示す電圧・電流波形図である。同図(A)は極性切換信号Saの、同図(B)は極性切換開始信号Sbの、同図(C)は溶接電圧vの、同図(D)は溶接電流iの、同図(E)はワイヤ送給速度Wfの時間変化を示す。同図において時刻ta〜tbの期間以外の動作は上述した図1と同一である。以下、同図を参照して時刻ta〜tbの期間の動作について説明する。
[Embodiment 2]
FIG. 3 is a voltage / current waveform diagram showing a polarity switching short-circuit arc welding method according to Embodiment 2 of the present invention. (A) in the figure shows the polarity switching signal Sa, (B) in the figure shows the polarity switching start signal Sb, (C) shows the welding voltage v, and (D) shows the welding current i. E) shows the time change of the wire feed speed Wf. In the figure, the operations other than the period from time ta to tb are the same as those in FIG. The operation during the period from time ta to tb will be described below with reference to FIG.

時刻t1において極性切換信号Saが変化し、かつ、前回の短絡が解除した時刻taからのアーク期間が基準値Ttに達した時刻tbにおいて、短絡誘発期間Tdを開始する。これに応動して、同図(C)に示す溶接電圧vは低下し、同図(D)に示す溶接電流iも低下し、同図(E)に示すワイヤ送給速度Wfは高速化して次の短絡を早期に誘発する。時刻tb以降の動作は上述した図1と同様であるので省略する。   At the time tb when the polarity switching signal Sa changes at the time t1 and the arc period from the time ta when the previous short circuit is released reaches the reference value Tt, the short circuit induction period Td is started. In response to this, the welding voltage v shown in FIG. 10C decreases, the welding current i shown in FIG. 10D also decreases, and the wire feed speed Wf shown in FIG. Induces the next short circuit early. Since the operation after time tb is the same as that in FIG.

上記の基準値は、極性切換信号Saが変化するまでの溶接開始からの1回1回のアーク期間の平均値よりも少し長い期間に設定する。アーク期間の平均値が数十ms程度である溶接条件においては、極性切換信号Saが変化してから短絡が発生するまでの期間は溶接品質に影響を与えるほど長くない。このために、極性切換信号Saに連動して直ぐに溶接電流i等を低下させてビードへの影響を与えるよりも、平均的なアーク期間で短絡が自然に発生するのを待つ方が良いからである。ただし、ときどき平均的なアーク期間よりも相当に長く経過した後に短絡が発生する場合がある。このような場合は、短絡誘発期間Tdを設けて早期に短絡を誘発しようとするものである。   The reference value is set to a period slightly longer than the average value of one arc period from the start of welding until the polarity switching signal Sa changes. Under welding conditions in which the average value of the arc period is about several tens of ms, the period from when the polarity switching signal Sa changes until a short circuit occurs is not so long as to affect the welding quality. For this reason, it is better to wait for the short circuit to occur naturally in the average arc period than to decrease the welding current i or the like immediately in conjunction with the polarity switching signal Sa and to affect the bead. is there. However, sometimes a short circuit may occur after much longer than the average arc period. In such a case, a short circuit induction period Td is provided to induce a short circuit at an early stage.

図4は、上述した実施の形態2に係る極性切換短絡アーク溶接方法を実施するための溶接電源のブロック図である。同図において上述した図2と同一のブロックには同一符号を付してそれらの説明は省略する。以下、同図を参照して図2とは異なる点線で示すブロックについて説明する。   FIG. 4 is a block diagram of a welding power source for carrying out the polarity switching short-circuit arc welding method according to the second embodiment described above. In the figure, the same blocks as those in FIG. 2 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, blocks indicated by dotted lines different from those in FIG. 2 will be described with reference to FIG.

第2短絡誘発期間生成回路TD2は、極性切換信号Saが変化し、かつ、短絡/アーク判別信号Sdが前回Lowレベル(アーク)に変化した時点から基準値Tt経過した時点から上記の短絡/アーク判別信号SdがHighレベル(短絡)に変化する時点までの期間Highレベルとなる短絡誘発期間信号Tdを出力する。すなわち、この短絡誘発期間信号Tdは、上述した図3において時刻tb〜t2の期間Highレベルになる。   The second short circuit induction period generation circuit TD2 is configured to perform the above short circuit / arc from the time when the reference value Tt has elapsed from the time when the polarity switching signal Sa is changed and the short circuit / arc determination signal Sd is changed to the previous low level (arc). A short circuit induction period signal Td is output that is at a high level for a period until the determination signal Sd changes to a high level (short circuit). That is, the short-circuit induction period signal Td is at a high level during the period from time tb to t2 in FIG. 3 described above.

[実施の形態3]
図5は、本発明の実施の形態3に係る極性切換短絡アーク溶接方法を示す電圧・電流波形図である。同図(A)は極性切換信号Saの、同図(B)は極性切換開始信号Sbの、同図(C)は溶接電圧vの、同図(D)は溶接電流iの、同図(E)はワイヤ送給速度Wfの、同図(F)は溶接開始信号Onの時間変化を示す。同図は溶接開始時の波形図であり、アークスタートから予め定めたスタート初期期間Taiが経過した時刻t1以降の動作は上述した図1と同一である。以下、時刻t1以前の動作について同図を参照して説明する。
[Embodiment 3]
FIG. 5 is a voltage / current waveform diagram showing a polarity switching short-circuit arc welding method according to Embodiment 3 of the present invention. (A) in the figure shows the polarity switching signal Sa, (B) in the figure shows the polarity switching start signal Sb, (C) shows the welding voltage v, and (D) shows the welding current i. E) shows the wire feed speed Wf, and FIG. 5F shows the time change of the welding start signal On. This figure is a waveform diagram at the start of welding, and the operation after time t1 when a predetermined initial start period Tai has elapsed from the arc start is the same as that in FIG. Hereinafter, the operation before time t1 will be described with reference to FIG.

時刻tcにおいて、同図(F)に示すように、溶接開始信号OnがHighレベル(溶接開始)に変化すると、同図(E)に示すように、溶接ワイヤの送給を開始し、同図(C)に示すように、溶接電圧vが出力される。時刻tdにおいて、溶接ワイヤが母材に到達して接触すると、同図(C)に示すように、溶接電圧vは短絡電圧値となり、同図(D)に示すように、溶接電流iの通電が開始してアークスタートする。この時点から予め定めたスタート初期期間Taiが経過した時刻t1において、同図(A)に示すように、極性切換信号Saが変化する。これ以降の動作は図1と同一であるので省略する。同図では、スタート初期期間Tai中は電極プラス極性EPでそれ以降は電極マイナス極性ENである例であるが、その逆でも良い。アークスタート時に極性を切り換える理由は、溶接ワイヤの種類、シールドガスの種類、ワークの材質、板厚、継手等によってはアークスタート部の品質が良好になる極性が決まる場合があるからである。したがって、このスタート初期期間Taiは、これら種々の溶接条件に応じて適正値に設定する。   At time tc, when the welding start signal On changes to a high level (welding start) as shown in FIG. 5F, the feeding of the welding wire is started as shown in FIG. As shown in (C), the welding voltage v is output. When the welding wire reaches and contacts the base metal at time td, the welding voltage v becomes a short-circuit voltage value as shown in FIG. 10C, and the welding current i is energized as shown in FIG. Starts and arc starts. At time t1 when a predetermined start initial period Tai has elapsed from this time point, the polarity switching signal Sa changes as shown in FIG. The subsequent operations are the same as those in FIG. In the drawing, the electrode positive polarity EP is used during the start initial period Tai and the electrode negative polarity EN is used thereafter, but the reverse is also possible. The reason for switching the polarity at the time of arc start is that the polarity at which the quality of the arc start portion is good may be determined depending on the type of welding wire, the type of shield gas, the material of the workpiece, the plate thickness, the joint, and the like. Therefore, the start initial period Tai is set to an appropriate value according to these various welding conditions.

図6は、上述した実施の形態3に係る極性切換短絡アーク溶接方法を実施するための溶接電源のブロック図である。同図において上述した図2と同一のブロックには同一符号を付してそれらの説明は省略する。以下、図2とは異なる点線で示すブロックについて説明する。   FIG. 6 is a block diagram of a welding power source for carrying out the polarity switching short-circuit arc welding method according to the third embodiment described above. In the figure, the same blocks as those in FIG. 2 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, blocks indicated by dotted lines different from those in FIG. 2 will be described.

電流検出回路IDは、溶接電流iの通電を判別してHighレベルとなる電流検出信号Idを出力する。スタート初期期間設定回路TAIは、予め定めたスタート初期期間設定信号Taiを出力する。第2極性切換信号回路SA2は、溶接開始信号OnがHighレベルになり上記の電流検出信号IdがHighレベルに変化した時点から、上記のスタート初期期間設定信号Taiによって定まる期間が経過した時点で変化する極性切換信号Saを出力する。   The current detection circuit ID determines the energization of the welding current i and outputs a current detection signal Id that becomes a high level. The start initial period setting circuit TAI outputs a predetermined start initial period setting signal Tai. The second polarity switching signal circuit SA2 changes when the welding start signal On becomes High level and the current detection signal Id changes to High level, and when the period determined by the start initial period setting signal Tai elapses. The polarity switching signal Sa to be output is output.

上記は、実施の形態1においてアークスタートしてスタート初期期間Taiが経過した時点で極性切換信号Saを変化させる場合である。また、実施の形態2にこの機能を付加する場合も同様である。   The above is a case where the polarity switching signal Sa is changed at the time when the start start period Tai has elapsed after the arc start in the first embodiment. The same applies to the case where this function is added to the second embodiment.

本発明の実施の形態1に係る極性切換短絡アーク溶接方法を示す電圧・電流波形図である。It is a voltage / current waveform diagram showing a polarity switching short-circuit arc welding method according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る溶接電源のブロック図である。It is a block diagram of the welding power supply which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る極性切換短絡アーク溶接方法を示す電圧・電流波形図である。It is a voltage and electric current waveform diagram which shows the polarity switching short circuit arc welding method which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る溶接電源のブロック図である。It is a block diagram of the welding power supply which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る極性切換短絡アーク溶接方法を示す電圧・電流波形図である。It is a voltage / current waveform diagram showing a polarity switching short-circuit arc welding method according to Embodiment 3 of the present invention. 本発明の実施の形態3に係る溶接電源のブロック図である。It is a block diagram of the welding power supply which concerns on Embodiment 3 of this invention. 従来技術の極性切換短絡アーク溶接方法を示す電圧・電流波形図である。It is a voltage / current waveform diagram showing a polarity switching short-circuit arc welding method of the prior art.

符号の説明Explanation of symbols

1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
AC 商用電源
AMP 誤差増幅回路
Amp 誤差増幅信号
D2a〜D2d 2次側ダイオード
Dv 駆動信号
DV1 1次側駆動回路
DV2 2次側駆動回路
EN 電極マイナス極性
EP 電極プラス極性
FC 送給制御回路
Fc 送給制御信号
i 溶接電流
Ii 短絡初期電流
ID 電流検出回路
Id 電流検出信号
INT 高周波トランス
INV インバータ回路
M 送給モータ
Nd 電極マイナス極性駆動信号
NTR 電極マイナス極性スイッチング素子
ON 溶接開始回路
On 溶接開始信号
Pd 電極プラス極性駆動信号
PTR 電極プラス極性スイッチング素子
SA 極性切換信号回路
Sa 極性切換信号
SA2 第2極性切換信号回路
SB 極性切換開始信号生成回路
Sb 極性切換開始信号
SD 短絡/アーク判別回路
Sd 短絡/アーク判別信号
SUB 減算回路
Ta アーク期間
TAI スタート初期期間設定回路
Tai スタート初期期間(設定信号)
TD 短絡誘発期間生成回路
Td 短絡誘発期間(信号)
TD2 第2短絡誘発期間生成回路
Ti 短絡初期期間(信号)
Ts 短絡期間
v 溶接電圧
Vcr 電圧制御設定信号
VD 電圧検出回路
Vd 電圧検出信号
VR 電圧設定回路
Vr 電圧設定信号
WL リアクトル
ΔVR 電圧低下設定回路
ΔVr 電圧低下設定信号

DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 3 Arc 4 Welding torch 5 Feed roll AC Commercial power supply AMP Error amplification circuit Amp Error amplification signal D2a-D2d Secondary side diode Dv Drive signal DV1 Primary side drive circuit DV2 Secondary side drive circuit EN Electrode Negative polarity EP Electrode plus polarity FC Feed control circuit Fc Feed control signal i Welding current Ii Short-circuit initial current ID Current detection circuit Id Current detection signal INT High frequency transformer INV Inverter circuit M Feed motor Nd Electrode negative polarity drive signal NTR Electrode minus Polarity switching element ON Welding start circuit On Welding start signal Pd Electrode plus polarity drive signal PTR Electrode plus polarity switching element SA Polarity switching signal circuit Sa Polarity switching signal SA2 Second polarity switching signal circuit SB Polarity switching start signal generation circuit Sb Polarity switching start Signal SD Short / arc Discrimination circuit Sd Short circuit / arc discrimination signal SUB Subtraction circuit Ta Arc period TAI Start initial period setting circuit Tai Start initial period (setting signal)
TD short circuit induction period generation circuit Td short circuit induction period (signal)
TD2 Second short circuit induction period generation circuit Ti Short circuit initial period (signal)
Ts Short-circuit period v Welding voltage Vcr Voltage control setting signal VD Voltage detection circuit Vd Voltage detection signal VR Voltage setting circuit Vr Voltage setting signal WL Reactor ΔVR Voltage drop setting circuit ΔVr Voltage drop setting signal

Claims (3)

溶接ワイヤを定速で送給すると共に短絡状態とアーク状態とを繰り返す短絡アーク溶接にあって、予め定めた極性切換信号に応じて溶接電源の出力極性を溶接中に切り換えることによって電極プラス極性溶接と電極マイナス極性溶接とを切り換えて溶接を行う極性切換短絡アーク溶接方法において、
前記極性切換信号が変化した場合は、前回の短絡解除からのアーク期間が基準値になった時点から次の短絡が発生するまでは溶接電流の低下又は溶接電圧の低下又はワイヤ送給速度の高速化を行うことによって短絡の発生を早期に誘発し、短絡が発生したときは所定期間溶接電流を低い値に維持した後に溶接電源の出力極性を切り換え、その後に溶接電流を増加させて短絡状態を解除に導く、ことを特徴とする極性切換短絡アーク溶接方法。
In the short-circuit arc welding, which feeds the welding wire at a constant speed and repeats the short-circuit state and the arc state, the electrode positive polarity welding is performed by switching the output polarity of the welding power source during welding in accordance with a predetermined polarity switching signal. In the polarity switching short-circuit arc welding method in which welding is performed by switching between electrode negative polarity welding and
When the polarity switching signal changes, the welding current decreases or the welding voltage decreases or the wire feeding speed increases from the time when the arc period from the previous short circuit cancellation becomes the reference value until the next short circuit occurs. When a short circuit occurs, the welding current is maintained at a low value for a predetermined period, then the output polarity of the welding power source is switched, and then the welding current is increased to reduce the short circuit state. A polarity-switching short-circuit arc welding method, characterized by leading to release.
請求項1記載の基準値を、前記極性切換信号が変化するまでの各々のアーク期間の平均値に基づいて設定する、ことを特徴とする極性切換短絡アーク溶接方法。The reference value according to claim 1, wherein the reference value is set based on an average value of each arc period until the polarity switching signal changes. 前記極性切換信号を、アークスタート後の予め定めたスタート初期期間が経過した時点で変化させて極性を切り換える、ことを特徴とする請求項1又は請求項2記載の極性切換短絡アーク溶接方法。3. The polarity-switching short-circuit arc welding method according to claim 1, wherein the polarity is switched by changing the polarity switching signal when a predetermined start initial period after the arc start elapses.
JP2004346304A 2004-11-30 2004-11-30 Polarity switching short-circuit arc welding method Expired - Fee Related JP4643236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346304A JP4643236B2 (en) 2004-11-30 2004-11-30 Polarity switching short-circuit arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346304A JP4643236B2 (en) 2004-11-30 2004-11-30 Polarity switching short-circuit arc welding method

Publications (2)

Publication Number Publication Date
JP2006150423A JP2006150423A (en) 2006-06-15
JP4643236B2 true JP4643236B2 (en) 2011-03-02

Family

ID=36629318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346304A Expired - Fee Related JP4643236B2 (en) 2004-11-30 2004-11-30 Polarity switching short-circuit arc welding method

Country Status (1)

Country Link
JP (1) JP4643236B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139692A (en) * 2010-12-28 2012-07-26 Daihen Corp Arc welding method and arc welding system
JP6198326B2 (en) * 2014-02-24 2017-09-20 株式会社ダイヘン Arc welding method
CN114364480B (en) * 2019-09-04 2024-06-18 松下知识产权经营株式会社 Welding machine and welding system provided with same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838664A (en) * 1981-08-31 1983-03-07 Mitsubishi Electric Corp Consumable electrode type arc welding machine
JPS6316868A (en) * 1986-07-09 1988-01-23 Hitachi Seiko Ltd Low electric current welding method
JPS63157765A (en) * 1986-12-19 1988-06-30 Kobe Steel Ltd Method and device for controlling output of short circuit transfer type arc welding machine
JPH07115181B2 (en) * 1987-04-28 1995-12-13 松下電器産業株式会社 Consumable electrode arc welder
JP3312713B2 (en) * 1995-04-28 2002-08-12 オリジン電気株式会社 AC plasma arc welding machine

Also Published As

Publication number Publication date
JP2006150423A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4950819B2 (en) AC consumable electrode short-circuit arc welding method
JP2006142317A (en) Polarity switching short circuiting arc welding method
JP4652825B2 (en) Arc start control method for AC arc welding
JP4916759B2 (en) Polarity switching control method for consumable electrode AC pulse arc welding
JP4739641B2 (en) Power supply device for short-circuit arc welding and robot welding device
JP3809983B2 (en) Consumable electrode type AC gas shield welding equipment
JP5005332B2 (en) Arc start control method for consumable electrode arc welding
CN108883486B (en) Arc welding control method
CN111989182B (en) Arc welding control method
JP5090765B2 (en) Feed control method for consumable electrode AC arc welding
JP5622230B2 (en) AC pulse arc welding control method
JP4643236B2 (en) Polarity switching short-circuit arc welding method
JP4391877B2 (en) Heat input control DC arc welding / pulse arc welding switching welding method
JP2015036146A (en) Welding current control method during short circuit period
JP5349152B2 (en) AC pulse arc welding control method
JP5943460B2 (en) Arc start control method for consumable electrode arc welding
JP4211724B2 (en) Arc welding control method and arc welding apparatus
JP4850638B2 (en) Polarity switching short-circuit arc welding method
JP2022185997A (en) Pulse arc welding power source
JP2013071145A (en) Method for starting welding in two-wire welding
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP7429598B2 (en) arc welding power supply
JP2610819B2 (en) Hot wire TIG welding equipment
JP3951931B2 (en) Welding control method and consumable electrode type pulse arc welding apparatus
JP5982628B2 (en) Arc welding control method and arc welding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4643236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees