JP4553715B2 - Cooling water system - Google Patents

Cooling water system Download PDF

Info

Publication number
JP4553715B2
JP4553715B2 JP2004362759A JP2004362759A JP4553715B2 JP 4553715 B2 JP4553715 B2 JP 4553715B2 JP 2004362759 A JP2004362759 A JP 2004362759A JP 2004362759 A JP2004362759 A JP 2004362759A JP 4553715 B2 JP4553715 B2 JP 4553715B2
Authority
JP
Japan
Prior art keywords
cooling water
flow rate
temperature
heat source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004362759A
Other languages
Japanese (ja)
Other versions
JP2006170508A (en
Inventor
史郎 近沢
満 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2004362759A priority Critical patent/JP4553715B2/en
Publication of JP2006170508A publication Critical patent/JP2006170508A/en
Application granted granted Critical
Publication of JP4553715B2 publication Critical patent/JP4553715B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は冷却水システムに関し、詳しくは、冷却水ポンプの出力調整により水冷式の熱源装置に対する冷却水の供給流量を熱源装置の運転状態に応じて調整し、これにより、冷却水ポンプの消費動力を節減して省エネを図るいわゆる変流量式の冷却水システムに関する。   The present invention relates to a cooling water system, and more particularly, the supply flow rate of cooling water to a water-cooled heat source device is adjusted according to the operating state of the heat source device by adjusting the output of the cooling water pump. The present invention relates to a so-called variable flow cooling water system that saves energy and saves energy.

従来、上記の如き変流量式の冷却水システムとして一般によく知られているものには、図3に示す如く、熱源装置1から送出される使用済み冷却水Wの温度である冷却水出口温度toを出口温度センサ9により検出し、この出口温度センサ9により検出される冷却水出口温度toに基づき冷却水ポンプPwの出力を調整することで、冷却水出口温度toを設定目標温度tooに保つように熱源装置1への冷却水供給流量qを調整する冷却水出口温度一定制御方式のシステムがある(下記特許文献1参照)。   Conventionally, what is generally well known as a variable flow rate cooling water system as described above includes a cooling water outlet temperature to which is the temperature of the used cooling water W delivered from the heat source device 1 as shown in FIG. Is detected by the outlet temperature sensor 9, and the output of the cooling water pump Pw is adjusted based on the cooling water outlet temperature to detected by the outlet temperature sensor 9, so that the cooling water outlet temperature to is kept at the set target temperature too. There is a system of a cooling water outlet temperature constant control system that adjusts the cooling water supply flow rate q to the heat source device 1 (see Patent Document 1 below).

そして、この方式の冷却水システムについては、熱源装置1の運転状態を検出する手段として出口温度センサ9を装備するだけですむことからシステム構成が簡略なものになるとともに、出口温度センサ9により検出される冷却水出口温度toのみに基づいて冷却水ポンプPwを出力調整することから制御アルゴリズムそのものも簡略なものですむ利点があり、また、冷却水出口温度toを一定温度に保つことから、熱源装置1の負荷変化や熱源装置1への供給冷却水Wの温度変化(すなわち、冷却水入口温度tiの変化)に対する冷却水供給流量qの調整において熱源装置1の運転性状を安定的に維持する面で優れていると言われている。   With this type of cooling water system, the outlet temperature sensor 9 only needs to be equipped as a means for detecting the operating state of the heat source device 1, so that the system configuration is simplified and the outlet temperature sensor 9 detects the system. Since the output of the cooling water pump Pw is adjusted based only on the cooling water outlet temperature to, the control algorithm itself has the advantage of being simple, and the cooling water outlet temperature to is kept at a constant temperature, In the adjustment of the cooling water supply flow rate q with respect to the load change of the device 1 and the temperature change of the cooling water W supplied to the heat source device 1 (that is, the change of the cooling water inlet temperature ti), the operation characteristics of the heat source device 1 are stably maintained. It is said that it is excellent in terms.

特開2000−283527号公報JP 2000-283527 A

しかし、上記した冷却水出口温度一定制御方式の冷却水システムでは、冷却水出口温度toを一定に保つように熱源装置1への冷却水供給流量qを調整することから、熱源装置1の比較的小さな負荷変動(換言すれば、必要冷却量の比較的小さな変動)や冷却水入口温度tiの比較的小さな変化に対しても、熱源装置1への冷却水供給流量qが大きく変更されて、熱源装置1の冷却用熱交換部1aにおける冷却水Wの流速が大きく変化し、この為、冷却水出口温度toは一定に保つものの、上記の如き冷却水流速の大きな変化より熱源装置1の冷却用熱交換部1aにおける熱交換効率が大きく変化すること等に原因して熱源装置1の運転性状が変化してしまう現象が見られ、そのことで、変流量式の採用においても熱源装置1を含めたシステム全体としての省エネ化が制限される問題があった。   However, in the cooling water system of the cooling water outlet temperature constant control method described above, the cooling water supply flow rate q to the heat source device 1 is adjusted so as to keep the cooling water outlet temperature to constant. Even with a small load fluctuation (in other words, a relatively small fluctuation in the required cooling amount) and a relatively small change in the cooling water inlet temperature ti, the cooling water supply flow rate q to the heat source device 1 is greatly changed, and the heat source The flow rate of the cooling water W in the cooling heat exchanging portion 1a of the apparatus 1 changes greatly. For this reason, although the cooling water outlet temperature to is kept constant, the cooling water flow rate for cooling the heat source apparatus 1 is larger than the large change in the cooling water flow rate as described above. There is a phenomenon in which the operating characteristics of the heat source device 1 change due to a large change in the heat exchange efficiency in the heat exchanging unit 1a. As a result, even in the adoption of the variable flow rate type, the heat source device 1 is included. System Overall energy saving of a problem to be limiting.

また、熱源装置1への供給冷却水Wの温度である冷却水入口温度tiが低下した場合、その温度低下が熱源装置1の運転性状を悪化させない程度のものであれば、冷却効率の向上により熱源装置1の作動効率は向上するが、冷却水出口温度toを一定に維持する従来システムでは、冷却水入口温度tiの低下の割りに熱源装置1における冷却用熱交換部1aでの冷却水Wの平均温度が低下せず、このことからも、システム全体としての省エネ化が制限される問題もあった。   In addition, when the cooling water inlet temperature ti, which is the temperature of the cooling water W supplied to the heat source device 1, is lowered, if the temperature drop is of a level that does not deteriorate the operation characteristics of the heat source device 1, the cooling efficiency is improved. Although the operating efficiency of the heat source device 1 is improved, in the conventional system in which the cooling water outlet temperature to is kept constant, the cooling water W in the heat exchanger 1a for cooling in the heat source device 1 is reduced for the decrease in the cooling water inlet temperature ti. As a result, there is a problem that energy saving as a whole system is limited.

この実情に鑑み、本発明の主たる課題は、合理的なシステム構成を採ることにより省エネ面で一層優れた冷却水システムを提供する点にある。   In view of this situation, a main problem of the present invention is to provide a cooling water system that is more excellent in terms of energy saving by adopting a rational system configuration.

冷却水システムを構成するのに、
水冷式の熱源装置に冷却水を供給する冷却水ポンプと、前記熱源装置から送出される使用済み冷却水の温度である冷却水出口温度を検出する出口温度センサと、この出口温度センサにより検出される冷却水出口温度に応じ前記冷却水ポンプの出力を調整して前記熱源装置への冷却水供給流量を調整する制御手段とを備え、
この制御手段を、前記出口温度センサにより検出される冷却水出口温度の設定温度範囲内での変化に対して、前記冷却水ポンプに対する出力調整により前記熱源装置への冷却水供給流量を設定流量範囲内で比例的に変化させる構成にしてもよい。
To configure the cooling water system,
A cooling water pump that supplies cooling water to the water-cooled heat source device, an outlet temperature sensor that detects a cooling water outlet temperature that is a temperature of used cooling water sent from the heat source device, and an outlet temperature sensor that detects the cooling water outlet temperature. Control means for adjusting the cooling water supply flow rate to the heat source device by adjusting the output of the cooling water pump according to the cooling water outlet temperature.
In response to a change in the cooling water outlet temperature detected by the outlet temperature sensor within the set temperature range, the control means sets the cooling water supply flow rate to the heat source device by adjusting the output to the cooling water pump. It may be configured to change proportionally within the range .

つまり、この構成によれば、冷却水出口温度の設定温度範囲内での変化に対して熱源装置への冷却水供給流量を設定流量範囲内で比例的に変化させるから、それら設定温度範囲や設定流量範囲を適当に選定すれば、熱源装置の負荷変化や冷却水入口温度の変化に対し、冷却水出口温度のある程度の範囲での変化(代表的には設定温度範囲の全範囲にわたる変化)を許容する形態で、熱源装置への冷却水供給流量を適切に変化させることができる。 In other words, according to this configuration , the cooling water supply flow rate to the heat source device is changed proportionally within the set flow rate range with respect to the change in the set temperature range of the cooling water outlet temperature. If the flow rate range is appropriately selected, changes in the cooling water outlet temperature within a certain range (typically changes over the entire set temperature range) in response to changes in the heat source device load and cooling water inlet temperature. The cooling water supply flow rate to the heat source device can be appropriately changed in an allowable form.

したがって、冷却水出口温度を単に一定温度に維持する先述の従来システムに比べ、冷却水出口温度のある程度の範囲での変化を許容する分、熱源装置の負荷変化や冷却水入口温度の変化に伴う熱源装置への冷却水供給流量の変化を抑制することができて、その分、熱源装置の冷却用熱交換部における冷却水流速の変化、及び、その冷却水流速の変化による熱交換効率(冷却効率)の変化等を抑制することができ、これにより、熱源装置の冷却用熱交換部での冷却水流速の大きな変化に原因して生じる熱源装置の運転性状の変化を効果的に防止することができる。   Therefore, compared with the above-described conventional system that simply maintains the cooling water outlet temperature at a constant temperature, the cooling water outlet temperature is allowed to change in a certain range, and accordingly, the load of the heat source device is changed and the cooling water inlet temperature is changed. The change in the cooling water supply flow rate to the heat source device can be suppressed, and accordingly, the change in the cooling water flow rate in the heat exchange part for cooling of the heat source device and the heat exchange efficiency (cooling) due to the change in the cooling water flow rate. (Efficiency) changes can be suppressed, thereby effectively preventing changes in the operating characteristics of the heat source device caused by a large change in the cooling water flow velocity at the cooling heat exchange section of the heat source device. Can do.

しかも、冷却水入口温度が低下した場合には、冷却水出口温度のある程度の範囲での変化を許容する分、冷却水出口温度を単に一定温度に維持する従来システムに比べ、熱源装置における冷却用熱交換部での冷却水の平均温度を低下させることができて、その分、熱源装置の作動効率も向上させることができる。   In addition, when the cooling water inlet temperature decreases, the cooling water outlet temperature is allowed to change within a certain range, so that the cooling water outlet temperature is used for cooling in the heat source device as compared with the conventional system that simply maintains the cooling water outlet temperature at a constant temperature. The average temperature of the cooling water in the heat exchange part can be lowered, and the operating efficiency of the heat source device can be improved accordingly.

また、冷却水出口温度の変化は許容するが、その許容範囲はあくまで適当なある程度の範囲であって制限される範囲であることから、冷却水出口温度を一定温度に維持する従来システムの特性をある程度残す形態にして、冷却水出口温度の大きな変化(実質的には熱源装置の冷却用熱交換部における冷却水の平均温度の大きな変化)に原因する熱源装置の運転性状の変化も防止することができる。   In addition, although the change of the cooling water outlet temperature is allowed, the allowable range is an appropriate range to a certain extent and is limited, so the characteristics of the conventional system that maintains the cooling water outlet temperature at a constant temperature can be obtained. In order to prevent a change in the operating characteristics of the heat source device due to a large change in the cooling water outlet temperature (substantially a large change in the average temperature of the cooling water in the heat exchange section for cooling of the heat source device). Can do.

これらのことから、上記構成によれば、冷却水出口温度を単に一定温度に維持するだけの従来システムに比べ、熱源装置の負荷変化や冷却水入口温度の変化に対する冷却水供給流量の調整において熱源装置の運転性状を一層効果的かつ安定的に維持することができ、これにより、熱源装置への冷却水供給に変流量式を採用することと相まって、また、冷却水入口温度の低下時に熱源装置の作動効率を向上させ得ることとも相まって、熱源装置を含めたシステム全体としての省エネ化を一層促進することができる。 For these reasons, according to the above configuration , compared with the conventional system in which the cooling water outlet temperature is simply maintained at a constant temperature, the heat source is adjusted in the adjustment of the cooling water supply flow rate with respect to the load change of the heat source device and the change of the cooling water inlet temperature. The operation characteristics of the device can be maintained more effectively and stably. This is combined with the adoption of a variable flow rate for supplying the cooling water to the heat source device, and also when the cooling water inlet temperature decreases. In combination with the improvement of the operation efficiency of the system, it is possible to further promote the energy saving of the entire system including the heat source device.

そしてまた、上記構成によれば、先述した従来システムと同様、熱源装置の運転状態を検出する手段としては出口温度センサを装備するだけですむことからシステム構成が簡略なものになるとともに、出口温度センサにより検出される冷却水出口温度のみに基づいて冷却水ポンプを出力調整することから制御アルゴリズムそのものも簡略なものですみ、この点、システムコストの面でも有利なものにすることができる。 In addition, according to the above configuration , as in the conventional system described above, the system configuration is simplified as the means for detecting the operating state of the heat source device is only equipped with the outlet temperature sensor, and the outlet temperature Since the output of the cooling water pump is adjusted based on only the cooling water outlet temperature detected by the sensor, the control algorithm itself can be simplified, and this can be advantageous in terms of system cost.

なお、上記構成の実施において、出口温度センサの装備位置は熱源装置における使用済み冷却水の出口に限られるものではなく、熱源装置から送出される使用済み冷却水を導く流路の途中箇所であってもよい。 In the implementation of the above configuration, the position of the outlet temperature sensor is not limited to the outlet of the used cooling water in the heat source device, but is located in the middle of the flow path for guiding the used cooling water sent from the heat source device. May be.

制御手段による冷却水ポンプの出力調整(すなわち、送水量調整)には、インバータ制御を初めとして種々の制御方式を採用できる。   Various control methods such as inverter control can be employed for adjusting the output of the cooling water pump by the control means (that is, adjusting the water supply amount).

冷却水出口温度の設定温度範囲内での変化に対して熱源装置への冷却水供給流量を設定流量範囲内で比例的に変化させるのに、その比例的変化は、冷却水出口温度の変化に対する冷却水供給流量の変化率が一定の厳密な比例変化に限られるものではなく、冷却水温度の設定温度範囲における上限側と下限側とで冷却水出口温度の変化に対する冷却水供給流量の変化率がある程度異なる比例的な変化などであってもよい。   Although the cooling water supply flow rate to the heat source device is changed proportionally within the set flow rate range with respect to the change within the set temperature range of the cooling water outlet temperature, the proportional change is proportional to the change of the cooling water outlet temperature. The rate of change of the cooling water supply flow rate is not limited to a fixed, strictly proportional change, but the rate of change of the cooling water supply flow rate with respect to the change of the cooling water outlet temperature at the upper limit side and the lower limit side in the set temperature range of the cooling water temperature May be a proportional change or the like that is somewhat different.

また、冷却水出口温度の変化に対して冷却水供給流量を連続的に変化させるものに限らず、冷却水出口温度の変化に対して冷却水供給流量を段階的に変化させるものであってもよい。   In addition, the cooling water supply flow rate is not limited to a continuous change with respect to the change in the cooling water outlet temperature, and the cooling water supply flow rate may be changed stepwise with respect to the change in the cooling water outlet temperature. Good.

冷却水出口温度が設定温度範囲の上限温度よりも高くなった場合の対応としては、冷却水供給流量を設定流量範囲の上限流量に維持する等、種々の条件に応じて適当な対応を採るようにしておけばよく、同様に、冷却水出口温度が設定温度範囲の下限温度よりも低くなった場合の対応としても、冷却水供給流量を設定流量範囲の下限流量に維持する等、種々の条件に応じて適当な対応を採るようにしておけばよい。   Appropriate measures should be taken in response to various conditions such as maintaining the cooling water supply flow rate at the upper limit flow rate of the set flow rate range as a countermeasure when the cooling water outlet temperature becomes higher than the upper limit temperature of the set temperature range. Similarly, as a countermeasure when the cooling water outlet temperature becomes lower than the lower limit temperature of the set temperature range, various conditions such as maintaining the cooling water supply flow rate at the lower limit flow rate of the set flow rate range, etc. Appropriate measures should be taken depending on the situation.

冷却水ポンプにより熱源装置に供給する冷却水は、冷却塔と熱源装置との間で循環させる冷却水に限られるものではなく、熱源装置に対して一過的に供給する冷却水であってもよい。   The cooling water supplied to the heat source device by the cooling water pump is not limited to the cooling water circulated between the cooling tower and the heat source device, and may be the cooling water supplied temporarily to the heat source device. Good.

上記構成を実施するのに、
前記熱源装置が吸収式冷凍機であることに対して、前記制御手段を、前記吸収式冷凍機における再生器の検出温度が設定上限再生温度以上になったとき、前記出口温度センサにより検出される冷却水出口温度に基づく冷却水供給流量の調整に優先して、前記冷却水ポンプに対する出力調整により前記熱源装置としての前記吸収式冷凍機への冷却水供給流量を設定安全流量に調整する構成にしてもよい。
To implement the above configuration,
In contrast to the heat source device being an absorption refrigerator, the control means is detected by the outlet temperature sensor when the detected temperature of the regenerator in the absorption refrigerator is equal to or higher than a set upper limit regeneration temperature. Prior to the adjustment of the cooling water supply flow rate based on the cooling water outlet temperature, the cooling water supply flow rate to the absorption chiller as the heat source device is adjusted to the set safe flow rate by adjusting the output to the cooling water pump. May be.

つまり、この構成によれば、出口温度センサより検出される冷却水出口温度に基づき冷却水出口温度の設定範囲内での変化に対して熱源装置への冷却水供給流量を設定流量範囲内で比例的に変化させる前述の温度比例的な冷却水供給流量の調整を実施している状況下(特に、その流量調整で熱源装置への冷却水供給流量が絞られている状況下)において、何らかの原因で熱源装置としての吸収式冷凍機における再生器の検出温度が設定上限再生温度以上になったとき、冷却水出口温度に基づく前述の温度比例的な冷却水供給流量の調整に優先して、熱源装置としての吸収式冷凍機への冷却水供給流量を設定安全流量に調整するから、その設定安全流量として適当な流量を選定しておけば、再生器温度の異常上昇による吸収式冷凍機の運転トラブルを、吸収式冷凍機に対する十分な量の冷却水供給をもって効果的に防止することができる。 That is, according to this configuration , the cooling water supply flow rate to the heat source device is proportional to the set flow rate range with respect to the change in the set temperature range of the cooling water outlet temperature based on the cooling water outlet temperature detected by the outlet temperature sensor. In the situation where the above-mentioned temperature-proportional cooling water supply flow rate adjustment is changed (especially in the situation where the cooling water supply flow rate to the heat source device is limited by the flow rate adjustment) When the detected temperature of the regenerator in the absorption refrigerator as a heat source device is equal to or higher than the set upper limit regeneration temperature, the heat source is prioritized over the adjustment of the cooling water supply flow rate based on the cooling water outlet temperature. Since the cooling water supply flow rate to the absorption chiller as a device is adjusted to the set safe flow rate, if an appropriate flow rate is selected as the set safe flow rate, the operation of the absorption chiller due to an abnormal rise in regenerator temperature Dora Le, can be prevented with a cooling water supply of sufficient quantity effective against the absorption chiller.

したがって、この構成によれば、吸収式冷凍機を冷却水供給対象の熱源装置とする場合において、吸収式冷凍機を含めたシステム全体としての保全性も高く確保しながら、冷却水出口温度に基づく前述の温度比例的な冷却水供給流量の調整によりシステム全体としての省エネ化を一層促進することができる。 Therefore, according to this configuration , when the absorption chiller is used as a cooling water supply target heat source device, it is based on the cooling water outlet temperature while ensuring high maintainability as a whole system including the absorption chiller. By adjusting the cooling water supply flow rate in proportion to the above-described temperature, energy saving as a whole system can be further promoted.

なお、この構成の実施において、設定安全流量は、冷却水出口温度に基づく温度比例的な冷却水供給流量の調整における設定流量範囲の上限流量よりも大きな流量に限られるものではなく、その設定流量範囲の上限流量など、設定流量範囲の範囲内流量であってもよい。 In the implementation of this configuration , the set safety flow rate is not limited to a flow rate larger than the upper limit flow rate of the set flow rate range in the temperature proportional cooling water supply flow rate adjustment based on the cooling water outlet temperature. It may be an in-range flow rate within a set flow rate range, such as an upper limit flow rate range.

また、この構成の実施において、吸収式冷凍機は吸収式の冷凍専用機に限られるものではなく、吸収式の冷温水発生機であってもよい。 In the implementation of this configuration , the absorption chiller is not limited to the absorption refrigeration machine, but may be an absorption cold / hot water generator.

この構成は吸収式冷凍機を冷却水供給対象の熱源装置とするものであるが、冷却水出口温度に基づく前述の温度比例的な冷却水供給流量の調整(すなわち、先の構成による冷却水供給流量の調整)を実施している状況下において、冷却水出口温度の変化とは別に冷却水供給流量の変更を要するような事態の発生が想定される熱源装置を対象とする場合には、この構成と同様、そのような事態の発生時に、冷却水出口温度に基づく前述の温度比例的な冷却水供給流量の調整に優先して、冷却水ポンプに対する出力調整により熱源装置への冷却水供給流量を要求に応じた流量に調整する構成を採るのが望ましい。 In this configuration, the absorption refrigerator is used as a heat source device for cooling water supply, but the above-described temperature proportional cooling water supply flow rate adjustment based on the cooling water outlet temperature (that is, the cooling water supply by the previous configuration) In the situation where the adjustment of the flow rate is being implemented, if the heat source device is assumed to have a situation that requires a change in the cooling water supply flow rate in addition to the change in the cooling water outlet temperature , Similar to the configuration, when such a situation occurs, the cooling water supply flow rate to the heat source device is adjusted by adjusting the output to the cooling water pump in preference to the above-described temperature proportional cooling water supply flow rate adjustment based on the cooling water outlet temperature. It is desirable to adopt a configuration in which the flow rate is adjusted to meet the demand.

冷却水システムを構成するのに、
水冷式の熱源装置に冷却水を供給する冷却水ポンプと、前記熱源装置の運転状態を検出する運転状態検出手段と、この運転状態検出手段により検出される熱源装置の運転状態に応じ前記冷却水ポンプの出力を調整して前記熱源装置への冷却水供給流量を調整する制御手段と、空調対象域へ供給する空気を冷却除湿及びその冷却除湿に続く再熱により温湿度調整する空調機とを備え、
この空調機を、前記熱源装置から送出される使用済み冷却水を熱源として空調対象域への供給空気の冷却除湿に続く再熱を行う構成にしてもよい。
To configure the cooling water system,
A cooling water pump that supplies cooling water to the water-cooled heat source device, an operation state detection unit that detects an operation state of the heat source device, and the cooling water according to the operation state of the heat source device detected by the operation state detection unit Control means for adjusting the output of the cooling water to adjust the cooling water supply flow rate to the heat source device, and an air conditioner for adjusting the temperature and humidity by cooling and dehumidifying the air supplied to the air-conditioning target area and reheating following the cooling and dehumidification Prepared,
This air conditioner may be configured to perform reheating following cooling and dehumidification of the air supplied to the air-conditioning target area using the used cooling water sent from the heat source device as a heat source .

つまり、運転状態検出手段により検出される熱源装置の運転状態に応じ冷却水ポンプの出力を調整して熱源装置への冷却水供給流量を調整する変流量式の冷却水システムでは、冷却水ポンプを定格出力運転して常時一定の大きな流量の冷却水を熱源装置に供給する固定流量式の冷却システムに比べ、熱源装置に対する冷却水の過剰供給が回避されることで、熱源装置から送出される使用済み冷却水の温度(冷却水出口温度)が高くなり、また、その温度変動も少なくなる。   That is, in the variable flow rate cooling water system that adjusts the cooling water supply flow rate to the heat source device by adjusting the output of the cooling water pump according to the operating state of the heat source device detected by the operating state detection means, the cooling water pump is Compared to a fixed-flow cooling system that always supplies a constant and large flow rate of cooling water to the heat source device at rated output operation, it is possible to avoid excessive supply of cooling water to the heat source device. The temperature of the used cooling water (cooling water outlet temperature) is increased, and the temperature fluctuation is also reduced.

このことに着目して、上記構成では、空調機において空調対象域への供給空気を冷却除湿及びその冷却除湿に続く再熱(加熱)により温湿度調整するのに、変流量式の冷却水システムにおいて上記の如く高温の状態でかつ温度変動の少ない状態で熱源装置から送出される使用済み冷却水を熱源に利用して(換言すれば、使用済み冷却水の保有熱である熱源装置の排熱を熱源に利用して)、空調対象域への供給空気の冷却除湿に続く再熱を行う。 Focusing on this, in the above configuration , a variable flow rate cooling water system is used in the air conditioner to adjust the temperature and humidity by cooling dehumidification and reheating (heating) following the cooling dehumidification in the air conditioning target area. As described above, the used cooling water delivered from the heat source device in a high temperature state and with a small temperature fluctuation is used as a heat source (in other words, exhaust heat of the heat source device which is the retained heat of the used cooling water). Is used as a heat source) to reheat following cooling and dehumidification of the air supplied to the air-conditioning target area.

したがって、上記構成によれば、熱源装置から送出される使用済み冷却水の保有熱(熱源装置の排熱)の全てを冷却塔などにより外部へ廃棄し、また、空調対象域への供給空気を温湿度調整するのにボイラなどの専用加熱装置で加熱した熱媒を熱源として空調対象域への供給空気の冷却除湿に続く再熱を行う従来システムに比べ、変流量式冷却水供給の対象である熱源装置の排熱を空調対象域への供給空気の冷却除湿に続く再熱に有効利用する分、システムの消費エネルギを節減することができ、これにより、熱源装置への冷却水供給に変流量式を採用することと相まって、空調機を含めたシステム全体としての省エネ化を一層促進することができる。 Therefore, according to the above configuration , all the retained heat of the used cooling water sent from the heat source device (exhaust heat of the heat source device) is discarded to the outside by a cooling tower or the like, and the supply air to the air conditioning target area is Compared to conventional systems that use a heat medium heated by a dedicated heating device such as a boiler as a heat source to adjust temperature and humidity, and reheat the air that is supplied to the air-conditioning target area after cooling and dehumidification, it is a target for variable flow rate cooling water supply. The amount of energy consumed by the system can be reduced by effectively using the exhaust heat of a heat source device for reheating following cooling and dehumidification of the supply air to the air-conditioning target area, thereby changing the supply of cooling water to the heat source device. Combined with the adoption of the flow rate type, it is possible to further promote energy saving as the entire system including the air conditioner.

なお、上記構成の実施において、熱源装置の運転状態に応じ熱源装置への冷却水供給流量を調整するには、運転状態検出手段として出口温度センサを設け、この出口温度センサにより検出される冷却水出口温度に基づき冷却水ポンプの出力を調整することで、冷却水出口温度を設定目標温度に保つように熱源装置への冷却水供給流量を調整する方式、あるいは、運転状態検出手段として出口温度センサ及び入口温度センサを設け、これら出口温度センサにより検出される冷却水出口温度と入口温度センサにより検出される冷却水入口温度とに基づき冷却水ポンプの出力を調整することで、冷却水出口温度と冷却水入口温度との温度差を設定温度差に保つように熱源装置への冷却水供給流量を調整する方式など、変流量式に属する範囲において種々の調整方式を採用することができる。 In the implementation of the above configuration , in order to adjust the cooling water supply flow rate to the heat source device according to the operating state of the heat source device, an outlet temperature sensor is provided as an operating state detecting means, and the cooling water detected by the outlet temperature sensor is provided. A method of adjusting the cooling water supply flow rate to the heat source device so as to keep the cooling water outlet temperature at the set target temperature by adjusting the output of the cooling water pump based on the outlet temperature, or an outlet temperature sensor as an operating state detection means And an inlet temperature sensor, and adjusting the output of the cooling water pump based on the cooling water outlet temperature detected by the outlet temperature sensor and the cooling water inlet temperature detected by the inlet temperature sensor, In the range belonging to the variable flow rate type, such as the method of adjusting the cooling water supply flow rate to the heat source device so that the temperature difference with the cooling water inlet temperature is kept at the set temperature difference It is possible to adopt the people of the adjustment method.

また、制御手段による冷却水ポンプの出力調整(すなわち、送水量調整)には、インバータ制御を初めとして種々の制御方式を採用できる。   In addition, various control methods such as inverter control can be adopted for adjusting the output of the cooling water pump by the control means (that is, adjusting the water supply amount).

上記構成の実施においては、空調対象域への供給空気の冷却除湿に続く再熱で要する熱量の全てを、熱源装置から送出される使用済み冷却水の保有熱量で賄う構成に限らず、空調対象域への供給空気の冷却除湿に続く再熱で要する熱量の一部のみを、熱源装置から送出される使用済み冷却水の保有熱量で賄い、他部については別の加熱装置で補う構成を採ってもよい。 The implementation of the above configuration is not limited to the configuration in which the amount of heat required for reheating following cooling and dehumidification of the supply air to the air conditioning target area is covered by the retained heat amount of the used cooling water sent from the heat source device. Only a part of the amount of heat required for reheating following cooling and dehumidification of the supply air to the area is covered by the amount of heat stored in the used cooling water sent from the heat source device, and the other parts are supplemented by another heating device. May be.

冷却水ポンプにより熱源装置に供給する冷却水は、冷却塔と熱源装置と空調機の再熱部との間で循環させる冷却水に限られるものではなく、熱源装置及びそれに続く空調機の再熱部に対して一過的に供給する冷却水であってもよい。   The cooling water supplied to the heat source device by the cooling water pump is not limited to the cooling water circulated between the cooling tower, the heat source device, and the reheating unit of the air conditioner, but the reheating of the heat source device and the subsequent air conditioner. It may be cooling water that is temporarily supplied to the part.

上記構成の実施するのに、
前記運転状態検出手段として、前記熱源装置から送出される使用済み冷却水の温度である冷却水出口温度を検出する出口温度センサを設け、
前記制御手段を、前記出口温度センサにより検出される冷却水出口温度の設定温度範囲内での変化に対して、前記冷却水ポンプに対する出力調整により前記熱源装置への冷却水供給流量を設定流量範囲内で比例的に変化させる構成にしてもよい。
To implement the above configuration,
As the operating state detecting means, an outlet temperature sensor for detecting a cooling water outlet temperature which is a temperature of used cooling water sent from the heat source device is provided,
The control means sets a cooling water supply flow rate to the heat source device by adjusting an output to the cooling water pump with respect to a change in a set temperature range of the cooling water outlet temperature detected by the outlet temperature sensor. It may be configured to change proportionally within the range .

つまり、前述の如く、冷却水出口温度の設定温度範囲内での変化に対して熱源装置への冷却水供給流量を設定流量範囲で比例的に変化させる前述の温度比例的な冷却水供給流量の調整において、それら設定温度範囲や設定流量範囲を適当に選定しておけば、熱源装置の負荷変化や冷却水入口温度の変化に対し、冷却水出口温度のある程度の範囲での変化を許容する形態で、熱源装置への冷却水供給流量を適切に変化させることができて、冷却水出口温度を単に一定温度に維持するように冷却水供給流量を調整するだけの従来システムに比べ、熱源装置の負荷変化や冷却水入口温度の変化に対する冷却水供給流量の調整において熱源装置の運転性状を一層効果的かつ安定的に維持することができ、また、冷却水入口温度の低下時に熱源装置の作動効率も一層向上させることができる。 That is, as described above, the temperature-proportional cooling water supply flow rate that changes the cooling water supply flow rate to the heat source device proportionally within the set flow rate range with respect to the change in the cooling water outlet temperature within the set temperature range. In the adjustment, if the set temperature range and set flow rate range are appropriately selected, the cooling water outlet temperature is allowed to change within a certain range with respect to the load change of the heat source device and the change of the cooling water inlet temperature. Therefore, the cooling water supply flow rate to the heat source device can be appropriately changed, and compared with the conventional system in which the cooling water supply flow rate is simply adjusted to maintain the cooling water outlet temperature at a constant temperature, It is possible to maintain the operating characteristics of the heat source device more effectively and stably in adjusting the cooling water supply flow rate in response to load changes and cooling water inlet temperature changes. Efficiency can be further improved.

したがって、空調対象域への供給空気を温湿度調整するのに、熱源装置から送出される使用済み冷却水を熱源に利用して空調対象域への供給空気の冷却除湿に続く再熱を行う構成を採るのに加えて、冷却水出口温度の設定温度範囲内での変化に対し熱源装置への冷却水供給流量を設定流量範囲で比例的に変化させる温度比例的な冷却水供給流量の調整を行う上記構成によれば、基本的に熱源装置への冷却水供給に変流量式を採用することと、熱源装置の排熱の有効利用によりシステムの消費エネルギを節減し得ることと、冷却水供給流量の調整において熱源装置の運転性状を効果的かつ安定的に維持し得るとともに冷却水入口温度の低下時に熱源装置の作動効率を一層向上し得ることとが相まって、熱源装置及び空調機を含めたシステム全体としての省エネ化をさらに一層促進することができる。 Accordingly, although to temperature and humidity adjusting the supply air to the air conditioning target zone, to re-heat following the cooling dehumidification of the supply air to the air conditioning target area for spent cooling water sent from the heat source device by using the heat source arrangement In addition, the temperature-proportional cooling water supply flow rate is adjusted to change the cooling water supply flow rate to the heat source device proportionally within the set flow rate range in response to changes in the cooling water outlet temperature within the set temperature range. According to the above configuration , the variable flow rate is basically adopted for the cooling water supply to the heat source device, the energy consumption of the system can be saved by the effective use of the exhaust heat of the heat source device, and the cooling water supply Combined with the ability to maintain the operating characteristics of the heat source device effectively and stably in adjusting the flow rate and further improving the operating efficiency of the heat source device when the cooling water inlet temperature decreases, the heat source device and the air conditioner were included. Entire system The energy-saving and can be further more enhanced.

そしてまた、上記構成によれば、前述と同様、熱源装置の運転状態を検出する手段としては出口温度センサを装備するだけですむことからシステム構成が簡略なものになるとともに、出口温度センサにより検出される冷却水出口温度のみに基づいて冷却水ポンプを出力調整することから制御アルゴリズムそのものも簡略なものですみ、この点、システムコストの面でも有利なものにすることができる。 In addition, according to the above- described configuration , as described above, the system configuration is simplified as the means for detecting the operating state of the heat source device is only equipped with an outlet temperature sensor. Since the output of the cooling water pump is adjusted based only on the cooling water outlet temperature, the control algorithm itself can be simplified, and this can be advantageous in terms of system cost.

なお、上記構成の実施において、出口温度センサの装備位置は熱源装置における使用済み冷却水の出口に限られるものではなく、熱源装置から送出される使用済み冷却水を導く流路の途中箇所であってもよい。 In the implementation of the above configuration, the position of the outlet temperature sensor is not limited to the outlet of the used cooling water in the heat source device, but is located in the middle of the flow path for guiding the used cooling water sent from the heat source device. May be.

前述と同様、冷却水出口温度の設定温度範囲内での変化に対して熱源装置への冷却水供給流量を設定流量範囲内で比例的に変化させるのに、その比例的変化は、冷却水出口温度の変化に対する冷却水供給流量の変化率が一定の厳密な比例変化に限られるものではなく、冷却水温度の設定温度範囲における上限側と下限側とで冷却水出口温度の変化に対する冷却水供給流量の変化率がある程度異なる比例的な変化などであってもよい。 As described above , in order to change the cooling water supply flow rate to the heat source device proportionally within the set flow range with respect to the change in the set temperature range of the cooling water outlet temperature, the proportional change is The rate of change of the cooling water supply flow rate with respect to the temperature change is not limited to a fixed and strictly proportional change, but the cooling water supply with respect to the change of the cooling water outlet temperature at the upper limit side and the lower limit side in the set temperature range of the cooling water temperature It may be a proportional change in which the change rate of the flow rate is different to some extent.

また、冷却水出口温度の変化に対して冷却水供給流量を連続的に変化させるものに限らず、冷却水出口温度の変化に対して冷却水供給流量を段階的に変化させるものであってもよい。   In addition, the cooling water supply flow rate is not limited to a continuous change with respect to the change in the cooling water outlet temperature, and the cooling water supply flow rate may be changed stepwise with respect to the change in the cooling water outlet temperature. Good.

冷却水出口温度が設定温度範囲の上限温度よりも高くなった場合の対応としては、冷却水供給流量を設定流量範囲の上限流量に維持する等、種々の条件に応じて適当な対応を採るようにしておけばよく、同様に、冷却水出口温度が設定温度範囲の下限温度よりも低くなった場合の対応としても、冷却水供給流量を設定流量範囲の下限流量に維持する等、種々の条件に応じて適当な対応を採るようにしておけばよい。   Appropriate measures should be taken in response to various conditions such as maintaining the cooling water supply flow rate at the upper limit flow rate of the set flow rate range as a countermeasure when the cooling water outlet temperature becomes higher than the upper limit temperature of the set temperature range. Similarly, as a countermeasure when the cooling water outlet temperature becomes lower than the lower limit temperature of the set temperature range, various conditions such as maintaining the cooling water supply flow rate at the lower limit flow rate of the set flow rate range, etc. Appropriate measures should be taken depending on the situation.

上記構成の実施において、熱源装置が吸収式冷凍機である場合、前述と同様、吸収式冷凍機における再生器の検出温度が設定上限再生温度以上になったとき、出口温度センサにより検出される冷却水出口温度に基づく冷却水供給流量の調整に優先して、冷却水ポンプに対する出力調整により熱源装置としての吸収式冷凍機への冷却水供給流量を設定安全流量に調整する構成にしておくのが望ましい。 In the practice of the above-described structure, when the heat source device is a absorption refrigerator, similar to the above, when the detected temperature of the regenerator in an absorption refrigerating machine is equal to or greater than the set upper limit regeneration temperature is detected by the outlet temperature sensor cooling Prior to the adjustment of the cooling water supply flow rate based on the water outlet temperature, the cooling water supply flow rate to the absorption chiller as the heat source device is adjusted to the set safe flow rate by adjusting the output to the cooling water pump. desirable.

〔1〕ここで、本発明の第1特徴構成は、
水冷式の熱源装置に冷却水を供給する冷却水ポンプと、前記熱源装置から送出される使用済み冷却水の温度である冷却水出口温度を検出する出口温度センサと、この出口温度センサにより検出される冷却水出口温度に応じ前記冷却水ポンプの出力を調整して前記熱源装置への冷却水供給流量を調整する制御手段と、空調対象域へ供給する空気を冷却除湿及びその冷却除湿に続く再熱により温湿度調整する空調機とを備え、
この空調機を、前記熱源装置から送出される使用済み冷却水を熱源として空調対象域への供給空気の冷却除湿に続く再熱を行う排熱利用再熱部と、前記熱源装置とは別の加熱装置で加熱した熱媒を熱源として空調対象域への供給空気の冷却除湿に続く再熱を行う補償用再熱部とを備える構成にし、
前記制御手段を、前記出口温度センサにより検出される冷却水出口温度の設定温度範囲内での変化に対して、前記冷却水ポンプに対する出力調整により前記熱源装置への冷却水供給流量を設定流量範囲内で比例的に変化させる構成にしてある点にある。
つまり、この構成によれば、前述の如く、冷却水出口温度の設定温度範囲内での変化に対して熱源装置への冷却水供給流量を設定流量範囲内で比例的に変化させるから、それら設定温度範囲や設定流量範囲を適当に選定すれば、熱源装置の負荷変化や冷却水入口温度の変化に対し、冷却水出口温度のある程度の範囲での変化(代表的には設定温度範囲の全範囲にわたる変化)を許容する形態で、熱源装置への冷却水供給流量を適切に変化させることができる。
したがって、冷却水出口温度を単に一定温度に維持する先述の従来システムに比べ、冷却水出口温度のある程度の範囲での変化を許容する分、熱源装置の負荷変化や冷却水入口温度の変化に伴う熱源装置への冷却水供給流量の変化を抑制することができて、その分、熱源装置の冷却用熱交換部における冷却水流速の変化、及び、その冷却水流速の変化による熱交換効率(冷却効率)の変化等を抑制することができ、これにより、熱源装置の冷却用熱交換部での冷却水流速の大きな変化に原因して生じる熱源装置の運転性状の変化を効果的に防止することができる。
しかも、冷却水入口温度が低下した場合には、冷却水出口温度のある程度の範囲での変化を許容する分、冷却水出口温度を単に一定温度に維持する従来システムに比べ、熱源装置における冷却用熱交換部での冷却水の平均温度を低下させることができて、その分、熱源装置の作動効率も向上させることができる。
また、冷却水出口温度の変化は許容するが、その許容範囲はあくまで適当なある程度の範囲であって制限される範囲であることから、冷却水出口温度を一定温度に維持する従来システムの特性をある程度残す形態にして、冷却水出口温度の大きな変化(実質的には熱源装置の冷却用熱交換部における冷却水の平均温度の大きな変化)に原因する熱源装置の運転性状の変化も防止することができる。
これらのことから、上記構成によれば、冷却水出口温度を単に一定温度に維持するだけの従来システムに比べ、熱源装置の負荷変化や冷却水入口温度の変化に対する冷却水供給流量の調整において熱源装置の運転性状を一層効果的かつ安定的に維持することができ、これにより、熱源装置への冷却水供給に変流量式を採用することと相まって、また、冷却水入口温度の低下時に熱源装置の作動効率を向上させ得ることとも相まって、熱源装置を含めたシステム全体としての省エネ化を一層促進することができる。
そしてまた、上記構成によれば、先述した従来システムと同様、熱源装置の運転状態を検出する手段としては出口温度センサを装備するだけですむことからシステム構成が簡略なものになるとともに、出口温度センサにより検出される冷却水出口温度のみに基づいて冷却水ポンプを出力調整することから制御アルゴリズムそのものも簡略なものですみ、この点、システムコストの面でも有利なものにすることができる。
さらに、上記構成では、空調機において空調対象域への供給空気を冷却除湿及びその冷却除湿に続く再熱(加熱)により温湿度調整するのに、変流量式の冷却水システムにおいて前述の如く高温の状態でかつ温度変動の少ない状態で熱源装置から送出される使用済み冷却水を熱源に利用して(換言すれば、使用済み冷却水の保有熱である熱源装置の排熱を熱源に利用して)、空調対象域への供給空気の冷却除湿に続く再熱を排熱利用再熱部で行うから、熱源装置から送出される使用済み冷却水の保有熱(熱源装置の排熱)の全てを冷却塔などにより外部へ廃棄し、また、空調対象域への供給空気を温湿度調整するのにボイラなどの専用加熱装置で加熱した熱媒を熱源として空調対象域への供給空気の冷却除湿に続く再熱を行う従来システムに比べ、変流量式冷却水供給の対象である熱源装置の排熱を空調対象域への供給空気の冷却除湿に続く再熱に有効利用する分、システムの消費エネルギを節減することができ、これにより、熱源装置への冷却水供給に変流量式を採用することと相まって、空調機を含めたシステム全体としての省エネ化を一層促進することができる。
そしてまた、上記構成では、前記空調機を、前記熱源装置から送出される使用済み冷却水を熱源として空調対象域への供給空気の冷却除湿に続く再熱を行う排熱利用再熱部と、前記熱源装置とは別の加熱装置で加熱した熱媒を熱源として空調対象域への供給空気の冷却除湿に続く再熱を行う補償用再熱部とを備える構成にするから、次の効果も得ることができる。
[1] Here, the first characteristic configuration of the present invention is:
A cooling water pump that supplies cooling water to the water-cooled heat source device, an outlet temperature sensor that detects a cooling water outlet temperature that is a temperature of used cooling water sent from the heat source device, and an outlet temperature sensor that detects the cooling water outlet temperature. The control means for adjusting the cooling water supply flow rate to the heat source device by adjusting the output of the cooling water pump according to the cooling water outlet temperature, and the air supplied to the air-conditioning target area is cooled and dehumidified. With air conditioner that adjusts temperature and humidity by heat,
This air conditioner includes a waste heat utilization reheat unit that performs reheating following cooling and dehumidification of supply air to the air-conditioning target area using the used cooling water sent from the heat source device as a heat source, and is different from the heat source device. The heat medium heated by the heating device is used as a heat source, and a configuration including a reheating portion for compensation that performs reheating following cooling and dehumidification of air supplied to the air-conditioning target area,
The control means sets a cooling water supply flow rate to the heat source device by adjusting an output to the cooling water pump with respect to a change in a set temperature range of the cooling water outlet temperature detected by the outlet temperature sensor. It is in the point which is set as the structure which changes proportionally within.
That is, according to this configuration, as described above, the cooling water supply flow rate to the heat source device is changed proportionally within the set flow rate range with respect to the change in the set temperature range of the cooling water outlet temperature. If the temperature range and the set flow rate range are selected appropriately, changes in the cooling water outlet temperature within a certain range with respect to changes in the load of the heat source device and changes in the cooling water inlet temperature (typically the entire range of the set temperature range) The cooling water supply flow rate to the heat source device can be appropriately changed.
Therefore, compared with the above-described conventional system that simply maintains the cooling water outlet temperature at a constant temperature, the cooling water outlet temperature is allowed to change in a certain range, and accordingly, the load of the heat source device is changed and the cooling water inlet temperature is changed. The change of the cooling water supply flow rate to the heat source device can be suppressed, and accordingly, the change in the cooling water flow rate in the cooling heat exchange part of the heat source device and the heat exchange efficiency (cooling) due to the change in the cooling water flow rate. (Efficiency) changes can be suppressed, thereby effectively preventing changes in the operation characteristics of the heat source device caused by a large change in the cooling water flow velocity at the cooling heat exchange section of the heat source device. Can do.
In addition, when the cooling water inlet temperature decreases, the cooling water outlet temperature is allowed to change within a certain range, so that the cooling water outlet temperature is used for cooling in the heat source device as compared with the conventional system that simply maintains the cooling water outlet temperature at a constant temperature. The average temperature of the cooling water in the heat exchange part can be lowered, and the operating efficiency of the heat source device can be improved accordingly.
In addition, although the change of the cooling water outlet temperature is allowed, the allowable range is an appropriate range to a certain extent and is limited, so the characteristics of the conventional system that maintains the cooling water outlet temperature at a constant temperature can be obtained. In order to prevent a change in the operating characteristics of the heat source device due to a large change in the cooling water outlet temperature (substantially a large change in the average temperature of the cooling water in the heat exchange section for cooling of the heat source device). Can do.
For these reasons, according to the above configuration, compared with the conventional system in which the cooling water outlet temperature is simply maintained at a constant temperature, the heat source is adjusted in the adjustment of the cooling water supply flow rate with respect to the load change of the heat source device and the change of the cooling water inlet temperature. The operation characteristics of the device can be maintained more effectively and stably. This is combined with the adoption of a variable flow rate for supplying the cooling water to the heat source device, and also when the cooling water inlet temperature decreases. In combination with the improvement of the operation efficiency of the system, it is possible to further promote the energy saving of the entire system including the heat source device.
In addition, according to the above configuration, as in the conventional system described above, the system configuration is simplified as the means for detecting the operating state of the heat source device is only equipped with the outlet temperature sensor, and the outlet temperature Since the output of the cooling water pump is adjusted based on only the cooling water outlet temperature detected by the sensor, the control algorithm itself can be simplified, and this can be advantageous in terms of system cost.
Furthermore, in the above configuration, the temperature and humidity of the air supplied to the air-conditioning target area in the air conditioner are adjusted by cooling and dehumidification and reheating (heating) following the cooling and dehumidification. The used cooling water sent from the heat source device in a state of low temperature fluctuation is used as the heat source (in other words, the exhaust heat of the heat source device that is the retained heat of the used cooling water is used as the heat source. In addition, since the reheating following the cooling and dehumidification of the air supplied to the air-conditioning target area is performed in the exhaust heat reheating unit, all the retained heat of the used cooling water sent from the heat source device (exhaust heat of the heat source device) In order to adjust the temperature and humidity of the air supplied to the air-conditioning target area with a cooling tower, etc., the cooling medium is used to cool and dehumidify the air supplied to the air-conditioning target area using a heat medium heated by a dedicated heating device such as a boiler as a heat source. A conventional system that performs reheating following In addition, energy consumption of the system can be reduced by effectively using the exhaust heat of the heat source device that is the target of variable flow rate cooling water supply for reheating following cooling and dehumidification of the supply air to the air conditioning target area. Thus, in combination with the adoption of the variable flow rate for supplying the cooling water to the heat source device, it is possible to further promote the energy saving of the entire system including the air conditioner.
And in the said structure, the exhaust-heat utilization reheating part which performs the reheating following the cooling dehumidification of the supply air to an air-conditioning object area | region using the used cooling water sent from the said heat-source device as a heat source in the said structure , since a configuration and a compensating reheating section for performing reheating following the cooling dehumidification of the supply air to the air conditioning target zone the heating medium heated by another heating device as the heat source and the heat source device, also the following advantages Obtainable.

つまり、上記構成によれば、熱源装置から送出される使用済み冷却水の温度及び保有熱量が十分な場合には、その使用済み冷却水を熱源として排熱利用再熱部でのみ空調対象域への供給空気の冷却除湿に続く再熱を行うことができ、また、熱源装置から送出される使用済み冷却水の温度及び保有熱量が不足の場合には、その使用済み冷却水と別加熱装置での加熱熱媒との両方を熱源として排熱利用再熱部と補償用再熱部との両方で空調対象域への供給空気の冷却除湿に続く再熱を行う、あるいは、別加熱装置での加熱熱媒を熱源として補償用再熱部でのみ空調対象域への供給空気の冷却除湿に続く再熱を行うといったことができ、この点、熱源装置から送出される使用済み冷却水を利用して空調対象域への供給空気の冷却除湿に続く再熱を行う構成を採りながらも、空調対象域への供給空気の温湿度調整面において高い機能性を得ることができる。
なお、この第1特徴構成の実施において、冷却塔と熱源装置との間で冷却水を循環させる場合、冷却塔を迂回させる状態で冷却水還路における使用済み冷却水を冷却水往路に短絡させるメインバイパス路、及び、このメインバイパス路による使用済み冷却水の短絡流量を調整するバイパス流量調整弁を設けるとともに、熱源装置への供給冷却水の温度である冷却水入口温度の検出値に基づき冷却水入口温度を設定下限入口温度以上に保つようにバイパス流量調整弁を調整してメインバイパス路による短絡流量を調整する冷却水温度制御器を設け、これにより、外気の低温化などにより冷却塔での冷却水Wの放熱量が過大になることに原因して冷却水入口温度が過度に低温になることを防止するようにしてもよい。
〔2〕本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段は、前記出口温度センサにより検出される冷却水出口温度の前記設定温度範囲内での変化に対して前記熱源装置への冷却水供給流量を、予め設定されている冷却水出口温度と冷却水供給流量との設定比例関係に従って前記設定流量範囲内で比例的に変化させる構成にしてある点にある。
〔3〕本発明の第3特徴構成は、第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記設定比例関係を、冷却水出口温度の変化に対する冷却水供給流量の変化率が前記設定温度範囲の上限側と下限側とで異なる関係にしてある点にある。
〔4〕本発明の第4特徴構成は、第1〜第3特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記排熱利用再熱部での再熱だけで前記空調機からの送出空気の温度を設定給気温度に調整できるときには、前記補償用再熱部での再熱を停止した状態で、前記熱源装置から送出される使用済み冷却水の前記排熱利用再熱部への供給流量を調整することにより前記空調機からの送出空気の温度を設定給気温度に調整し、
かつ、前記排熱利用再熱部での再熱だけでは前記空調機からの送出空気の温度を設定給気温度に調整できないときには、前記熱源装置から送出される使用済み冷却水の前記排熱利用再熱部への供給流量を最大にした状態で、前記別の加熱装置からの加熱熱媒の前記補償用再熱部への供給流量を調整することにより前記空調機からの送出空気の温度を設定給気温度に調整する再熱制御器を設けてある点にある。
〔5〕本発明の第5特徴構成は、第1〜第4特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記熱源装置が吸収式冷凍機であることに対して、前記制御手段を、前記吸収式冷凍機における再生器の検出温度が設定上限再生温度以上になったとき、前記出口温度センサにより検出される冷却水出口温度に基づく冷却水供給流量の調整に優先して、前記冷却水ポンプに対する出力調整により前記熱源装置としての前記吸収式冷凍機への冷却水供給流量を設定安全流量に調整する構成にしてある点にある。
つまり、この構成によれば、前述の如く、出口温度センサより検出される冷却水出口温度に基づき冷却水出口温度の設定範囲内での変化に対して熱源装置への冷却水供給流量を設定流量範囲内で比例的に変化させる前述の温度比例的な冷却水供給流量の調整を実施している状況下(特に、その流量調整で熱源装置への冷却水供給流量が絞られている状況下)において、何らかの原因で熱源装置としての吸収式冷凍機における再生器の検出温度が設定上限再生温度以上になったとき、冷却水出口温度に基づく前述の温度比例的な冷却水供給流量の調整に優先して、熱源装置としての吸収式冷凍機への冷却水供給流量を設定安全流量に調整するから、その設定安全流量として適当な流量を選定しておけば、再生器温度の異常上昇による吸収式冷凍機の運転トラブルを、吸収式冷凍機に対する十分な量の冷却水供給をもって効果的に防止することができる。
したがって、この構成によれば、吸収式冷凍機を冷却水供給対象の熱源装置とする場合において、吸収式冷凍機を含めたシステム全体としての保全性も高く確保しながら、冷却水出口温度に基づく前述の温度比例的な冷却水供給流量の調整によりシステム全体としての省エネ化を一層促進することができる。
In other words, according to the above configuration, when the temperature and retained heat amount of the used cooling water sent from the heat source device are sufficient, the used cooling water is used as a heat source to the air conditioning target area only in the exhaust heat reheating unit. If the temperature of the used cooling water sent from the heat source device and the amount of retained heat are insufficient, the used cooling water can be separated from the used heating device. Reheating following cooling and dehumidification of the air supplied to the air-conditioning target area in both the exhaust heat reheating part and the compensation reheating part using both the heating heat medium and the heat source as heat sources, or in a separate heating device Reheating following cooling and dehumidification of the supply air to the air-conditioning target area can be performed only in the compensation reheating section using the heating heat medium as the heat source. In this regard, the used cooling water sent from the heat source device is used. Reheat following cooling and dehumidification of the air supplied to the air conditioning target area While adopting a construction, it is possible to obtain a high functionality in temperature and humidity adjusting side of the supply air to the air conditioning target area.
In the implementation of the first characteristic configuration, when the cooling water is circulated between the cooling tower and the heat source device, the used cooling water in the cooling water return path is short-circuited to the cooling water forward path in a state of bypassing the cooling tower. The main bypass passage and a bypass flow rate adjustment valve that adjusts the short-circuit flow rate of the used cooling water through the main bypass passage are provided, and cooling is performed based on the detected value of the cooling water inlet temperature that is the temperature of the cooling water supplied to the heat source device. A cooling water temperature controller is provided that adjusts the bypass flow rate adjustment valve to adjust the short-circuit flow rate through the main bypass path so that the water inlet temperature is kept above the set lower limit inlet temperature. The cooling water inlet temperature may be prevented from becoming excessively low due to an excessive heat release amount of the cooling water W.
[2] The second characteristic configuration of the present invention specifies an embodiment suitable for the implementation of the first characteristic configuration.
The control means sets a cooling water supply flow rate to the heat source device with respect to a change in the set temperature range of the cooling water outlet temperature detected by the outlet temperature sensor, and a preset cooling water outlet temperature. The configuration is such that a proportional change is made within the set flow rate range in accordance with a set proportional relationship with the cooling water supply flow rate.
[3] The third characteristic configuration of the present invention specifies an embodiment suitable for the implementation of the second characteristic configuration.
The set proportional relationship is that the rate of change of the cooling water supply flow rate with respect to the change of the cooling water outlet temperature is different between the upper limit side and the lower limit side of the set temperature range.
[4] The fourth characteristic configuration of the present invention specifies an embodiment suitable for the implementation of any of the first to third characteristic configurations,
When the temperature of the air sent from the air conditioner can be adjusted to the set supply air temperature only by reheating in the exhaust heat reheating part, the heat source is stopped in the state where reheating in the compensation reheating part is stopped. Adjusting the temperature of the air sent from the air conditioner to the set supply air temperature by adjusting the supply flow rate of the used cooling water sent from the device to the exhaust heat reheating part,
In addition, when the temperature of the air sent from the air conditioner cannot be adjusted to the set supply air temperature only by reheating in the exhaust heat utilization reheating unit, the exhaust heat utilization of the used cooling water delivered from the heat source device is not possible. With the supply flow rate to the reheating unit maximized, the temperature of the air sent from the air conditioner is adjusted by adjusting the supply flow rate of the heating medium from the other heating device to the compensation reheating unit. A reheat controller for adjusting the set supply air temperature is provided.
[5] The fifth characteristic configuration of the present invention specifies an embodiment suitable for any one of the first to fourth characteristic configurations.
In contrast to the heat source device being an absorption refrigerator, the control means is detected by the outlet temperature sensor when the detected temperature of the regenerator in the absorption refrigerator is equal to or higher than a set upper limit regeneration temperature. Prior to the adjustment of the cooling water supply flow rate based on the cooling water outlet temperature, the cooling water supply flow rate to the absorption chiller as the heat source device is adjusted to the set safe flow rate by adjusting the output to the cooling water pump. It is in a certain point.
That is, according to this configuration, as described above, the cooling water supply flow rate to the heat source device is set to the set flow rate with respect to the change in the setting range of the cooling water outlet temperature based on the cooling water outlet temperature detected by the outlet temperature sensor. Under circumstances where the temperature-proportional cooling water supply flow rate is adjusted proportionally within the range (particularly under conditions where the cooling water supply flow rate to the heat source device is reduced by adjusting the flow rate). When the detected temperature of the regenerator in the absorption chiller as the heat source device exceeds the preset upper limit regeneration temperature for some reason, priority is given to the above-described temperature proportional cooling water supply flow rate adjustment based on the cooling water outlet temperature. Since the cooling water supply flow rate to the absorption refrigerator as a heat source device is adjusted to the set safe flow rate, if an appropriate flow rate is selected as the set safe flow rate, the absorption type due to abnormal rise in regenerator temperature frozen Trouble driving, it is possible to prevent effectively with the cooling water supply in an amount sufficient for the absorption chiller.
Therefore, according to this configuration, when the absorption chiller is used as a cooling water supply target heat source device, it is based on the cooling water outlet temperature while ensuring high maintainability as a whole system including the absorption chiller. By adjusting the cooling water supply flow rate in proportion to the above-described temperature, energy saving as a whole system can be further promoted.

図1は空調設備の冷却水システムを示し、1は冷水還路2を通じて空調機などの負荷装置ないし蓄熱槽から戻る冷水Cを冷却する吸収式冷凍機であり、この吸収式冷凍機1で冷却した冷水Cを冷水ポンプPcにより冷水往路3を通じて負荷装置や蓄熱槽に送給する。   FIG. 1 shows a cooling water system of an air conditioner. 1 is an absorption refrigerator that cools cold water C returning from a load device such as an air conditioner or a heat storage tank through a cold water return path 2, and is cooled by the absorption refrigerator 1. The chilled water C is fed to the load device and the heat storage tank through the chilled water forward path 3 by the chilled water pump Pc.

4は空調対象域(例えば、恒温恒湿室やクリーンルームなど)に対して供給する空気Aを冷却コイル4aでの冷却除湿、及び、その冷却除湿に続く再熱コイル4b,4cでの再熱により温湿度調整する空調機であり、この空調機4で温湿度調整した空気Aを給気ファンFにより給気ダクト5を通じて空調対象域に供給することで、その空調対象域の域内を所要の温湿度状態に保つ。   Reference numeral 4 denotes air A supplied to an air-conditioning target area (for example, a constant temperature / humidity chamber or a clean room) by cooling dehumidification in the cooling coil 4a and reheating in the reheating coils 4b and 4c following the cooling dehumidification. This air conditioner adjusts the temperature and humidity, and the air A adjusted in temperature and humidity by the air conditioner 4 is supplied to the air-conditioning target area through the air supply duct 5 by the air supply fan F. Keep in humidity.

1aは吸収式冷凍機1における冷却用熱交換部であり、この冷却用熱交換部1aと冷却塔6との間で冷却水往路7及び冷却水還路8を通じて冷却水ポンプPwにより冷却水Wを循環させることにより、冷却塔6からの供給冷却水Wをもって吸収式冷凍機1での発生排熱を回収し、そして、冷却用熱交換部1aから送出される冷却水Wを冷却塔6において外気と熱交換させることで回収排熱を外部に排出する。   1a is a cooling heat exchange part in the absorption refrigeration machine 1, and the cooling water W is supplied between the cooling heat exchange part 1a and the cooling tower 6 through the cooling water forward path 7 and the cooling water return path 8 by the cooling water pump Pw. , The generated exhaust heat in the absorption refrigeration machine 1 is recovered with the supply cooling water W from the cooling tower 6, and the cooling water W sent from the cooling heat exchange unit 1 a is recovered in the cooling tower 6. The recovered waste heat is discharged to the outside by exchanging heat with the outside air.

9は吸収式冷凍機1から送出される使用済み冷却水Wの温度である冷却水出口温度toを検出する出口温度センサ、10はこの出口温度センサ9により検出される冷却水出口温度toに基づき冷却水ポンプPwをインバータ制御により出力調整して吸収式冷凍機1への冷却水供給流量qを調整する冷却水流量制御器であり、この冷却水流量制御器10は具体的には次の(イ),(ロ)の制御を実行する。   Reference numeral 9 denotes an outlet temperature sensor for detecting a cooling water outlet temperature to which is the temperature of the used cooling water W delivered from the absorption refrigerator 1. Reference numeral 10 denotes a cooling water outlet temperature to detected by the outlet temperature sensor 9. The cooling water flow controller 10 adjusts the output of the cooling water pump Pw by inverter control and adjusts the cooling water supply flow rate q to the absorption refrigeration machine 1. Execute the controls (a) and (b).

(イ)冷却水出口温度toの設定温度範囲X内での変化に対し吸収式冷凍機1への冷却水供給流量pを、予め設定されている図2に示す如き冷却水出口温度toと冷却水供給流量qとの設定比例関係Kに従って設定流量範囲Y内で比例的に変化させるように、出口温度センサ9により検出される冷却水出口温度toに応じて冷却水ポンプPwをインバータ制御する。   (A) The cooling water supply flow rate p to the absorption chiller 1 is set to the cooling water outlet temperature to and the cooling as shown in FIG. 2 with respect to the change in the set temperature range X of the cooling water outlet temperature to. The cooling water pump Pw is inverter-controlled according to the cooling water outlet temperature to detected by the outlet temperature sensor 9 so as to change proportionally within the set flow rate range Y according to the setting proportional relationship K with the water supply flow rate q.

つまり、図2に示す設定比例関係Kの例では、32℃〜37℃を設定温度範囲Xとし、かつ、冷却水ポンプPwの最大送水量qmaxの50%流量(=0.5×qmax)〜100%流量(=qmax)を設定流量範囲Yにしており、したがって、例えば、出口温度センサ9により検出される冷却水出口温度toが34℃のときには吸収式冷凍機1への冷却水供給流量qが70%流量(=0.7×qmax)になるように、また、出口温度センサ9により検出される冷却水出口温度toが36℃のときには吸収式冷凍機1への冷却水供給流量qが90%流量(=0.9×qmax)になるように、冷却水ポンプPwに対するインバータ制御により吸収式冷凍機1への冷却水供給流量qが温度比例的に自動調整される。   That is, in the example of the set proportional relationship K shown in FIG. 2, the set temperature range X is 32 ° C. to 37 ° C., and the flow rate is 50% of the maximum water supply amount qmax of the cooling water pump Pw (= 0.5 × qmax) The 100% flow rate (= qmax) is set to the set flow rate range Y. Therefore, for example, when the cooling water outlet temperature to detected by the outlet temperature sensor 9 is 34 ° C., the cooling water supply flow rate q to the absorption refrigerator 1 Is 70% flow rate (= 0.7 × qmax), and when the cooling water outlet temperature to detected by the outlet temperature sensor 9 is 36 ° C., the cooling water supply flow rate q to the absorption refrigerator 1 is The cooling water supply flow rate q to the absorption refrigeration machine 1 is automatically adjusted in proportion to the temperature by inverter control for the cooling water pump Pw so that the flow rate becomes 90% (= 0.9 × qmax).

また仮に、出口温度センサ9により検出される冷却水出口温度toが設定温度範囲Xの上限温度37℃よりも高いときには、吸収式冷凍機1への冷却水供給流量qが設定流量範囲Yの上限流量である100%流量(=qmax)に調整維持され、逆に、出口温度センサ9により検出される冷却水出口温度toが設定温度範囲Xの下限温度32℃よりも低いときには、吸収式冷凍機1への冷却水供給流量qが設定流量範囲Yの下限流量である50%流量(=0.5×qmax)に調整維持される。   If the cooling water outlet temperature to detected by the outlet temperature sensor 9 is higher than the upper limit temperature 37 ° C. of the set temperature range X, the cooling water supply flow rate q to the absorption chiller 1 is set to the upper limit of the set flow rate range Y. When the cooling water outlet temperature to detected by the outlet temperature sensor 9 is lower than the lower limit temperature 32 ° C. of the set temperature range X, the absorption chiller is adjusted and maintained at a flow rate of 100% (= qmax). The cooling water supply flow rate q to 1 is adjusted and maintained at a 50% flow rate (= 0.5 × qmax) which is the lower limit flow rate of the set flow rate range Y.

(ロ)吸収式冷凍機1に装備された再生温度センサ11により検出される再生器(二重効用型の吸収式冷凍機では高温再生器)の温度tsが設定上限再生温度tss(例えば、95℃)以上になったとき、冷却水出口温度toに基づく上記(イ)の温度比例的な冷却水供給流量の調整に優先して、冷却水ポンプPwに対するインバータ制御により吸収式冷凍機1への冷却水供給流量qを設定安全流量qss(例えば100%流量)に調整する。   (B) The temperature ts of the regenerator (a high-temperature regenerator in a double-effect absorption refrigerator) detected by the regeneration temperature sensor 11 provided in the absorption refrigerator 1 is the set upper limit regeneration temperature tss (for example, 95 When the temperature is higher than or equal to (° C.), prior to the adjustment of the cooling water supply flow rate proportional to the temperature (b) based on the cooling water outlet temperature to, the inverter control for the cooling water pump Pw is used to control the absorption refrigerator 1. The cooling water supply flow rate q is adjusted to a set safe flow rate qss (for example, 100% flow rate).

つまり、この空調設備の冷却水システムでは、吸収式冷凍機1に対する供給冷却水Wの変流量制御として上記(イ)の如く、冷却水出口温度toの設定温度範囲X内での変化に対して吸収式冷凍機1への冷却水供給流量qを設定流量範囲Y内で比例的に変化させる温度比例的な冷却水供給流量の調整を行うことにより、吸収式冷凍機1の負荷変化や吸収式冷凍機1における冷却水入口温度tiの変化に対し、冷却水出口温度toのある程度の範囲内での変化を許容する形態(すなわち、冷却用熱交換部1aでの冷却水流速の大きな変化による吸収式冷凍機1の運転性状の変化、及び、冷却用熱交換部1aでの冷却水温度の大きな変化による吸収式冷凍機1の運転性状の変化の両方を抑止する形態)で、吸収式冷凍機1への冷却水供給流量qを適切に変化させる。   That is, in the cooling water system of this air conditioning equipment, as the variable flow rate control of the supply cooling water W to the absorption refrigeration machine 1, the change in the cooling water outlet temperature to within the set temperature range X as described in (a) above. By adjusting the temperature-proportional cooling water supply flow rate that proportionally changes the cooling water supply flow rate q to the absorption refrigerator 1 within the set flow rate range Y, the load change of the absorption refrigerator 1 and the absorption type A configuration that allows a change in the cooling water outlet temperature to within a certain range with respect to a change in the cooling water inlet temperature ti in the refrigerator 1 (that is, absorption due to a large change in the cooling water flow velocity in the cooling heat exchange section 1a). Absorption refrigeration machine in the form of suppressing both the change in the operation characteristics of the refrigerating refrigerator 1 and the change in the operation characteristics of the absorption refrigerating machine 1 due to a large change in the cooling water temperature in the cooling heat exchanger 1a) The cooling water supply flow rate q to 1 Sincerely to change.

また、吸収式冷凍機1への冷却水供給流量qを変化させる変流量式を採りながらも、上記(B)の如く、吸収式冷凍機1における再生器の検出温度tsが設定上限再生温度tss以上になったとき、冷却水出口温度toに基づく上記(イ)の温度比例的な流量調整に優先して、吸収式冷凍機1への冷却水供給流量qを設定安全流量qssに調整することにより、再生器温度tsの異常上昇による吸収式冷凍機1の運転トラブルも効果的に防止する。   In addition, while adopting a variable flow rate formula that changes the cooling water supply flow rate q to the absorption chiller 1, the detected temperature ts of the regenerator in the absorption chiller 1 is the set upper limit regeneration temperature tss as shown in (B) above. When the above is reached, the cooling water supply flow rate q to the absorption chiller 1 is adjusted to the set safe flow rate qss in preference to the temperature proportional flow rate adjustment (b) based on the cooling water outlet temperature to. This effectively prevents an operation trouble of the absorption refrigerator 1 due to an abnormal increase in the regenerator temperature ts.

空調対象域への供給空気Aを温湿度調整する空調機4には、冷却コイル4aにより所要の絶対湿度まで冷却除湿した空気Aを所要温度まで再熱(加熱)する再熱コイルとして、排熱利用再熱コイル4bと補償用再熱コイル4cとをその順に空気流れ方向上流側から並べて装備してあり、そして、上流側の排熱利用再熱コイル4bについては、吸収式冷凍機1からの冷却水還路8に設けた二分流路部8a,8bにおける一方の分流路8aに介装した熱媒供給構成にし、これにより、排熱利用再熱コイル4bでは吸収式冷凍機1から送出される使用済み冷却水Wの一部を熱源熱媒として冷却除湿空気Aの再熱を行うようにしてある。   The air conditioner 4 that adjusts the temperature and humidity of the supply air A to the air-conditioning target area has exhaust heat as a reheating coil that reheats (heats) the air A that has been cooled and dehumidified to the required absolute humidity by the cooling coil 4a. The utilization reheating coil 4b and the compensation reheating coil 4c are arranged in that order from the upstream side in the air flow direction, and the exhaust heat utilization reheating coil 4b on the upstream side is provided from the absorption refrigerator 1 A heat medium supply configuration is provided in one of the branch flow paths 8a and 8b provided in the cooling water return path 8 so that the exhaust heat reheating coil 4b sends out the heat from the absorption refrigerator 1. The cooling dehumidified air A is reheated by using a part of the used cooling water W as a heat source heat medium.

また、下流側の補償用再熱コイル4cについては、ボイラなどの加熱装置12からの温水供給路13を接続した熱媒供給構成にし、これにより、補償用再熱コイル4cでは加熱装置13で加熱生成した温水Hを熱源熱媒として冷却除湿空気Aの再熱を行うようにしてある。   In addition, the compensation reheating coil 4c on the downstream side has a heating medium supply configuration in which a hot water supply path 13 from a heating device 12 such as a boiler is connected, whereby the compensation reheating coil 4c is heated by the heating device 13. The generated hot water H is used as a heat source heat medium to reheat the cooled dehumidified air A.

排熱利用再熱コイル4bを介装した一方の分流路8aに対して、他方の分流路8bは排熱利用再熱コイル4bを迂回させる状態で吸収式冷凍機1からの使用済み冷却水Wを通過させるバイパス路として機能し、14a,14bは排熱利用再熱コイル4bとバイパス路8bとに対する使用済み冷却水Wの分流比を調整する三方弁であり、この三方弁14a,14bによる分流比調整により排熱利用再熱コイル4bに対する使用済み冷却水Wの供給流量を調整することで、排熱利用再熱コイル4bでの再熱量を調整する。 The used cooling water W from the absorption refrigeration machine 1 in a state where the other diversion channel 8b bypasses the exhaust heat utilization reheating coil 4b with respect to the one diversion channel 8a interposing the exhaust heat utilization reheating coil 4b. 14a and 14b are three-way valves for adjusting the diversion ratio of the used cooling water W to the exhaust heat reheat coil 4b and the bypass 8b, and the diversion flow by the three-way valves 14a and 14b . By adjusting the supply flow rate of the used cooling water W to the exhaust heat reheat coil 4b by adjusting the ratio, the amount of reheat in the exhaust heat reheat coil 4b is adjusted.

また、15は補償用再熱コイル4cに対する温水Hの供給流量を調整する流量調整弁であり、この流量調整弁15による温水供給流量の調整により補償用再熱コイル4cでの再熱量を調整する。   Reference numeral 15 denotes a flow rate adjustment valve that adjusts the supply flow rate of the hot water H to the compensation reheat coil 4c. By adjusting the hot water supply flow rate by the flow rate adjustment valve 15, the reheat amount in the compensation reheat coil 4c is adjusted. .

16は空調機4から送出される温湿度調整空気Aの温度taを検出する給気温度センサ、17は給気温度センサ16による検出空気温度taに基づき三方弁14,14b及び流量調整弁15を調整することで、空調機4からの送出空気Aの温度taを設定給気温度taa(換言すれば、設定再熱温度)に調整する再熱制御器であり、具体的には、この再熱制御器17は次の(a),(b)の如く制御動作する。 Reference numeral 16 denotes a supply air temperature sensor for detecting the temperature ta of the temperature / humidity adjustment air A sent from the air conditioner 4. Reference numeral 17 denotes a three-way valve 14, 14 b and a flow rate adjustment valve 15 based on the detection air temperature ta by the supply air temperature sensor 16. This is a reheat controller that adjusts the temperature ta of the delivery air A from the air conditioner 4 to the set supply air temperature taa (in other words, the set reheat temperature). The controller 17 performs a control operation as shown in the following (a) and (b).

(a)吸収式冷凍機1からの使用済み冷却水Wを熱源とする排熱利用再熱コイル4bでの再熱だけで送出空気Aの温度taを設定給気温度taaに調整し得るときには、流量制御弁15の閉弁により補償用再熱コイル4cへの温水供給を停止して補償用再熱コイル4cでの再熱を停止した状態の下で、給気温度センサ16による検出空気温度taに基づき三方弁14a,14bを調整して排熱利用再熱コイル4bでの再熱量を調整することより、空調機4からの送出空気Aの温度taを設定給気温度taaに調整する。 (A) When the temperature ta of the delivery air A can be adjusted to the set supply air temperature taa only by reheating in the exhaust heat utilization reheating coil 4b using the used cooling water W from the absorption refrigerator 1 as a heat source, The air temperature detected by the supply air temperature sensor ta under the condition that the supply of hot water to the compensation reheating coil 4c is stopped by closing the flow control valve 15 and the reheating in the compensation reheating coil 4c is stopped. By adjusting the three-way valves 14a and 14b based on the above, the reheat amount in the exhaust heat reheat coil 4b is adjusted, thereby adjusting the temperature ta of the delivery air A from the air conditioner 4 to the set supply air temperature taa.

(b)吸収式冷凍機1からの使用済み冷却水Wを熱源とする排熱利用再熱コイル4bでの再熱だけでは送出空気Aの温度taを設定給気温度taaに調整し得ないときには、排熱利用再熱コイル4bに対する使用済み冷却水Wの供給流量を最大にするように三方弁14a,14bを調整して排熱利用再熱コイル4bでの再熱量(換言すれば、予熱量)を極力大きくした状態の下で、給気温度センサ16による検出空気温度taに基づき流量調整弁15を調整して補償用再熱コイル4cでの再熱量を調整することより、空調機4からの送出空気Aの温度taを設定給気温度taaに調整する。 (B) When the temperature ta of the delivery air A cannot be adjusted to the set supply air temperature taa only by reheating in the exhaust heat reheating coil 4b using the used cooling water W from the absorption refrigerator 1 as a heat source The three-way valves 14a and 14b are adjusted so as to maximize the supply flow rate of the used cooling water W to the exhaust heat utilization reheating coil 4b, in other words, the amount of reheating in the exhaust heat utilization reheating coil 4b (in other words, the preheating amount). ) Is increased as much as possible, the flow rate adjusting valve 15 is adjusted based on the air temperature ta detected by the supply air temperature sensor 16 to adjust the reheat amount in the compensation reheating coil 4c. Is adjusted to the set supply air temperature taa.

つまり、この空調設備の冷却水システムでは、吸収式冷凍機1から送出される使用済み冷却水Wの温度toが前述の如き冷却水Wの変流量制御により高温に保たれることを利用して、その高温の使用済み冷却水Wを空調機4での冷却除湿に続く空気Aの再熱の熱源に有効利用することで、システム全体としての消費エネルギを節減するようにしてある。   In other words, in the cooling water system of this air conditioning equipment, the temperature to of the used cooling water W sent from the absorption chiller 1 is maintained at a high temperature by the variable flow rate control of the cooling water W as described above. The high-temperature used cooling water W is effectively used as a heat source for reheating the air A following the cooling and dehumidification in the air conditioner 4, thereby reducing the energy consumption of the entire system.

また、再熱コイルとして、吸収式冷凍機1から送出される使用済み冷却水Wを熱源熱媒として冷却除湿空気Aの再熱を行う排熱利用再熱コイル4bと、吸収式冷凍機1とは別の加熱装置12で加熱した温水Hを熱源熱媒として冷却除湿空気Aの再熱を行う補償用再熱コイル4cとを空調機4に装備することにより、吸収式冷凍機1から送出される使用済み冷却水Wを利用して冷却除湿空気Aの再熱を行う構成を採りながらも、空調対象域への供給空気Aの温湿度調整面において高い機能性を得られるようにしてある。   Further, as the reheating coil, the exhaust heat reheating coil 4b for reheating the cooled dehumidified air A using the used cooling water W delivered from the absorption chiller 1 as a heat source heat medium, and the absorption chiller 1 Is sent from the absorption refrigeration machine 1 by installing in the air conditioner 4 a compensation reheating coil 4c that reheats the cooled dehumidified air A using hot water H heated by another heating device 12 as a heat source heat medium. While adopting a configuration in which the cooling dehumidified air A is reheated using the used cooling water W, high functionality can be obtained in terms of adjusting the temperature and humidity of the supply air A to the air-conditioning target area.

18は二分流路部8a,8bよりも下流側(冷却塔6側)において冷却塔6を迂回させる状態で冷却水還路8における使用済み冷却水Wを冷却水往路7に短絡させるメインバイパス路、19はメインバイパス路18による使用済み冷却水Wの短絡流量を調整するバイパス流量調整弁であり、このバイパス流量調整弁19による短絡流量の調整により冷却塔6に対する使用済み冷却水Wの戻し流量を調整する。   18 is a main bypass path for short-circuiting the used cooling water W in the cooling water return path 8 to the cooling water forward path 7 in a state where the cooling tower 6 is bypassed on the downstream side (cooling tower 6 side) of the bifurcated flow path portions 8a and 8b. , 19 is a bypass flow rate adjusting valve for adjusting the short-circuit flow rate of the used cooling water W through the main bypass passage 18, and the return flow rate of the used cooling water W to the cooling tower 6 by adjusting the short-circuit flow rate by the bypass flow rate adjusting valve 19. Adjust.

また、20は吸収式冷凍機1への供給冷却水Wの温度である冷却水入口温度tiを検出する入口温度センサ、21は入口温度センサ20により検出される冷却水入口温度tiに基づきメインバイパス路18におけるバイパス流量調整弁19を調整する冷却水温度制御器であり、この冷却水温度制御器21は、入口温度センサ20により検出される冷却水入口温度tiに基づき冷却水入口温度tiを設定下限入口温度tii以上に保つように流量調整弁19の調整によりメインバイパス路18による短絡流量を調整し、これにより、外気の低温化などにより冷却塔6での冷却水Wの放熱量が過大になることに原因して冷却水入口温度tiが過度に低温になることを防止する。   Reference numeral 20 denotes an inlet temperature sensor that detects a cooling water inlet temperature ti, which is the temperature of the cooling water W supplied to the absorption chiller 1, and 21 denotes a main bypass based on the cooling water inlet temperature ti detected by the inlet temperature sensor 20. The coolant temperature controller 21 adjusts the bypass flow rate adjustment valve 19 in the passage 18, and the coolant temperature controller 21 sets the coolant inlet temperature ti based on the coolant inlet temperature ti detected by the inlet temperature sensor 20. The short-circuit flow rate by the main bypass path 18 is adjusted by adjusting the flow rate adjustment valve 19 so as to keep the lower limit inlet temperature tii or more, and thereby, the heat radiation amount of the cooling water W in the cooling tower 6 is excessive due to the low temperature of the outside air. This prevents the cooling water inlet temperature ti from becoming excessively low.

以上要するに、本実施形態において前記した冷却水流量制御器10は、出口温度センサ9により検出される冷却水出口温度toの設定温度範囲X内での変化に対して、冷却水ポンプPwに対する出力調整により熱源装置1(吸収式冷凍機)への冷却水供給流量qを設定流量範囲Y内で比例的に変化させ、また、熱源装置1が吸収式冷凍機であることに対して、吸収式冷凍機1における再生器の検出温度tsが設定上限再生温度tss以上になったとき、出口温度センサ9により検出される冷却水出口温度toに基づく冷却水供給流量qの調整に優先して、冷却水ポンプPwに対する出力調整により熱源装置としての吸収式冷凍機1への冷却水供給流量qを設定安全流量qssに調整する制御手段を構成する。   In short, the cooling water flow controller 10 described in the present embodiment adjusts the output to the cooling water pump Pw with respect to the change in the set temperature range X of the cooling water outlet temperature to detected by the outlet temperature sensor 9. The cooling water supply flow rate q to the heat source device 1 (absorption refrigeration machine) is changed proportionally within the set flow rate range Y, and the absorption refrigeration is performed while the heat source device 1 is an absorption refrigeration machine. When the detection temperature ts of the regenerator in the machine 1 becomes equal to or higher than the set upper limit regeneration temperature tss, the cooling water is given priority over the adjustment of the cooling water supply flow rate q based on the cooling water outlet temperature to detected by the outlet temperature sensor 9. Control means for adjusting the cooling water supply flow rate q to the absorption refrigerator 1 as the heat source device to the set safe flow rate qss by adjusting the output to the pump Pw.

〔別の実施形態〕
次に本発明の別実施形態を列記する。
前述の実施形態では吸収式冷凍機1に対する冷却水供給流量qを調整する例を示したが、冷却水供給流量qの調整対象とする熱源装置は、吸収式冷凍機に限らず、吸収式冷温水発生機、ターボ式冷凍機など、水冷式のものであれば、どのようなものであってもよい。
Another embodiment
Next, other embodiments of the present invention will be listed.
Although the example which adjusts the cooling water supply flow rate q with respect to the absorption refrigeration machine 1 was shown in the above-mentioned embodiment, the heat source apparatus made into the adjustment object of the cooling water supply flow rate q is not restricted to an absorption refrigeration machine, Absorption-type cold temperature Any water-cooled type such as a water generator or a turbo refrigerator may be used.

前述の実施形態では、冷却水出口温度toの設定温度範囲X内での変化に対し冷却水供給流量qを設定流量範囲Y内で変化させる温度比例的な冷却水供給流量qの調整を実施するのに、32℃〜37℃を設定温度範囲Xとするとともに、最大送水量qmaxの50%流量〜100%流量を設定流量範囲Yとする例を示したが、設定温度範囲X及び設定流量範囲Y夫々の具体的上下限値は、これに限定されるものではなく、対象とする熱源装置の種類など、種々の条件に応じて決定すればよい。   In the above-described embodiment, the temperature-proportional cooling water supply flow rate q is adjusted by changing the cooling water supply flow rate q within the set flow rate range Y with respect to the change in the set temperature range X of the cooling water outlet temperature to. However, while the set temperature range X is set to 32 ° C. to 37 ° C. and the set flow rate range Y is set to 50% flow rate to 100% flow rate of the maximum water supply amount qmax, the set temperature range X and the set flow rate range are shown. The specific upper and lower limit values of each Y are not limited to this, and may be determined according to various conditions such as the type of the target heat source device.

また、前述の実施形態では、冷却水出口温度toと冷却水供給流量qとの設定比例関係Kとして、冷却水出口温度toの変化に対し冷却水供給流量qを一定の変化率で変化させる比例関係の採用例を示したが、これに代え、冷却水出口温度toの変化に対し範囲上限側と範囲下限側とで冷却水供給流量qをある程度異なる変化率で変化させる設定比例関係に従って、冷却水供給流量qを変化させるようにしてもよい。   In the above-described embodiment, the proportional proportional relationship K between the cooling water outlet temperature to and the cooling water supply flow rate q is proportional to the cooling water supply flow rate q changing at a constant change rate with respect to the change of the cooling water outlet temperature to. Although an example of adopting the relationship has been shown, instead of this, cooling is performed according to a set proportional relationship in which the cooling water supply flow rate q is changed at a somewhat different rate of change between the upper limit side and the lower limit side of the range with respect to the change of the cooling water outlet temperature to. The water supply flow rate q may be changed.

前述の実施形態では、熱源装置1(吸収式冷凍機)から送出される使用済み冷却水Wを熱源として冷却除湿空気Aを再熱する排熱利用再熱部4b(排熱利用再熱コイル)と、別の加熱装置12で加熱した熱媒Hを熱源として冷却除湿空気Aの再熱を行う補償用再熱部4c(補償用再熱コイル)とを空調機4に装備するのに、補償用再熱部4cでの熱源熱媒Hとして温水を用いる例を示したが、補償用再熱部4cでの熱源熱媒Hは温水に限らず、蒸気などであってもよく、また場合によっては、補償用再熱部4cを電熱式のものにしてもよい。   In the above-described embodiment, the exhaust heat reheat unit 4b (exhaust heat reheat coil) that reheats the cooled dehumidified air A using the used cooling water W delivered from the heat source device 1 (absorption refrigerator) as a heat source. And the compensation reheating unit 4c (compensation reheating coil) for reheating the cooled dehumidified air A using the heating medium H heated by another heating device 12 as a heat source is compensated for. Although the example which uses warm water as the heat source heat medium H in the reheating part 4c for heat | fever was shown, the heat source heat medium H in the reheating part 4c for compensation is not restricted to warm water, A vapor | steam etc. may be sufficient. The compensation reheating unit 4c may be an electrothermal type.

本発明は、各種分野で用いられる種々の水冷式熱源装置に対する冷却水供給流量の調整に適用することができる。   The present invention can be applied to adjustment of the cooling water supply flow rate for various water-cooled heat source devices used in various fields.

空調設備における冷却水システムのシステム構成を示す図The figure which shows the system configuration of the cooling water system in the air conditioning equipment 冷却水出口温度と冷却水供給流量との設定比例関係を示すグラフA graph showing the proportional relationship between the cooling water outlet temperature and the cooling water supply flow rate 従来の冷却水システムを示す図Diagram showing a conventional cooling water system

1 熱源装置,吸収式冷凍機
W 冷却水
Pw 冷却水ポンプ
to 冷却水出口温度
9 出口温度センサ,運転状態検出手段
q 冷却水供給流量
10 制御手段
X 設定温度範囲
Y 設定流量範囲
ts 再生器の検出温度
tss 設定上限再生温度
qss 設定安全流量
A 空気
4 空調機
4b 排熱利用再熱部
12 加熱装置
H 加熱熱媒
4c 補償用再熱部
設定比例関係
17 再熱制御器
1 Heat source device, absorption chiller W Cooling water Pw Cooling water pump to Cooling water outlet temperature 9 Outlet temperature sensor, operation state detection means q Cooling water supply flow 10 Control means X Set temperature range Y Set flow range ts Regenerator detection Temperature tss Set upper limit regeneration temperature qss Set safe flow rate A Air 4 Air conditioner 4b Waste heat reheating part 12 Heating device H Heating medium 4c Reheating part for compensation
K setting proportional relationship
17 Reheat controller

Claims (5)

水冷式の熱源装置に冷却水を供給する冷却水ポンプと、前記熱源装置から送出される使用済み冷却水の温度である冷却水出口温度を検出する出口温度センサと、この出口温度センサにより検出される冷却水出口温度に応じ前記冷却水ポンプの出力を調整して前記熱源装置への冷却水供給流量を調整する制御手段と、空調対象域へ供給する空気を冷却除湿及びその冷却除湿に続く再熱により温湿度調整する空調機とを備え、
この空調機を、前記熱源装置から送出される使用済み冷却水を熱源として空調対象域への供給空気の冷却除湿に続く再熱を行う排熱利用再熱部と、前記熱源装置とは別の加熱装置で加熱した熱媒を熱源として空調対象域への供給空気の冷却除湿に続く再熱を行う補償用再熱部とを備える構成にし、
前記制御手段を、前記出口温度センサにより検出される冷却水出口温度の設定温度範囲内での変化に対して、前記冷却水ポンプに対する出力調整により前記熱源装置への冷却水供給流量を設定流量範囲内で比例的に変化させる構成にしてある冷却水システム。
A cooling water pump that supplies cooling water to the water-cooled heat source device, an outlet temperature sensor that detects a cooling water outlet temperature that is a temperature of used cooling water sent from the heat source device, and an outlet temperature sensor that detects the cooling water outlet temperature. The control means for adjusting the cooling water supply flow rate to the heat source device by adjusting the output of the cooling water pump according to the cooling water outlet temperature, and the air supplied to the air-conditioning target area is cooled and dehumidified. With air conditioner that adjusts temperature and humidity by heat,
This air conditioner includes a waste heat utilization reheat unit that performs reheating following cooling and dehumidification of supply air to the air-conditioning target area using the used cooling water sent from the heat source device as a heat source, and is different from the heat source device. The heat medium heated by the heating device is used as a heat source, and a configuration including a reheating portion for compensation that performs reheating following cooling and dehumidification of air supplied to the air-conditioning target area,
The control means sets a cooling water supply flow rate to the heat source device by adjusting an output to the cooling water pump with respect to a change in a set temperature range of the cooling water outlet temperature detected by the outlet temperature sensor. Cooling water system that is configured to change proportionally within.
前記制御手段は、前記出口温度センサにより検出される冷却水出口温度の前記設定温度範囲内での変化に対して前記熱源装置への冷却水供給流量を、予め設定されている冷却水出口温度と冷却水供給流量との設定比例関係に従って前記設定流量範囲内で比例的に変化させる構成にしてある請求項1記載の冷却水システム。 The control means sets a cooling water supply flow rate to the heat source device with respect to a change in the set temperature range of the cooling water outlet temperature detected by the outlet temperature sensor, and a preset cooling water outlet temperature. The cooling water system according to claim 1, wherein the cooling water system is configured to change proportionally within the set flow rate range in accordance with a set proportional relationship with a cooling water supply flow rate . 前記設定比例関係を、冷却水出口温度の変化に対する冷却水供給流量の変化率が前記設定温度範囲の上限側と下限側とで異なる関係にしてある請求項2記載の冷却水システム。 The cooling water system according to claim 2, wherein the set proportional relationship is such that the rate of change of the cooling water supply flow rate with respect to the change of the cooling water outlet temperature is different between an upper limit side and a lower limit side of the set temperature range . 前記排熱利用再熱部での再熱だけで前記空調機からの送出空気の温度を設定給気温度に調整できるときには、前記補償用再熱部での再熱を停止した状態で、前記熱源装置から送出される使用済み冷却水の前記排熱利用再熱部への供給流量を調整することにより前記空調機からの送出空気の温度を設定給気温度に調整し、
かつ、前記排熱利用再熱部での再熱だけでは前記空調機からの送出空気の温度を設定給気温度に調整できないときには、前記熱源装置から送出される使用済み冷却水の前記排熱利用再熱部への供給流量を最大にした状態で、前記別の加熱装置からの加熱熱媒の前記補償用再熱部への供給流量を調整することにより前記空調機からの送出空気の温度を設定給気温度に調整する再熱制御器を設けてある請求項1〜3のいずれか1項に記載の冷却水システム。
When the temperature of the air sent from the air conditioner can be adjusted to the set supply air temperature only by reheating in the exhaust heat reheating part, the heat source is stopped in the state where reheating in the compensation reheating part is stopped. Adjusting the temperature of the air sent from the air conditioner to the set supply air temperature by adjusting the supply flow rate of the used cooling water sent from the device to the exhaust heat reheating part,
In addition, when the temperature of the air sent from the air conditioner cannot be adjusted to the set supply air temperature only by reheating in the exhaust heat utilization reheating unit, the exhaust heat utilization of the used cooling water delivered from the heat source device is not possible. With the supply flow rate to the reheating unit maximized, the temperature of the air sent from the air conditioner is adjusted by adjusting the supply flow rate of the heating medium from the other heating device to the compensation reheating unit. The cooling water system according to any one of claims 1 to 3, wherein a reheat controller for adjusting the set supply air temperature is provided .
前記熱源装置が吸収式冷凍機であることに対して、前記制御手段を、前記吸収式冷凍機における再生器の検出温度が設定上限再生温度以上になったとき、前記出口温度センサにより検出される冷却水出口温度に基づく冷却水供給流量の調整に優先して、前記冷却水ポンプに対する出力調整により前記熱源装置としての前記吸収式冷凍機への冷却水供給流量を設定安全流量に調整する構成にしてある請求項1〜4のいずれか1項に記載の冷却水システム。 In contrast to the heat source device being an absorption refrigerator, the control means is detected by the outlet temperature sensor when the detected temperature of the regenerator in the absorption refrigerator is equal to or higher than a set upper limit regeneration temperature. Prior to the adjustment of the cooling water supply flow rate based on the cooling water outlet temperature, the cooling water supply flow rate to the absorption chiller as the heat source device is adjusted to the set safe flow rate by adjusting the output to the cooling water pump. The cooling water system according to any one of claims 1 to 4 .
JP2004362759A 2004-12-15 2004-12-15 Cooling water system Expired - Fee Related JP4553715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362759A JP4553715B2 (en) 2004-12-15 2004-12-15 Cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362759A JP4553715B2 (en) 2004-12-15 2004-12-15 Cooling water system

Publications (2)

Publication Number Publication Date
JP2006170508A JP2006170508A (en) 2006-06-29
JP4553715B2 true JP4553715B2 (en) 2010-09-29

Family

ID=36671456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362759A Expired - Fee Related JP4553715B2 (en) 2004-12-15 2004-12-15 Cooling water system

Country Status (1)

Country Link
JP (1) JP4553715B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672619B2 (en) * 2015-06-26 2020-03-25 ダイキン工業株式会社 Air conditioning system
JP7058538B2 (en) * 2018-04-05 2022-04-22 東京エレクトロン株式会社 Flow control method, temperature control method and processing equipment
CN112786223B (en) * 2021-01-14 2023-10-31 中广核研究院有限公司 Waste heat discharging system and flow stabilizing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894650U (en) * 1972-02-16 1973-11-12
JPS5138168B2 (en) * 1973-11-20 1976-10-20
JPS6016272A (en) * 1983-07-07 1985-01-28 株式会社荏原製作所 Method of controlling flow rate of cooling water in refrigerator
JPH01142357A (en) * 1987-11-30 1989-06-05 Toshiba Corp Air-conditioner
JPH0244144A (en) * 1988-08-05 1990-02-14 Mitsubishi Electric Corp Air conditioner
JPH07218016A (en) * 1994-02-01 1995-08-18 Hitachi Ltd Absorption type chilled and warm water machine
JP2000283527A (en) * 1999-03-30 2000-10-13 Dai-Dan Co Ltd Cooling water variable flow controller
JP2001050605A (en) * 1999-08-06 2001-02-23 Tokyo Gas Co Ltd Method for operating water-cooled air conditioner
JP2004101129A (en) * 2002-09-12 2004-04-02 Toshiba Corp Control method for refrigerator and refrigeration device
JP2004316980A (en) * 2003-04-14 2004-11-11 Hitachi Plant Eng & Constr Co Ltd Air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894650U (en) * 1972-02-16 1973-11-12
JPS5138168B2 (en) * 1973-11-20 1976-10-20
JPS6016272A (en) * 1983-07-07 1985-01-28 株式会社荏原製作所 Method of controlling flow rate of cooling water in refrigerator
JPH01142357A (en) * 1987-11-30 1989-06-05 Toshiba Corp Air-conditioner
JPH0244144A (en) * 1988-08-05 1990-02-14 Mitsubishi Electric Corp Air conditioner
JPH07218016A (en) * 1994-02-01 1995-08-18 Hitachi Ltd Absorption type chilled and warm water machine
JP2000283527A (en) * 1999-03-30 2000-10-13 Dai-Dan Co Ltd Cooling water variable flow controller
JP2001050605A (en) * 1999-08-06 2001-02-23 Tokyo Gas Co Ltd Method for operating water-cooled air conditioner
JP2004101129A (en) * 2002-09-12 2004-04-02 Toshiba Corp Control method for refrigerator and refrigeration device
JP2004316980A (en) * 2003-04-14 2004-11-11 Hitachi Plant Eng & Constr Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP2006170508A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5626918B2 (en) Auxiliary heater control device, heating fluid utilization system, and auxiliary heater control method
JP3997482B2 (en) Water source air conditioning system
JP6301684B2 (en) CO2 water heater
JP4960795B2 (en) Heat source system
JP2005069552A (en) Water heat source heat pump unit
JP2010236816A (en) Heat pump type air conditioner and method of controlling heat pump type air conditioner
JP2011257100A (en) Engine-driven hot water supply circuit and engine-driven hot water supply system using the same
JP4553715B2 (en) Cooling water system
JP4208792B2 (en) Cogeneration system
JP5455338B2 (en) Cooling tower and heat source system
JP6415702B2 (en) Air conditioner
JP6415378B2 (en) Air conditioning system
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
JP5531246B2 (en) Compressed air dehumidifier
JP4097405B2 (en) Engine cooling method and apparatus and refrigeration apparatus
JP6013738B2 (en) Heating system
JP5768151B2 (en) Heat pump type air conditioner and control method of heat pump type air conditioner
JP2017078525A (en) Air conditioning system
JP5841931B2 (en) Engine driven heat pump
JP3932378B2 (en) Air conditioner
JP6951259B2 (en) Air conditioning system
JP3859359B2 (en) Heat source system using heat storage tank
JP4382309B2 (en) Hot water storage water heater
JP2018115772A (en) Flow control device of heat source machine for air conditioning
JP6697891B2 (en) Heat utilization system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees